1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Spore Coat

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Adam Driks1, Patrick Eichenberger2
  • Editors: Patrick Eichenberger3, Adam Driks4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153; 2: Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; 3: New York University, New York, NY; 4: Stritch School of Medicine, Loyola University Chicago, Maywood, IL
  • Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.TBS-0023-2016
  • Received 03 February 2016 Accepted 04 February 2016 Published 11 March 2016
  • Adam Driks, adriks@luc.edu, and Patrick Eichenberger, pe19@nyu.edu
image of The Spore Coat
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Spore Coat, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/TBS-0023-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/2/TBS-0023-2016-2.gif
  • Abstract:

    Spores of and are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all and spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including , only the coat is present. In other species, including , an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism , but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in . To help summarize this large field and define future directions for research, we will focus on key findings in recent years.

  • Citation: Driks A, Eichenberger P. 2016. The Spore Coat. Microbiol Spectrum 4(2):TBS-0023-2016. doi:10.1128/microbiolspec.TBS-0023-2016.

References

1. Warth AD, Ohye DF, Murrell WG. 1963. The composition and structure of bacterial spores. J Cell Biol 16:579–592. [PubMed][CrossRef]
2. Holt SC, Leadbetter ER. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol Rev 33:346–378. [PubMed]
3. Santo LY, Doi RH. 1974. Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. J Bacteriol 120:475–481. [PubMed]
4. Aronson AI, Fitz-James P. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol Rev 40:360–402. [PubMed]
5. Driks A. 1999. Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20. [PubMed]
6. Driks A. 2007. Surface appendages of bacterial spores. Mol Microbiol 63:623–625. [PubMed][CrossRef]
7. McKenney PT, Driks A, Eichenberger P. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11:33–44. [PubMed][CrossRef]
8. Bozue JA, Welkos S, Cote CK. 2015. The Bacillus anthracis exosporium: what’s the big “hairy” deal? Microbiol Spectr 3(5):TBS-0021-2015. doi:10.1128/microbiolspec.TBS-0021-2015. [PubMed][CrossRef]
9. Stewart GC. 2015. The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol Mol Biol Rev 79:437–457. [PubMed][CrossRef]
10. Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G. 2009. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 191:5377–5386. [PubMed][CrossRef]
11. Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, Cutting SM. 2011. Surface layers of Clostridium difficile endospores. J Bacteriol 193:6461–6470. [PubMed][CrossRef]
12. Paredes-Sabja D, Shen A, Sorg JA. 2014. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22:406–416. [PubMed][CrossRef]
13. McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, Gitai Z, Eichenberger P. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20:934–938. [PubMed][CrossRef]
14. Waller LN, Fox N, Fox KF, Fox A, Price RL. 2004. Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J Microbiol Methods 58:23–30. [PubMed][CrossRef]
15. Driks A. 2009. The Bacillus anthracis spore. Mol Aspects Med 30:368–373. [PubMed][CrossRef]
16. Giorno R, Bozue J, Cote C, Wenzel T, Moody KS, Mallozzi M, Ryan M, Wang R, Zielke R, Maddock JR, Friedlander A, Welkos S, Driks A. 2007. Morphogenesis of the Bacillus anthracis spore. J Bacteriol 189:691–705. [PubMed][CrossRef]
17. Traag BA, Driks A, Stragier P, Bitter W, Broussard G, Hatfull G, Chu F, Adams KN, Ramakrishnan L, Losick R. 2010. Do mycobacteria produce endospores? Proc Natl Acad Sci USA 107:878–881. [PubMed][CrossRef]
18. Sahin O, Yong EH, Driks A, Mahadevan L. 2012. Physical basis for the adaptive flexibility of Bacillus spore coats. J R Soc Interface 9:3156–3160. [PubMed][CrossRef]
19. Chen X, Mahadevan L, Driks A, Sahin O. 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat Nanotechnol 9:137–141. [PubMed][CrossRef]
20. Henriques AO, Moran CP Jr. 2007. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61:555–588. [PubMed][CrossRef]
21. McKenney PT, Eichenberger P. 2012. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol Microbiol 83:245–260. [PubMed][CrossRef]
22. Abhyankar W, Pandey R, Ter Beek A, Brul S, de Koning LJ, de Koster CG. 2015. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiol 45(Pt A):54–62. [PubMed]
23. Lai EM, Phadke ND, Kachman MT, Giorno R, Vazquez S, Vazquez JA, Maddock JR, Driks A. 2003. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J Bacteriol 185:1443–1454. [PubMed][CrossRef]
24. Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. 2013. In pursuit of protein targets: proteomic characterization of bacterial spore outer layers. J Proteome Res 12:4507–4521. [PubMed][CrossRef]
25. Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, Brisson MC, La Ragione R, Brisson AR, Fairweather N, Hong HA, Cutting SM. 2013. Functional characterization of Clostridium difficile spore coat proteins. J Bacteriol 195:1492–1503. [PubMed][CrossRef]
26. Putnam EE, Nock AM, Lawley TD, Shen A. 2013. SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 195:1214–1225. [PubMed][CrossRef]
27. Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. 2015. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 123:1–13. [PubMed][CrossRef]
28. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. 2012. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14:2870–2890. [PubMed][CrossRef]
29. Galperin MY. 2013. Genome diversity of spore-forming Firmicutes. Microbiol Spectr 1(2): TBS-0015-2012. doi:10.1128microbiolspectrum.TBS-0015-2012. [PubMed][CrossRef]
30. Donovan W, Zheng LB, Sandman K, Losick R. 1987. Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 196:1–10. [PubMed][CrossRef]
31. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430. [PubMed][CrossRef]
32. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO. 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859. [PubMed][CrossRef]
33. Zilhão R, Isticato R, Martins LO, Steil L, Völker U, Ricca E, Moran CP Jr, Henriques AO. 2005. Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J Bacteriol 187:7753–7764. [PubMed][CrossRef]
34. Fernandes CG, Plácido D, Lousa D, Brito JA, Isidro A, Soares CM, Pohl J, Carrondo MA, Archer M, Henriques AO. 2015. Structural and functional characterization of an ancient bacterial transglutaminase sheds light on the minimal requirements for protein cross-linking. Biochemistry 54:5723–5734. [PubMed][CrossRef]
35. Milhaud P, Balassa G. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis. Mol Gen Genet 125:241–250. [PubMed][CrossRef]
36. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572. [PubMed][CrossRef]
37. Klobutcher LA, Ragkousi K, Setlow P. 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila. Proc Natl Acad Sci USA 103:165–170. [PubMed][CrossRef]
38. Laaberki MH, Dworkin J. 2008. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J Bacteriol 190:6197–6203. [PubMed][CrossRef]
39. Carroll AM, Plomp M, Malkin AJ, Setlow P. 2008. Protozoal digestion of coat-defective Bacillus subtilis spores produces “rinds” composed of insoluble coat protein. Appl Environ Microbiol 74:5875–5881. [PubMed][CrossRef]
40. Ghosh S, Setlow B, Wahome PG, Cowan AE, Plomp M, Malkin AJ, Setlow P. 2008. Characterization of spores of Bacillus subtilis that lack most coat layers. J Bacteriol 190:6741–6748. [PubMed][CrossRef]
41. Setlow P. 2014. Spore resistance properties. Microbiol Spectr 2(5):TBS-0003-2012. doi:10.1128/microbiolspec.TBS-0003-2012. [PubMed][CrossRef]
42. Francis CA, Tebo BM. 1999. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals. J Mol Microbiol Biotechnol 1:71–78. [PubMed]
43. Francis CA, Tebo BM. 2002. Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880. [CrossRef]
44. Sandman K, Kroos L, Cutting S, Youngman P, Losick R. 1988. Identification of the promoter for a spore coat protein gene in Bacillus subtilis and studies on the regulation of its induction at a late stage of sporulation. J Mol Biol 200:461–473. [PubMed][CrossRef]
45. Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM. 2010. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC Struct Biol 10:28. [PubMed][CrossRef]
46. Chada VG, Sanstad EA, Wang R, Driks A. 2003. Morphogenesis of bacillus spore surfaces. J Bacteriol 185:6255–6261. [PubMed][CrossRef]
47. Aronson AI, Fitz-James PC. 1971. Reconstitution of bacterial spore coat layers in vitro. J Bacteriol 108:571–578. [PubMed]
48. Moir A. 1981. Germination properties of a spore coat-defective mutant of Bacillus subtilis. J Bacteriol 146:1106–1116. [PubMed]
49. Bagyan I, Setlow P. 2002. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J Bacteriol 184:1219–1224. [PubMed][CrossRef]
50. Paidhungat M, Ragkousi K, Setlow P. 2001. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183:4886–4893. [PubMed][CrossRef]
51. Ishikawa S, Yamane K, Sekiguchi J. 1998. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180:1375–1380. [PubMed]
52. Ragkousi K, Eichenberger P, van Ooij C, Setlow P. 2003. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J Bacteriol 185:2315–2329. [PubMed][CrossRef]
53. Ragkousi K, Setlow P. 2004. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186:5567–5575. [PubMed][CrossRef]
54. Monroe A, Setlow P. 2006. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 188:7609–7616. [PubMed][CrossRef]
55. Imamura D, Kuwana R, Takamatsu H, Watabe K. 2010. Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J Bacteriol 192:518–524. [PubMed][CrossRef]
56. Lambert EA, Popham DL. 2008. The Bacillus anthracis SleL (YaaH) protein is an N-acetylglucosaminidase involved in spore cortex depolymerization. J Bacteriol 190:7601–7607. [PubMed][CrossRef]
57. Burns DA, Heap JT, Minton NP. 2010. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 192:657–664. [PubMed][CrossRef]
58. Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. 2013. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9:e1003165. doi:10.1371/journal.ppat.1003165. [PubMed][CrossRef]
59. Masayama A, Kuwana R, Takamatsu H, Hemmi H, Yoshimura T, Watabe K, Moriyama R. 2007. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J Bacteriol 189:2369–2375. [PubMed][CrossRef]
60. Masayama A, Kato S, Terashima T, Mølgaard A, Hemmi H, Yoshimura T, Moriyama R. 2010. Bacillus subtilis spore coat protein LipC is a phospholipase B. Biosci Biotechnol Biochem 74:24–30. [PubMed][CrossRef]
61. Behravan J, Chirakkal H, Masson A, Moir A. 2000. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol 182:1987–1994. [PubMed][CrossRef]
62. Butzin XY, Troiano AJ, Coleman WH, Griffiths KK, Doona CJ, Feeherry FE, Wang G, Li YQ, Setlow P. 2012. Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis. J Bacteriol 194:5749–5758. [PubMed][CrossRef]
63. Chesnokova ON, McPherson SA, Steichen CT, Turnbough CL Jr. 2009. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J Bacteriol 191:1303–1310. [PubMed][CrossRef]
64. Pierce KJ, Salifu SP, Tangney M. 2008. Gene cloning and characterization of a second alanine racemase from Bacillus subtilis encoded by yncD. FEMS Microbiol Lett 283:69–74. [PubMed][CrossRef]
65. Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A. 2013. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 9:e1003660. doi:10.1371/journal.pgen.1003660. [PubMed][CrossRef]
66. Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. 2013. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 9:e1003756. doi:10.1371/journal.pgen.1003756. [CrossRef]
67. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190:2505–2512. [PubMed][CrossRef]
68. Wheeldon LJ, Worthington T, Hilton AC, Elliott TS, Lambert PA. 2008. Physical and chemical factors influencing the germination of Clostridium difficile spores. J Appl Microbiol 105:2223–2230. [PubMed][CrossRef]
69. Francis MB, Allen CA, Shrestha R, Sorg JA. 2013. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9:e1003356. doi:10.1371/journal.ppat.1003356. [PubMed][CrossRef]
70. Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. 2010. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B Biointerfaces 76:512–518. [PubMed][CrossRef]
71. Cangiano G, Sirec T, Panarella C, Isticato R, Baccigalupi L, De Felice M, Ricca E. 2014. The sps gene products affect the germination, hydrophobicity, and protein adsorption of Bacillus subtilis spores. Appl Environ Microbiol 80:7293–7302. [PubMed][CrossRef]
72. Arrieta-Ortiz ML, Hafemeister C, Bate AR, Chu T, Greenfield A, Shuster B, Barry SN, Gallitto M, Liu B, Kacmarczyk T, Santoriello F, Chen J, Rodrigues CD, Sato T, Rudner DZ, Driks A, Bonneau R, Eichenberger P. 2015. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network. Mol Syst Biol 11:839. doi:10.15252/msb.20156236. [CrossRef]
73. Plata G, Fuhrer T, Hsiao TL, Sauer U, Vitkup D. 2012. Global probabilistic annotation of metabolic networks enables enzyme discovery. Nat Chem Biol 8:848–854. [PubMed][CrossRef]
74. Wunschel D, Fox KF, Black GE, Fox A. 1994. Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and ribosomal RNA spacer region PCR. Syst Appl Microbiol 17:625–635. [CrossRef]
75. Knurr J, Benedek O, Heslop J, Vinson RB, Boydston JA, McAndrew J, Kearney JF, Turnbough CL Jr. 2003. Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. Appl Environ Microbiol 69:6841–6847. [PubMed][CrossRef]
76. Charnock SJ, Davies GJ. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38:6380–6385. [PubMed][CrossRef]
77. Abe K, Kawano Y, Iwamoto K, Arai K, Maruyama Y, Eichenberger P, Sato T. 2014. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis. PLoS Genet 10:e1004636. doi:10.1371/journal.pgen.1004636. [PubMed][CrossRef]
78. Scheeff ED, Axelrod HL, Miller MD, Chiu HJ, Deacon AM, Wilson IA, Manning G. 2010. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases. Proteins 78:1470–1482. [PubMed][CrossRef]
79. Bate AR, Bonneau R, Eichenberger P. 2014. Bacillus subtilis systems biology: applications of -omics techniques to the study of endospore formation. Microbiol Spectr 2(2):TBS-0019-2013. doi:10.1128/microbiolspec.TBS-0019-2013. [PubMed][CrossRef]
80. Ryter A, Schaeffer P, Ionesco H. 1966. Cytologic classification, by their blockage stage, of sporulation mutants of Bacillus subtilis Marburg [in French]. Ann Inst Pasteur (Paris) 110:305–315.
81. Piggot PJ, Coote JG. 1976. Genetic aspects of bacterial endospore formation. Bacteriol Rev 40:908–962. [PubMed]
82. Cutting S, Panzer S, Losick R. 1989. Regulatory studies on the promoter for a gene governing synthesis and assembly of the spore coat in Bacillus subtilis. J Mol Biol 207:393–404. [PubMed][CrossRef]
83. Kunkel B, Kroos L, Poth H, Youngman P, Losick R. 1989. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. Genes Dev 3:1735–1744. [PubMed][CrossRef]
84. Zheng LB, Losick R. 1990. Cascade regulation of spore coat gene expression in Bacillus subtilis. J Mol Biol 212:645–660. [PubMed][CrossRef]
85. Halberg R, Kroos L. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J Mol Biol 243:425–436. [PubMed][CrossRef]
86. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2:e328. doi:10.1371/journal.pbio.0020328 [PubMed][CrossRef]
87. Kuwana R, Okumura T, Takamatsu H, Watabe K. 2005. The ylbO gene product of Bacillus subtilis is involved in the coat development and lysozyme resistance of spore. FEMS Microbiol Lett 242:51–57. [PubMed][CrossRef]
88. Cangiano G, Mazzone A, Baccigalupi L, Isticato R, Eichenberger P, De Felice M, Ricca E. 2010. Direct and indirect control of late sporulation genes by GerR of Bacillus subtilis. J Bacteriol 192:3406–3413. [PubMed][CrossRef]
89. de Hoon MJ, Eichenberger P, Vitkup D. 2010. Hierarchical evolution of the bacterial sporulation network. Curr Biol 20:R735–R745. [PubMed][CrossRef]
90. Pandey NK, Aronson AI. 1979. Properties of the Bacillus subtilis spore coat. J Bacteriol 137:1208–1218. [PubMed]
91. Sanchez-Salas JL, Setlow B, Zhang P, Li YQ, Setlow P. 2011. Maturation of released spores is necessary for acquisition of full spore heat resistance during Bacillus subtilis sporulation. Appl Environ Microbiol 77:6746–6754. [PubMed][CrossRef]
92. Costa T, Serrano M, Steil L, Völker U, Moran CP Jr, Henriques AO. 2007. The timing of cotE expression affects Bacillus subtilis spore coat morphology but not lysozyme resistance. J Bacteriol 189:2401–2410. [PubMed][CrossRef]
93. Wang KH, Isidro AL, Domingues L, Eskandarian HA, McKenney PT, Drew K, Grabowski P, Chua MH, Barry SN, Guan M, Bonneau R, Henriques AO, Eichenberger P. 2009. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol Microbiol 74:634–649. [PubMed][CrossRef]
94. Roels S, Driks A, Losick R. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J Bacteriol 174:575–585. [PubMed]
95. Stevens CM, Daniel R, Illing N, Errington J. 1992. Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol 174:586–594. [PubMed]
96. Beall B, Driks A, Losick R, Moran CP Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J Bacteriol 175:1705–1716. [PubMed]
97. Levin PA, Fan N, Ricca E, Driks A, Losick R, Cutting S. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol Microbiol 9:761–771. [PubMed][CrossRef]
98. Gill RL Jr, Castaing JP, Hsin J, Tan IS, Wang X, Huang KC, Tian F, Ramamurthi KS. 2015. Structural basis for the geometry-driven localization of a small protein. Proc Natl Acad Sci USA 112:E1908–E1915. [PubMed][CrossRef]
99. Ramamurthi KS, Lecuyer S, Stone HA, Losick R. 2009. Geometric cue for protein localization in a bacterium. Science 323:1354–1357. [PubMed][CrossRef]
100. Wu IL, Narayan K, Castaing JP, Tian F, Subramaniam S, Ramamurthi KS. 2015. A versatile nano display platform from bacterial spore coat proteins. Nat Commun 6:6777. [PubMed][CrossRef]
101. Ramamurthi KS, Clapham KR, Losick R. 2006. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol Microbiol 62:1547–1557. [PubMed][CrossRef]
102. Castaing JP, Nagy A, Anantharaman V, Aravind L, Ramamurthi KS. 2013. ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proc Natl Acad Sci USA 110:E151–E160. [PubMed][CrossRef]
103. Ramamurthi KS, Losick R. 2008. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol Cell 31:406–414. [PubMed][CrossRef]
104. Müllerová D, Krajčíková D, Barák I. 2009. Interactions between Bacillus subtilis early spore coat morphogenetic proteins. FEMS Microbiol Lett 299:74–85. [PubMed][CrossRef]
105. Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. 2012. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol Microbiol 84:682–696. [PubMed][CrossRef]
106. Tan IS, Weiss CA, Popham DL, Ramamurthi KS. 2015. A quality-control mechanism removes unfit cells from a population of sporulating bacteria. Dev Cell 34:682–693. [PubMed][CrossRef]
107. Driks A, Roels S, Beall B, Moran CP Jr, Losick R. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev 8:234–244. [PubMed][CrossRef]
108. Takamatsu H, Kodama T, Nakayama T, Watabe K. 1999. Characterization of the yrbA gene of Bacillus subtilis, involved in resistance and germination of spores. J Bacteriol 181:4986–4994. [PubMed]
109. Ozin AJ, Henriques AO, Yi H, Moran CP Jr. 2000. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J Bacteriol 182:1828–1833. [PubMed][CrossRef]
110. Zheng LB, Donovan WP, Fitz-James PC, Losick R. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev 2:1047–1054. [PubMed][CrossRef]
111. Imamura D, Kuwana R, Takamatsu H, Watabe K. 2011. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 193:4075–4080. [PubMed][CrossRef]
112. Zhang J, Fitz-James PC, Aronson AI. 1993. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175:3757–3766. [PubMed]
113. Krajcíková D, Lukácová M, Müllerová D, Cutting SM, Barák I. 2009. Searching for protein-protein interactions within the Bacillus subtilis spore coat. J Bacteriol 191:3212–3219. [PubMed][CrossRef]
114. Ball DA, Taylor R, Todd SJ, Redmond C, Couture-Tosi E, Sylvestre P, Moir A, Bullough PA. 2008. Structure of the exosporium and sublayers of spores of the Bacillus cereus family revealed by electron crystallography. Mol Microbiol 68:947–958. [PubMed][CrossRef]
115. Kailas L, Terry C, Abbott N, Taylor R, Mullin N, Tzokov SB, Todd SJ, Wallace BA, Hobbs JK, Moir A, Bullough PA. 2011. Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale. Proc Natl Acad Sci USA 108:16014–16019. [PubMed][CrossRef]
116. Jiang S, Wan Q, Krajcikova D, Tang J, Tzokov SB, Barak I, Bullough PA. 2015. Diverse supramolecular structures formed by self-assembling proteins of the Bacillus subtilis spore coat. Mol Microbiol 97:347–359. [PubMed][CrossRef]
117. Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A. 2006. The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59:487–502. [PubMed][CrossRef]
118. Plomp M, Carroll AM, Setlow P, Malkin AJ. 2014. Architecture and assembly of the Bacillus subtilis spore coat. PLoS One 9:e108560. doi:10.1371/journal.pone.0108560. [PubMed][CrossRef]
119. Costa T, Isidro AL, Moran CP Jr, Henriques AO. 2006. Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 188:7731–7741. [PubMed][CrossRef]
120. de Francesco M, Jacobs JZ, Nunes F, Serrano M, McKenney PT, Chua MH, Henriques AO, Eichenberger P. 2012. Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J Bacteriol 194:4941–4950. [PubMed][CrossRef]
121. Zilhão R, Naclerio G, Henriques AO, Baccigalupi L, Moran CP Jr, Ricca E. 1999. Assembly requirements and role of CotH during spore coat formation in Bacillus subtilis. J Bacteriol 181:2631–2633. [PubMed]
122. Naclerio G, Baccigalupi L, Zilhao R, De Felice M, Ricca E. 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J Bacteriol 178:4375–4380. [PubMed]
123. McPherson DC, Kim H, Hahn M, Wang R, Grabowski P, Eichenberger P, Driks A. 2005. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J Bacteriol 187:8278–8290. [PubMed][CrossRef]
124. Isticato R, Sirec T, Vecchione S, Crispino A, Saggese A, Baccigalupi L, Notomista E, Driks A, Ricca E. 2015. The direct interaction between two morphogenetic proteins is essential for spore coat formation in Bacillus subtilis. PLoS One 10:e0141040. doi:10.1371/journal.pone.0141040. [PubMed][CrossRef]
125. Little S, Driks A. 2001. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol Microbiol 42:1107–1120. [PubMed][CrossRef]
126. Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J, González-Pastor JE, Fujita M, Ben-Yehuda S, Stragier P, Liu JS, Losick R. 2003. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327:945–972. [PubMed][CrossRef]
127. Zilhão R, Serrano M, Isticato R, Ricca E, Moran CP Jr, Henriques AO. 2004. Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J Bacteriol 186:1110–1119. [PubMed][CrossRef]
128. Giglio R, Fani R, Isticato R, De Felice M, Ricca E, Baccigalupi L. 2011. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J Bacteriol 193:6664–6673. [PubMed][CrossRef]
129. Isticato R, Sirec T, Giglio R, Baccigalupi L, Rusciano G, Pesce G, Zito G, Sasso A, De Felice M, Ricca E. 2013. Flexibility of the programme of spore coat formation in Bacillus subtilis: bypass of CotE requirement by over-production of CotH. PLoS One 8:e74949. doi:10.1371/journal.pone.0074949. [PubMed][CrossRef]
130. Cutting S, Zheng LB, Losick R. 1991. Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J Bacteriol 173:2915–2919. [PubMed]
131. Takamatsu H, Imamura A, Kodama T, Asai K, Ogasawara N, Watabe K. 2000. The yabG gene of Bacillus subtilis encodes a sporulation specific protease which is involved in the processing of several spore coat proteins. FEMS Microbiol Lett 192:33–38. [PubMed][CrossRef]
132. Takamatsu H, Kodama T, Imamura A, Asai K, Kobayashi K, Nakayama T, Ogasawara N, Watabe K. 2000. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J Bacteriol 182:1883–1888. [PubMed][CrossRef]
133. Kuwana R, Okuda N, Takamatsu H, Watabe K. 2006. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J Biochem 139:887–901. [PubMed][CrossRef]
134. Faille C, Ronse A, Dewailly E, Slomianny C, Maes E, Krzewinski F, Guerardel Y. 2014. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores. Biofouling 30:845–858. [PubMed][CrossRef]
135. Faille C, Lequette Y, Ronse A, Slomianny C, Garénaux E, Guerardel Y. 2010. Morphology and physico-chemical properties of Bacillus spores surrounded or not with an exosporium: consequences on their ability to adhere to stainless steel. Int J Food Microbiol 143:125–135. [PubMed][CrossRef]
136. Lequette Y, Garénaux E, Tauveron G, Dumez S, Perchat S, Slomianny C, Lereclus D, Guérardel Y, Faille C. 2011. Role played by exosporium glycoproteins in the surface properties of Bacillus cereus spores and in their adhesion to stainless steel. Appl Environ Microbiol 77:4905–4911. [PubMed][CrossRef]
137. Lequette Y, Garénaux E, Combrouse T, Dias TL, Ronse A, Slomianny C, Trivelli X, Guerardel Y, Faille C. 2011. Domains of BclA, the major surface glycoprotein of the B. cereus exosporium: glycosylation patterns and role in spore surface properties. Biofouling 27:751–761. [PubMed][CrossRef]
138. Eijlander RT, Abee T, Kuipers OP. 2011. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr Opin Biotechnol 22:180–186. [PubMed][CrossRef]
139. Driks A. 2003. The dynamic spore. Proc Natl Acad Sci USA 100:3007–3009. [PubMed][CrossRef]
140. Westphal AJ, Price PB, Leighton TJ, Wheeler KE. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc Natl Acad Sci USA 100:3461–3466. [PubMed][CrossRef]
141. Chen X, Goodnight D, Gao Z, Cavusoglu AH, Sabharwal N, DeLay M, Driks A, Sahin O. 2015. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat Commun 6:7346. [PubMed][CrossRef]
142. Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A. 2014. Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 9:e87757. doi:10.1371/journal.pone.0087757. [PubMed][CrossRef]
143. Bauer T, Little S, Stöver AG, Driks A. 1999. Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J Bacteriol 181:7043–7051. [PubMed]
144. Zhang J, Ichikawa H, Halberg R, Kroos L, Aronson AI. 1994. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. J Mol Biol 240:405–415. [PubMed][CrossRef]
145. Ozin AJ, Costa T, Henriques AO, Moran CP Jr. 2001. Alternative translation initiation produces a short form of a spore coat protein in Bacillus subtilis. J Bacteriol 183:2032–2040. [PubMed][CrossRef]
146. Ozin AJ, Samford CS, Henriques AO, Moran CP Jr. 2001. SpoVID guides SafA to the spore coat in Bacillus subtilis. J Bacteriol 183:3041–3049. [PubMed][CrossRef]
147. Price KD, Losick R. 1999. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J Bacteriol 181:781–790. [PubMed]
148. Catalano FA, Meador-Parton J, Popham DL, Driks A. 2001. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J Bacteriol 183:1645–1654. [PubMed][CrossRef]
149. van Ooij C, Losick R. 2003. Subcellular localization of a small sporulation protein in Bacillus subtilis. J Bacteriol 185:1391–1398. [PubMed][CrossRef]
150. Henriques AO, Beall BW, Roland K, Moran CP Jr. 1995. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol 177:3394–3406. [PubMed]
151. Seyler RW Jr, Henriques AO, Ozin AJ, Moran CP Jr. 1997. Assembly and interactions of cotJ-encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat. Mol Microbiol 25:955–966. [PubMed][CrossRef]
152. van Ooij C, Eichenberger P, Losick R. 2004. Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis. J Bacteriol 186:4441–4448. [PubMed][CrossRef]
153. Reischl S, Thake S, Homuth G, Schumann W. 2001. Transcriptional analysis of three Bacillus subtilis genes coding for proteins with the alpha-crystallin domain characteristic of small heat shock proteins. FEMS Microbiol Lett 194:99–103. [PubMed]
154. Bourne N, FitzJames PC, Aronson AI. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J Bacteriol 173:6618–6625. [PubMed]
155. Costa T, Steil L, Martins LO, Völker U, Henriques AO. 2004. Assembly of an oxalate decarboxylase produced under σK control into the Bacillus subtilis spore coat. J Bacteriol 186:1462–1474. [PubMed][CrossRef]
156. Kobayashi K, Hashiguchi K, Yokozeki K, Yamanaka S. 1998. Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci Biotechnol Biochem 62:1109–1114. [PubMed][CrossRef]
157. Kodama T, Takamatsu H, Asai K, Kobayashi K, Ogasawara N, Watabe K. 1999. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J Bacteriol 181:4584–4591. [PubMed]
158. Üstok FI, Chirgadze DY, Christie G. 2015. Structural and functional analysis of SleL, a peptidoglycan lysin involved in germination of Bacillus spores. Proteins 83:1787–1799. [PubMed][CrossRef]
159. Takamatsu H, Imamura D, Kuwana R, Watabe K. 2009. Expression of yeeK during Bacillus subtilis sporulation and localization of YeeK to the inner spore coat using fluorescence microscopy. J Bacteriol 191:1220–1229. [PubMed][CrossRef]
160. Kuwana R, Takamatsu H, Watabe K. 2007. Expression, localization and modification of YxeE spore coat protein in Bacillus subtilis. J Biochem 142:681–689. [PubMed][CrossRef]
161. Isticato R, Esposito G, Zilhão R, Nolasco S, Cangiano G, De Felice M, Henriques AO, Ricca E. 2004. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186:1129–1135. [PubMed][CrossRef]
162. Isticato R, Pelosi A, Zilhão R, Baccigalupi L, Henriques AO, De Felice M, Ricca E. 2008. CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J Bacteriol 190:1267–1275. [PubMed][CrossRef]
163. Sacco M, Ricca E, Losick R, Cutting S. 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J Bacteriol 177:372–377. [PubMed]
164. Henriques AO, Melsen LR, Moran CP Jr. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J Bacteriol 180:2285–2291. [PubMed]
165. Henriques AO, Beall BW, Moran CP Jr. 1997. CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J Bacteriol 179:1887–1897. [PubMed]
166. Abe A, Koide H, Kohno T, Watabe K. 1995. A Bacillus subtilis spore coat polypeptide gene, cotS. Microbiology 141:1433–1442. [PubMed][CrossRef]
167. Takamatsu H, Chikahiro Y, Kodama T, Koide H, Kozuka S, Tochikubo K, Watabe K. 1998. A spore coat protein, CotS, of Bacillus subtilis is synthesized under the regulation of sigmaK and GerE during development and is located in the inner coat layer of spores. J Bacteriol 180:2968–2974. [PubMed]
168. Isticato R, Pelosi A, De Felice M, Ricca E. 2010. CotE binds to CotC and CotU and mediates their interaction during spore coat formation in Bacillus subtilis. J Bacteriol 192:949–954. [PubMed][CrossRef]
169. Ferguson CC, Camp AH, Losick R. 2007. gerT, a newly discovered germination gene under the control of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 189:7681–7689. [PubMed][CrossRef]
170. Henriques AO, Bryan EM, Beall BW, Moran CP Jr. 1997. cse15, cse60, and csk22 are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. J Bacteriol 179:389–398. [PubMed]
171. Roels S, Losick R. 1995. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J Bacteriol 177:6263–6275. [PubMed]
172. Takamatsu H, Kodama T, Watabe K. 1999. Assembly of the CotSA coat protein into spores requires CotS in Bacillus subtilis. FEMS Microbiol Lett 174:201–206. [PubMed][CrossRef]
173. Liu P, Ewis HE, Huang YJ, Lu CD, Tai PC, Weber IT. 2007. Structure of Bacillus subtilis superoxide dismutase. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:1003–1007. [PubMed][CrossRef]
174. Kodama T, Matsubayashi T, Yanagihara T, Komoto H, Ara K, Ozaki K, Kuwana R, Imamura D, Takamatsu H, Watabe K, Sekiguchi J. 2011. A novel small protein of Bacillus subtilis involved in spore germination and spore coat assembly. Biosci Biotechnol Biochem 75:1119–1128. [PubMed][CrossRef]
175. Kodama T, Takamatsu H, Asai K, Ogasawara N, Sadaie Y, Watabe K. 2000. Synthesis and characterization of the spore proteins of Bacillus subtilis YdhD, YkuD, and YkvP, which carry a motif conserved among cell wall binding proteins. J Biochem 128:655–663. [PubMed][CrossRef]
176. Pizarro-Guajardo M, Olguín-Araneda V, Barra-Carrasco J, Brito-Silva C, Sarker MR, Paredes-Sabja D. 2014. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 25:18–30. [PubMed][CrossRef]
177. Barra-Carrasco J, Olguín-Araneda V, Plaza-Garrido A, Miranda-Cárdenas C, Cofré-Araneda G, Pizarro-Guajardo M, Sarker MR, Paredes-Sabja D. 2013. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 195:3863–3875. [PubMed][CrossRef]
178. Popham DL, Bernhards CB. 2015. Spore peptidoglycan. Microbiol Spectr 3(6):TBS-0005-2012. doi:10.1128/microbiolspec.TBS-0005-2012.
179. Mandic-Mulec I, Stefanic P, van Elsas JD. 2015. Ecology of Bacillaceae. Microbiol Spectr 3(2):TBS-0017-2013. doi:10.1128/microbiolspec.TBS-0017-2013. [PubMed][CrossRef]
180. Moir A, Cooper G. 2014. Spore germination. Microbiol Spectr 3(6):TBS-0014-2012. doi:10.1128/microbiolspec.TBS-0014-2012. [CrossRef]
181. Butterfield CN, Lee S-W, Tebo BM. 2016. The role of bacterial spores in metal cycling and their potential application in metal contaminant bioremediation. Microbiol Spectr 4(3):TBS-0018-2013. doi:10.1128/microbiolspec.TBS-0018-2013.
microbiolspec.TBS-0023-2016.citations
cm/4/2
content/journal/microbiolspec/10.1128/microbiolspec.TBS-0023-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBS-0023-2016
2016-03-11
2017-09-22

Abstract:

Spores of and are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all and spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including , only the coat is present. In other species, including , an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism , but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in . To help summarize this large field and define future directions for research, we will focus on key findings in recent years.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Thin-section TEM analysis of spores from diverse species. Spores were prepared as described in McKenney et al. ( 13 ). Images in the top row were fixed using ruthenium red. Other images were conventionally fixed. Images are not to scale; each image was sized to facilitate comparison. Two images of are shown (one showing a section along the long axis, the other showing a section along the short axis) to point out the thick caps of coat at the poles. The difference in thickness between the two caps is a consistent feature of this species. Two images of are also shown to emphasize the variation in morphology of the distinctive structure (indicated with a brown bracket) associated with the coat. The mother cell envelope, which is still present in these two spores, is indicated with a green bracket. The image of is taken from Semenyuk et al. ( 142 ). The crust (Cr), outer coat (OC), and inner coat (IC) are indicated in the image of in the upper left. The coat and, where it is present, the exosporium are indicated with blue and red brackets, respectively. The image of is courtesy of Dr. Joel Bozue at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.TBS-0023-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of spore coat assembly during sporulation. In the left column, we list the stages of sporulation as they appear by TEM, phase-contrast microscopy, or fluorescence microscopy in the presence of a membrane stain. The center column contains diagrams of spore coat morphogenesis. Layers of the spore coat are color coded (cyan = basement layer; yellow = inner coat; blue = outer coat; maroon = crust). In the right column, we list the stages of spore coat assembly. DPA, dipicolinic acid. Modified from McKenney et al. ( 21 ). See text for details.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.TBS-0023-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Classes of coat proteins based on localization kinetics. Spore coat genes are displayed according to their localization on the chromosome with the origin of replication () on top. Genes whose expression commences before engulfment, under the control of σ, are inside the circle; genes whose expression begins after engulfment, under the control of σ, are outside the circle. Classes are color coded (red = class 1; brown = class 2; orange = class 3; purple = class 4; blue = class 5; turquoise = class 6). Genes encoding morphogenetic proteins are underlined.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.TBS-0023-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

coat proteins (strain 168)

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.TBS-0023-2016
Generic image for table
TABLE 2

coat proteins (strain 630)

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.TBS-0023-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error