1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Exosporium: What’s the Big “Hairy” Deal?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Joel A. Bozue1, Susan Welkos2, Christopher K. Cote3
  • Editors: Patrick Eichenberger4, Adam Driks5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: U.S. Army Medical Research Institute of Infectious Diseases, Division of Bacteriology, Fort Detrick, MD 21702; 2: U.S. Army Medical Research Institute of Infectious Diseases, Division of Bacteriology, Fort Detrick, MD 21702; 3: U.S. Army Medical Research Institute of Infectious Diseases, Division of Bacteriology, Fort Detrick, MD 21702; 4: New York University, New York, NY; 5: Loyola University Medical Center, Maywood, IL
  • Source: microbiolspec October 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.TBS-0021-2015
  • Received 28 July 2015 Accepted 15 September 2015 Published 23 October 2015
  • J. A. Bozue, joel.a.bozue.civ@mail.mil
image of The <span class="jp-italic">Bacillus anthracis</span> Exosporium: What’s the Big “Hairy” Deal?
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Exosporium: What’s the Big “Hairy” Deal?, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/5/TBS-0021-2015-1.gif /docserver/preview/fulltext/microbiolspec/3/5/TBS-0021-2015-2.gif
  • Abstract:

    In some species, including , the coat is the outermost layer of the spore. In others, such as the family, there is an additional layer that envelops the coat, called the exosporium. In the case of , a series of fine hair-like projections, also referred to as a “hairy” nap, extends from the exosporium basal layer. The exact role of the exosporium in , or for any of the species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for , because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.

  • Citation: Bozue J, Welkos S, Cote C. 2015. The Exosporium: What’s the Big “Hairy” Deal?. Microbiol Spectrum 3(5):TBS-0021-2015. doi:10.1128/microbiolspec.TBS-0021-2015.

Key Concept Ranking

Tumor Necrosis Factor
0.4074254
0.4074254

References

1. Aronson AI, Fitz-James P. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol Rev 40:360–402. [PubMed]
2. Gerhardt P. 1967. Cytology of Bacillus anthracis. Fed Proc 26:1504–1517. [PubMed]
3. Gerhardt P, Ribi E. 1964. Ultrastructure of the exosporium enveloping spores of Bacillus cereus. J Bacteriol 88:1774–1789. [PubMed]
4. Vary PS. 1994. Prime time for Bacillus megaterium. Microbiology 140:1001–1013. [PubMed][CrossRef]
5. Giorno R, Mallozzi M, Bozue J, Moody KS, Slack A, Qiu D, Wang R, Friedlander A, Welkos S, Driks A. 2009. Localization and assembly of proteins comprising the outer structures of the Bacillus anthracis spore. Microbiology 155:1133–1145. [PubMed][CrossRef]
6. Steichen CT, Kearney JF, Turnbough CL Jr. 2007. Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for spore germination and outgrowth. Mol Microbiol 64:359–367. [PubMed][CrossRef]
7. Ball DA, Taylor R, Todd SJ, Redmond C, Couture-Tosi E, Sylvestre P, Moir A, Bullough PA. 2008. Structure of the exosporium and sublayers of spores of the Bacillus cereus family revealed by electron crystallography. Mol Microbiol 68:947–958. [PubMed][CrossRef]
8. Cole HB, Ezzell JW Jr, Keller KF, Doyle RJ. 1984. Differentiation of Bacillus anthracis and other Bacillus species by lectins. J Clin Microbiol 19:48–53. [PubMed]
9. Matz LL, Beaman TC, Gerhardt P. 1970. Chemical composition of exosporium from spores of Bacillus cereus. J Bacteriol 101:196–201. [PubMed]
10. Bailey-Smith K, Todd SJ, Southworth TW, Proctor J, Moir A. 2005. The ExsA protein of Bacillus cereus is required for assembly of coat and exosporium onto the spore surface. J Bacteriol 187:3800–3806. [PubMed][CrossRef]
11. Brahmbhatt TN, Janes BK, Stibitz ES, Darnell SC, Sanz P, Rasmussen SB, O’Brien AD. 2007. Bacillus anthracis exosporium protein BclA affects spore germination, interaction with extracellular matrix proteins, and hydrophobicity. Infect Immun 75:5233–5239. [PubMed][CrossRef]
12. Koshikawa T, Yamazaki M, Yoshimi M, Ogawa S, Yamada A, Watabe K, Torii M. 1989. Surface hydrophobicity of spores of Bacillus spp. J Gen Microbiol 135:2717–2722. [PubMed]
13. Johnson MJ, Todd SJ, Ball DA, Shepherd AM, Sylvestre P, Moir A. 2006. ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus. J Bacteriol 188:7905–7913. [PubMed][CrossRef]
14. Kobayashi K, Hashiguchi K, Yokozeki K, Yamanaka S. 1998. Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci Biotechnol Biochem 62:1109–1114. [PubMed][CrossRef]
15. Kobayashi K, Suzuki SI, Izawa Y, Miwa K, Yamanaka S. 1998. Transglutaminase in sporulating cells of Bacillus subtilis. J Gen Appl Microbiol 44:85–91. [PubMed][CrossRef]
16. Moody KL, Driks A, Rother GL, Cote CK, Brueggemann EE, Hines HB, Friedlander AM, Bozue J. 2010. Processing, assembly and localization of a Bacillus anthracis spore protein. Microbiology 156:174–183. [PubMed][CrossRef]
17. Steichen C, Chen P, Kearney JF, Turnbough CL Jr. 2003. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 185:1903–1910. [PubMed][CrossRef]
18. Sylvestre P, Couture-Tosi E, Mock M. 2002. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178. [PubMed][CrossRef]
19. Sylvestre P, Couture-Tosi E, Mock M. 2005. Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the Bacillus anthracis exosporium. J Bacteriol 187:5122–5128. [PubMed][CrossRef]
20. Liu H, Bergman NH, Thomason B, Shallom S, Hazen A, Crossno J, Rasko DA, Ravel J, Read TD, Peterson SN, Yates J III, Hanna PC. 2004. Formation and composition of the Bacillus anthracis endospore. J Bacteriol 186:164–178. [PubMed][CrossRef]
21. Charlton S, Moir AJ, Baillie L, Moir A. 1999. Characterization of the exosporium of Bacillus cereus. J Appl Microbiol 87:241–245. [PubMed][CrossRef]
22. Redmond C, Baillie LW, Hibbs S, Moir AJ, Moir A. 2004. Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150:355–363. [PubMed][CrossRef]
23. Mignot T, Mesnage S, Couture-Tosi E, Mock M, Fouet A. 2002. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol Microbiol 43:1615–1627. [PubMed][CrossRef]
24. Sylvestre P, Couture-Tosi E, Mock M. 2003. Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. J Bacteriol 185:1555–1563. [PubMed][CrossRef]
25. Todd SJ, Moir AJ, Johnson MJ, Moir A. 2003. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J Bacteriol 185:3373–3378. [PubMed][CrossRef]
26. Little S, Driks A. 2001. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol Microbiol 42:1107–1120. [PubMed][CrossRef]
27. Giorno R, Bozue J, Cote C, Wenzel T, Moody KS, Mallozzi M, Ryan M, Wang R, Zielke R, Maddock JR, Friedlander A, Welkos S, Driks A. 2007. Morphogenesis of the Bacillus anthracis spore. J Bacteriol 189:691–705. [PubMed][CrossRef]
28. Lai EM, Phadke ND, Kachman MT, Giorno R, Vazquez S, Vazquez JA, Maddock JR, Driks A. 2003. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J Bacteriol 185:1443–1454. [PubMed][CrossRef]
29. Boydston JA, Yue L, Kearney JF, Turnbough CL Jr. 2006. The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis. J Bacteriol 188:7440–7448. [PubMed][CrossRef]
30. Severson KM, Mallozzi M, Bozue J, Welkos SL, Cote CK, Knight KL, Driks A. 2009. Roles of the Bacillus anthracis spore protein ExsK in exosporium maturation and germination. J Bacteriol 191:7587–7596. [PubMed][CrossRef]
31. Steichen CT, Kearney JF, Turnbough CL Jr. 2005. Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis. J Bacteriol 187:5868–5876. [PubMed][CrossRef]
32. Swiecki MK, Lisanby MW, Shu F, Turnbough CL Jr, Kearney JF. 2006. Monoclonal antibodies for Bacillus anthracis spore detection and functional analyses of spore germination and outgrowth. J Immunol 176:6076–6084. [PubMed][CrossRef]
33. Thompson BM, Hoelscher BC, Driks A, Stewart GC. 2011. Localization and assembly of the novel exosporium protein BetA of Bacillus anthracis. J Bacteriol 193:5098–5104. [PubMed][CrossRef]
34. Thompson BM, Stewart GC. 2008. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Mol Microbiol 70:421–434. [PubMed][CrossRef]
35. Boydston JA, Chen P, Steichen CT, Turnbough CL Jr. 2005. Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis. J Bacteriol 187:5310–5317. [PubMed][CrossRef]
36. Leski TA, Caswell CC, Pawlowski M, Klinke DJ, Bujnicki JM, Hart SJ, Lukomski S. 2009. Identification and classification of bcl genes and proteins of Bacillus cereus group organisms and their application in Bacillus anthracis detection and fingerprinting. Appl Environ Microbiol 75:7163–7172. [PubMed][CrossRef]
37. Rasmussen M, Jacobsson M, Björck L. 2003. Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J Biol Chem 278:32313–32316. [PubMed][CrossRef]
38. Brahmbhatt TN, Darnell SC, Carvalho HM, Sanz P, Kang TJ, Bull RL, Rasmussen SB, Cross AS, O’Brien AD. 2007. Recombinant exosporium protein BclA of Bacillus anthracis is effective as a booster for mice primed with suboptimal amounts of protective antigen. Infect Immun 75:5240–5247. [PubMed][CrossRef]
39. Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, Pritchard DG, Turnbough CL Jr. 2004. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 279:30945–30953. [PubMed][CrossRef]
40. Dong S, McPherson SA, Tan L, Chesnokova ON, Turnbough CL Jr, Pritchard DG. 2008. Anthrose biosynthetic operon of Bacillus anthracis. J Bacteriol 190:2350–2359. [PubMed][CrossRef]
41. Saile E, Boons GJ, Buskas T, Carlson RW, Kannenberg EL, Barr JR, Boyer AE, Gallegos-Candela M, Quinn CP. 2011. Antibody responses to a spore carbohydrate antigen as a marker of nonfatal inhalation anthrax in rhesus macaques. Clin Vaccine Immunol 18:743–748. [PubMed][CrossRef]
42. Réty S, Salamitou S, Garcia-Verdugo I, Hulmes DJ, Le Hégarat F, Chaby R, Lewit-Bentley A. 2005. The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J Biol Chem 280:43073–43078. [PubMed][CrossRef]
43. Xue Q, Gu C, Rivera J, Höök M, Chen X, Pozzi A, Xu Y. 2011. Entry of Bacillus anthracis spores into epithelial cells is mediated by the spore surface protein BclA, integrin α2β1 and complement component C1q. Cell Microbiol 13:620–634. [PubMed][CrossRef]
44. Bozue J, Cote CK, Moody KL, Welkos SL. 2007. Fully virulent Bacillus anthracis does not require the immunodominant protein BclA for pathogenesis. Infect Immun 75:508–511. [PubMed][CrossRef]
45. Bozue J, Moody KL, Cote CK, Stiles BG, Friedlander AM, Welkos SL, Hale ML. 2007. Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect Immun 75:4498–4505. [PubMed][CrossRef]
46. Bozue JA, Parthasarathy N, Phillips LR, Cote CK, Fellows PF, Mendelson I, Shafferman A, Friedlander AM. 2005. Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog 38:1–12. [PubMed][CrossRef]
47. Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. 2010. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B Biointerfaces 76:512–518. [PubMed][CrossRef]
48. Lequette Y, Garénaux E, Tauveron G, Dumez S, Perchat S, Slomianny C, Lereclus D, Guérardel Y, Faille C. 2011. Role played by exosporium glycoproteins in the surface properties of Bacillus cereus spores and in their adhesion to stainless steel. Appl Environ Microbiol 77:4905–4911. [PubMed][CrossRef]
49. Oliva CR, Swiecki MK, Griguer CE, Lisanby MW, Bullard DC, Turnbough CL Jr, Kearney JF. 2008. The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc Natl Acad Sci USA 105:1261–1266. [PubMed][CrossRef]
50. Thompson BM, Waller LN, Fox KF, Fox A, Stewart GC. 2007. The BclB glycoprotein of Bacillus anthracis is involved in exosporium integrity. J Bacteriol 189:6704–6713. [PubMed][CrossRef]
51. Waller LN, Stump MJ, Fox KF, Harley WM, Fox A, Stewart GC, Shahgholi M. 2005. Identification of a second collagen-like glycoprotein produced by Bacillus anthracis and demonstration of associated spore-specific sugars. J Bacteriol 187:4592–4597. [PubMed][CrossRef]
52. García-Patrone M, Tandecarz JS. 1995. A glycoprotein multimer from Bacillus thuringiensis sporangia: dissociation into subunits and sugar composition. Mol Cell Biochem 145:29–37. [PubMed][CrossRef]
53. Cybulski RJ Jr, Sanz P, Alem F, Stibitz S, Bull RL, O’Brien AD. 2009. Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect Immun 77:274–285. [PubMed][CrossRef]
54. Yasuda Y, Kanda K, Nishioka S, Tanimoto Y, Kato C, Saito A, Fukuchi S, Nakanishi Y, Tochikubo K. 1993. Regulation of L-alanine-initiated germination of Bacillus subtilis spores by alanine racemase. Amino Acids 4:89–99. [PubMed][CrossRef]
55. McKevitt MT, Bryant KM, Shakir SM, Larabee JL, Blanke SR, Lovchik J, Lyons CR, Ballard JD. 2007. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun 75:5726–5734. [PubMed][CrossRef]
56. Chesnokova ON, McPherson SA, Steichen CT, Turnbough CL Jr. 2009. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J Bacteriol 191:1303–1310. [PubMed][CrossRef]
57. Zhang J, Fitz-James PC, Aronson AI. 1993. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175:3757–3766. [PubMed]
58. Ozin AJ, Henriques AO, Yi H, Moran CP Jr. 2000. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J Bacteriol 182:1828–1833. [PubMed][CrossRef]
59. Read TD, et al. 2003. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86. [PubMed][CrossRef]
60. Cote CK, Bozue J, Moody KL, DiMezzo TL, Chapman CE, Welkos SL. 2008. Analysis of a novel spore antigen in Bacillus anthracis that contributes to spore opsonization. Microbiology 154:619–632. [PubMed][CrossRef]
61. Kuwana R, Takamatsu H, Watabe K. 2007. Expression, localization and modification of YxeE spore coat protein in Bacillus subtilis. J Biochem 142:681–689. [PubMed][CrossRef]
62. Kuwana R, Okuda N, Takamatsu H, Watabe K. 2006. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J Biochem 139:887–901. [PubMed][CrossRef]
63. Takamatsu H, Kodama T, Imamura A, Asai K, Kobayashi K, Nakayama T, Ogasawara N, Watabe K. 2000. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J Bacteriol 182:1883–1888. [PubMed][CrossRef]
64. Monroe A, Setlow P. 2006. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 188:7609–7616. [PubMed][CrossRef]
65. Zilhão R, Isticato R, Martins LO, Steil L, Völker U, Ricca E, Moran CP Jr, Henriques AO. 2005. Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J Bacteriol 187:7753–7764. [PubMed][CrossRef]
66. Thompson BM, Hsieh HY, Spreng KA, Stewart GC. 2011. The co-dependence of BxpB/ExsFA and BclA for proper incorporation into the exosporium of Bacillus anthracis. Mol Microbiol 79:799–813. [PubMed][CrossRef]
67. Fazzini MM, Schuch R, Fischetti VA. 2010. A novel spore protein, ExsM, regulates formation of the exosporium in Bacillus cereus and Bacillus anthracis and affects spore size and shape. J Bacteriol 192:4012–4021. [PubMed][CrossRef]
68. Welkos SL, Cote CK, Rea KM, Gibbs PH. 2004. A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. J Microbiol Methods 56:253–265. [PubMed][CrossRef]
69. Driks A. 2002. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol 10:251–254. [PubMed][CrossRef]
70. Henriques AO, Moran CP Jr. 2007. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61:555–588. [PubMed][CrossRef]
71. DesRosier JP, Lara JC. 1984. Synthesis of the exosporium during sporulation of Bacillus cereus. J Gen Microbiol 130:935–940. [CrossRef]
72. Ohye DF, Murrell WG. 1973. Exosporium and spore coat formation in Bacillus cereus T. J Bacteriol 115:1179–1190. [PubMed]
73. Roels S, Driks A, Losick R. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J Bacteriol 174:575–585. [PubMed]
74. Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A. 2006. The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59:487–502. [PubMed][CrossRef]
75. Moir A, Corfe BM, Behravan J. 2002. Spore germination. Cell Mol Life Sci 59:403–409. [PubMed][CrossRef]
76. Cote CK, Bozue J, Twenhafel N, Welkos SL. 2009. Effects of altering the germination potential of Bacillus anthracis spores by exogenous means in a mouse model. J Med Microbiol 58:816–825. [PubMed][CrossRef]
77. Gerhardt P, Black SH. 1961. Permeability of bacterial spores. II. Molecular variables affecting solute permeation. J Bacteriol 82:750–760. [PubMed]
78. Enkhtuya J, Kawamoto K, Kobayashi Y, Uchida I, Rana N, Makino S. 2006. Significant passive protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two virulence plasmids. Microbiology 152:3103–3110. [PubMed][CrossRef]
79. Welkos S, Little S, Friedlander A, Fritz D, Fellows P. 2001. The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147:1677–1685. [PubMed][CrossRef]
80. Liang L, He X, Liu G, Tan H. 2008. The role of a purine-specific nucleoside hydrolase in spore germination of Bacillus thuringiensis. Microbiology 154:1333–1340. [PubMed][CrossRef]
81. Dodatko T, Akoachere M, Muehlbauer SM, Helfrich F, Howerton A, Ross C, Wysocki V, Brojatsch J, Abel-Santos E. 2009. Bacillus cereus spores release alanine that synergizes with inosine to promote germination. PLoS One 4:e6398. doi:10.1371/journal.pone.0006398. [PubMed][CrossRef]
82. Gould GW. 1966. Stimulation of L-alanine-induced germination of Bacillus cereus spores by D-cycloserine and O-carbamyl-D-serine. J Bacteriol 92:1261–1262. [PubMed]
83. Titball RW, Manchee RJ. 1987. Factors affecting the germination of spores of Bacillus anthracis. J Appl Bacteriol 62:269–273. [PubMed][CrossRef]
84. Omotade TO, Heffron JD, Klimko CP, Marchand CL, Miller LL, Halasahoris SA, Bozue JA, Welkos SL, Cote CK. 2013. D-Cycloserine or similar physiochemical compounds may be uniquely suited for use in Bacillus anthracis spore decontamination strategies. J Appl Microbiol 115:1343–1356. [PubMed][CrossRef]
85. Oliva C, Turnbough CL Jr, Kearney JF. 2009. CD14-Mac-1 interactions in Bacillus anthracis spore internalization by macrophages. Proc Natl Acad Sci USA 106:13957–13962. [PubMed][CrossRef]
86. Kang TJ, Fenton MJ, Weiner MA, Hibbs S, Basu S, Baillie L, Cross AS. 2005. Murine macrophages kill the vegetative form of Bacillus anthracis. Infect Immun 73:7495–7501. [PubMed][CrossRef]
87. Raines KW, Kang TJ, Hibbs S, Cao GL, Weaver J, Tsai P, Baillie L, Cross AS, Rosen GM. 2006. Importance of nitric oxide synthase in the control of infection by Bacillus anthracis. Infect Immun 74:2268–2276. [PubMed][CrossRef]
88. Soru E. 1983. Chemical and immunological properties of B. anthracis arginase and its metabolic involvement. Mol Cell Biochem 50:173–183. [PubMed][CrossRef]
89. Weaver J, Kang TJ, Raines KW, Cao GL, Hibbs S, Tsai P, Baillie L, Rosen GM, Cross AS. 2007. Protective role of Bacillus anthracis exosporium in macrophage-mediated killing by nitric oxide. Infect Immun 75:3894–3901. [PubMed][CrossRef]
90. Welkos S, Friedlander A, Weeks S, Little S, Mendelson I. 2002. In-vitro characterisation of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J Med Microbiol 51:821–831. [PubMed][CrossRef]
91. Basu S, Kang TJ, Chen WH, Fenton MJ, Baillie L, Hibbs S, Cross AS. 2007. Role of Bacillus anthracis spore structures in macrophage cytokine responses. Infect Immun 75:2351–2358. [PubMed][CrossRef]
92. Chung MC, Tonry JH, Narayanan A, Manes NP, Mackie RS, Gutting B, Mukherjee DV, Popova TG, Kashanchi F, Bailey CL, Popov SG. 2011. Bacillus anthracis interacts with plasmin(ogen) to evade C3b-dependent innate immunity. PLoS One 6:e18119. doi:10.1371/journal.pone.0018119. [PubMed][CrossRef]
93. Mukhopadhyay S, Akmal A, Stewart AC, Hsia RC, Read TD. 2009. Identification of Bacillus anthracis spore component antigens conserved across diverse Bacillus cereus sensu lato strains. Mol Cell Proteomics 8:1174–1191. [PubMed][CrossRef]
94. Russell BH, Liu Q, Jenkins SA, Tuvim MJ, Dickey BF, Xu Y. 2008. In vivo demonstration and quantification of intracellular Bacillus anthracis in lung epithelial cells. Infect Immun 76:3975–3983. [PubMed][CrossRef]
95. Russell BH, Vasan R, Keene DR, Xu Y. 2007. Bacillus anthracis internalization by human fibroblasts and epithelial cells. Cell Microbiol 9:1262–1274. [PubMed][CrossRef]
96. Friedlander AM, Pittman PR, Parker GW. 1999. Anthrax vaccine: evidence for safety and efficacy against inhalational anthrax. JAMA 282:2104–2106. [PubMed][CrossRef]
97. Young JA, Collier RJ. 2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265. [PubMed][CrossRef]
98. Wycoff KL, Belle A, Deppe D, Schaefer L, Maclean JM, Haase S, Trilling AK, Liu S, Leppla SH, Geren IN, Pawlik J, Peterson JW. 2011. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob Agents Chemother 55:132–139. [PubMed][CrossRef]
99. Sharma S, Thomas D, Marlett J, Manchester M, Young JA. 2009. Efficient neutralization of antibody-resistant forms of anthrax toxin by a soluble receptor decoy inhibitor. Antimicrob Agents Chemother 53:1210–1212. [PubMed][CrossRef]
100. Brossier F, Levy M, Mock M. 2002. Anthrax spores make an essential contribution to vaccine efficacy. Infect Immun 70:661–664. [PubMed]
101. Gauthier YP, Tournier JN, Paucod JC, Corre JP, Mock M, Goossens PL, Vidal DR. 2009. Efficacy of a vaccine based on protective antigen and killed spores against experimental inhalational anthrax. Infect Immun 77:1197–1207. [PubMed][CrossRef]
102. Cote CK, Kaatz L, Reinhardt J, Bozue J, Tobery SA, Bassett AD, Sanz P, Darnell SC, Alem F, O’Brien AD, Welkos SL. 2012. Characterization of a multi-component anthrax vaccine designed to target the initial stages of infection as well as toxaemia. J Med Microbiol 61:1380–1392. [PubMed][CrossRef]
103. Vergis JM, Cote CK, Bozue J, Alem F, Ventura CL, Welkos SL, O’Brien AD. 2013. Immunization of mice with formalin-inactivated spores from avirulent Bacillus cereus strains provides significant protection from challenge with Bacillus anthracis Ames. Clin Vaccine Immunol 20:56–65. [PubMed][CrossRef]
104. Hahn UK, Boehm R, Beyer W. 2006. DNA vaccination against anthrax in mice-combination of anti-spore and anti-toxin components. Vaccine 24:4569–4571. [PubMed][CrossRef]
105. Cybulski RJ Jr, Sanz P, McDaniel D, Darnell S, Bull RL, O’Brien AD. 2008. Recombinant Bacillus anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective antigen. Vaccine 26:4927–4939. [PubMed][CrossRef]
106. Glomski IJ, Corre JP, Mock M, Goossens PL. 2007. Cutting Edge: IFN-gamma-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. J Immunol 178:2646–2650. [PubMed][CrossRef]
107. Williams G, Linley E, Nicholas R, Baillie L. 2013. The role of the exosporium in the environmental distribution of anthrax. J Appl Microbiol 114:396–403. [PubMed][CrossRef]
108. Driks A, Eichenberger P. The spore coat. In Eichenberger P, Driks A (ed), The Bacterial Spore. ASM Press, Washington, DC, in press.
109. Popham DB, Bernhards CB. Spore peptidoglycan. In Eichenberger P, Driks A (ed), The Bacterial Spore. ASM Press, Washington, DC, in press.
microbiolspec.TBS-0021-2015.citations
cm/3/5
content/journal/microbiolspec/10.1128/microbiolspec.TBS-0021-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBS-0021-2015
2015-10-23
2017-03-30

Abstract:

In some species, including , the coat is the outermost layer of the spore. In others, such as the family, there is an additional layer that envelops the coat, called the exosporium. In the case of , a series of fine hair-like projections, also referred to as a “hairy” nap, extends from the exosporium basal layer. The exact role of the exosporium in , or for any of the species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for , because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Electron micrographs of , and spores. The spore coat (white bar) or exosporium (black bar) as present is labeled for the various species. The arrow indicates the presence of a crust on the spore. The micrograph is courtesy of Adam Driks, Stritch School of Medicine, Loyola University Chicago, Maywood, IL. doi:10.1128/microbiolspec.TBS-0021-2015.f1

Source: microbiolspec October 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.TBS-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Association of spores to bronchial epithelial cells. Micrographs of spores associated with the bronchial epithelial cells. Samples were stained with spore stain (malachite green) and counterstained with a Wright-Giemsa stain. Ames spores (indicated by white arrows) with the cells. mutant spores with the cells. Reprinted from reference 45 with permission. doi:10.1128/microbiolspec.TBS-0021-2015.f2

Source: microbiolspec October 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.TBS-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Scanning and transmission electron micrographs of the interaction between spores and bronchial epithelial cells. Adherence of Ames spores to cells 2 h postinfection. Bar corresponds to 5 µm. Adherence of mutant spores to cells 2 h postinfection. Bar corresponds to 10 µm. mutant spores incubated with cells. Bar corresponds to 5 µm. Close-up view from boxed area in panel C. Bar corresponds to 0.5 µm. Reprinted from reference 45 with permission. doi:10.1128/microbiolspec.TBS-0021-2015.f3

Source: microbiolspec October 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.TBS-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error