1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Mouse and Guinea Pig Models of Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Ian M. Orme1, Diane J. Ordway2
  • Editors: William R. Jacobs Jr.3, Helen McShane4, Valerie Mizrahi5, Ian M. Orme6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Colorado State University, Fort Collins, CO 80523; 2: Colorado State University, Fort Collins, CO 80523; 3: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 4: University of Oxford, Oxford OX3 7DQ, United Kingdom; 5: University of Cape Town, Rondebosch 7701, South Africa; 6: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
  • Received 29 October 2015 Accepted 20 November 2015 Published 01 July 2016
  • Ian M. Orme, ian.orme@colostate.edu
image of Mouse and Guinea Pig Models of Tuberculosis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Mouse and Guinea Pig Models of Tuberculosis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/TBTB2-0002-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/TBTB2-0002-2015-2.gif
  • Abstract:

    This article describes the nature of the host response to in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).

  • Citation: Orme I, Ordway D. 2016. Mouse and Guinea Pig Models of Tuberculosis. Microbiol Spectrum 4(4):TBTB2-0002-2015. doi:10.1128/microbiolspec.TBTB2-0002-2015.

Key Concept Ranking

Immune Systems
0.4737326
Tumor Necrosis Factor alpha
0.4519389
Major Histocompatibility Complex
0.417649
0.4737326

References

1. Mackaness GB. 1964. The immunological basis of acquired cellular resistance. J Exp Med 120:105–120 http://dx.doi.org/10.1084/jem.120.1.105. [CrossRef]
2. Mackaness GB. 1967. The relationship of delayed hypersensitivity to acquired cellular resistance. Br Med Bull 23:52–54. [PubMed]
3. Orme IM, Collins FM. 1983. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients. J Exp Med 158:74–83 http://dx.doi.org/10.1084/jem.158.1.74. [CrossRef]
4. Orme IM. 1987. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol 138:293–298. [PubMed]
5. Orme IM. 1988. Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection. J Immunol 140:3589–3593. [PubMed]
6. Andersen P, Heron I. 1993. Specificity of a protective memory immune response against Mycobacterium tuberculosis. Infect Immun 61:844–851. [PubMed]
7. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247 http://dx.doi.org/10.1084/jem.178.6.2243. [PubMed][CrossRef]
8. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254 http://dx.doi.org/10.1084/jem.178.6.2249. [PubMed][CrossRef]
9. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 http://dx.doi.org/10.1016/1074-7613(95)90001-2. [CrossRef]
10. Lord GM, Rao RM, Choe H, Sullivan BM, Lichtman AH, Luscinskas FW, Glimcher LH. 2005. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 106:3432–3439 http://dx.doi.org/10.1182/blood-2005-04-1393. [PubMed][CrossRef]
11. Cooper AM, Magram J, Ferrante J, Orme IM. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186:39–45 http://dx.doi.org/10.1084/jem.186.1.39. [PubMed][CrossRef]
12. Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM. 1995. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84:423–432. [PubMed]
13. Cooper AM, Solache A, Khader SA. 2007. Interleukin-12 and tuberculosis: an old story revisited. Curr Opin Immunol 19:441–447 http://dx.doi.org/10.1016/j.coi.2007.07.004. [PubMed][CrossRef]
14. Ladel CH, Hess J, Daugelat S, Mombaerts P, Tonegawa S, Kaufmann SH. 1995. Contribution of alpha/beta and gamma/delta T lymphocytes to immunity against Mycobacterium bovis bacillus Calmette Guérin: studies with T cell receptor-deficient mutant mice. Eur J Immunol 25:838–846 http://dx.doi.org/10.1002/eji.1830250331. [CrossRef]
15. D’Souza CD, Cooper AM, Frank AA, Mazzaccaro RJ, Bloom BR, Orme IM. 1997. An anti-inflammatory role for gamma delta T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J Immunol 158:1217–1221. [PubMed]
16. Lockhart E, Green AM, Flynn JL. 2006. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669 http://dx.doi.org/10.4049/jimmunol.177.7.4662. [CrossRef]
17. Orme IM, Robinson RT, Cooper AM. 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16:57–63 http://dx.doi.org/10.1038/ni.3048. [PubMed][CrossRef]
18. Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS, Trapnell BC, Cooper AM, Orme IM. 2005. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J Leukoc Biol 77:914–922 http://dx.doi.org/10.1189/jlb.1204723. [CrossRef]
19. Ordway D, Higgins DM, Sanchez-Campillo J, Spencer JS, Henao-Tamayo M, Harton M, Orme IM, Gonzalez Juarrero M. 2007. XCL1 (lymphotactin) chemokine produced by activated CD8 T cells during the chronic stage of infection with Mycobacterium tuberculosis negatively affects production of IFN-gamma by CD4 T cells and participates in granuloma stability. J Leukoc Biol 82:1221–1229 http://dx.doi.org/10.1189/jlb.0607426. [CrossRef]
20. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE III, Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103 http://dx.doi.org/10.1038/nature13489. [CrossRef]
21. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ, Barry C III, Kaplan G. 2005. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 25:694–701 http://dx.doi.org/10.1089/jir.2005.25.694. [CrossRef]
22. Ordway D, Henao-Tamayo M, Harton M, Palanisamy G, Troudt J, Shanley C, Basaraba RJ, Orme IM. 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179:522–531 http://dx.doi.org/10.4049/jimmunol.179.1.522. [CrossRef]
23. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152 http://dx.doi.org/10.4049/jimmunol.178.5.3143. [CrossRef]
24. Dorhoi A, Yeremeev V, Nouailles G, Weiner J III, Jörg S, Heinemann E, Oberbeck-Müller D, Knaul JK, Vogelzang A, Reece ST, Hahnke K, Mollenkopf HJ, Brinkmann V, Kaufmann SH. 2014. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur J Immunol 44:2380–2393 http://dx.doi.org/10.1002/eji.201344219. [CrossRef]
25. Desvignes L, Wolf AJ, Ernst JD. 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188:6205–6215 http://dx.doi.org/10.4049/jimmunol.1200255. [PubMed][CrossRef]
26. Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. 1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 89:12013–12017 http://dx.doi.org/10.1073/pnas.89.24.12013. [CrossRef]
27. Turner J, D’Souza CD, Pearl JE, Marietta P, Noel M, Frank AA, Appelberg R, Orme IM, Cooper AM. 2001. CD8- and CD95/95L-dependent mechanisms of resistance in mice with chronic pulmonary tuberculosis. Am J Respir Cell Mol Biol 24:203–209 http://dx.doi.org/10.1165/ajrcmb.24.2.4370. [PubMed][CrossRef]
28. Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, Orme IM. 2001. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect Immun 69:1722–1728 http://dx.doi.org/10.1128/IAI.69.3.1722-1728.2001.
29. North RJ. 1973. Importance of thymus-derived lymphocytes in cell-mediated immunity to infection. Cell Immunol 7:166–176 http://dx.doi.org/10.1016/0008-8749(73)90193-7. [PubMed][CrossRef]
30. Bosma GC, Custer RP, Bosma MJ. 1983. A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530 http://dx.doi.org/10.1038/301527a0. [PubMed][CrossRef]
31. Shinkai Y, et al. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867 http://dx.doi.org/10.1016/0092-8674(92)90029-C. [PubMed][CrossRef]
32. Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL. 1997. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 78:237–246 http://dx.doi.org/10.1016/S0962-8479(97)90004-6.
33. Turner J, Dobos KM, Keen MA, Frank AA, Ehlers S, Orme IM, Belisle JT, Cooper AM. 2004. A limited antigen-specific cellular response is sufficient for the early control of Mycobacterium tuberculosis in the lung but is insufficient for long-term survival. Infect Immun 72:3759–3768 http://dx.doi.org/10.1128/IAI.72.7.3759-3768.2004. [CrossRef]
34. Geluk A, Taneja V, van Meijgaarden KE, Zanelli E, Abou-Zeid C, Thole JE, de Vries RR, David CS, Ottenhoff TH. 1998. Identification of HLA class II-restricted determinants of Mycobacterium tuberculosis-derived proteins by using HLA-transgenic, class II-deficient mice. Proc Natl Acad Sci USA 95:10797–10802 http://dx.doi.org/10.1073/pnas.95.18.10797. [PubMed][CrossRef]
35. Geluk A, van Meijgaarden KE, Franken KL, Drijfhout JW, D’Souza S, Necker A, Huygen K, Ottenhoff TH. 2000. Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol 165:6463–6471 http://dx.doi.org/10.4049/jimmunol.165.11.6463. [PubMed][CrossRef]
36. Reiley WW, Calayag MD, Wittmer ST, Huntington JL, Pearl JE, Fountain JJ, Martino CA, Roberts AD, Cooper AM, Winslow GM, Woodland DL. 2008. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Proc Natl Acad Sci USA 105:10961–10966 http://dx.doi.org/10.1073/pnas.0801496105. [CrossRef]
37. Stenger S, Modlin RL. 2002. Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Curr Opin Immunol 14:452–457 http://dx.doi.org/10.1016/S0952-7915(02)00355-2. [PubMed][CrossRef]
38. Chackerian AA, Perera TV, Behar SM. 2001. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect Immun 69:2666–2674 http://dx.doi.org/10.1128/IAI.69.4.2666-2674.2001. [PubMed][CrossRef]
39. Reiling N, Hölscher C, Fehrenbach A, Kröger S, Kirschning CJ, Goyert S, Ehlers S. 2002. Cutting edge: toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169:3480–3484 http://dx.doi.org/10.4049/jimmunol.169.7.3480. [CrossRef]
40. Kamath AB, Alt J, Debbabi H, Behar SM. 2003. Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect Immun 71:4112–4118 http://dx.doi.org/10.1128/IAI.71.7.4112-4118.2003. [PubMed][CrossRef]
41. Shim TS, Turner OC, Orme IM. 2003. Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 83:367–371 http://dx.doi.org/10.1016/S1472-9792(03)00071-4. [CrossRef]
42. Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, Frémond C, Wagner H, Kirschning C, Ryffel B. 2004. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164:49–57 http://dx.doi.org/10.1016/S0002-9440(10)63095-7.
43. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724 http://dx.doi.org/10.1084/jem.20051782. [PubMed][CrossRef]
44. McBride A, Bhatt K, Salgame P. 2011. Development of a secondary immune response to Mycobacterium tuberculosis is independent of Toll-like receptor 2. Infect Immun 79:1118–1123 http://dx.doi.org/10.1128/IAI.01076-10. [CrossRef]
45. Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B. 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 169:3155–3162 http://dx.doi.org/10.4049/jimmunol.169.6.3155. [CrossRef]
46. Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, Van Der Poll T. 2004. Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol 16:509–516 http://dx.doi.org/10.1093/intimm/dxh052. [PubMed][CrossRef]
47. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736 http://dx.doi.org/10.1126/science.285.5428.732. [CrossRef]
48. Tobian AA, Potter NS, Ramachandra L, Pai RK, Convery M, Boom WH, Harding CV. 2003. Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. J Immunol 171:1413–1422 http://dx.doi.org/10.4049/jimmunol.171.3.1413. [CrossRef]
49. Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV. 2001. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167:910–918 http://dx.doi.org/10.4049/jimmunol.167.2.910. [CrossRef]
50. Kincaid EZ, Wolf AJ, Desvignes L, Mahapatra S, Crick DC, Brennan PJ, Pavelka MS Jr, Ernst JD. 2007. Codominance of TLR2-dependent and TLR2-independent modulation of MHC class II in Mycobacterium tuberculosis infection in vivo. J Immunol 179:3187–3195 http://dx.doi.org/10.4049/jimmunol.179.5.3187. [CrossRef]
51. Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, Kaisho T, Kundu M, Basu J. 2007. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 8:610–618 http://dx.doi.org/10.1038/ni1468. [CrossRef]
52. Richardson ET, Shukla S, Sweet DR, Wearsch PA, Tsichlis PN, Boom WH, Harding CV. 2015. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun 83:2242–2254 http://dx.doi.org/10.1128/IAI.00135-15. [CrossRef]
53. Wang B, Henao-Tamayo M, Harton M, Ordway D, Shanley C, Basaraba RJ, Orme IM. 2007. A Toll-like receptor-2-directed fusion protein vaccine against tuberculosis. Clin Vaccine Immunol 14:902–906 http://dx.doi.org/10.1128/CDLI.00077-07. [PubMed][CrossRef]
54. Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, de Jong DJ, Langenberg DM, van Crevel R, Adema GJ, Ottenhoff TH, Van der Meer JW, Netea MG. 2005. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1:e74 http://dx.doi.org/10.1371/journal.ppat.0010034. [CrossRef]
55. Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DM, van Crevel R, Ottenhoff TH, Van der Meer JW, Netea MG. 2007. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol 82:1011–1018 http://dx.doi.org/10.1189/jlb.0307147. [PubMed][CrossRef]
56. Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, Veyrier F, Kobayashi KS, Flavell RA, Gros P, Behr MA. 2008. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181:7157–7165 http://dx.doi.org/10.4049/jimmunol.181.10.7157. [CrossRef]
57. Gandotra S, Jang S, Murray PJ, Salgame P, Ehrt S. 2007. Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis. Infect Immun 75:5127–5134 http://dx.doi.org/10.1128/IAI.00458-07. [CrossRef]
58. Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA. 2009. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500 http://dx.doi.org/10.1371/journal.ppat.1000500.
59. Chackerian AA, Behar SM. 2003. Susceptibility to Mycobacterium tuberculosis: lessons from inbred strains of mice. Tuberculosis (Edinb) 83:279–285 http://dx.doi.org/10.1016/S1472-9792(03)00017-9. [PubMed][CrossRef]
60. Gupta UD, Katoch VM. 2005. Animal models of tuberculosis. Tuberculosis (Edinb) 85:277–293 http://dx.doi.org/10.1016/j.tube.2005.08.008. [PubMed][CrossRef]
61. Beamer GL, Turner J. 2005. Murine models of susceptibility to tuberculosis. Arch Immunol Ther Exp (Warsz) 53:469–483. [PubMed]
62. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. 2002. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509 http://dx.doi.org/10.1128/IAI.70.8.4501-4509.2002. [CrossRef]
63. Gruppo V, Turner OC, Orme IM, Turner J. 2002. Reduced up-regulation of memory and adhesion/integrin molecules in susceptible mice and poor expression of immunity to pulmonary tuberculosis. Microbiology 148:2959–2966 http://dx.doi.org/10.1099/00221287-148-10-2959. [CrossRef]
64. Buu N, Sánchez F, Schurr E. 2000. The Bcg host-resistance gene. Clin Infect Dis 31(Suppl 3):S81–S85 http://dx.doi.org/10.1086/314067. [PubMed][CrossRef]
65. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P. 1995. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666 http://dx.doi.org/10.1084/jem.182.3.655. [PubMed][CrossRef]
66. Skamene E, Gros P, Forget A, Kongshavn PA, St Charles C, Taylor BA. 1982. Genetic regulation of resistance to intracellular pathogens. Nature 297:506–509 http://dx.doi.org/10.1038/297506a0. [PubMed][CrossRef]
67. Skamene E. 1994. The Bcg gene story. Immunobiology 191:451–460 http://dx.doi.org/10.1016/S0171-2985(11)80451-1. [PubMed][CrossRef]
68. Orme IM, Stokes RW, Collins FM. 1985. Only two out of fifteen BCG strains follow the Bcg pattern, p 285–289. In Skamene E (ed), Genetic Control of Host Resistance to Infection and Malignancy. Alan R. Liss, New York.
69. Orme IM, Stokes RW, Collins FM. 1986. Genetic control of natural resistance to nontuberculous mycobacterial infections in mice. Infect Immun 54:56–62. [PubMed]
70. North RJ, Medina E. 1996. Significance of the antimicrobial resistance gene, Nramp1, in resistance to virulent Mycobacterium tuberculosis infection. Res Immunol 147:493–499 http://dx.doi.org/10.1016/S0923-2494(97)85213-3. [CrossRef]
71. Medina E, Rogerson BJ, North RJ. 1996. The Nramp1 antimicrobial resistance gene segregates independently of resistance to virulent Mycobacterium tuberculosis. Immunology 88:479–481 http://dx.doi.org/10.1046/j.1365-2567.1996.d01-700.x. [CrossRef]
72. Kramnik I, Demant P, Bloom BB. 1998. Susceptibility to tuberculosis as a complex genetic trait: analysis using recombinant congenic strains of mice. Novartis Foundation Symp 217:120–137. [PubMed][CrossRef]
73. Kramnik I, Dietrich WF, Demant P, Bloom BR. 2000. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:8560–8565 http://dx.doi.org/10.1073/pnas.150227197. [PubMed][CrossRef]
74. Yan BS, Pichugin AV, Jobe O, Helming L, Eruslanov EB, Gutiérrez-Pabello JA, Rojas M, Shebzukhov YV, Kobzik L, Kramnik I. 2007. Progression of pulmonary tuberculosis and efficiency of bacillus Calmette-Guérin vaccination are genetically controlled via a common sst1-mediated mechanism of innate immunity. J Immunol 179:6919–6932 http://dx.doi.org/10.4049/jimmunol.179.10.6919. [CrossRef]
75. Pichugin AV, Yan BS, Sloutsky A, Kobzik L, Kramnik I. 2009. Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am J Pathol 174:2190–2201 http://dx.doi.org/10.2353/ajpath.2009.081075. [CrossRef]
76. Sánchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M, Schurr E, Apt AS, Lavebratt C. 2003. Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71:126–131 http://dx.doi.org/10.1128/IAI.71.1.126-131.2003. [CrossRef]
77. Majorov KB, Lyadova IV, Kondratieva TK, Eruslanov EB, Rubakova EI, Orlova MO, Mischenko VV, Apt AS. 2003. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages. Infect Immun 71:697–707 http://dx.doi.org/10.1128/IAI.71.2.697-707.2003. [CrossRef]
78. Keller C, Hoffmann R, Lang R, Brandau S, Hermann C, Ehlers S. 2006. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74:4295–4309 http://dx.doi.org/10.1128/IAI.00057-06. [CrossRef]
79. Churchill GA, Gatti DM, Munger SC, Svenson KL. 2012. The Diversity Outbred mouse population. Mamm Genome 23:713–718 http://dx.doi.org/10.1007/s00335-012-9414-2. [PubMed][CrossRef]
80. Kelly BP, Furney SK, Jessen MT, Orme IM. 1996. Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother 40:2809–2812. [PubMed]
81. Ordway DJ, Orme IM. 2010. Murine and guinea pig models of tuberculosis, p 271–306. In Kaufmann SHE, Kabelitz D (ed), Methods in Microbiology. Academic Press, San Diego, CA. http://dx.doi.org/10.1016/S0580-9517(10)37012-7 [CrossRef]
82. Ordway DJ, Orme IM. 2011. Animal models of mycobacteria infection. Curr Protoc Immunol Chapter 19:Unit19.15. [CrossRef]
83. Orme IM. 2014. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94:8–14 http://dx.doi.org/10.1016/j.tube.2013.07.004.
84. Ernst JD. 2012. The immunological life cycle of tuberculosis. Nat Rev Immunol 12:581–591 http://dx.doi.org/10.1038/nri3259. [PubMed][CrossRef]
85. Rhoades ER, Frank AA, Orme IM. 1997. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis 78:57–66 http://dx.doi.org/10.1016/S0962-8479(97)90016-2. [PubMed][CrossRef]
86. Flynn JL, Scanga CA, Tanaka KE, Chan J. 1998. Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160:1796–1803. [PubMed]
87. Henao-Tamayo MI, Ordway DJ, Irwin SM, Shang S, Shanley C, Orme IM. 2010. Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol 17:618–625 http://dx.doi.org/10.1128/CVI.00368-09. [CrossRef]
88. Orme IM, Basaraba RJ. 2014. The formation of the granuloma in tuberculosis infection. Semin Immunol 26:601–609 http://dx.doi.org/10.1016/j.smim.2014.09.009. [PubMed][CrossRef]
89. Turner OC, Basaraba RJ, Frank AA, Orme IM. 2003. Granuloma formation in mouse and guinea pig models of experimental tuberculosis, p 65–84. In Boros DL (ed), Granulomatous Infections and Inflammation: Cellular and Molecular Mechanisms. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817879.ch3. [CrossRef]
90. Brighenti S, Andersson J. 2012. Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 205(Suppl 2):S316–S324 http://dx.doi.org/10.1093/infdis/jis043. [PubMed][CrossRef]
91. Turner J, Gonzalez-Juarrero M, Saunders BM, Brooks JV, Marietta P, Ellis DL, Frank AA, Cooper AM, Orme IM. 2001. Immunological basis for reactivation of tuberculosis in mice. Infect Immun 69:3264–3270 http://dx.doi.org/10.1128/IAI.69.5.3264-3270.2001. [PubMed][CrossRef]
92. Turner J, Gonzalez-Juarrero M, Ellis DL, Basaraba RJ, Kipnis A, Orme IM, Cooper AM. 2002. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J Immunol 169:6343–6351 http://dx.doi.org/10.4049/jimmunol.169.11.6343. [PubMed][CrossRef]
93. Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-Juarrero M, de Waal Malefyt R, Vesosky B, Turner J. 2008. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J Immunol 181:5545–5550 http://dx.doi.org/10.4049/jimmunol.181.8.5545. [CrossRef]
94. Higgins DM, Sanchez-Campillo J, Rosas-Taraco AG, Lee EJ, Orme IM, Gonzalez-Juarrero M. 2009. Lack of IL-10 alters inflammatory and immune responses during pulmonary Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 89:149–157 http://dx.doi.org/10.1016/j.tube.2009.01.001.
95. Pitt JM, Stavropoulos E, Redford PS, Beebe AM, Bancroft GJ, Young DB, O’Garra A. 2012. Blockade of IL-10 signaling during bacillus Calmette-Guérin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-γ and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J Immunol 189:4079–4087 http://dx.doi.org/10.4049/jimmunol.1201061. [CrossRef]
96. Cyktor JC, Carruthers B, Kominsky RA, Beamer GL, Stromberg P, Turner J. 2013. IL-10 inhibits mature fibrotic granuloma formation during Mycobacterium tuberculosis infection. J Immunol 190:2778–2790 http://dx.doi.org/10.4049/jimmunol.1202722. [CrossRef]
97. Cyktor JC, Carruthers B, Beamer GL, Turner J. 2013. Clonal expansions of CD8+ T cells with IL-10 secreting capacity occur during chronic Mycobacterium tuberculosis infection. PLoS One 8:e58612 http://dx.doi.org/10.1371/journal.pone.0058612. [CrossRef]
98. Behar SM, Carpenter SM, Booty MG, Barber DL, Jayaraman P. 2014. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 26:559–577 http://dx.doi.org/10.1016/j.smim.2014.09.003. [CrossRef]
99. Kaveh DA, Carmen Garcia-Pelayo M, Hogarth PJ. 2014. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine 32:6911–6918 http://dx.doi.org/10.1016/j.vaccine.2014.10.041.
100. Orme IM. 2010. The Achilles heel of BCG. Tuberculosis (Edinb) 90:329–332 http://dx.doi.org/10.1016/j.tube.2010.06.002. [PubMed][CrossRef]
101. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, Kaufmann SH. 2014. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ΔureC:hly vaccine’s superior protection against tuberculosis. J Infect Dis 210:1928–1937 http://dx.doi.org/10.1093/infdis/jiu347. [CrossRef]
102. Henao-Tamayo M, Obregón-Henao A, Ordway DJ, Shang S, Duncan CG, Orme IM. 2012. A mouse model of tuberculosis reinfection. Tuberculosis (Edinb) 92:211–217 http://dx.doi.org/10.1016/j.tube.2012.02.008. [PubMed][CrossRef]
103. Henao-Tamayo M, Ordway DJ, Orme IM. 2014. Memory T cell subsets in tuberculosis: what should we be targeting? Tuberculosis (Edinb) 94:455–461 http://dx.doi.org/10.1016/j.tube.2014.05.001. [PubMed][CrossRef]
104. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. 2006. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173:803–810 http://dx.doi.org/10.1164/rccm.200508-1294OC. [PubMed][CrossRef]
105. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, Bevan MJ, Urdahl KB. 2007. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204:2159–2169 http://dx.doi.org/10.1084/jem.20062105. [PubMed][CrossRef]
106. Khader SA. 2010. Th17 cytokines: the good, the bad, and the unknown. Cytokine Growth Factor Rev 21:403–404 http://dx.doi.org/10.1016/j.cytogfr.2010.10.008. [PubMed][CrossRef]
107. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377 http://dx.doi.org/10.1038/ni1449. [CrossRef]
108. Khader SA, Cooper AM. 2008. IL-23 and IL-17 in tuberculosis. Cytokine 41:79–83 http://dx.doi.org/10.1016/j.cyto.2007.11.022. [CrossRef]
109. Wozniak TM, Saunders BM, Ryan AA, Britton WJ. 2010. Mycobacterium bovis BCG-specific Th17 cells confer partial protection against Mycobacterium tuberculosis infection in the absence of gamma interferon. Infect Immun 78:4187–4194 http://dx.doi.org/10.1128/IAI.01392-09. [CrossRef]
110. Smith DW, Fok JS, Ho RS, Harding GE, Wiegeshaus E, Arora PK. 1975. Influence of BCG vaccination on the pathogenesis of experimental airborne tuberculosis. J Hyg Epidemiol Microbiol Immunol 19:407–417. [PubMed]
111. Smith DW, Harding GE. 1977. Animal model of human disease. Pulmonary tuberculosis. Animal model: experimental airborne tuberculosis in the guinea pig. Am J Pathol 89:273–276. [PubMed]
112. Smith DW, McMurray DN, Wiegeshaus EH, Grover AA, Harding GE. 1970. Host-parasite relationships in experimental airborne tuberculosis. IV. Early events in the course of infection in vaccinated and nonvaccinated guinea pigs. Am Rev Respir Dis 102:937–949.
113. Smith DW, Wiegeshaus E, Navalkar R, Grover AA. 1966. Host-parasite relationships in experimental airborne tuberculosis. I. Preliminary studies in BCG-vaccinated and nonvaccinated animals. J Bacteriol 91:718–724. [PubMed]
114. Smith DW, Wiegeshaus EH. 1989. What animal models can teach us about the pathogenesis of tuberculosis in humans. Rev Infect Dis 11(Suppl 2):S385–S393 http://dx.doi.org/10.1093/clinids/11.Supplement_2.S385. [PubMed][CrossRef]
115. McMurray DN, Carlomagno MA, Mintzer CL, Tetzlaff CL. 1985. Mycobacterium bovis BCG vaccine fails to protect protein-deficient guinea pigs against respiratory challenge with virulent Mycobacterium tuberculosis. Infect Immun 50:555–559. [PubMed]
116. McMurray DN, Kimball MS, Tetzlaff CL, Mintzer CL. 1986. Effects of protein deprivation and BCG vaccination on alveolar macrophage function in pulmonary tuberculosis. Am Rev Respir Dis 133:1081–1085. [PubMed]
117. McMurray DN, Mintzer CL, Tetzlaff CL, Carlomagno MA. 1986. The influence of dietary protein on the protective effect of BCG in guinea pigs. Tubercle 67:31–39 http://dx.doi.org/10.1016/0041-3879(86)90029-2. [PubMed][CrossRef]
118. Grosset J. 1980. Bacteriologic basis of short-course chemotherapy for tuberculosis. Clin Chest Med 1:231–241. [PubMed]
119. McMurray DN. 2001. A coordinated strategy for evaluating new vaccines for human and animal tuberculosis. Tuberculosis (Edinb) 81:141–146 http://dx.doi.org/10.1054/tube.2000.0265. [PubMed][CrossRef]
120. McMurray DN. 2001. Determinants of vaccine-induced resistance in animal models of pulmonary tuberculosis. Scand J Infect Dis 33:175–178 http://dx.doi.org/10.1080/00365540151060743. [PubMed][CrossRef]
121. McMurray DN, Dai G, Phalen S. 1999. Mechanisms of vaccine-induced resistance in a guinea pig model of pulmonary tuberculosis. Tuber Lung Dis 79:261–266 http://dx.doi.org/10.1054/tuld.1998.0207. [PubMed][CrossRef]
122. Pal PG, Horwitz MA. 1992. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infect Immun 60:4781–4792. [PubMed]
123. Horwitz MA, Lee BW, Dillon BJ, Harth G. 1995. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92:1530–1534 http://dx.doi.org/10.1073/pnas.92.5.1530. [CrossRef]
124. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic’ S. 2000. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 97:13853–13858 http://dx.doi.org/10.1073/pnas.250480397. [CrossRef]
125. Horwitz MA, Harth G. 2003. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 71:1672–1679 http://dx.doi.org/10.1128/IAI.71.4.1672-1679.2003. [CrossRef]
126. Sampson SL, Dascher CC, Sambandamurthy VK, Russell RG, Jacobs WR Jr, Bloom BR, Hondalus MK. 2004. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72:3031–3037 http://dx.doi.org/10.1128/IAI.72.5.3031-3037.2004. [CrossRef]
127. Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR Jr, Porcelli SA. 2007. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117:2279–2288 http://dx.doi.org/10.1172/JCI31947. [CrossRef]
128. Cardona PJ, Asensio JG, Arbués A, Otal I, Lafoz C, Gil O, Caceres N, Ausina V, Gicquel B, Martin C. 2009. Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine 27:2499–2505 http://dx.doi.org/10.1016/j.vaccine.2009.02.060. [PubMed][CrossRef]
129. Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. 2004. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect Immun 72:6148–6150 http://dx.doi.org/10.1128/IAI.72.10.6148-6150.2004. [PubMed][CrossRef]
130. Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC, Campos-Neto A, Lobet Y, Dalemans W, Orme IM, Reed SG. 2004. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 172:7618–7628 http://dx.doi.org/10.4049/jimmunol.172.12.7618. [PubMed][CrossRef]
131. Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC, Basaraba RJ, Izzo AA, Lasco TM, Chapman PL, Reed SG, Orme IM. 2004. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 72:6622–6632 http://dx.doi.org/10.1128/IAI.72.11.6622-6632.2004.
132. Turner OC, Basaraba RJ, Orme IM. 2003. Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect Immun 71:864–871 http://dx.doi.org/10.1128/IAI.71.2.864-871.2003. [PubMed][CrossRef]
133. Allen SS, Cassone L, Lasco TM, McMurray DN. 2004. Effect of neutralizing transforming growth factor beta1 on the immune response against Mycobacterium tuberculosis in guinea pigs. Infect Immun 72:1358–1363 http://dx.doi.org/10.1128/IAI.72.3.1358-1363.2004.
134. Lyons MJ, Yoshimura T, McMurray DN. 2004. Interleukin (IL)-8 (CXCL8) induces cytokine expression and superoxide formation by guinea pig neutrophils infected with Mycobacterium tuberculosis. Tuberculosis (Edinb) 84:283–292 http://dx.doi.org/10.1016/j.tube.2003.09.003. [CrossRef]
135. Skwor TA, Cho H, Cassidy C, Yoshimura T, McMurray DN. 2004. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages. J Leukoc Biol 76:1229–1239 http://dx.doi.org/10.1189/jlb.0704414. [PubMed][CrossRef]
136. Yamamoto T, Lasco TM, Uchida K, Goto Y, Jeevan A, McFarland C, Ly L, Yamamoto S, McMurray DN. 2007. Mycobacterium bovis BCG vaccination modulates TNF-alpha production after pulmonary challenge with virulent Mycobacterium tuberculosis in guinea pigs. Tuberculosis (Edinb) 87:155–165 http://dx.doi.org/10.1016/j.tube.2006.07.002. [CrossRef]
137. Kraft SL, Dailey D, Kovach M, Stasiak KL, Bennett J, McFarland CT, McMurray DN, Izzo AA, Orme IM, Basaraba RJ. 2004. Magnetic resonance imaging of pulmonary lesions in guinea pigs infected with Mycobacterium tuberculosis. Infect Immun 72:5963–5971 http://dx.doi.org/10.1128/IAI.72.10.5963-5971.2004. [CrossRef]
138. Ly LH, Russell MI, McMurray DN. 2008. Cytokine profiles in primary and secondary pulmonary granulomas of Guinea pigs with tuberculosis. Am J Respir Cell Mol Biol 38:455–462 http://dx.doi.org/10.1165/rcmb.2007-0326OC. [PubMed][CrossRef]
139. Fennelly KP. 2007. Variability of airborne transmission of Mycobacterium tuberculosis: implications for control of tuberculosis in the HIV era. Clin Infect Dis 44:1358–1360 http://dx.doi.org/10.1086/516617. [PubMed][CrossRef]
140. Basaraba RJ, Bielefeldt-Ohmann H, Eschelbach EK, Reisenhauer C, Tolnay AE, Taraba LC, Shanley CA, Smith EA, Bedwell CL, Chlipala EA, Orme IM. 2008. Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig. Tuberculosis (Edinb) 88:69–79 http://dx.doi.org/10.1016/j.tube.2007.09.002. [CrossRef]
141. Basaraba RJ, Dailey DD, McFarland CT, Shanley CA, Smith EE, McMurray DN, Orme IM. 2006. Lymphadenitis as a major element of disease in the guinea pig model of tuberculosis. Tuberculosis (Edinb) 86:386–394 http://dx.doi.org/10.1016/j.tube.2005.11.003. [PubMed][CrossRef]
142. Basaraba RJ, Smith EE, Shanley CA, Orme IM. 2006. Pulmonary lymphatics are primary sites of Mycobacterium tuberculosis infection in guinea pigs infected by aerosol. Infect Immun 74:5397–5401 http://dx.doi.org/10.1128/IAI.00332-06. [PubMed][CrossRef]
143. Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM. 2010. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77:1096–1110 http://dx.doi.org/10.1111/j.1365-2958.2010.07273.x. [PubMed][CrossRef]
144. Ordway D, Palanisamy G, Henao-Tamayo M, Smith EE, Shanley C, Orme IM, Basaraba RJ. 2007. The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179:2532–2541 http://dx.doi.org/10.4049/jimmunol.179.4.2532. [PubMed][CrossRef]
145. Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, Orme IM, Basaraba RJ. 2007. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51:3338–3345 http://dx.doi.org/10.1128/AAC.00276-07. [PubMed][CrossRef]
146. Barry CE III, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855. [PubMed][CrossRef]
147. Hoff DR, Ryan GJ, Driver ER, Ssemakulu CC, De Groote MA, Basaraba RJ, Lenaerts AJ. 2011. Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One 6:e17550 http://dx.doi.org/10.1371/journal.pone.0017550. [CrossRef]
148. Ryan GJ, Hoff DR, Driver ER, Voskuil MI, Gonzalez-Juarrero M, Basaraba RJ, Crick DC, Spencer JS, Lenaerts AJ. 2010. Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS One 5:e11108 http://dx.doi.org/10.1371/journal.pone.0011108. [PubMed][CrossRef]
149. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174 http://dx.doi.org/10.1111/j.1365-2958.2008.06274.x. [CrossRef]
150. Ackart DF, Hascall-Dove L, Caceres SM, Kirk NM, Podell BK, Melander C, Orme IM, Leid JG, Nick JA, Basaraba RJ. 2014. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog Dis 70:359–369 http://dx.doi.org/10.1111/2049-632X.12144. [PubMed][CrossRef]
151. Ackart DF, Lindsey EA, Podell BK, Melander RJ, Basaraba RJ, Melander C. 2014. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathog Dis 70:370–378 http://dx.doi.org/10.1111/2049-632X.12143. [CrossRef]
152. Hoff DR, Caraway ML, Brooks EJ, Driver ER, Ryan GJ, Peloquin CA, Orme IM, Basaraba RJ, Lenaerts AJ. 2008. Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:4137–4140 http://dx.doi.org/10.1128/AAC.00196-08. [CrossRef]
153. Klinkenberg LG, Sutherland LA, Bishai WR, Karakousis PC. 2008. Metronidazole lacks activity against Mycobacterium tuberculosis in an in vivo hypoxic granuloma model of latency. J Infect Dis 198:275–283 http://dx.doi.org/10.1086/589515. [CrossRef]
154. Ordway DJ, Shanley CA, Caraway ML, Orme EA, Bucy DS, Hascall-Dove L, Henao-Tamayo M, Harton MR, Shang S, Ackart D, Kraft SL, Lenaerts AJ, Basaraba RJ, Orme IM. 2010. Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob Agents Chemother 54:1820–1833 http://dx.doi.org/10.1128/AAC.01521-09. [PubMed][CrossRef]
155. Shang S, Shanley CA, Caraway ML, Orme EA, Henao-Tamayo M, Hascall-Dove L, Ackart D, Orme IM, Ordway DJ, Basaraba RJ. 2012. Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine 30:1572–1582 http://dx.doi.org/10.1016/j.vaccine.2011.12.114. [CrossRef]
156. Shang S, Shanley CA, Caraway ML, Orme EA, Henao-Tamayo M, Hascall-Dove L, Ackart D, Lenaerts AJ, Basaraba RJ, Orme IM, Ordway DJ. 2011. Activities of TMC207, rifampin, and pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrob Agents Chemother 55:124–131 http://dx.doi.org/10.1128/AAC.00978-10. [CrossRef]
157. Escombe AR, Moore DA, Gilman RH, Pan W, Navincopa M, Ticona E, Martínez C, Caviedes L, Sheen P, Gonzalez A, Noakes CJ, Friedland JS, Evans CA. 2008. The infectiousness of tuberculosis patients coinfected with HIV. PLoS Med 5:e188 http://dx.doi.org/10.1371/journal.pmed.0050188. [PubMed][CrossRef]
158. Escombe AR, Moore DA, Gilman RH, Navincopa M, Ticona E, Mitchell B, Noakes C, Martínez C, Sheen P, Ramirez R, Quino W, Gonzalez A, Friedland JS, Evans CA. 2009. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. PLoS Med 6:e1000043 http://dx.doi.org/10.1371/journal.pmed.1000043. [CrossRef]
159. Dharmadhikari AS, Basaraba RJ, Van Der Walt ML, Weyer K, Mphahlele M, Venter K, Jensen PA, First MW, Parsons S, McMurray DN, Orme IM, Nardell EA. 2011. Natural infection of guinea pigs exposed to patients with highly drug-resistant tuberculosis. Tuberculosis (Edinb) 91:329–338 http://dx.doi.org/10.1016/j.tube.2011.03.002. [CrossRef]
160. Ottenhoff TH, Doherty TM, van Dissel JT, Bang P, Lingnau K, Kromann I, Andersen P. 2010. First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum Vaccin 6:1007–1015 http://dx.doi.org/10.4161/hv.6.12.13143. [CrossRef]
161. Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, Coler RN, Reed SG. 2010. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2:53ra74 http://dx.doi.org/10.1126/scitranslmed.3001094. [CrossRef]
162. Dey B, Jain R, Khera A, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK. 2011. Latency antigen α-crystallin based vaccination imparts a robust protection against TB by modulating the dynamics of pulmonary cytokines. PLoS One 6:e18773 http://dx.doi.org/10.1371/journal.pone.0018773.
163. Vilaplana C, Gil O, Cáceres N, Pinto S, Díaz J, Cardona PJ. 2011. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis. PLoS One 6:e20404 http://dx.doi.org/10.1371/journal.pone.0020404. [CrossRef]
164. Arbues A, Aguilo JI, Gonzalo-Asensio J, Marinova D, Uranga S, Puentes E, Fernandez C, Parra A, Cardona PJ, Vilaplana C, Ausina V, Williams A, Clark S, Malaga W, Guilhot C, Gicquel B, Martin C. 2013. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 31:4867–4873 http://dx.doi.org/10.1016/j.vaccine.2013.07.051. [CrossRef]
165. Henao-Tamayo M, Palaniswamy GS, Smith EE, Shanley CA, Wang B, Orme IM, Basaraba RJ, DuTeau NM, Ordway D. 2009. Post-exposure vaccination against Mycobacterium tuberculosis. Tuberculosis (Edinb) 89:142–148 http://dx.doi.org/10.1016/j.tube.2009.01.002. [CrossRef]
166. Shanley CA, Ireton GC, Baldwin SL, Coler RN, Reed SG, Basaraba RJ, Orme IM. 2014. Therapeutic vaccination against relevant high virulence clinical isolates of Mycobacterium tuberculosis. Tuberculosis (Edinb) 94:140–147 http://dx.doi.org/10.1016/j.tube.2013.08.010. [CrossRef]
167. Palanisamy GS, DuTeau N, Eisenach KD, Cave DM, Theus SA, Kreiswirth BN, Basaraba RJ, Orme IM. 2009. Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb) 89:203–209 http://dx.doi.org/10.1016/j.tube.2009.01.005. [CrossRef]
168. Palanisamy GS, Smith EE, Shanley CA, Ordway DJ, Orme IM, Basaraba RJ. 2008. Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb) 88:295–306 http://dx.doi.org/10.1016/j.tube.2007.12.003. [CrossRef]
169. Shang S, Harton M, Tamayo MH, Shanley C, Palanisamy GS, Caraway M, Chan ED, Basaraba RJ, Orme IM, Ordway DJ. 2011. Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis. Tuberculosis (Edinb) 91:378–385 http://dx.doi.org/10.1016/j.tube.2011.06.001. [PubMed][CrossRef]
170. Kato-Maeda M, Shanley CA, Ackart D, Jarlsberg LG, Shang S, Obregon-Henao A, Harton M, Basaraba RJ, Henao-Tamayo M, Barrozo JC, Rose J, Kawamura LM, Coscolla M, Fofanov VY, Koshinsky H, Gagneux S, Hopewell PC, Ordway DJ, Orme IM. 2012. Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 19:1227–1237 http://dx.doi.org/10.1128/CVI.00250-12. [CrossRef]
171. Somashekar BS, Amin AG, Rithner CD, Troudt J, Basaraba R, Izzo A, Crick DC, Chatterjee D. 2011. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res 10:4186–4195 http://dx.doi.org/10.1021/pr2003352. [CrossRef]
172. Somashekar BS, Amin AG, Tripathi P, MacKinnon N, Rithner CD, Shanley CA, Basaraba R, Henao-Tamayo M, Kato-Maeda M, Ramamoorthy A, Orme IM, Ordway DJ, Chatterjee D. 2012. Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res 11:4873–4884 http://dx.doi.org/10.1021/pr300345x. [CrossRef]
173. Aiyaz M, Bipin C, Pantulwar V, Mugasimangalam R, Shanley CA, Ordway DJ, Orme IM. 2014. Whole genome response in guinea pigs infected with the high virulence strain Mycobacterium tuberculosis TT372. Tuberculosis (Edinb) 94:606–615. [PubMed][CrossRef]
174. Podell BK, Ackart DF, Obregon-Henao A, Eck SP, Henao-Tamayo M, Richardson M, Orme IM, Ordway DJ, Basaraba RJ. 2014. Increased severity of tuberculosis in Guinea pigs with type 2 diabetes: a model of diabetes-tuberculosis comorbidity. Am J Pathol 184:1104–1118 http://dx.doi.org/10.1016/j.ajpath.2013.12.015. [CrossRef]
175. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, Mahomed H, McShane H, MVA85A 020 Trial Study Team. 2013. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381:1021–1028 http://dx.doi.org/10.1016/S0140-6736(13)60177-4. [CrossRef]
176. McShane H, Williams A. 2014. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis (Edinb) 94:105–110 http://dx.doi.org/10.1016/j.tube.2013.11.003. [PubMed][CrossRef]
177. Henao-Tamayo M, Shanley CA, Verma D, Zilavy A, Stapleton MC, Furney SK, Podell B, Orme IM. 2015. The efficacy of the BCG Vaccine Against Newly Emerging Clinical Strains of Mycobacterium tuberculosis. PLoS One 10:e0136500 http://dx.doi.org/10.1371/journal.pone.0136500. [CrossRef]
178. Jacobs WR Jr, McShane H, Mizrahi V, Orme IM (ed). Tuberculosis and the Tubercle Bacillus, 2nd ed. ASM Press, Washington, DC, in press.
microbiolspec.TBTB2-0002-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0002-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0002-2015
2016-07-01
2017-07-26

Abstract:

This article describes the nature of the host response to in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Commonly used devices for aerosol exposure of mice and guinea pigs. Glas-Col aerosol exposure device. The exposure cage is placed into the central chamber of the machine and closed from above by a tight gasket; this cage can hold approximately 100 mice at a time. The famous “Madison Chamber” first designed at the University of Wisconsin. The central chamber holds up to 18 guinea pigs at a time. The Henderson apparatus, which is a “nose-only” aerosol exposure device. This system can be readily used for infections of both mice and guinea pigs. (Photo courtesy of Ann Williams, with permission.)

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Representative data from the mouse after low-dose aerosol exposure to ∼100 (in these examples, H37Rv). After about 30 days of progressive growth the infection is controlled and contained. There follows what many regard as a “chronic phase” during which some animals may start to die of lung damage. Influx of CD4 cells, which comprise the bulk of the T-cell response, and CD8 cells. A fraction of the total CD4 cell numbers stain positive for IFN-γ, and the numbers of these steadily contract after day 30 as the course of the infection is controlled. Immunohistochemical identification of CD4 and CD8 cells in lung granulomatous tissue. CD4 cells tend to spread evenly across the lesions, whereas CD8 cells take up a more peripheral position. (Photos courtesy of O. Turner, with permission.)

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Other characteristics of the lung inflammatory response. The response to low-dose aerosol infection also includes the influx of aggregates of B cells (left) and small numbers of γδ+ T cells (right). Early during the course of the infection, cells can be seen interacting or adhering to the airway epithelial surface (left), but, as the disease process continues, this surface swells and degenerates (right). (Photos courtesy of O. Turner and M. Gonzalez-Juarrero, with permission.)

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Some newly emerging strains of induce the appearance of regulatory T cells in the lungs. These can be identified and gated using flow cytometry because of their intracellular expression of the Foxp3 marker. Usually, approximately 50% of these cells are capable of secreting the cytokine IL-10.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Immunopathology of the guinea pig model. After 5 to 10 days after aerosol infection, small lesions appear, usually near larger airways. These consist mostly of macrophages, with a few lymphocytes and neutrophils beginning to arrive. By day 15 to 20 the lesion has become much larger and the first signs of central necrosis are visible. By day 30 to 40 the lesion has the appearance of the “classical granuloma,” with a large central area of necrosis obvious and with host cells remaining viable being compressed outward. Thereafter, the lesion becomes very large and is dominated by a process of central dystrophic calcification (this entire process is described in greater detail in reference 88 ). (Photos courtesy of O. Turner.) More recently, we have attempted to explain this process in a “unifying theory” to relate it to reactivation disease (see reference 83 ). In our current working model, the infecting bacilli use their ESX proteins to escape the alveolar macrophage that engulfed them and reach the interstitium, which swells with tissue fluid due to the inflammation Macrophages, dendritic cells, lymphocytes, and neutrophils accumulate at this new site of infection The dendritic cells carry bacilli (or antigen secreted by them) off to the draining lymph node (a crucial event in generating acquired immunity), while (we propose) the local neutrophils degenerate and hence trigger the beginnings of the development of necrosis. Gradually, the lesion takes on its characteristic appearance, as the central lesion first starts to calcify By now, many bacteria are extracellular, and some (we now believe based on recent new evidence) survive by becoming nonplanktonic and acid-fast-negative small communities. As the lesion calcifies, some of these communities get physically forced back toward normoxic tissue , where they may be recognized by host cells and trigger memory immunity. If this is not successfully dealt with, reactivation disease ensues, with the potential that some bacilli escape into the airway and can be potentially transmitted (Photos in panels A to D courtesy of O. Turner, reprinted from reference 89 . Panels E to I adapted from reference 83 .)

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

A new approach to gating host cells harvested from the guinea pig lung. The major impediment caused by severe autofluorescence in this model can be subverted by gating side scatter against the antibody MIL4. This reveals otherwise “hidden” lymphocytes, macrophages, and monocytes, while still allowing enumeration of the granulocyte response. DC, dendritic cells; SSC, side scatter.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Characteristics of the guinea pig response to infection. After exposure to 10 to 20 bacilli, between 5-log and 6-log can be detected in all three major target organs after a month. There are strong CD4 and CD8 responses initially, but these then contract after ∼30 days. There is a strong and progressive influx of macrophages into the lungs, but only a small percentage of these appear to be activated (class II MHC). After day 30 or so, significant numbers of B cells begin to arrive, as do neutrophils, presumably responding to the lung damage. (Adapted from reference 144 .)

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Magnetic resonance imaging of infected guinea pig lungs. A day-30 image showing obvious lesions with transparent central necrosis (“doughnut appearance”; not obvious using other imaging methods). Severe lymphadenopathy, which occurs rapidly, is readily seen by MRI. Day-30 imaging prior to treatment for the next 4 months with chemotherapy, resolving most of the lesions , in comparison with untreated animals in which the lungs eventually become almost completely consolidated (Photos courtesy of Susan Kraft. Adapted from reference 154 .)

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error