1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Evolution in the

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    588.27 Kb
  • HTML
    360.68 Kb
  • XML
    431.69 Kb
  • Authors: Patricia Fajardo-Cavazos1, Heather Maughan2, Wayne L. Nicholson3
  • Editors: Patrick Eichenberger4, Adam Driks5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology & Cell Science, University of Florida, Space Life Sciences Laboratory, Exploration Park at Kennedy Space Center, Merritt Island, FL 32953; 2: Ronin Institute (Headquartered in Montclair, NJ), Mildmay, ON Canada N0G 2J0; 3: Department of Microbiology & Cell Science, University of Florida, Space Life Sciences Laboratory, Exploration Park at Kennedy Space Center, Merritt Island, FL 32953; 4: New York University, New York, NY; 5: Loyola University Medical Center, Maywood, IL
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.TBS-0020-2014
  • Received 21 September 2012 Accepted 28 April 2014 Published 05 September 2014
  • W. L. Nicholson, WLN@ufl.edu
image of Evolution in the <span class="jp-italic">Bacillaceae</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Evolution in the , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/TBS-0020-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/5/TBS-0020-2014-2.gif
  • Abstract:

    The family constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the , the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.

  • Citation: Fajardo-Cavazos P, Maughan H, Nicholson W. 2014. Evolution in the . Microbiol Spectrum 2(5):TBS-0020-2014. doi:10.1128/microbiolspec.TBS-0020-2014.

Key Concept Ranking

Desert Soils
0.4656225
Fatty Acid Desaturase
0.46292937
Horizontal Gene Transfer
0.41843358
16s rRNA Sequencing
0.41270447
0.4656225

References

1. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287. [PubMed][CrossRef]
2. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D'haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA. 2009. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060. [PubMed][CrossRef]
3. Graumann PE. 2007. Bacillus: Cellular and Molecular Biology. Caister Academic Press, Hethersett, UK.
4. Sonenshein AL, Hoch JA, Losick R (ed). 2002. Bacillus subtilis and Its Closest Relatives: From Genes to Cells. ASM Press, Washington, DC.
5. Nicholson WL. 2002. Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416. [PubMed][CrossRef]
6. Nicholson WL. 2004. Ubiquity, longevity, and ecological roles of Bacillus spores, p 1–15. In Ricca E, Henriques AO, Cutting SM (ed), Bacterial Spore Formers: Probiotics and Emerging Applications. Horizon Scientific Press, Norfolk, UK. [PubMed]
7. Priest FG. 1993. Systematics and ecology of Bacillus, p 3–16. In Sonenshein AL, Hoch JA, Losick R (ed), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, DC.
8. Slepecky RA, Leadbetter ER. 1994. Ecology and relationships of endospore-forming bacteria: changing perspectives, p 195–206. In Piggot PJ, Moran CP Jr, Youngman P (ed), Regulation of Bacterial Differentiation. American Society for Microbiology, Washington, DC.
9. Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976. [PubMed][CrossRef]
10. Logan NA, Halket G. 2011. Developments in the taxonomy of aerobic, endospore-forming bacteria, p 1–31. In Logan NA, De Vos P (ed), Endospore-Forming Soil Bacteria. Springer-Verlag, Heidelberg, Germany. [CrossRef]
11. Cohn F. 1872. Untersuchungen über Bacterien. I Beitr Biol Pfl 1:127–224.
12. Koch R. 1876. Die Ätiologie der Milzbrand-krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. Beitr Biologie Pflanz 2:277–310.
13. Beierlein JM, Anderson AC. 2011. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Curr Med Chem 18:5083–5094. [PubMed][CrossRef]
14. Hudson MJ, Beyer W, Boehm R, Fasanella A, Garofolo G, Golinski R, Goossens PL, Hahn U, Hallis B, King A, Mock M, Montecucco C, Ozin A, Tonello F, Kaufmann SHE. 2008. Bacillus anthracis: balancing innocent research with dual-use potential. Int J Med Microbiol 298:345–364. [PubMed][CrossRef]
15. Graumann P. 2007. Bacillus: Cellular and Molecular Biology. Caister Academic Press, Hethersett, United Kingdom.
16. Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH. 1920. The families and genera of the bacteria: final report of the Committee of the Society of American Bacteriologists on Characterization and Classification of Bacterial Types. J Bacteriol 5:191–229. [PubMed]
17. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FW. 1923. Bergey's Manual of Determinative Bacteriology: A Key for the Identification of Organisms of the Class Schizomycetes. Williams & Wilkins, Baltimore, MD.
18. Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090. [PubMed][CrossRef]
19. Ash C, Farrow JAE, Wallbanks S, Collins MD. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206. [CrossRef]
20. Priest FG. 1993. Systematics and ecology of Bacillus, p 3–16. In Sonenshein AL, Hoch JA, Losick R (ed), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, DC.
21. Schloss PD, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. [PubMed][CrossRef]
22. Stackebrandt E, Goebel BM. 1994. A place for DNA-DNA reassociation and 16S ribosomal RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849. [CrossRef]
23. De Vos P, Garrity GM, Jones D, Kreig NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (ed). 2009. Bergey's Manual of Systematic Bacteriology, 2nd ed, vol 3. The Firmicutes. Springer-Verlag, New York, NY.
24. Maughan H, Van der Auwera G. 2011. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect Genet Evol 11:789–797. [PubMed][CrossRef]
25. David LA, Alm EJ. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96. [PubMed][CrossRef]
26. Moreno-Letelier A, Olmedo G, Eguiarte LE, Martinez-Castilla L, Souza V. 2011. Parallel evolution and horizontal gene transfer of the pst operon in Firmicutes from oligotrophic environments. Int J Evol Biol 2011:781642. doi:10.4061/2011/781642 [PubMed][CrossRef]
27. Hobbs JK, Shepherd C, Saul DJ, Demetras NJ, Haaning S, Monk CR, Daniel RM, Arcus VL. 2012. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Mol Biol Evol 29:825–835. [PubMed][CrossRef]
28. Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G. 2010. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11:332. doi:10.1186/1471-2164-11-332. [PubMed][CrossRef]
29. Kobayashi K, Ehrlich S, Albertini A, Amati G, Andersen K, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell S, Bron S, Bunai K, Chapuis J, Christiansen L, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine S, Dreesen O, Errington J, Fillinger S, Foster S, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood C, Hecker M, Hosoya D, Hullo M, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado R, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O'Reilly M, O'Rourke M, Pragai Z, Pooley H, Rapoport G, Rawlins J, Rivas L, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild H, Scanlan E, Schumann W, Seegers J, Sekiguchi J, Sekowska A, Seror S, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides H, Vagner V, van Dijl J, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N. 2003. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683. [PubMed][CrossRef]
30. Baesman SM, Stolz JF, Kulp TR, Oremland RS. 2009. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 13:695–705. [PubMed][CrossRef]
31. Mnif S, Chamkha M, Labat M, Sayadi S. 2011. Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536. [PubMed][CrossRef]
32. Chen Y-G, Zhang Y-Q, Liu Z-X, Zhuang D-C, Klenk H-P, Tang S-K, Cui X-L, Li W-J. 2009. Halobacillus salsuginis sp nov., a moderately halophilic bacterium from a subterranean brine. Int J Syst Evol Microbiol 59:2505–2509. [PubMed][CrossRef]
33. Taubel M, Kampfer P, Buczolits S, Lubitz W, Busse HA. 2003. Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int J Syst Evol Microbiol 53:725–730. [PubMed][CrossRef]
34. Batchelor MD. 1919. Aerobic spore-bearing bacteria in the intestinal tract of children. J Bacteriol 4:23–34. [PubMed]
35. Vedder A. 1934. Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Antonie Leeuwenhoek 1:143–147.
36. Hoyles L, Honda H, Logan NA, Halket G, La Ragione RM, McCartney AL. 2012. Recognition of greater diversity of Bacillus species and related bacteria in human faeces. Res. Microbiol 163:3–13. [PubMed][CrossRef]
37. Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A. 2010. Environmental distribution of prokaryotic taxa. BMC Microbiol 10:85. doi:10.1186/1471-2180-10-85. [PubMed][CrossRef]
38. Euzéby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592. [PubMed][CrossRef]
39. Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529. [PubMed][CrossRef]
40. Lakay FM, Botha A, Prior BA. 2007. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J Appl Microbiol 102:265–273. [PubMed][CrossRef]
41. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572. [PubMed][CrossRef]
42. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525. [PubMed][CrossRef]
43. Womack AM, Bohannan BJ, Green JL. 2010. Biodiversity and biogeography of the atmosphere. Philos Trans R Soc Lond B Biol Sci 365:3645–3653. [PubMed][CrossRef]
44. DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL. 2007. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383. [PubMed][CrossRef]
45. Brodie EL, DeSantis TZ, Parker JP, Zubietta IX, Piceno YM, Andersen GL. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci USA 104:299–304. [PubMed][CrossRef]
46. Merrill L, Dunbar J, Richardson J, Kuske CR. 2006. Composition of Bacillus species in aerosols from 11 U.S. cities. J Forensic Sci 51:559–565. [PubMed][CrossRef]
47. Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ. 2008. Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Syst 4:8. doi:10.1186/1746-1448-4-8. [PubMed][CrossRef]
48. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. 2007. Release and persistence of extracellular DNA in the environment. Environ Biosafety Res 6:37–53. [PubMed][CrossRef]
49. Earl AM, Losick R, Kolter R. 2008. Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275. [PubMed][CrossRef]
50. Ludwig W, Schleifer K-H, Whitman WB. 2009. Revised road map to the phylum Firmicutes, p 1–13. In De Vos P, Garrity GM, Jones D, Kreig NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (ed), Bergey's Manual of Systematic Bacteriology, 2nd ed, vol 3. The Firmicutes. Springer, New York, NY.
51. Maughan H. 2007. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61:280–288. [PubMed][CrossRef]
52. Earl AM, Losick R, Kolter R. 2007. Bacillus subtilis genome diversity. J Bacteriol 189:1163–1170. [PubMed][CrossRef]
53. Singh AH, Wolf DM, Wang P, Arkin AP. 2008. Modularity of stress response evolution. Proc Natl Acad Sci USA 105:7500–7505. [PubMed][CrossRef]
54. Nakamura K, Haruta S, Ueno S, Ishii M, Yokota A, Igarashi Y. 2004. Cerasibacillus quisquiliarum gen. nov., sp. nov., isolated from a semi-continuous decomposing system of kitchen refuse. Int J Syst Evol Microbiol 54:1063–1069. [PubMed][CrossRef]
55. Ajithkumar VP, Ajithkumar B, Mori K, Takamizawa K, Iriye R, Tabata S. 2001. A novel filamentous Bacillus sp., strain NAF001, forming endospores and budding cells. Microbiology 147:1415–1423. [PubMed]
56. Thorne CB. 1968. Transducing bacteriophage for Bacillus cereus. J Virol 2:657–662. [PubMed]
57. Lovett PS, Bramucci D, Bramucci MG, Burdick BD. 1974. Some properties of the PBP1 transduction system in Bacillus pumilus. J Virol 13:81–84. [PubMed]
58. Yasbin RE, Young FE. 1974. Transduction in Bacillus subtilis by bacteriophage SPP1. J Virol 14:1343–1348. [PubMed]
59. Thorne CB. 1978. Transduction in Bacillus thuringiensis. Appl Environ Microbiol 35:1109–1115. [PubMed]
60. Vary PS, Garbe JC, Franzen M, Frampton EW. 1982. MP13, a generalized transducing bacteriophage for Bacillus megaterium. J Bacteriol 149:1112–1119. [PubMed]
61. Ruhfel RE, Robillard NJ, Thorne CB. 1984. Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis. J Bacteriol 157:708–711. [PubMed]
62. Welker NE. 1988. Transduction in Bacillus stearothermophilus. J Bacteriol 170:3761–3764. [PubMed]
63. Zahler SA. 1993. Temperate bacteriophages, p 831–842. In Sonenshein AL, Hoch JA, Losick R (ed.), Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, DC.
64. Bertram J, Strätz M, Dürre P. 1991. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol 173:443–448. [PubMed]
65. Torres OR, Korman RZ, Zahler SA, Dunny GM. 1991. The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis. Mol Gen Genet 225:395–400. [PubMed][CrossRef]
66. Spizizen J. 1958. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072-1078. [PubMed][CrossRef]
67. Anagnostopoulos C, Spizizen J. 1961. Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746. [PubMed]
68. Bott KF, Wilson GA. 1968. Metabolic and nutritional factors influencing the development of competence for transfection of Bacillus subtilis. Bacteriol Rev 32:370–378. [PubMed]
69. van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, Hamoen L. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15:455–462. [PubMed][CrossRef]
70. Finkel SE, Kolter R. 2001. DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293. [PubMed][CrossRef]
71. Redfield RJ. 2001. Do bacteria have sex? Nat Rev Genet 2:634–639. [PubMed][CrossRef]
72. Mirończuk AM, Kovács Á, Kuipers OP. 2008. Induction of natural competence in Bacillus cereus ATCC14579. Microb Biotechnol 1:226–235. [PubMed][CrossRef]
73. Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW. 2007. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496. [PubMed][CrossRef]
74. Nijland R, Burgess JG, Errington J, Veening JW. 2010. Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PLoS One 5:e9724. doi:10.1371/journal.pone.0009724 [PubMed][CrossRef]
75. Kennedy MJ, Reader SL, Swierczynski LM. 1994. Preservation records of microorganisms: evidence of the tenacity of life. Microbiology 140:2513–2529. [PubMed][CrossRef]
76. Vreeland RH, Rosenzweig WD, Powers DW. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900. [PubMed][CrossRef]
77. Cano RJ, Borucki MK, Higby-Schweitzer M, Poinar HN, Poinar GO, Pollard KJ. 1994. Bacillus DNA in fossil bees: an ancient symbiosis. Appl Environ Microbiol 60:2164–2167. [PubMed]
78. Cano RJ, Borucki MK. 1995. Revival and identification of bacterial spores in 25-million-year-old to 40-million-year-old Dominican amber. Science 268:1060–1064. [CrossRef]
79. Rosenzweig WD, Woish J, Peterson J, Vreeland R. 2000. Development of a protocol to retrieve microorganisms from ancient salt crystals. Geomicrobiol J 17:185–192. [CrossRef]
80. Vreeland RH, Rosenzweig WD. 2002. The question of uniqueness of ancient bacteria. J Indust Microbiol Biotechnol 28:32–41. [PubMed][CrossRef]
81. Graur D, Pupko T. 2001. The permian bacterium that isn't. Mol Biol Evol 18:1143–1146. [PubMed][CrossRef]
82. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715. [PubMed][CrossRef]
83. Nicholson WL, Schuerger AC, Setlow P. 2005. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat Res 571:249–264. [PubMed][CrossRef]
84. Nicastro AJ, Vreeland RH, Rosenzweig WD. 2002. Limits imposed by ionizing radiation on the long-term survival of trapped bacterial spores: beta radiation. Int J Radiat Biol 78:891–901. [PubMed][CrossRef]
85. Kminek G, Bada JL, Pogliano K, Ward JF. 2003. Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729. [PubMed][CrossRef]
86. Nicholson W. 2003. Using thermal inactivation kinetics to calculate the probability of extreme spore longevity: implications for paleomicrobiology and lithopanspermia. Orig Life Evol Biosph 33:621–631. [PubMed][CrossRef]
87. Maughan H, Birky CW, Nicholson WL, Rosenzweig WD, Vreeland RH. 2002. The paradox of the “ancient” bacterium which contains “modern” protein-coding genes. Mol Biol Evol 19:1637–1639. [PubMed][CrossRef]
88. Nickle DC, Learn GH, Rain MW, Mullins JI, Mittler JE. 2002. Curiously modern DNA for a “250 million-year-old” bacterium. J Mol Evol 54:134–137. [PubMed][CrossRef]
89. Kuo CH, Ochman H. 2009. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct 4:10. doi:10.1186/1745-6150-4-35. [PubMed][CrossRef]
90. Ochman H, Elwyn S, Moran NA. 1999. Calibrating bacterial evolution. Proc Natl Acad Sci USA 96:12638–12643. [PubMed][CrossRef]
91. Maughan H. 2007. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61:280–288. [PubMed][CrossRef]
92. Ochman H, Selander RK. 1984. Evidence for clonal population structure in Escherichia coli. Proc Natl Acad Sci USA 81:198–201. [PubMed][CrossRef]
93. Selander RK, Beltran P, Smith NH. 1991. Evolutionary genetics of Salmonella., p 25–57. In Selander RK, Clark AG, Whittam TS (ed), Evolution at the Molecular Level. Sinauer Associates, Sunderland, MA.
94. Istock CA, Duncan KE, Ferguson N, Zhou X. 1992. Sexuality in a natural population of bacteria-Bacillus subtilis challenges the clonal paradigm. Mol Ecol 1:95–103. [PubMed][CrossRef]
95. Sikorski J. 2012. A glimpse into microevolution in nature: adaptation and speciation of Bacillus simplex from “Evolution Canyon,” p 225–231. In Kolter R, Maloy S (ed), Microbes and Evolution: The World That Darwin Never Saw. ASM Press, Washington, DC. [CrossRef]
96. Sikorski J, Nevo E. 2005. Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel. Proc Natl Acad Sci USA 102:15924–15929. [PubMed][CrossRef]
97. Sikorski J, Nevo E. 2007. Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of “Evolution Canyons” I and II, Israel. Environ Microbiol 9:71–726. [PubMed][CrossRef]
98. Connor N, Sikorski J, Rooney AP, Kopac S, Koeppel AF, Burger A, Cole SG, Perry EB, Krizanc D, Field NC, Slaton M, Cohan FM. 2010. Ecology of speciation in the genus Bacillus. Appl Environ Microbiol 76:1349–1358. [PubMed][CrossRef]
99. Lowry DB. 2012. Ecotypes and the controversy over stages in the formation of new species. Biol J Linnean Soc 106:241–257. [CrossRef]
100. Shank EA, Klepac-Ceraj V, Collado-Torres L, Powers GE, Losick R, Kolter R. 2011. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc Natl Acad Sci USA 108:E1236–E1243. [PubMed][CrossRef]
101. Hooper SD, Mavromatis K, Kyrpides NC. 2009. Microbial co-habitation and lateral gene transfer: what transposases can tell us. Genome Biol 10:R45. doi:10.1186/gb-2009-10-4-r45. [PubMed][CrossRef]
102. Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. 2010. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res 38:3857–3868. [PubMed][CrossRef]
103. Mathew GM, Ju YM, Lai CY, Mathew DC, Huang CC. 2012. Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microbiol Ecol 79:504–517. [PubMed][CrossRef]
104. Stewart EJ. 2012. Growing unculturable bacteria. J Bacteriol 194:4151–4160. [PubMed][CrossRef]
105. Kassen R. 2002. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190. [CrossRef]
106. Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469. [PubMed][CrossRef]
107. Graham JB, Istock CA. 1978. Genetic exchange in Bacillus subtilis in soil. Mol Gen Genet 166:287–290. [PubMed]
108. Graham JP, Istock CA. 1979. Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science 204:637–639. [PubMed][CrossRef]
109. Graham J, Istock C. 1981. Parasexuality and microevolution in experimental populations of Bacillus subtilis. Evolution 35:954–963. [CrossRef]
110. Maughan H, Callicotte V, Hancock A, Birky CW, Nicholson WL, Masel J. 2006. The population genetics of phenotypic deterioration in experimental populations of Bacillus subtilis. Evolution 60:686–695. [PubMed][CrossRef]
111. Maughan H, Nicholson WL. 2004. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J Bacteriol 186:2212–2214. [CrossRef]
112. Maughan H, Masel J, Birky C, Nicholson W. 2007. The roles of mutation accumulation and selection in loss of sporulation in experimental populations of Bacillus subtilis. Genetics 177:937–948. [PubMed][CrossRef]
113. Masel J, Maughan H. 2007. Mutations leading to loss of sporulation ability in Bacillus subtilis are sufficiently frequent to favor genetic canalization. Genetics 175:453–457. [PubMed][CrossRef]
114. Maughan H, Birky CWJ, Nicholson WL. 2009. Transcriptome divergence and the loss of plasticity in Bacillus subtilis after 6,000 generations of evolution under relaxed selection for sporulation. J Bacteriol 191:428–433. [PubMed][CrossRef]
115. Maughan H, Nicholson WL. 2011. Increased fitness and alteration of metabolic pathways during Bacillus subtilis evolution in the laboratory. Appl Environ Microbiol 77:4105–4118. [PubMed][CrossRef]
116. Brown CT, Fishwick LK, Chokshi BM, Cuff MA, Jackson JM, Oglesby T, Rioux AT, Rodriguez E, Stupp GS, Trupp AH, Woollcombe-Clarke JS, Wright TN, Zaragoza WJ, Drew JC, Triplett EW, Nicholson WL. 2011. Whole-genome sequencing and phenotypic analysis of Bacillus subtilis mutants following evolution under conditions of relaxed selection for sporulation. Appl Environ Microbiol 77:6867–6877. [PubMed][CrossRef]
117. Nicholson WL. 2012. Increased competitive fitness of Bacillus subtilis under nonsporulating conditions via inactivation of pleiotropic regulators AlsR, SigD, and SigW. Appl Environ Microbiol 78:3500–3503. [PubMed][CrossRef]
118. Debora BN, Vidales LE, Ramírez R, Ramírez M, Robleto EA, Yasbin RE, Pedraza-Reyes M. 2011. Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis. J Bacteriol 193:236–245. [PubMed][CrossRef]
119. Pybus C, Pedraza-Reyes M, Ross CA, Martin H, Ona K, Yasbin RE, Robleto E. 2010. Transcription-associated mutation in Bacillus subtilis cells under stress. J Bacteriol 192:3321–3328. [PubMed][CrossRef]
120. Vidales LE, Cárdenas LC, Robleto E, Yasbin RE, Pedraza-Reyes M. 2009. Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 191:506–513. [PubMed][CrossRef]
121. Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M. 2007. Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 42:327–339. [PubMed][CrossRef]
122. Ross C, Pybus C, Pedraza-Reyes M, Sung HM, Yasbin RE, Robleto E. 2006. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188:7512–7520. [PubMed][CrossRef]
123. Pedraza-Reyes M, Yasbin RE. 2004. Contribution of the mismatch DNA repair system to the generation of stationary-phase-induced mutants of Bacillus subtilis. J Bacteriol 186:6485–6491. [PubMed][CrossRef]
124. Sung HM, Yasbin RE. 2002. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J Bacteriol 184:5641–5653. [CrossRef]
125. Sung HM, Yeamans G, Ross CA, Yasbin RE. 2003. Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J Bacteriol 185:2153–2160. [PubMed][CrossRef]
126. McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. [PubMed]
127. Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB. 2008. The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995. [PubMed][CrossRef]
128. Maughan H, Birky CWJ, Nicholson WL. 2009. Transcriptome divergence and the loss of plasticity in Bacillus subtilis after 6,000 generations of evolution under relaxed selection for sporulation. J Bacteriol 191:428–433. [PubMed][CrossRef]
129. McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R. 2011. Tracing the domestication of a biofilm-forming bacterium. J Bacteriol 193:2027–2034. [PubMed][CrossRef]
130. Douglas GL, Klaenhammer TR. 2010. Genomic evolution of domesticated microorganisms. Annu Rev Food Sci Technol 1:397–414. [PubMed][CrossRef]
131. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. 2001. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626. [PubMed][CrossRef]
132. Gonzalez-Pastor JE. 2012. Multicellularity and social behaviour in Bacillus subtilis, p 351–375. In Graumann P (ed), Bacillus: Cellular and Molecular Biology, 2nd ed. Caister Academic Press, Wymondham, United Kingdom.
133. Yasbin RE, Fields PI, Andersen BJ. 1980. Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene 12:155–159. [PubMed][CrossRef]
134. Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R. 2008. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4:e1000139. doi:10.1371/journal.pgen.1000139. [PubMed][CrossRef]
135. Hosoi T, Kiuchi K. 2004. Production and probiotic effects of natto, p 143–153. In Ricca E, Henriques AO, Cutting SM (ed), Bacterial Spore Formers: Probiotics and Emerging Applications. Horizon Bioscience, Wymondham, United Kingdom. [PubMed]
136. Kang SE, Rhee JH, Park C, Sung MH, Lee I. 2005. Distribution of poly-gamma-glutamate (gamma-PGA) producers in Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang. Food Sci Biotechnol 14:704–708.
137. Ouoba LII, Thorsen L, Varnam AH. 2008. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int J Food Microbiol 124:224–230. [PubMed][CrossRef]
138. Demain AL, Solomon NA. 1981. Industrial microbiology. Sci Am 245:67–75. [PubMed][CrossRef]
139. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. 2003. Microbial alpha-amylases: a biotechnological perspective. Process Biochem 38:1599–1616. [CrossRef]
140. Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. [PubMed][CrossRef]
141. Abbas CA, Sibirny AA. 2011. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360. [PubMed][CrossRef]
142. Glick RG, Pasternak JJ. 2003. Molecular Biotechnology: Principles and Applications of Recombinant DNA, 3rd ed. ASM Press, Washington, DC.
143. Harwood CR. 1992. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10:247–256. [CrossRef]
144. Sun HY, Zhao PJ, Ge XY, Xia YJ, Hao ZK, Liu JW, Peng M. 2010. Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 160:988–1003. [PubMed][CrossRef]
145. Yoneda Y. 1980. Increased production of extracellular enzymes by the synergistic effect of genes introduced into Bacillus subtilis by stepwise transformation. Appl Environ Microbiol 39:274–276. [PubMed]
146. Wohlgemuth R. 2009. The locks and keys to industrial biotechnology. N Biotechnol 25:204–213. [PubMed][CrossRef]
147. Liu YH, Lu FP, Li Y, Yin XB, Wang Y, Gao C. 2008. Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 78:85–94. [PubMed][CrossRef]
148. Santhanam N, Vivanco JM, Decker SR, Reardon KF. 2011. Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29:480–489. [PubMed][CrossRef]
149. Gupta N, Farinas ET. 2010. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng Des Sel 23:679–682. [PubMed][CrossRef]
150. Sharma A, Kawarabayasi Y, Satyanarayana T. 2012. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19. [PubMed][CrossRef]
151. Tu R, Martinez R, Prodanovic R, Klein M, Schwaneberg U. 2011. A flow cytometry-based screening system for directed evolution of proteases. J Biomol Screen 16:285–294. [PubMed][CrossRef]
152. Yao Y, Li Y, Hou S, Li C, Chen H, Liao Y. 2011. Directed evolution of neutral endoglucanase gene by error-prone PCR. J Agric Biotechnol 19:1136–1143.
153. Qin J, Gao W, Li Q, Li Y, Zheng F, Liu C, Gu G. 2010. Improvement of thermostability of beta-1,3-1,4-glucanase from Bacillus amyloliquefaciens BS5582 through in vitro evolution. Sheng Wu Gong Cheng Xue Bao 26:1293–1301. [PubMed]
154. Joo JC, Pack SP, Kim YH, Yoo YJ. 2011. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 151:56–65. [PubMed][CrossRef]
155. Van Arsdell SW, Perkins JB, Yocum RR, Luan L, Howitt CL, Chatterjee NP, Pero JG. 2005. Removing a bottleneck in the Bacillus subtilis biotin pathway: BioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol Bioeng 91:75–83. [PubMed][CrossRef]
156. Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams V, Rufo GA, Hatch R, Pero J. 1999. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Indust Microbiol Biotechnol 22:8–18. [CrossRef]
157. DeWulf P, Vandamme EJ. 1997. Production of D-ribose by fermentation. Appl Microbiol Biotechnol 48:141–148. [PubMed][CrossRef]
158. Koglin A, Doetsch V, Bernhard F. 2010. Molecular engineering aspects for the production of new and modified biosurfactants, p 158–169. In Sen R (ed), Biosurfactants, vol 672. Springer-Verlag Berlin, Berlin, Germany. [PubMed][CrossRef]
159. Shoda M. 2000. Bacterial control of plant diseases. J Biosci Bioeng 89:515–521. [PubMed][CrossRef]
160. Singh M, Patel SKS, Kalia VC. 2009. Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:11. doi:10.1186/1475-2859-8-38. [PubMed][CrossRef]
161. Zhang XZ, Sathitsuksanoh N, Zhu Z, Zhang YH. 2011. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab Eng 13:364–372. [PubMed][CrossRef]
162. Klein HP. 1991. The Viking biology experiments: epilogue and prologue. Orig Life Evol Biosph 21:255–261. [CrossRef]
163. Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY. 2011. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11:157–181. [PubMed][CrossRef]
164. Ronto G, Berces A, Lammer H, Cockell CS, Molina-Cuberos GJ, Patel MR, Selsis F. 2003. Solar UV irradiation conditions on the surface of Mars. Photochem Photobiol 77:34–40. [PubMed][CrossRef]
165. Wassmann M, Moeller R, Reitz G, Rettberg P. 2010. Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. Astrobiology 10:605–615. [PubMed][CrossRef]
166. Wassmann M, Moeller R, Reitz G, Rettberg P. 2011. Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment. Arch Microbiol 193:823–832. [PubMed][CrossRef]
167. Schuerger AC. 2004. Microbial ecology of the surface exploration of Mars with human-operated vehicles, p 363–386. In Cockell CS (ed), Martian Expedition Planning. Univelt Publishers, Santa Barbra, CA.
168. Schuerger AC, Nicholson WL. 2006. Interactive effects of hypobaria, low temperature, and CO2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions. Icarus 185:143–152. [CrossRef]
169. Nicholson WL, Fajardo-Cavazos P, Fedenko J, Ortiz-Lugo JL, Rivas-Castillo A, Waters SM, Schuerger AC. 2010. Exploring the low-pressure growth limit: evolution of Bacillus subtilis in the laboratory to enhanced growth at 5 kilopascals. Appl Environ Microbiol 76:7559–7565. [PubMed][CrossRef]
170. Waters SM, Robles-Martínez JA, Nicholson WL. Defining a low-pressure transcriptome: microarray analysis of Bacillus subtilis strains before and after evolution to enhanced growth at 50 mbar (5 kPa). (Submitted for publication.)
171. Mansilla MC, de Mendoza D. 2005. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235. [PubMed][CrossRef]
172. Fajardo-Cavazos P, Waters SM, Schuerger AC, George S, Marois JJ, Nicholson WL. 2012. Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. Astrobiology 12:258–270. [PubMed][CrossRef]
173. Fang J, Bazylinski DA. 2008. Deep sea geomicrobiology, p 237–264. In Michiels D, Bartlett D, Aertsen A (ed), High-Pressure Microbiology. ASM Press, Washington, DC.
174. Horneck G, Moeller R, Cadet J, Douki T, Mancinelli RL, Nicholson WL, Panitz C, Rabbow E, Rettberg P, Spry A, Stackebrandt E, Vaishampayan P, Venkateswaran KJ. 2012. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission. Astrobiology 12:445–456. [PubMed][CrossRef]
175. Horneck G, Facius R, Enge W, Beaujean R, Bartholoma KP. 1974. Microbial studies in the Biostack experiment of the Apollo 16 mission: germination and outgrowth of single Bacillus subtilis spores hit by cosmic HZE particles. Life Sci Space Res 12:75–83. [PubMed][CrossRef]
176. Nicholson W, Schuerger A, Race M. 2009. Migrating microbes and planetary protection. Trends Microbiol 17:389–392. [PubMed][CrossRef]
177. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. [PubMed][CrossRef]
178. Peak KK, Duncan KE, Veguilla W, Luna VA, King DS, Heller L, Heberlein-Larson L, Reeves F, Cannons AC, Amuso P, Cattani J. 2007. Bacillus acidiceler sp nov., isolated from a forensic specimen, containing Bacillus anthracis pX02 genes. Int J Syst Evol Microbiol 57:2031–2036. [PubMed][CrossRef]
179. Albert RA, Archambault J, Rossello-Mora R, Tindall BJ, Matheny M. 2005. Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55:2125–2130. [PubMed][CrossRef]
180. Jung MY, Kim JS, Chang YH. 2009. Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid. Int J Syst Evol Microbiol 59:2226–2231. [PubMed][CrossRef]
181. Gugliandolo C, Maugeri TL, Caccamo D, Stackebrandt E. 2003. Bacillus aeolius sp. nov. a novel thermophilic, halophilic marine Bacillus species from Eolian Islands (Italy). Syst Appl Microbiol 26:172–176. [PubMed][CrossRef]
182. Shivaji S, Chaturvedi P, Suresh K, Reddy GS, Dutt CB, Wainwright M, Narlikar JV, Bhargava PM. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56:1465–1473. [PubMed][CrossRef]
183. Nielsen P, Fritze D, Priest FG. 1995. Phenetic diversity of alkaliphilic Bacillus strains: proposal for 9 new species. Microbiology 141:1745–1761. [CrossRef]
184. Xue Y, Ventosa A, Wang X, Ren P, Zhou P, Ma Y. 2008. Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 58:2828–2832. [PubMed][CrossRef]
185. Nogi Y, Takami H, Horikoshi K. 2005. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315. [PubMed][CrossRef]
186. Ivanova EP, Alexeeva YA, Zhukova NV, Gorshkova NM, Buljan V, Nicolau DV, Mikhailov VV, Christen R. 2004. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst Appl Microbiol 27:301–307. [PubMed][CrossRef]
187. Sorokin DY, van Pelt S, Tourova TP. 2008. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 288:235–240. [PubMed][CrossRef]
188. Borsodi AK, Pollak B, Keki Z, Rusznyak A, Kovacs AL, Sproeer C, Schumann P, Marialigeti K, Toth EM. 2011. Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. Int J Syst Evol Microbiol 61:1880–1886. [PubMed][CrossRef]
189. Lee JC, Lee GS, Park DJ, Kim CJ. 2008. Bacillus alkalitelluris sp. nov., an alkaliphilic bacterium isolated from sandy soil. Int J Syst Evol Microbiol 58:2629–2634. [PubMed][CrossRef]
190. Bae SS, Lee JH, Kim SJ. 2005. Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. Int J Syst Evol Microbiol 55:1211–1215. [PubMed][CrossRef]
191. Priest FG, Goodfellow M, Shute LA, Berkeley RCW. 1987. Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol 37:69–71. [CrossRef]
192. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303. [PubMed][CrossRef]
193. Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S. 2005. Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int J Syst Evol Microbiol 55:1123–1127. [PubMed][CrossRef]
194. Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CBS, Datta GN, Manchanda RK, Rao UR, Bhargava PM, Narlikar JV. 2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977–2986. [PubMed][CrossRef]
195. Yumoto I, Hirota K, Yamaga S, Nodasaka Y, Kawasaki T, Matsuyama H, Nakajima K. 2004. Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 54:1997–2001. [PubMed][CrossRef]
196. Nakamura LK. 1989. Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39:295–300. [CrossRef]
197. Borsodi AK, Marialigeti K, Szabo G, Palatinszky M, Pollak B, Keki Z, Kovacs AL, Schumann P, Toth EM. 2008. Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 58:845–851. [PubMed][CrossRef]
198. Pichinoty F, Debarjac H, Mandel M, Asselineau J. 1983. Description of Bacillus azotoformans sp. nov. Int J Syst Bacteriol 33:660–662. [CrossRef]
199. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodiguez-Diaz M, Felske A, De Vos P. 2004. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57. [PubMed][CrossRef]
200. Qiu F, Zhang X, Liu L, Sun L, Schumann P, Song W. 2009. Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 59:729–734. [PubMed][CrossRef]
201. Pichinoty F, Asselineau J, Mandel M. 1984. Biochemical characterization of Bacillus benzoevorans sp. nov., a new filamentous, sheathed mesophilic species which degrades various aromatic acids and phenols. Ann Microbiol (Paris) 135B:209–217. [PubMed]
202. Vargas VA, Delgado OD, Hatti-Kaul R, Mattiasson B. 2005. Bacillus bogoriensis sp. nov., a novel alkallphilic, halotolerant bacterium isolated from a Kenyan soda lake. Int J Syst Evol Microbiol 55:899–902. [PubMed][CrossRef]
203. Ahmed I, Yokota A, Fujiwara T. 2007. A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11:217–224. [PubMed][CrossRef]
204. Kuisiene N, Raugalas J, Sproeer C, Kroppenstedt RM, Chitavichius D. 2008. Bacillus butanolivorans sp. nov., a species with industrial application for the remediation of n-butanol. Int J Syst Evol Microbiol 58:505–509. [PubMed][CrossRef]
205. Newcombe D, Dekas A, Mayilraj S, Venkateswaran K. 2009. Bacillus canaveralius sp. nov., an alkali-tolerant bacterium isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 59:2015–2019. [PubMed][CrossRef]
206. Fujita T, Shida O, Takagi H, Kunugita K, Pankrushina AN, Matsuhashi M. 1996. Description of Bacillus carboniphilus sp nov. Int J Syst Bacteriol 46:116–118. [CrossRef]
207. Reddy GS, Uttam A, Shivaji S. 2008. Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int J Syst Evol Microbiol 58:2330–2335. [PubMed][CrossRef]
208. Nakamura LK. 1993. DNA relatedness of Bacillus brevis Migula 1900 strains and proposal of Bacillus agri sp. nov., nom. rev., and Bacillus centrosporus sp. nov., nom. rev. Int J Syst Bacteriol 43:20–25. [CrossRef]
209. Frankland GC, Frankland PF. 1887. XI. Studies on some new microorganisms obtained from air. Phil Trans Royal Soc London B 178:257–287. [CrossRef]
210. Carrasco IJ, Marquez MC, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A. 2007. Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. Int J Syst Evol Microbiol 57:2084–2088. [PubMed][CrossRef]
211. Cho S, Jung MY, Park M, Kim W. 2010. Bacillus chungangensis sp. nov., a halophilic species isolated from sea sand. Int J Syst Evol Microbiol 60:1349–1352. [PubMed][CrossRef]
212. Yoon JH, Lee CH, Oh TK. 2005. Bacillus cibi sp. nov., isolated from Jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 55:733–736. [PubMed][CrossRef]
213. Jordan EO. 1890. A report on certain species of bacteria observed in sewage. In Sedgwick WT (ed), A report of the biological work of the Lawrence Experiment Station, including an account of methods employed and results obtained in the microscopical and bacteriological investigation of sewage and water. Report on water supply and sewerage, part 2. Massachusetts State Board of Health, Boston, MA.
214. Hammer BW. 1915. Bacteriological studies on the coagulation of evaporated milk. Iowa Agric Exp Stn Res Bull 19:119–131.
215. Cerritos R, Vinuesa P, Eguiarte LE, Herrera-Estrella L, Alcaraz-Peraza LD, Arvizu-Gomez J, Olmedo G, Ramirez E, Siefert JL, Souza V. 2008. Bacillus coahuilensis sp. nov., a moderately halophilic species from a desiccation lagoon in the Cuatro Cienegas Valley in Coahuila, Mexico. Int J Syst Evol Microbiol 58:919–923. [PubMed][CrossRef]
216. Spanka R, Fritze D. 1993. Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 43:150–156. [PubMed][CrossRef]
217. Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A. 2012. Bacillus cytotoxicus sp. nov. is a new thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63:31–40. [PubMed][CrossRef]
218. Zhang L, Xu Z, Patel BKC. 2007. Bacillus decisifrondis sp. nov., isolated from soil underlying decaying leaf foliage. Int J Syst Evol Microbiol 57:974–978. [PubMed][CrossRef]
219. Heyrman J, Balcaen A, Rodriguez-Diaz M, Logan NA, Swings J, De Vos P. 2003. Bacillus decolorationis sp. nov., isolated from biodeteriorated parts of the mural paintings at the Servilia tomb (Roman necropolis of Carmona, Spain) and the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 53:459–463. [PubMed][CrossRef]
220. Reva ON, Smirnov VV, Pettersson B, Priest FG. 2002. Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Evol Microbiol 52:101–107. [PubMed]
221. Zhang YZ, Chen WF, Li M, Sui XH, Liu H-C, Zhang XX, Chen WX. 2012. Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 62:359–363. [PubMed][CrossRef]
222. Scheldeman P, Rodriguez-Diaz M, Goris J, Pil A, De Clerck E, Herman L, De Vos P, Logan NA, Heyndrickx M. 2004. Bacillus farraginis sp. nov., Bacillus fortis sp. nov. and Bacillus fordii sp. nov., isolated at dairy farms. Int J Syst Evol Microbiol 54:1355–1364. [PubMed][CrossRef]
223. den Dooren de Jong LE. 1929. Über Bacillus fastidiosus. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 79:344–353.
224. Werner W. 1933. Botanische Beschreibung häufiger am Buttersäureabbau beteiligter sporenbildender Bakterienspezies. Zentralbl Bakteriol Parasitenkd Abt II 87:446–475.
225. Tiago I, Pires C, Mendes V, Morais PV, da Costa MS, Verissimo A. 2006. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 56:2571–2574. [PubMed][CrossRef]
226. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G, Heyndrickx M, Murray BL, Syme N, Wynn-Williams DD, De Vos P. 2000. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50:1741–1753. [PubMed]
227. Ajithkumar VP, Ajithkumar B, Iriye R, Sakai T. 2002. Bacillus funiculus sp. nov., novel filamentous isolates from activated sludge. Int J Syst Evol Microbiol 52:1141–1144. [PubMed][CrossRef]
228. Heyndrickx M, Logan NA, Lebbe L, Rodriguez-Diaz M, Forsyth G, Goris J, Scheldeman P, De Vos P. 2004. Bacillus galactosidilyticus sp. nov., an alkali-tolerant beta-galactosidase producer. Int J Syst Evol Microbiol 54:617–621. [PubMed][CrossRef]
229. Balcazar JL, Pintado J, Planas M. 2010. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 60:892–895. [PubMed][CrossRef]
230. De Clerck E, Rodriguez-Diaz M, Vanhoutte T, Heyrman J, Logan NA, De Vos P. 2004. Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol 54:941–946. [PubMed][CrossRef]
231. Ten LN, Im WT, Baek SH, Lee JS, Oh HM, Lee ST. 2006. Bacillus ginsengihumi sp. nov., a novel species isolated from soil of a ginseng field in Pocheon Province, South Korea. J Microbiol Biotechnol 16:1554–1560.
232. Bibi F, Chung EJ, Jeon CO, Chung YR. 2011. Bacillus graminis sp. nov., an endophyte isolated from a coastal dune plant. Int J Syst Evol Microbiol 61:1567–1571. [PubMed][CrossRef]
233. Pappa A, Sanchez-Porro C, Lazoura P, Kallimanis A, Perisynakis A, Ventosa A, Drainas C, Koukkou AI. 2010. Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 60:1432–1436. [PubMed][CrossRef]
234. Chen YG, Zhang YQ, He JW, Klenk HP, Xiao JQ, Zhu HY, Tang SK, Li WJ. 2011. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int J Syst Evol Microbiol 61:2950–2955. [PubMed][CrossRef]
235. Wieser M, Worliczek H, Kämpfer P, Busse HJ. 2005. Bacillus herbersteinensis sp. nov. Int J Syst Evol Microbiol 55:2119–2123. [PubMed][CrossRef]
236. Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S, McDowall A, Ruckmani A, Mayilraj S, Venkateswaran K. 2010. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 60:1031–1037. [PubMed][CrossRef]
237. Yumoto I, Yamazaki K, Sawabe T, Nakano K, Kawasaki K, Ezura Y, Shinano H. 1998. Bacillus horti sp. nov., a new Gram-negative alkaliphilic Bacillus. Int J Syst Bacteriol 48:565–571. [PubMed][CrossRef]
238. Heyrman J, Rodriguez-Diaz M, Devos J, Felske A, Logan NA, De Vos P. 2005. Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 55:111–117. [PubMed][CrossRef]
239. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. 2004. Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomo species, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:803–808. [PubMed][CrossRef]
240. Ko KS, Oh WS, Lee MY, Lee JH, Lee H, Peck KR, Lee NY, Song JH. 2006. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis. Int J Syst Evol Microbiol 56:2541–2544. [PubMed][CrossRef]
241. Suresh K, Prabagaran SR, Sengupta S, Shivaji S. 2004. Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:1369–1375. [PubMed][CrossRef]
242. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448. [PubMed][CrossRef]
243. Albuquerque L, Tiago I, Taborda M, Nobre MF, Veríssimo A, da Costa MS. 2008. Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. Int J Syst Evol Microbiol 58:226–230. [PubMed][CrossRef]
244. Yoon JH, Kang SS, Lee KC, Kho YH, Choi SH, Kang KH, Park YH. 2001. Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51:1087–1092. [PubMed][CrossRef]
245. Lim JM, Jeon CO, Lee JC, Ju YJ, Park DJ, Kim CJ. 2006. Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. Int J Syst Evol Microbiol 56:59–63. [PubMed][CrossRef]
246. Zhang L, Wang Y, Dai J, Tang YL, Yang Q, Luo XS, Fang CX. 2009. Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. Int J Syst Evol Microbiol 59:1787–1792. [PubMed][CrossRef]
247. Lim JM, Jeon CO, Lee JR, Park DJ, Kim CJ. 2007. Bacillus kribbensis sp. nov., isolated from a soil sample in Jeju, Korea. Int J Syst Evol Microbiol 57:2912–2916. [PubMed][CrossRef]
248. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, Suemori A. 2003. Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536. [PubMed][CrossRef]
249. Ghosh A, Bhardwaj M, Satyanarayana T, Khurana M, Mayilraj S, Jain RK. 2007. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:238–242. [PubMed][CrossRef]
250. Gibson T. 1935. The urea-decomposing microflora of soils. I. Description and classification of the organisms. Zentbl Bakteriol Parasitenkd Infektkrankh Hyg Abt II 92:364–380.
251. Weigmann H. 1898. Über zwei an der Käsereifung beteiligte Bakterien. Zentralbl Bakteriol, Parasitenkd, Infektkrankh Hyg Abt II 4:820–834.
252. Yoon JH, Oh TK. 2005. Bacillus litoralis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:19451948. [PubMed]
253. Marquez MC, Carrasco IJ, de la Haba RR, Jones BE, Grant WD, Ventosa A. 2011. Bacillus locisalis sp. nov., a new haloalkaliphilic species from hypersaline and alkaline lakes of China, Kenya and Tanzania. Syst Appl Microbiol 34:424–428. [PubMed][CrossRef]
254. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G, Rodriguez-Diaz M, Heyndrickx M, De Vos P. 2002. Bacillus luciferensis sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 52:1985–1989. [PubMed][CrossRef]
255. Shi R, Yin M, Tang S-K, Lee J-C, Park D-J, Zhang Y-J, Kim C-J, Li W-J. 2011. Bacillus luteolus sp. nov., a halotolerant bacterium isolated from a salt field. Int J Syst Evol Microbiol 61:1344–1349. [PubMed][CrossRef]
256. Zhang T, Fan XJ, Hanada S, Kamagata Y, Fang HHP. 2006. Bacillus macauensis sp. nov, a long-chain bacterium isolated from a drinking water supply. Int J Syst Evol Microbiol 56:349–353. [PubMed][CrossRef]
257. Denizci AA, Kazan D, Erarslan A. 2010. Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 60:1590–1594. [PubMed][CrossRef]
258. Glazunova OO, Raoult D, Roux V. 2006. Bacillus massilensis sp. nov., isolated from cerebrospinal fluid. Int J Syst Evol Microbiol 56:1485–1488. [PubMed][CrossRef]
259. de Bary HA. 1884. Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bakterien (Comparative Morphology and Biology of the Fungi, Slime Molds, and Bacteria), 2nd ed. Wilhelm Engelman, Leipzig, Germany. [CrossRef]
260. Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D, Sharp RJ. 1992. Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42:439–445. [PubMed][CrossRef]
261. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Bacteriol 60:2490–2495. [PubMed][CrossRef]
262. Roberts MS, Nakamura LK, Cohan FM. 1994. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264. [PubMed][CrossRef]
263. Wang L-T, Lee F-L, Tai C-J, Yokota A, Kuo H-P. 2007. Reclassification of Bacillus axarquiensis Ruiz-Garcia et al. 2005 and Bacillus malacitensis Ruiz-Garcia et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. Int J Syst Evol Microbiol 57:1663–1667. [PubMed]
264. Heyrman J, Logan NA, Rodriguez-Diaz M, Scheldeman P, Lebbe L, Swings J, Heyndrickx M, De Vos P. 2005. Study of mural painting isolates, leading to the transfer of “Bacillus maroccanus” and “Bacillus carotarum” to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to “Bacillus macroides” and description of Bacillus muralis sp. nov. Int J Syst Evol Microbiol 55:119–131. [PubMed][CrossRef]
265. Borchert MS, Nielsen P, Graeber I, Kaesler I, Szewzyk U, Pape T, Antranikian G, Schafer T. 2007. Bacillus plakortidis sp. nov. and Bacillus murimartini sp. nov., novel alkalitolerant members of rRNA group 6. Int J Syst Evol Microbiol 57:2888–2893. [PubMed][CrossRef]
266. Flügge C. 1886. Die Mikroorganismen: Mit Besonderer Berucksichtigung der Aetiologie der Infectionskrankheiten. Vogel, Leipzig, Germany.
267. Chen YG, Zhang L, Zhang YQ, He JW, Klenk HP, Tang SK, Zhang YX, Li WJ. 2011. Bacillus nanhaiensis sp. nov., isolated from an oyster. Int J Syst Evol Microbiol 61:888–893. [PubMed][CrossRef]
268. Zhang JL, Wang JW, Song F, Fang CY, Xin YH, Zhang YB. 2011. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6. Int J Syst Evol Microbiol 61:1078–1083. [PubMed][CrossRef]
269. Venkateswaran K, Kempf M, Chen F, Satomi M, Nicholson W, Kern R. 2003. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int J Syst Evol Microbiol 53:165–172. [PubMed][CrossRef]
270. Chen YG, Zhang YQ, Wang YX, Liu ZX, Klenk HP, Xiao HD, Tang SK, Cui XL, Li WJ. 2009. Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol 59:3035–3039. [PubMed][CrossRef]
271. Kwon SW, Lee SY, Kim BY, Weon HY, Kim JB, Go SJ, Lee GB. 2007. Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation. Int J Syst Evol Microbiol 57:1909–1913. [PubMed][CrossRef]
272. Nagel M, Andreesen JR. 1991. Bacillus niacini sp. nov., a nicotinate-metabolizing mesophile isolated from soil. Int J Syst Bacteriol 41:134–139. [CrossRef]
273. Zhang JL, Wang JW, Fang CY, Song F, Xin YH, Qu L, Ding K. 2010. Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60:2924–2929. [PubMed][CrossRef]
274. La Duc MT, Satomi M, Venkateswaran K. 2004. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol 54:195–201. [PubMed][CrossRef]
275. Nowlan B, Dodia MS, Singh SP, Patel BKC. 2006. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 56:1073–1077. [PubMed][CrossRef]
276. Li ZY, Kawamura Y, Shida O, Yamagata S, Deguchi T, Ezaki T. 2002. Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 52:1205–1209. [PubMed][CrossRef]
277. Kuhnigk T, Borst EM, Breunig A, Konig H, Collins MD, Hutson RA, Kampfer P. 1995. Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). Can J Microbiol 41:699–706. [PubMed][CrossRef]
278. Yumoto I, Hirota K, Goto T, Nodasaka Y, Nakajima K. 2005. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55:907–911. [PubMed][CrossRef]
279. Ten LN, Baek SH, Im WT, Liu QM, Aslam Z, Lee ST. 2006. Bacillus panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56:2861–2866. [PubMed][CrossRef]
280. Olivera N, Sineriz F, Breccia JD. 2005. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447. [PubMed][CrossRef]
281. Amoozegar MA, Sanchez-Porro C, Rohban R, Hajighasemi M, Ventosa A. 2009. Bacillus persepolensis sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 59:2352–2358. [PubMed][CrossRef]
282. Ten LN, Baek S-H, Im W-T, Larina LL, Lee J-S, Oh H-M, Lee S-T. 2007. Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57:2532–2537. [PubMed][CrossRef]
283. Aino K, Hirota K, Matsuno T, Morita N, Nodasaka Y, Fujiwara T, Matsuyama H, Yoshimune K, Yumoto I. 2008. Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. Int J Syst Evol Microbiol 58:120–124. [PubMed][CrossRef]
284. Nakamura LK. 1998. Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48:1031–1035. [PubMed][CrossRef]
285. Larkin JM, Stokes JL. 1967. Taxonomy of psychrophilic strains of Bacillus. J Bacteriol 94:889–895. [PubMed]
286. Meyer A, Gottheil O. 1901. Botanische Beschreibung einiger Bodenbakterien. Zentralbl Bakteriol Parasitenkd Infektkrankh Hyg Abt II 7:680–691.
287. Vaz-Moreira I, Figueira V, Lopes AR, Lobo-da-Cunha A, Sproeer C, Schumann P, Nunes OC, Manaia CM. 2012. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 62:71–77. [PubMed][CrossRef]
288. Wang O-F, Li W, Liu Y-L, Cao H-H, Li Z, Guo G-Q. 2007. Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 57:1143–1147. [PubMed][CrossRef]
289. Baik KS, Lim CH, Park SC, Kim EM, Rhee MS, Seong CN. 2010. Bacillus rigui sp. nov., isolated from wetland fresh water. Int J Syst Evol Microbiol 60:2204–2209. [PubMed][CrossRef]
290. Heyndrickx M, Scheldeman P, Forsyth G, Lebbe L, Rodriguez-Diaz M, Logan NA, De Vos P. 2005. Bacillus ruris sp. nov., from dairy farms. Int J Syst Evol Microbiol 55:2551–2554. [PubMed][CrossRef]
291. Satomi M, La Duc MT, Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 56:1735–1740. [PubMed][CrossRef]
292. Lim JM, Jeon CO, Lee SM, Lee JC, Xu LH, Jiang CL, Kim CJ. 2006. Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56:373–377. [PubMed][CrossRef]
293. Romano I, Lama L, Nicolaus B, Gambacorta A, Giordano A. 2005. Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol 55:159–163. [PubMed][CrossRef]
294. Schenk A, Aragno M. 1979. Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341. [CrossRef]
295. Yamamura S, Yamashita M, Fujimoto N, Kuroda M, Kashiwa M, Sei K, Fujita M, Ike M. 2007. Bacillus selenatarsenatis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int J Syst Evol Microbiol 57:1060–1064. [PubMed][CrossRef]
296. Switzer Blum J, Bindi AB, Buzzelli J, Stolz JF, Oremland RS. 1998. Bacillus arsenicoselenatis, sp. nov. and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30. [PubMed][CrossRef]
297. Lee J-C, Lim J-M, Park D-J, Jeon CO, Li W-J, Kim C-J. 2006. Bacillus seohaeanensis sp. nov., a halotolerant bacterium that contains L-lysine in its cell wall. Int J Syst Evol Microbiol 56:1893–1898. [PubMed][CrossRef]
298. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G, Rodriguez-Diaz M, Heyndrickx M, De Vos P. 2004. Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 54:373–376. [PubMed][CrossRef]
299. Sumpavapol P, Tongyonk L, Tanasupawat S, Chokesajjawatee N, Luxanani P, Visessanguan W. 2010. Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. Int J Syst Evol Microbiol 60:2364–2370. [PubMed][CrossRef]
300. Pettersson B, de Silva SK, Uhlen M, Priest FG. 2000. Bacillus siralis sp. nov., a novel species from silage with a higher order structural attribute in the 16S rRNA genes. Int J Syst Evol Microbiol 50:2181–2187. [PubMed][CrossRef]
301. Nakamura LK, Blumenstock I, Claus D. 1988. Taxonomic study of Bacillus coagulans Hammer 1915 with a proposal for Bacillus smithii sp. nov. Int J Syst Bacteriol 38:63–73. [CrossRef]
302. Liu H, Zhou Y, Liu R, Zhang K-Y, Lai R. 2009. Bacillus solisalsi sp. nov., a halotolerant, alkaliphilic bacterium isolated from soil around a salt lake. Int J Syst Evol Microbiol 59:1460–1464. [PubMed][CrossRef]
303. Palmisano MM, Nakamura LK, Duncan KE, Istock CA, Cohan FM. 2001. Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. Int J Syst Evol Microbiol 51:1671–1679. [PubMed][CrossRef]
304. Pettersson B, Lembke F, Hammer P, Stackebrandt E, Priest FG. 1996. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int J Syst Bacteriol 46:759–764. [PubMed][CrossRef]
305. Kanso S, Greene AC, Patel BKC. 2002. Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874. [PubMed][CrossRef]
306. Conn HJ. 1930. The identity of Bacillus subtilis. J Infect Dis 46:341–350. [CrossRef]
307. Lim J-M, Jeon CO, Kim C-J. 2006. Bacillus taeanensis sp. nov., a halophilic grampositive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56:2903–2908. [PubMed][CrossRef]
308. Gatson JW, Benz BF, Chandrasekaran C, Satomi M, Venkateswaran K, Hart ME. 2006. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int J Syst Evol Microbiol 56:1475–1484. [PubMed][CrossRef]
309. Combet-Blanc Y, Ollivier B, Streicher C, Patel BKC, Dwivedi PP, Pot B, Prensier G, Garcia J-L. 1995. Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45:9–16. [PubMed][CrossRef]
310. Demharter W, Hensel R. 1989. Bacillus thermocloaceae sp. nov., a new thermophilic species from sewage sludge. Syst Appl Microbiol 11:272–276. [CrossRef]
311. Coorevits A, Logan NA, Dinsdale AE, Halket G, Scheldeman P, Heyndrickx M, Schumann P, Van Landschoot A, De Vos P. 2011. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans. Int J Syst Evol Microbiol 61:1954–1961. [PubMed][CrossRef]
312. Pérez-Ibarra BM, Flores ME, García-Varela M. 2007. Isolation and characterization of Bacillus thioparus sp. nov., chemolithoautotrophic, thiosulfate-oxidizing bacterium. FEMS Microbiol Lett 271:289–296. [PubMed][CrossRef]
313. Berliner E. 1915. Über die Schlaffsucht der Mehlmottenraupe (Ephestia kühniella Zell) und ihren Erreger Bacillus thuringiensis n. sp. Z Angew Entomol 2:29–56. [CrossRef]
314. Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M. 2010. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 60:61–66. [PubMed][CrossRef]
315. Bonjour F, Aragno M. 1984. Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch Microbiol 139:397–401. [CrossRef]
316. Roberts MS, Nakamura LK, Cohan FM. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int J Syst Bacteriol 46:470–475. [PubMed][CrossRef]
317. Agnew DM, Koval SF, Jarrell KF. 1995. Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18:221–230. [CrossRef]
318. Noguchi H, Uchino M, Shida O, Takano K, Nakamura LK, Komagata K. 2004. Bacillus vietnamensis sp. nov., a moderately halotolerant, aerobic, endospore-forming bacterium isolated from Vietnamese fish sauce. Int J Syst Evol Microbiol 54:2117–2120. [PubMed][CrossRef]
319. Lechner S, Mayr R, Francis KP, Prüss BM, Kaplan T, Wiessner-Gunkel E, Stewartz GS, Scherer S. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373–1382. [PubMed][CrossRef]
320. Chen Y-G, Zhang Y-Q, Chen Q-H, Klenk H-P, He J-W, Tang S-K, Cui X-L, Li W-J. 2011. Bacillus xiaoxiensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. Int J Syst Evol Microbiol 61:2095–2100. [PubMed][CrossRef]
321. Minana-Galbis D, Pinzon DL, Lorén JG, Manresa A, Oliart-Ros RM. 2010. Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:1600–1604. [PubMed][CrossRef]
322. Romano I, Lama L, Nicolaus B, Gambacorta A, Giordano A. 2005. Alkalibacillus filiformis sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol 55:2395–2399. [PubMed][CrossRef]
323. Yoon J-H, Kang S-J, Jung Y-T, Lee M-H, Oh T-K. 2010. Alkalibacillus flavidus sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:434–438. [PubMed][CrossRef]
324. Jeon CO, Lim JM, Lee JM, Xu LH, Jiang CL, Kim CJ. 2005. Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896. [PubMed][CrossRef]
325. Tian X-P, Dastager SG, Lee J-C, Tang S-K, Zhang Y-Q, Park D-J, Kim C-J, Li W-J. 2007. Alkalibacillus halophilus sp. nov., a new halophilic species isolated from hypersaline soil in Xin-Jiang province, China. Syst Appl Microbiol 30:268–272. [PubMed][CrossRef]
326. Usami R, Echigo A, Fukushima T, Mizuki T, Yoshida Y, Kamekura M. 2007. Alkalibacillus silvisoli sp. nov., an alkaliphilic moderate halophile isolated from non-saline forest soil in Japan. Int J Syst Evol Microbiol 57:770–774. [PubMed][CrossRef]
327. Sheu S-Y, Arun AB, Jiang S-R, Young C-C, Chen W-M. 2011. Allobacillus halotolerans gen. nov., sp. nov. isolated from shrimp paste. Int J Syst Evol Microbiol 61:1023–1027. [PubMed][CrossRef]
328. Zhilina TN, Garnova ES, Tourova TP, Kostrikina NA, Zavarzin GA. 2001. Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic, saccharolytic bacilli from Lake Magadi. Microbiology 70:711–722. [CrossRef]
329. Wu XY, Zheng G, Zhang WW, Xu XW, Wu M, Zhu XF. 2010. Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol 60:2540–2543. [PubMed][CrossRef]
330. An S-Y, Ishikawa S, Kasai H, Goto K, Yokota A. 2007. Amphibacillus sediminis sp. nov., an endospore-forming bacterium isolated from lake sediment in Japan. Int J Syst Evol Microbiol 57:2489–2492. [PubMed][CrossRef]
331. Niimura Y, Koh E, Yanagida F, Suzuki K-I, Komagata K, Kozaki M. 1990. Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic spore-forming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301. [CrossRef]
332. Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulygina ES, Sorokin DY. 2008. Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol 58:2459–2464. [PubMed][CrossRef]
333. Zavarzina DG, Tourova TP, Kolganova TV, Boulygina ES, Zhilina TN. 2009. Description of Anaerobacillus alkalilacustre gen. nov., sp. nov.—Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology 78:723–731. [CrossRef]
334. Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, de Appolonia F, Gambacorta A, Nicolaus B. 2006. Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307. [PubMed][CrossRef]
335. Dulger S, Demirbag Z, Belduz AO. 2004. Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Int J Syst Evol Microbiol 54:1499–1503. [PubMed][CrossRef]
336. Zhang C-M, Huang X-W, Pan W-Z, Zhang J, Wei K-B, Klenk H-P, Tang S-K, Li W-, Zhang K-Q. 2011. Anoxybacillus tengchongensis sp. nov. and Anoxybacillus eryuanensis sp. nov., facultatively anaerobic, alkalitolerant bacteria from hot springs. Int J Syst Evol Microbiol 61:118–122. [PubMed][CrossRef]
337. Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K. 2000. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus falvithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117. [PubMed][CrossRef]
338. Belduz AO, Dulger S, Demirbag Z. 2003. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320. [PubMed][CrossRef]
339. Kevbrin VV, Zengler K, Lysenko AM, Wiegel J. 2005. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles 9:391–398. [PubMed][CrossRef]
340. Namsaraev ZB, Babasanova OB, Dunaevsky YE, Akimov VN, Barkhutova DD, Gorlenko VM, Namsaraev BB. 2010. Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, central Mongolia. Mikrobiologiia 79:516–523. [PubMed]
341. Derekova A, Sjoholm C, Mandeva R, Kambourova M. 2007. Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles 11:577–583. [PubMed][CrossRef]
342. Cihan AC, Ozcan B, Cokmus C. 2011. Anoxybacillus salavatliensis sp. nov., an alpha-glucosidase producing, thermophilic bacterium isolated from Salavatli, Turkey. J Basic Microbiol 51:136–146. [PubMed][CrossRef]
343. Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Berrini CC. 2009. Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874. [PubMed][CrossRef]
344. Yumoto I, Hirota K, Kawahara T, Nodasaka Y, Okuyama H, Matsuyama H, Yokota Y, Nakajima K, Hoshino T. 2004. Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka. Int J Syst Evol Microbiol 54:1239–1242. [PubMed][CrossRef]
345. Marquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A. 2008. Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 58:1922–1926. [PubMed][CrossRef]
346. Zhou Y, Wei W, Che Q, Xu Y, Wang X, Huang X, Lai R. 2008. Bacillus pallidus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58:2850–2854. [PubMed][CrossRef]
347. Zhou Y, Xu J, Xu L, Tindall BJ. 2009. Falsibacillus pallidus to replace the homonym Bacillus pallidus Zhou et al. 2008. Int J Syst Evol Microbiol 59:3176–3180. [PubMed][CrossRef]
348. Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Volker H, Thomm M. 2001. Filobacillus milensis gen. nov., sp nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431. [PubMed]
349. Ahmad S, Scopes RK, Rees GN, Patel BKC. 2000. Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523. [PubMed][CrossRef]
350. Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E. 2001. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int J Syst Evol Microbiol 51:2063–2071. [PubMed][CrossRef]
351. Banat IM, Marchant R, Rahman TJ. 2004. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int. J Syst Evol Microbiol 54:2197–2201. [PubMed][CrossRef]
352. Nazina TN, Sokolova DS, Grigoryan AA, Shestakova NM, Mikhailova EM, Poltaraus AB, Tourova TP, Lysenko AM, Osipov GA, Belyaev SS. 2005. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum Geobacillus species reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 28:43–53. [PubMed][CrossRef]
353. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446. [PubMed]
354. Kuisiene N, Raugalas J, Chitavichius D. 2004. Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 54:1991–1995. [PubMed][CrossRef]
355. Donk PA. 1920. A highly resistant thermophilic organism. J Bacteriol 5:373–374. [PubMed]
356. Schaffer C, Franck WL, Scheberl A, Kosma P, McDermott TR, Messner P. 2004. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 54:2361–2368. [PubMed][CrossRef]
357. Nicolaus B, Lama L, Esposito E, Manca MC, diPrisco G, Gambacorta A. 1996. “Bacillus thermoantarcticus” sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 16:101–104.
358. Coorevits A, Dinsdale AE, Halket G, Lebbe L, de Vos P, Van Landschoot A, Logan NA. 2011. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly “thermoglucosidasius”); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485. [PubMed][CrossRef]
359. Dinsdale AE, Halket G, Coorevits A, Van Landschoot A, Busse HJ, De Vos P, Logan NA. 2011. Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. Int J Syst Evol Microbiol 61:1802–1810. [PubMed][CrossRef]
360. Golovacheva RS, Loginova LG, Salikhov TA, Kolesnikov AA, Zaitseva GN. 1975. New thermophilic species, Bacillus thermocatenulatus nov. sp. Microbiology 44:230–233.
361. Cihan AC, Ozcan B, Tekin N, Cokmus C. 2011. Geobacillus thermodenitrificans subsp. calidus, subsp. nov., a thermophilic and alpha-glucosidase producing bacterium isolated from Kizilcahamam, Turkey. J Gen Appl Microbiol 57:83–92. [PubMed][CrossRef]
362. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R, Fortina MG. 2000. Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50:1331–1337. [PubMed][CrossRef]
363. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N, Takagi M, Abe S. 1983. Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst Appl Microbiol 4:487–495. [PubMed][CrossRef]
364. Zarilla KA, Perry JJ. 1987. Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 9:258–264. [CrossRef]
365. Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K, Kim JJ, Hong SP, Lee SG, Yoon JH, Park YH, Baek DH. 2002. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255. [PubMed][CrossRef]
366. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL. 2000. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 50:2009–2012. [PubMed][CrossRef]
367. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA. 2004. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024. [PubMed][CrossRef]
368. Echigo A, Minegishi H, Mizuki T, Kamekura M, Usami R. 2010. Geomicrobium halophilum gen. nov., sp. nov., a moderately halophilic and alkaliphilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:990–995. [PubMed][CrossRef]
369. Ahmed I, Yokota A, Fujiwara T. 2007. Gracilibacillus boraciitolerans sp. nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:796–802. [PubMed][CrossRef]
370. Lawson PA, Deutch CE, Collins MD. 1996. Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 81:109–112. [PubMed][CrossRef]
371. Waino M, Tindall BJ, Schumann P, Ingvorsen K. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831. [PubMed][CrossRef]
372. Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X, Xu L-H, Peng Q, Wen M-L, Jiang C-L. 2008. Gracilibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from saline soil. Int J Syst Evol Microbiol 58:2403–2408. [PubMed][CrossRef]
373. Jeon CO, Lim J-M, Jang HH, Park D-J, Xu L-H, Jiang C-L, Kim C-J. 2008. Gracilibacillus lacisalsi sp. nov., a halophilic Gram-positive bacterium from a salt lake in China. Int J Syst Evol Microbiol 58:2282–2286. [PubMed][CrossRef]
374. Carrasco IJ, Márquez MC, Yanfen X, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A. 2006. Gracilibacillus orientalis sp. nov., a novel moderately halophilic bacterium isolated from a salt lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:599-604. [PubMed][CrossRef]
375. Tang S-K, Wang Y, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J. 2009. Gracilibacillus saliphilus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 59:1620–1624. [PubMed][CrossRef]
376. Chamroensaksri N, Tanasupawat S, Akaracharanya A, Visessanguan W, Kudo T, Itoh T. 2010. Gracilibacillus thailandensis sp. nov., from fermented fish (pla-ra). Int J Syst Evol Microbiol 60:944–948. [PubMed][CrossRef]
377. Huo Y-Y, Xu X-W, Cui H-L, Wu M. 2010. Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. Int J Syst Evol Microbiol 60:1383–1386. [PubMed][CrossRef]
378. Echigo A, Fukushima T, Mizuki T, Kamekura M, Usami R. 2007. Halalkalibacillus halophilus gen. nov., sp nov., a novel moderately halophilic and alkallphilic bacterium isolated from a non-saline soil sample in Japan. Int J Syst Evol Microbiol 57:1081–1085. [PubMed][CrossRef]
379. Liu WY, Zeng J, Wang L, Dou YT, Yang SS. 2005. Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 55:1991–1996. [PubMed][CrossRef]
380. Romano I, Finore I, Nicolaus G, Huertas FJ, Lama L, Nicolaus B, Poli A. 2008. Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 58:886–890. [PubMed][CrossRef]
381. Yoon J-H, Kang S-J, Jung Y-T, Oh T-K. 2007. Halobacillus campisalis sp. nov., containing diaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus. Int J Syst Evol Microbiol 57:2021–2025. [PubMed][CrossRef]
382. An S-Y, Kanoh K, Kasai H, Goto K, Yokota A. 2007. Halobacillus faecis sp. nov., a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan. Int J Syst Evol Microbiol 57:2476–2479. [PubMed][CrossRef]
383. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH. 1996. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496. [CrossRef]
384. Amoozegar MA, Malekzadeh F, Malik KA, Schumann P, Sproer C. 2003. Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53:1059–1063. [PubMed][CrossRef]
385. Hua N-P, Kanekiyo A, Fujikura K, Yasuda H, Naganuma T. 2007. Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 57:1243–1249. [PubMed][CrossRef]
386. Yoon JH, Kang KH, Oh TK, Park YH. 2004. Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8:23–28. [PubMed][CrossRef]
387. Soto-Ramírez N, Sanchez-Porro C, Rosas-Padilla S, Almodovar K, Jimenez G, Machado-Rodriguez M, Zapata M, Ventosa A, Montalvo-Rodriguez R. 2008. Halobacillus mangrovi sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans. Int J Syst Evol Microbiol 58:125–130. [PubMed][CrossRef]
388. Yoon JH, Kook HKG, Park YH. 2003. Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 53:687–693. [PubMed][CrossRef]
389. Yoon J-H, Kang S-J, Oh T-K. 2008. Halobacillus seohaensis sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 58:622–627. [PubMed][CrossRef]
390. Yoon JH, Kang SJ, Lee CH, Oh HW, Oh TK. 2005. Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 55:2413–2417. [PubMed][CrossRef]
391. Cao S-J, Qu J-H, Yang J-S, Sun Q, Yuan H-L. 2008. Halolactibacillus alkaliphilus sp. nov., a moderately alkaliphilic and halophilic bacterium isolated from a soda lake in Inner Mongolia, China, and emended description of the genus Halolactibacillus. Int J Syst Evol Microbiol 58:2169–2173. [PubMed][CrossRef]
392. Ishikawa M, Nakajima K, Itamiya Y, Furukawa S, Yamamoto Y, Yamasato K. 2005. Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1. Int J Syst Evol Microbiol 55:2427–2439. [PubMed][CrossRef]
393. Yuan S, Ren P, Liu J, Xue Y, Ma Y, Zhou P. 2007. Lentibacillus halodurans sp. nov., a moderately halophilic bacterium isolated from a salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 57:485–488. [PubMed][CrossRef]
394. Tanasupawat S, Pakdeeto A, Namwong S, Thawai C, Kudo T, Itoh T. 2006. Lentibacillus halophilus sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 56:1859–1863. [PubMed][CrossRef]
395. Jung M-J, Roh SW, Kim M-S, Bae J-W. 2010. Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 60:1017–1022. [PubMed][CrossRef]
396. Namwong S, Tanasupawat S, Smitinont T, Visessanguan W, Kudo T, Itoh T. 2005. Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 55:315–320. [PubMed][CrossRef]
397. Pakdeeto A, Tanasupawat S, Thawai C, Moonmangmee S, Kudo T, Itoh T. 2007. Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 57:364–369. [PubMed][CrossRef]
398. Lim JM, Jeon CO, Song SM, Lee JC, Ju YJ, Xu LH, Jiang CL, Kim CJ. 2005. Lentbacillus lacisalsi sp. nov., a moderately halophilic bacterium isolated from a Saline Lake in China. Int J Syst Evol Microbiol 55:1805–1809. [PubMed][CrossRef]
399. Sanchez-Porro C, Amoozegar MA, Fernandez AB, Fard HB, Ramezani M, Ventosa A. 2010. Lentibacillus persicus sp. nov., a moderately halophilic species isolated from a saline lake. Int J Syst Evol Microbiol 60:1407–1412. [PubMed][CrossRef]
400. Jeon CO, Lim JM, Lee JC, Lee GS, Lee JM, Xu LH, Jiang CL, Kim CJ. 2005. Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. Int J Syst Evol Microbiol 55:1339–1343. [PubMed][CrossRef]
401. Yoon JH, Kang KH, Park YH. 2002. Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048. [PubMed][CrossRef]
402. Lee S-Y, Choi W-Y, Oh T-K, Yoon J-H. 2008. Lentibacillus salinarum sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 58:45–49. [PubMed][CrossRef]
403. Lee J-C, Li W-J, Xu L-H, Jiang C-L, Kim C-J. 2008. Lentibacillus salis sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 58:1838–1843. [PubMed][CrossRef]
404. Hao MV, Kocur M, Komagata K. 1984. Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelc acid in the cell wall and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459. [CrossRef]
405. Li WJ, Schumann P, Zhang YQ, Chen GZ, Tian XP, Xu LH, Stackebrandt E, Jiang CL. 2005. Marinococcus halotolerans sp. nov., isolated from Qinghai, North-West China. Int J Syst Evol Microbiol 55:1801–1804. [PubMed][CrossRef]
406. Wang Y, Cao L-L, Tang S-K, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J. 2009. Marinococcus luteus sp. nov., a halotolerant bacterium isolated from a salt lake, and emended description of the genus Marinococcus. Int J Syst Evol Microbiol 59:2875–2879. [PubMed][CrossRef]
407. Sorokin ID, Zadorina EV, Kravchenko IK, Boulygina ES, Tourova TP, Sorokin DY. 2008. Natronobacillus azotifigens gen. nov., sp nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827. [PubMed][CrossRef]
408. Nam J-H, Bae W, Lee D-H. 2008. Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea. Int J Syst Evol Microbiol 58:1109–1113. [PubMed][CrossRef]
409. Raats D, Halpern M. 2007. Oceanobacillus chironomi sp. nov., a halotolerant and facultatively alkaliphilic species isolated from a chironomid egg mass. Int J Syst Evol Microbiol 57:255–259. [PubMed][CrossRef]
410. Lu J, Nogi Y, Takami H. 2001. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297. [PubMed][CrossRef]
411. Namwong S, Tanasupawat S, Lee KC, Lee J-S. 2009. Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 59:2254–2259. [PubMed][CrossRef]
412. Whon TW, Jung M-J, Roh SW, Nam Y-D, Park E-J, Shin K-S, Bae J-W. 2010. Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. J Microbiol 48:862–866. [PubMed][CrossRef]
413. Lee S-Y, Oh T-K, Kim W, Yoonl J-H. 2010. Oceanobacillus locisalsi sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2758–2762. [PubMed][CrossRef]
414. Yang J-Y, Huo Y-Y, Xu X-W, Meng F-X, Wu M, Wang C-S. 2010. Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 60:2409–2414. [PubMed][CrossRef]
415. Yumoto I, Hirota K, Nodasaka Y, Nakajima K. 2005. Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 55:1521–1524. [PubMed][CrossRef]
416. Heyrman J, Logan NA, Busse HJ, Balcaen A, Lebbe L, Rodriguez-Diaz M, Swings J, De Vos P. 2003. Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53:501–511. [PubMed][CrossRef]
417. Lee JS, Lim JM, Lee KC, Lee JC, Park YH, Kim CJ. 2006. Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov with emended descriptions. Int J Syst Evol Microbiol 56:251–257. [PubMed][CrossRef]
418. Kim Y-G, Choi DH, Hyun S, Cho BC. 2007. Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413. [PubMed][CrossRef]
419. Tominaga T, An S-Y, Oyaizu H, Yokota A. 2009. Oceanobacillus soja sp. nov. isolated from soy sauce production equipment in Japan. J Gen Appl Microbiol 55:225–232. [PubMed][CrossRef]
420. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. 2006. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 56:1383–1389. [PubMed][CrossRef]
421. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ, Schumann P. 2010. Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 60:2930–2934. [PubMed][CrossRef]
422. Shin NR, Whon TW, Kim MS, Roh SW, Jung MJ, Kim YO, Bae JW. 2012. Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie Leeuwenhoek 101:147–154. [PubMed][CrossRef]
423. Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X, Xu L-H, Wen M-L, Peng Q, Jiang C-L. 2009. Paraliobacillus quinghaiensis sp. nov., isolated from salt-lake sediment in China. Int J Syst Evol Microbiol 59:28–33. [PubMed][CrossRef]
424. Ishikawa M, Ishizaki S, Yamamoto Y, Yamasato K. 2002. Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279. [PubMed][CrossRef]
425. Nunes I, Tiago I, Pires AL, da Costa MS, Veríssimo A. 2006. Paucisalibacillus globulus gen. nov., sp. nov., a Gram-positive bacterium isolated from potting soil. Int J Syst Evol Microbiol 56:1841–1845. [PubMed][CrossRef]
426. Amoozegar MA, Sanchez-Porro C, Rohban R, Hajighasemi M, Ventosa A. 2009. Piscibacillus halophilus sp. nov., a moderately halophilic bacterium from a hypersaline Iranian lake. Int J Syst Evol Microbiol 59:3095–3099. [PubMed][CrossRef]
427. Tanasupawat S, Namwong S, Kudo T, Itoh T. 2007. Piscibacillus salipliscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 57:1413–1417. [PubMed][CrossRef]
428. Lim JM, Jeon CO, Song SM, Kim CJ. 2005. Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 55:165–170. [PubMed][CrossRef]
429. Chen Y-G, Zhang Y-Q, Xiao H-D, Liu Z-X, Yi L-B, Shi J-X, Zhi -Y, Cui X-L, Li W-J. 2009. Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:1635–1639. [PubMed][CrossRef]
430. Chen Yi-G, Zhang Y-Q, Yi L-B, Li Z-Y, Wang Y-Xo, Xiao H-D, Chen Q-H, Cui X-L, Li W-J. 2010. Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus. Int J Syst Evol Microbiol 60:560–565. [PubMed][CrossRef]