1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Spore Surface Display

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    408.17 Kb
  • HTML
    142.24 Kb
  • XML
    131.86 Kb
  • Authors: Rachele Isticato1, Ezio Ricca2
  • Editors: Patrick Eichenberger3, Adam Driks4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biology, Federico II University of Naples, Naples, 80126 Italy; 2: Department of Biology, Federico II University of Naples, Naples, 80126 Italy; 3: New York University, New York, NY; 4: Loyola University Medical Center, Maywood, IL
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0011-2012
  • Received 15 October 2012 Accepted 08 May 2014 Published 12 September 2014
  • Ezio Ricca, ericca@unina.it
image of Spore Surface Display
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Spore Surface Display, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/TBS-0011-2012-1.gif /docserver/preview/fulltext/microbiolspec/2/5/TBS-0011-2012-2.gif
  • Abstract:

    A variety of bioactive peptides and proteins have been successfully displayed on the surface of recombinant spores of and other sporeformers. In most cases, spore display has been achieved by stably anchoring the foreign molecules to endogenous surface proteins or parts of them. Recombinant spores have been proposed for a large number of potential applications ranging from oral vaccine vehicles to bioremediation tools, and including biocatalysts, probiotics for animal or human use, as well as the generation and screening of mutagenesis libraries. In addition, a nonrecombinant approach has been recently developed to adsorb antigens and enzymes on the spore surface. This nonrecombinant approach appears particularly well suited for applications involving the delivery of active molecules to human or animal mucosal surfaces. Both the recombinant and nonrecombinant spore display systems have a number of advantages over cell- or phage-based systems. The stability, safety of spores of several bacterial species, and amenability to laboratory manipulations, together with the lack of some constraints limiting the use of other systems, make the spore a highly efficient platform to display heterologous proteins.

  • Citation: Isticato R, Ricca E. 2014. Spore Surface Display. Microbiol Spectrum 2(5):TBS-0011-2012. doi:10.1128/microbiolspec.TBS-0011-2012.

Key Concept Ranking

White spot syndrome virus
0.46077496
0.46077496

References

1. Lee SY, Choi JH, Xu Z. 2003. Microbial cell-surface display. Trends Biotechnol 21:45–52. [PubMed][CrossRef]
2. Kronqvist N, Malm M, Rockberg J, Hjelm B, Uhlén M, Ståhl S, Löfblom J. 2010. Staphylococcal surface display in combinatorial protein engineering and epitope mapping of antibodies. Recent Pat Biotechnol 4:171–182. [PubMed][CrossRef]
3. van Bloois E, Winter RT, Kolmar H, Fraaije MW. 2011. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 29:79–86. [PubMed][CrossRef]
4. Wu CH, Mulchandani A, Chen W. 2008. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16:181–188. [PubMed][CrossRef]
5. Sousa C, Kotrba P, Ruml T, Cebolla A, De Lorenzo V. 1998. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280–2284. [PubMed]
6. Sousa C, Cebolla A, de Lorenzo V. 1996. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14:1017–1020. [PubMed][CrossRef]
7. Valls M, de Lorenzo V, Gonzalez-Duarte R, Atrian S. 2000. Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy metal bioadsorption. J Inorg Biochem 79:219–223. [PubMed][CrossRef]
8. Valls M, Atrian S, de Lorenzo V, Fernandez LA. 2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechol 18:661–665. [PubMed][CrossRef]
9. Bae W, Chen W, Mulchandani A, Mehra R. 2000. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524. [PubMed][CrossRef]
10. Bae W, Mehra R, Mulchandani A, Chen W. 2001. Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338. [PubMed][CrossRef]
11. Bae W, Mulchandani A, Chen W. 2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88:223–227. [PubMed][CrossRef]
12. Richins R, Kaneva I, Mulchandani A, Chen W. 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nature Biotechnol 15:984–987. [PubMed][CrossRef]
13. Gunneriusson E, Samuelson P, Uhlen M, Nygren PA, Stahl S. 1996. Surface display of a functional single-chain Fv antibody on staphylococci. J Bacteriol 178:1341–1346. [PubMed]
14. Giomarelli B, Maggi T, Younson J, Kelly C, Pozzi G. 2004 Expression of a functional single-chain Fv antibody on the surface of Streptococcus gordonii. Mol Biotechnol 28:105–112. [PubMed][CrossRef]
15. Benhar I. 2001. Biotechnological applications of phage and cell display. Biotechnol Adv 19:1–33. [PubMed][CrossRef]
16. di Marzo Veronese F, Willis AE, Boyer-Thompson C, Appella E, Perham RN. 1994. Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage. The V3 loop of HIV-1 gp120. J. Mol Biol 243:167–172. [PubMed][CrossRef]
17. Jiang J, Abu-Shilbayeh L, Rao VB. 1997. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect Immun 65:4770–4777. [PubMed]
18. Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G. 1991. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol 222:301–310. [PubMed][CrossRef]
19. Felici F, Luzzago A, Monaci P, Nicosia A, Sollazzo M, Traboni C. 1995. Peptide and protein display on the surface of filamentous bacteriophage. Biotechnol Annu Rev 1:149–183. [PubMed][CrossRef]
20. Folgori A, Tafi R, Meola A, Felici F, Galfre G, Cortese R, Monaci P, Nicosia A. 1994. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J 13:2236–2243. [PubMed]
21. Nguyen TN, Hansson M, Stahl S, Bachi T, Robert A, Domzig W, Binz H, Uhlen M. 1993. Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. Gene 128:89–94. [PubMed][CrossRef]
22. Nguyen TN, Gourdon MH, Hansson M, Robert A, Samuelson P, Libon C, Andreoni C, Nygren PA, Binz H, Uhlen M, Stahl S. 1995. Hydrophobicity engineering to facilitate surface display of heterologous gene products on Staphylococcus xylosus. J Biotechnol 42:207–219. [PubMed][CrossRef]
23. Wu JY, Newton S, Judd A, Stocker B, Robinson WS. 1989. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella. Proc Natl Acad Sci USA 86:4726–4730. [PubMed][CrossRef]
24. Newton SM, Jacob CO, Stocker BA. 1989. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 244:70–72. [PubMed][CrossRef]
25. Schorr J, Knapp B, Hundt E, Kupper HA, Amann E. 1991. Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine 9:675–681. [PubMed][CrossRef]
26. Fischetti VA, Medaglini D, Pozzi G. 1996. Gram-positive commensal bacteria for mucosal vaccine delivery. Curr Opin Biotechnol 7:659–666. [PubMed][CrossRef]
27. Isticato R, Cangiano G, De Felice M, Ricca E. 2004. Display of molecules on the spore surface. p 193–200. In E. Ricca, Henriques AO, Cutting SM (ed), Bacterial Spore Formers: Probiotics and Emerging Applications. Horizon Biosciences, Norfolk, UK.
28. Jose J, Meyer TF. 2007. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71:600–619. [PubMed][CrossRef]
29. Maurer J, Jose J, Meyer TF. 1997. Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins in Escherichia coli. J Bacteriol 179:794–804. [PubMed]
30. Henriques AO, Moran CP, Jr. 2007. Structure, assembly and function of the spore surface layers. Annu Rev Microbiol 61:555–588. [PubMed][CrossRef]
31. Klobutcher LA, Ragkousi K, Setlow P. 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila. Proc Natl Acad. Sci USA 103:165–170. [PubMed][CrossRef]
32. Isticato R, Cangiano G, Tran H-T, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Pozzi G, Ricca E. 2001 Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183:6294–6301. [PubMed][CrossRef]
33. Mauriello EMF, Duc LH, Isticato R, Cangiano G, Hong HA, De Felice M, Ricca E, Cutting SM. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22:1177–1187. [PubMed][CrossRef]
34. Cangiano G, Mazzone A, Baccigalupi L, Isticato R, Eichenberger P, De Felice M, Ricca E. 2010. Direct and indirect control of late sporulation genes by GerR of Bacillus subtilis. J Bacteriol 192:3406–3413. [PubMed][CrossRef]
35. Zilhao R, Isticato R, Ozin A, Serrano M, Moran CP, Ricca E, Henriques OA. 2004. Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J Bacteriol 186:1110–1119. [PubMed][CrossRef]
36. Isticato R, Esposito G, Zilhao R, Nolasco S, Cangiano G, De Felice M, Henriques OA, Ricca E. 2004. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186:1129–1135. [PubMed][CrossRef]
37. Baccigalupi L, Castaldo G, Cangiano G, Isticato R, Marasco R, De Felice M, Ricca E. 2004. GerE-independent expression of cotH leads to CotC accumulation in the mother cell compartment during Bacillus subtilis sporulation. Microbiol UK 150:3441–3449. [PubMed][CrossRef]
38. Helting TB, Zwisler O. 1977. Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. J Biol Chem 252:194–198. [PubMed]
39. Douce G, Turcotte C, Cropley I, Roberts M, Pizza M, Domenghini M, Rappuoli R, Dougan G. 1995. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 92:1644–1648. [PubMed][CrossRef]
40. Yamamoto H, Kurosawa S-I, Sekigushi J. 2003. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell wall surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol 22:6666–6677. [CrossRef]
41. Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM. 2003. Bacterial spores as vaccine vehicles. Infect Immun 71:2810–2818. [CrossRef]
42. Ciabattini A, Parigi R, Isticato R, Oggioni MR, Pozzi G. 2004. Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine 22:4139–4143. [PubMed][CrossRef]
43. Mauriello EMF, Cangiano G, Maurano F, Saggese V, De Felice M, Rossi M, Ricca E. 2007. Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 25:788–793. [PubMed][CrossRef]
44. Duc LH, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijpkema S, Titball RW, Cutting SM. 2007. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25:346–355. [PubMed][CrossRef]
45. Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM. 2008. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 76:5257–5265. [PubMed][CrossRef]
46. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszyńska-Sularz G, De Felice M, Obukowski M, Ricca E. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact 9:2. doi:10.1186/1475-2859-9-2. [PubMed][CrossRef]
47. Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather N, Cutting SM. 2011. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile. Infect Immun 79:2295–2302. [PubMed][CrossRef]
48. Ning D, Leng X, Li Q, Xu W. 2011. Surface-displayed VP28 on Bacillus subtilis spores induces protection against white spot syndrome virus in crayfish by oral administration. J Appl Microbiol 111:1327–1336. [PubMed][CrossRef]
49. Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi K, Ricca E, Ahmadian G. 2010. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res Microbiol 161:757–764. [PubMed][CrossRef]
50. Donovan W, Zheng L, Sandman K, Losick R. 1987. Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 196:1–10. [PubMed][CrossRef]
51. Zheng L, Donovan WP, Fitz-James PC, Losick R. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev 2:1047–1054. [PubMed][CrossRef]
52. Isticato R, Pelosi A, Zilhao R, Baccigalupi L, Henriques AO, De Felice M, Ricca E. 2008. CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J Bacteriol 190:1267–1275. [PubMed][CrossRef]
53. Isticato R, Pelosi A, De Felice M, Ricca E. 2010. CotE binds to CotC and CotU and mediates their interaction during spore coat formation in Bacillus subtilis. J Bacteriol 192:949–954. [PubMed][CrossRef]
54. Isticato R, Scotto Di Mase D, Mauriello EMF, De Felice M, Ricca E. 2007. Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system. BioTechniques 42:151–156. [PubMed][CrossRef]
55. Mao L, Jiang S, Li G, He Y, Chen L, Yao Q, Chen K. 2012. Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr Microbiol 64:545–551. [PubMed][CrossRef]
56. D'Apice L, Sartorius R, Caivano A, Mascolo D, Del Pozzo G, Scotto Di Mase D, Ricca E, Li Pira G, Manca F, Malanga D, De Palma R, De Berardinis P. 2007. Comparative analysis of new innovative vaccine formulations based on the use of procaryotic display systems. Vaccine 25:1993–2000. [PubMed][CrossRef]
57. Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, Ma C, Chen X, Hu F, Xu J, Lu F, Wu Z, Yu X. 2008. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817–1825. [PubMed][CrossRef]
58. Li G, Tang Q, Chen H, Yao Q, Ning D, Chen K. 2011. Display of Bombyx mori nucleopolyhedrovirus GP64 on the Bacillus subtilis spore coat. Curr Microbiol 62:1368–1373. [PubMed][CrossRef]
59. Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, Chen K. 2011. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS ONE 6:e21454. doi:10.1371/journal.pone.0021454. [PubMed][CrossRef]
60. Sacco M, Ricca E, Losick R, Cutting S. 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J Bacteriol 177:372–377. [PubMed]
61. Giglio R, Fani R, Isticato R, De Felice M, Ricca E, Baccigalupi L. 2011. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J Bacteriol 193:6664–6673. [PubMed][CrossRef]
62. Henriques AO, Melsen LR, Moran CP. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J Bacteriol 180:2285–2291. [PubMed]
63. Naclerio G, Baccigalupi L, Zilhao R, De Felice M, Ricca E. 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J Bacteriol 178:4375–4380. [PubMed]
64. Kim J-H, Lee C-S, Kim B-G. 2005. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem Biophys Res Commun 331:210–214. [PubMed][CrossRef]
65. Kim J-H, Roh C, Lee C-W, Kyung D, Choi S-K, Jung H-C, Pan J-G, Kim B-G. 2007. Bacterial surface display of GFPUV on Bacillus subtilis spores. J Microb Biotechnol 17:677–680. [PubMed]
66. Hwang B-Y, Kim B-G, Kim J-H. 2011. Bacterial surface display of a co-factor containing enzyme ω-transaminase from Vibrio fluvialis using Bacillus subtilis spore display system. Biosci Biotechnol Biochem 75:1862–1865. [PubMed][CrossRef]
67. Xu X, Gao C, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P. 2011. Production of N-acetyl-d-neuraminic acid by use of an efficient spore surface display system. Appl Environ Microbiol 77:3197–3201. [PubMed][CrossRef]
68. Kwon SJ, Jung H-C, Pan J-G. 2007. Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol 73:2251–2256. [PubMed][CrossRef]
69. Potot S, Serra CR, Henriques AO, Schyns G. 2010. Display of recombinant proteins on Bacillus subtilis spores using a coat-associated enzyme as the carrier. Appl Environ Microbiol 76:5926–5933. [PubMed][CrossRef]
70. Tanner A, Bowater L, Fairhurst A, Bornemann S. 2001. Oxalate decarboxylase requires manganese and dioxygen for activity: overexpression and characterization of Bacillus subtilis YvrK and YoaN. J Biol Chem 276:43627–43634. [PubMed][CrossRef]
71. Costa T, Steil L, Martins LO, Volker U, Henriques AO. 2004. Assembly of an oxalate decaroxylase produced under the sigma k control into the Bacillus subtilis spore coat. J Bacteriol 186:1462–1474. [PubMed][CrossRef]
72. Ozin AJ, Samford CS, Henriques AO, Moran CP. 2001. SpoVID guides SafA to the spore coat in Bacillus subtilis. J Bacteriol 183:3041–3049. [PubMed][CrossRef]
73. Tam NK, Uyen NQ, Hong HA, Duc LH, Hoa TT, Serra CR, Henriques AO, Cutting SM. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188:2692–2700. [PubMed][CrossRef]
74. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2:e328. doi:10.1371/journal.pbio.0020328. [PubMed][CrossRef]
75. Plata G, Fuhrer T, Hsiao T-L, Sauer U, Viktup D. 2012. Global probabilistic annotation of metabolic networks enables enzyme discovery. Nat Chem Biol 8:848–854. [PubMed][CrossRef]
76. Knurr J, Benedek O, Heslop J, Vinson RB, Boydston JA, McAndrew J, Kearney JF, Turnbough CL. 2003. Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. Appl Environ Microbiol 69:6841–6847. [PubMed][CrossRef]
77. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430. [PubMed][CrossRef]
78. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO. 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:1849–1859. [PubMed][CrossRef]
79. Gupta N, Farinas ET. 2010. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng Des Sel 23:679–682. [PubMed][CrossRef]
80. Du C, Nickerson KW. 1996. Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: physiological and pathogenic consequences. Appl Environ Microbiol 62:3722–3726. [PubMed]
81. Du C, Chan WC, McKeithan W, Nickerson KW. 2005. Surface display of recombinant proteins on Bacillus thuringiensis spores. Appl Environ Microbiol 71:3337–3341. [PubMed][CrossRef]
82. Park TJ, Choi S-K, Jung H-C, Lee SY, Pan J-G. 2009. Spore display using Bacillus thuringiensis exosporium protein InhA. J Microbiol Biotechnol 19:495–501. [PubMed][CrossRef]
83. Thompson BM, Stewart GC. 2008. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Mol Microbiol 70:421–434. [PubMed][CrossRef]
84. Detmer A, Glenting J. 2006. Live bacterial vaccines—a review and identification of potential hazards. Microb Cell Fact 5:23. doi:10.1186/1475-2859-5-23. [PubMed][CrossRef]
85. Yim S-K, Jung H-C, Yun C-H, PanJ-G. 2009. Functional expression in Bacillus subtilis of mammalian NADPH-cytochrome P450 oxidoreductase and its spore-display. Protein Expr Purif 63:5–11. [PubMed][CrossRef]
86. Shao X, Jiang M, Yu Z, Cai H, Li L. 2009. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor Microb Cell Fact 8:48. doi:10.1186/1475-2859-8-48. [PubMed][CrossRef]
87. Jiang M, Shao X, Ni H, Yu Z, Li L. 2011. In vivo and in vitro surface display of heterologous proteins on Bacillus thuringiensis vegetative cells and spores. Process Biochem. 46:1861–1866. [CrossRef]
88. Huang JM, Hong HA, Van Tong H, Hoang TH, Brisson A, Cutting SM. 2010. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28:1021–1030. [PubMed][CrossRef]
89. Walker J, Crowley P, Moreman AD, Barrett J. 1993. Biochemical properties of cloned glutathione S-transferases from Schistosoma mansoni and Schistosoma japonicum. Mol Biochem Parasitol 61:255–264. [PubMed][CrossRef]
90. Cho EA, Kim EJ, Pan JG. 2011. Adsorption immobilization of Escherichia coli phytase on probiotic Bacillus polyfermenticus spores. Enzyme Microb Technol 49:66–71. [PubMed][CrossRef]
91. Sirec T, Strazzulli A, Isticato R, De Felice M, Moracci M, Ricca E. 2012. Adsorption of β-galactosidase of Alicyclobacillus acidocaldaricus on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 11:100. doi:10.1186/1475-2859-11-100. [PubMed][CrossRef]
92. Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. 2010. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B Biointerfaces 76:512–518. [PubMed][CrossRef]
93. Kazakov S, Bonvouloir E, Gazaryan I. 2008. Physicochemical characterization of natural ionic microreservoirs: Bacillus subtilis dormant spores. J Phys Chem 112:2233–2244. [PubMed][CrossRef]
94. Chung EA, Iacoumi S, Lee I, Tsouris C. 2010. The role of the electrostatic force in spore adhesion. Environ Sci Technol 44:6209–6214. [PubMed][CrossRef]
95. Pesce G, Rusciano G, Sasso A, Isticato R, Sirec T, Ricca E. 2014. Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers. Colloids Surf B Biointerfaces 116:568–575. [PubMed][CrossRef]
96. Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. 2010. Bacillus anthracis and Bacillus subtilis spores surface properties and transport. Colloids Surf B Biointerfaces 76:512–518. [PubMed][CrossRef]
97. Knecht LD, Pasini P, Daunert S. 2011. Bacterial spores as platforms for bioanalytical and biomedical applications. Anal Bioanal Chem 400:977–989. [PubMed][CrossRef]
98. Cutting SM. 2011. Bacillus probiotics. Food Microbiol 28:214–220. [PubMed][CrossRef]
99. Cutting SM, Hong HA, Baccigalupi L, Ricca E. 2009. Oral vaccine delivery by recombinant spore probiotics. Intern Rev Immunol 28:487–505. [PubMed][CrossRef]
100. Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E. 2013. Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 12:98. doi:10.1186/1475-2859-12-98. [PubMed][CrossRef]
101. Ragkousi K, Setlow P. 2004. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186:5567–5575. [PubMed][CrossRef]
102. Zilhão R, Isticato R, Martins LO, Steil L, Völker U, Ricca E, Moran CP, Henriques AO. 2005. Assembly and function of a transglutaminase at the surface of the developing spore in Bacillus subtilis. J Bacteriol 187:7753–7764. [PubMed][CrossRef]
103. Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S. 1996. ε-(γ-glutamyl)Lysine crosslinks of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol Lett 144:157–160.
104. McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, Gitai Z, Eichenberger P. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20:934–938. [PubMed][CrossRef]
105. Imamura D, Kuwana R, Takamatsu H, Watabe K. 2011. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 193:4075–4080. [PubMed][CrossRef]
106. Hinc K, Iwanicki A, Obuchowski M. 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb Cell Fact 12:22. doi:10.1186/1475-2859-12-22. [PubMed][CrossRef]
107. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K. 2013. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 62:1379–1385. [PubMed][CrossRef]
108. Iwanicki A, Piatek I, Stasilojć M, Grela A, Lega T, Obuchowski M, Hinc K. 2014. A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact 13:30. doi:10.1186/1475-2859-13-30. [PubMed][CrossRef]
109. Chen X, Mahadevan L, Driks A, Sahin O. 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat Nanotechnol 9:137–141. [PubMed][CrossRef]
microbiolspec.TBS-0011-2012.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.TBS-0011-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBS-0011-2012
2014-09-12
2017-11-19

Abstract:

A variety of bioactive peptides and proteins have been successfully displayed on the surface of recombinant spores of and other sporeformers. In most cases, spore display has been achieved by stably anchoring the foreign molecules to endogenous surface proteins or parts of them. Recombinant spores have been proposed for a large number of potential applications ranging from oral vaccine vehicles to bioremediation tools, and including biocatalysts, probiotics for animal or human use, as well as the generation and screening of mutagenesis libraries. In addition, a nonrecombinant approach has been recently developed to adsorb antigens and enzymes on the spore surface. This nonrecombinant approach appears particularly well suited for applications involving the delivery of active molecules to human or animal mucosal surfaces. Both the recombinant and nonrecombinant spore display systems have a number of advantages over cell- or phage-based systems. The stability, safety of spores of several bacterial species, and amenability to laboratory manipulations, together with the lack of some constraints limiting the use of other systems, make the spore a highly efficient platform to display heterologous proteins.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/TBS-0011-2012.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.TBS-0011-2012&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Surface proteins used as carriers for surface display systems in Gram-negative and Gram-positive bacteria. CM, cytoplasmic membrane; OM, outer membrane; PP, periplasm; PG, peptidoglycan. Black circles indicate the heterologous proteins used as passengers. doi:10.1128/microbiolspec.TBS-0011-2012.f1

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

C-terminal (top), N-terminal (middle), and sandwich (bottom) fusions. Black squares indicate the linker sequence, in some cases used to separate carrier and passenger. doi:10.1128/microbiolspec.TBS-0011-2012.f2

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Amino acid sequences of the three repeats (R1, R2, R3) present in the C-terminal half of CotB. Hydrophobic (black) and hydrophilic (gray) regions of CotB as deduced by a Kyte-Doolittle plot (ProtScale software on ExPASy). Truncated form of CotB used as a carrier for surface display. doi:10.1128/microbiolspec.TBS-0011-2012.f3

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Gene fusions are synthesized into the mother cell cytoplasm due to mother cell-specific transcription signals. Chimera are then assembled around the forming spore during the spore maturation process and released by autolysis of the mother cell. Dark gray cylinders represent the coat components used as carriers, and black circles indicate the heterologous passengers. doi:10.1128/microbiolspec.TBS-0011-2012.f4

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0011-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

List of carriers, passenger proteins, and potential applications described for spore surface display systems

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0011-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error