1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Regulation of Immunity to Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Susanna Brighenti1, Diane J. Ordway2
  • Editors: William R. Jacobs Jr.3, Helen McShane4, Valerie Mizrahi5, Ian M. Orme6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; 2: Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; 3: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 4: University of Oxford, Oxford OX3 7DQ, United Kingdom; 5: University of Cape Town, Rondebosch 7701, South Africa; 6: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0006-2016
  • Received 06 January 2016 Accepted 29 February 2016 Published 09 December 2016
  • Diane J. Ordway, D.ordway@colostate.edu
image of Regulation of Immunity to Tuberculosis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Regulation of Immunity to Tuberculosis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/6/TBTB2-0006-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/6/TBTB2-0006-2016-2.gif
  • Abstract:

    Immunity against requires a balance between adaptive immune responses to constrain bacterial replication and the prevention of potentially damaging immune activation. Regulatory T (Treg) cells express the transcription factor Foxp3+ and constitute an essential counterbalance of inflammatory Th1 responses and are required to maintain immune homeostasis. The first reports describing the presence of Foxp3-expressing CD4+ Treg cells in tuberculosis (TB) emerged in 2006. Different Treg cell subsets, most likely specialized for different tissues and microenvironments, have been shown to expand in both human TB and animal models of TB. Recently, additional functional roles for Treg cells have been demonstrated during different stages and spectrums of TB disease. Foxp3+ regulatory cells can quickly expand during early infection and impede the onset of cellular immunity and persist during chronic TB infection. Increased frequencies of Treg cells have been associated with a detrimental outcome of active TB, and may be dependent on the strain, animal model, local environment, and the stage of infection. Some investigations also suggest that Treg cells are required together with effector T cell responses to obtain reduced pathology and sterilizing immunity. In this review, we will first provide an overview of the regulatory cells and mechanisms that control immune homeostasis. Then, we will review what is known about the phenotype and function of Treg cells from studies in human TB and experimental animal models of TB. We will discuss the potential role of Treg cells in the progression of TB disease and the relevance of this knowledge for future efforts to prevent, modulate, and treat TB.

  • Citation: Brighenti S, Ordway D. 2016. Regulation of Immunity to Tuberculosis. Microbiol Spectrum 4(6):TBTB2-0006-2016. doi:10.1128/microbiolspec.TBTB2-0006-2016.

Key Concept Ranking

Major Histocompatibility Complex Class II
0.4267827
0.4267827

References

1. Sakaguchi S, Takahashi T, Nishizuka Y. 1982. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 156:1565–1576. http://dx.doi.org/10.1084/jem.156.6.1565. [PubMed]
2. Asano M, Toda M, Sakaguchi N, Sakaguchi S. 1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396. http://dx.doi.org/10.1084/jem.184.2.387.
3. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164. [PubMed]
4. Hori S, Nomura T, Sakaguchi S. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061. http://dx.doi.org/10.1126/science.1079490. [PubMed]
5. Khattri R, Cox T, Yasayko SA, Ramsdell F. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342. http://dx.doi.org/10.1038/ni909. [PubMed]
6. Fontenot JD, Gavin MA, Rudensky AY. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336. http://dx.doi.org/10.1038/ni904. [PubMed]
7. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA. 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935. http://dx.doi.org/10.1038/nature05478. [PubMed]
8. Sharma R, Jarjour WN, Zheng L, Gaskin F, Fu SM, Ju ST. 2007. Large functional repertoire of regulatory T-cell suppressible autoimmune T cells in scurfy mice. J Autoimmun 29:10–19. http://dx.doi.org/10.1016/j.jaut.2007.04.001. [PubMed][CrossRef]
9. Ochs HD, Gambineri E, Torgerson TR. 2007. IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunol Res 38:112–121. http://dx.doi.org/10.1007/s12026-007-0022-2. [PubMed]
10. Mayer CT, Tian L, Hesse C, Kühl AA, Swallow M, Kruse F, Thiele M, Gershwin ME, Liston A, Sparwasser T. 2014. Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun 50:23–32. http://dx.doi.org/10.1016/j.jaut.2013.08.010.
11. Torgerson TR, Ochs HD. 2002. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a model of immune dysregulation. Curr Opin Allergy Clin Immunol 2:481–487. http://dx.doi.org/10.1097/00130832-200212000-00002.
12. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73. http://dx.doi.org/10.1038/83784. [PubMed]
13. Bennett CL, Ochs HD. 2001. IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr 13:533–538. http://dx.doi.org/10.1097/00008480-200112000-00007.
14. Li B, Samanta A, Song X, Iacono KT, Brennan P, Chatila TA, Roncador G, Banham AH, Riley JL, Wang Q, Shen Y, Saouaf SJ, Greene MI. 2007. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 19:825–835. http://dx.doi.org/10.1093/intimm/dxm043.
15. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. 2007. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119:482–487. http://dx.doi.org/10.1016/j.jaci.2006.10.007. [PubMed]
16. Josefowicz SZ, Lu LF, Rudensky AY. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. http://dx.doi.org/10.1146/annurev.immunol.25.022106.141623. [PubMed]
17. Kang SM, Tang Q, Bluestone JA. 2007. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 7:1457–1463. http://dx.doi.org/10.1111/j.1600-6143.2007.01829.x. [PubMed]
18. Curotto de Lafaille MA, Lafaille JJ. 2009. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635. http://dx.doi.org/10.1016/j.immuni.2009.05.002. [PubMed]
19. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742. http://dx.doi.org/10.1038/39614. [PubMed]
20. Sakaguchi S. 2004. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. http://dx.doi.org/10.1146/annurev.immunol.21.120601.141122. [PubMed][CrossRef]
21. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569. http://dx.doi.org/10.1038/nature06306. [PubMed]
22. Shevach EM. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645. http://dx.doi.org/10.1016/j.immuni.2009.04.010. [PubMed][CrossRef]
23. Wood KJ, Bushell A, Hester J. 2012. Regulatory immune cells in transplantation. Nat Rev Immunol 12:417–430. http://dx.doi.org/10.1038/nri3227. [PubMed]
24. Magnani CF, Alberigo G, Bacchetta R, Serafini G, Andreani M, Roncarolo MG, Gregori S. 2011. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur J Immunol 41:1652–1662. http://dx.doi.org/10.1002/eji.201041120. [PubMed][CrossRef]
25. Rowe JH, Ertelt JM, Way SS. 2012. Foxp3(+) regulatory T cells, immune stimulation and host defence against infection. Immunology 136:1–10. http://dx.doi.org/10.1111/j.1365-2567.2011.03551.x. [PubMed]
26. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. 2002. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507. http://dx.doi.org/10.1038/nature01152. [PubMed]
27. Herrera MT, Torres M, Nevels D, Perez-Redondo CN, Ellner JJ, Sada E, Schwander SK. 2009. Compartmentalized bronchoalveolar IFN-gamma and IL-12 response in human pulmonary tuberculosis. Tuberculosis (Edinb) 89:38–47. http://dx.doi.org/10.1016/j.tube.2008.08.002.
28. Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M, Cazzadori A, Trinchieri G. 1999. CD4(+) T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol 92:224–234. http://dx.doi.org/10.1006/clim.1999.4752. [PubMed]
29. Lienhardt C, Azzurri A, Amedei A, Fielding K, Sillah J, Sow OY, Bah B, Benagiano M, Diallo A, Manetti R, Manneh K, Gustafson P, Bennett S, D’Elios MM, McAdam K, Del Prete G. 2002. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol 32:1605–1613. http://dx.doi.org/10.1002/1521-4141(200206)32:6<1605::AID-IMMU1605>3.0.CO;2-6. [PubMed]
30. Sharma SK, Mitra DK, Balamurugan A, Pandey RM, Mehra NK. 2002. Cytokine polarization in miliary and pleural tuberculosis. J Clin Immunol 22:345–352. http://dx.doi.org/10.1023/A:1020604331886. [PubMed]
31. Kaufmann SH. 2002. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 61(Suppl 2):ii54–ii58. http://dx.doi.org/10.1136/ard.61.suppl_2.ii54. [PubMed]
32. Munk ME, Emoto M. 1995. Functions of T-cell subsets and cytokines in mycobacterial infections. Eur Respir J Suppl 20:668s–675s. [PubMed]
33. Rook GA. 2007. Th2 cytokines in susceptibility to tuberculosis. Curr Mol Med 7:327–337. http://dx.doi.org/10.2174/156652407780598557. [PubMed]
34. Newcomb DC, Zhou W, Moore ML, Goleniewska K, Hershey GK, Kolls JK, Peebles RS Jr. 2009. A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol 182:5317–5321. http://dx.doi.org/10.4049/jimmunol.0803868.
35. Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R. 2008. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28:710–722. http://dx.doi.org/10.1016/j.immuni.2008.02.020. [PubMed]
36. Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS. 2006. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144:25–34. http://dx.doi.org/10.1111/j.1365-2249.2006.03027.x. [PubMed]
37. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. 2006. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173:803–810. http://dx.doi.org/10.1164/rccm.200508-1294OC. [PubMed]
38. Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, Wu C, Larmonier N, Zhang W, Zhang H, Wang H, Katsanis E. 2007. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol 123:50–59. http://dx.doi.org/10.1016/j.clim.2006.11.009. [PubMed]
39. Hougardy JM, Place S, Hildebrand M, Drowart A, Debrie AS, Locht C, Mascart F. 2007. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med 176:409–416. http://dx.doi.org/10.1164/rccm.200701-084OC.
40. Fletcher HA, Pathan AA, Berthoud TK, Dunachie SJ, Whelan KT, Alder NC, Sander CR, Hill AV, McShane H. 2008. Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF-beta1. Vaccine 26:5269–5275. http://dx.doi.org/10.1016/j.vaccine.2008.07.040. [PubMed]
41. Li L, Lao SH, Wu CY. 2007. Increased frequency of CD4(+)CD25(high) Treg cells inhibit BCG-specific induction of IFN-gamma by CD4(+) T cells from TB patients. Tuberculosis (Edinb) 87:526–534. http://dx.doi.org/10.1016/j.tube.2007.07.004. [PubMed]
42. Periasamy S, Dhiman R, Barnes PF, Paidipally P, Tvinnereim A, Bandaru A, Valluri VL, Vankayalapati R. 2011. Programmed death 1 and cytokine inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation with Mycobacterium tuberculosis. J Infect Dis 203:1256–1263. http://dx.doi.org/10.1093/infdis/jir011.
43. Chiacchio T, Casetti R, Butera O, Vanini V, Carrara S, Girardi E, Di Mitri D, Battistini L, Martini F, Borsellino G, Goletti D. 2009. Characterization of regulatory T cells identified as CD4(+)CD25(high)CD39(+) in patients with active tuberculosis. Clin Exp Immunol 156:463–470. http://dx.doi.org/10.1111/j.1365-2249.2009.03908.x. [PubMed]
44. Hougardy JM, Verscheure V, Locht C, Mascart F. 2007. In vitro expansion of CD4+CD25highFOXP3+CD127low/- regulatory T cells from peripheral blood lymphocytes of healthy Mycobacterium tuberculosis-infected humans. Microbes Infect 9:1325–1332. http://dx.doi.org/10.1016/j.micinf.2007.06.004.
45. He XY, Xiao L, Chen HB, Hao J, Li J, Wang YJ, He K, Gao Y, Shi BY. 2010. T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. Eur J Clin Microbiol Infect Dis 29:643–650. http://dx.doi.org/10.1007/s10096-010-0908-0. [PubMed]
46. Mahan CS, Thomas JJ, Boom WH, Rojas RE. 2009. CD4+ CD25(high) Foxp3+ regulatory T cells downregulate human Vdelta2+ T-lymphocyte function triggered by anti-CD3 or phosphoantigen. Immunology 127:398–407. http://dx.doi.org/10.1111/j.1365-2567.2008.02982.x. [PubMed]
47. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M, Peyrat MA, Caccamo N, Sireci G, Salerno A. 2001. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 184:1082–1085. http://dx.doi.org/10.1086/323600.
48. Semple PL, Binder AB, Davids M, Maredza A, van Zyl-Smit RN, Dheda K. 2013. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am J Respir Crit Care Med 187:1249–1258. http://dx.doi.org/10.1164/rccm.201210-1934OC.
49. Babu S, Bhat SQ, Kumar NP, Kumaraswami V, Nutman TB. 2010. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J Infect Dis 201:20–31. http://dx.doi.org/10.1086/648735. [PubMed]
50. Meintjes G, Wilkinson KA, Rangaka MX, Skolimowska K, van Veen K, Abrahams M, Seldon R, Pepper DJ, Rebe K, Mouton P, van Cutsem G, Nicol MP, Maartens G, Wilkinson RJ. 2008. Type 1 helper T cells and FoxP3-positive T cells in HIV-tuberculosis-associated immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med 178:1083–1089. http://dx.doi.org/10.1164/rccm.200806-858OC.
51. Kumar NP, Sridhar R, Banurekha VV, Jawahar MS, Nutman TB, Babu S. 2013. Expansion of pathogen-specific T-helper 1 and T-helper 17 cells in pulmonary tuberculosis with coincident type 2 diabetes mellitus. J Infect Dis 208:739–748. http://dx.doi.org/10.1093/infdis/jit241. [PubMed]
52. Wu YE, Du ZR, Cai YM, Peng WG, Zheng GZ, Zheng GL, Wu LB, Li K. 2015. Effective expansion of forkhead box P3? regulatory T cells via early secreted antigenic target 6 and antigen 85 complex B from Mycobacterium tuberculosis. Mol Med Rep 11:3134–3142. [PubMed]
53. Kumar NP, Moideen K, Banurekha VV, Nair D, Sridhar R, Nutman TB, Babu S. 2015. IL-27 and TGFβ mediated expansion of Th1 and adaptive regulatory T cells expressing IL-10 correlates with bacterial burden and disease severity in pulmonary tuberculosis. Immun Inflamm Dis 3:289–299. http://dx.doi.org/10.1002/iid3.68.
54. Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, García VE, Krutzik SR, Weis SE, Vankayalapati R. 2008. Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38:459–469. http://dx.doi.org/10.1002/eji.200737268.
55. Trinath J, Maddur MS, Kaveri SV, Balaji KN, Bayry J. 2012. Mycobacterium tuberculosis promotes regulatory T-cell expansion via induction of programmed death-1 ligand 1 (PD-L1, CD274) on dendritic cells. J Infect Dis 205:694–696. http://dx.doi.org/10.1093/infdis/jir820.
56. Wu C, Zhou Q, Qin XJ, Qin SM, Shi HZ. 2010. CCL22 is involved in the recruitment of CD4+CD25 high T cells into tuberculous pleural effusions. Respirology 15:522–529. http://dx.doi.org/10.1111/j.1440-1843.2010.01719.x. [PubMed]
57. Bayry J, Tchilian EZ, Davies MN, Forbes EK, Draper SJ, Kaveri SV, Hill AV, Kazatchkine MD, Beverley PC, Flower DR, Tough DF. 2008. In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci USA 105:10221–10226. http://dx.doi.org/10.1073/pnas.0803453105.
58. Gordon S. 2003. Alternative activation of macrophages. Nat Rev Immunol 3:23–35 http://dx.doi.org/10.1038/nri978. [PubMed]
59. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. 2007. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517. http://dx.doi.org/10.1016/j.immuni.2007.07.022. [PubMed]
60. Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang AT, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A, Andersson J, Svensson M, Brighenti S. 2014. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 151:84–99. http://dx.doi.org/10.1016/j.clim.2014.01.010. [PubMed]
61. van Crevel R, Karyadi E, Preyers F, Leenders M, Kullberg BJ, Nelwan RH, van der Meer JW. 2000. Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J Infect Dis 181:1194–1197. http://dx.doi.org/10.1086/315325. [PubMed]
62. Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H. 2005. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors. J Immunol 175:6107–6116. http://dx.doi.org/10.4049/jimmunol.175.9.6107.
63. Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R. 2008. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 180:1729–1736. http://dx.doi.org/10.4049/jimmunol.180.3.1729. [PubMed][CrossRef]
64. Vankayalapati R, Wizel B, Weis SE, Safi H, Lakey DL, Mandelboim O, Samten B, Porgador A, Barnes PF. 2002. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 168:3451–3457. http://dx.doi.org/10.4049/jimmunol.168.7.3451. [PubMed]
65. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Höpner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rötzschke O, Falk K. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232. http://dx.doi.org/10.1182/blood-2006-12-064527.
66. Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E. 2006. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res 66:7758–7765. http://dx.doi.org/10.1158/0008-5472.CAN-06-0478.
67. Kim K, Perera R, Tan DB, Fernandez S, Seddiki N, Waring J, French MA. 2014. Circulating mycobacterial-reactive CD4+ T cells with an immunosuppressive phenotype are higher in active tuberculosis than latent tuberculosis infection. Tuberculosis (Edinb) 94:494–501. http://dx.doi.org/10.1016/j.tube.2014.07.002. [PubMed]
68. de Cassan SC, Pathan AA, Sander CR, Minassian A, Rowland R, Hill AV, McShane H, Fletcher HA. 2010. Investigating the induction of vaccine-induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG-immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clin Vaccine Immunol 17:1066–1073. http://dx.doi.org/10.1128/CVI.00047-10. [PubMed]
69. Griffiths KL, Pathan AA, Minassian AM, Sander CR, Beveridge NE, Hill AV, Fletcher HA, McShane H. 2011. Th1/Th17 cell induction and corresponding reduction in ATP consumption following vaccination with the novel Mycobacterium tuberculosis vaccine MVA85A. PLoS One 6:e23463. http://dx.doi.org/10.1371/journal.pone.0023463.
70. Ye ZJ, Zhou Q, Du RH, Li X, Huang B, Shi HZ. 2011. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clin Vaccine Immunol 18:1608–1615. http://dx.doi.org/10.1128/CVI.05214-11. [PubMed]
71. Boer MC, van Meijgaarden KE, Bastid J, Ottenhoff TH, Joosten SA. 2013. CD39 is involved in mediating suppression by Mycobacterium bovis BCG-activated human CD8(+) CD39(+) regulatory T cells. Eur J Immunol 43:1925–1932. http://dx.doi.org/10.1002/eji.201243286. [PubMed]
72. Sinsimer D, Huet G, Manca C, Tsenova L, Koo MS, Kurepina N, Kana B, Mathema B, Marras SA, Kreiswirth BN, Guilhot C, Kaplan G. 2008. The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 76:3027–3036. http://dx.doi.org/10.1128/IAI.01663-07. [PubMed]
73. Theus S, Eisenach K, Fomukong N, Silver RF, Cave MD. 2007. Beijing family Mycobacterium tuberculosis strains differ in their intracellular growth in THP-1 macrophages. Int J Tuberc Lung Dis 11:1087–1093. [PubMed]
74. Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry CE III, Kaplan G. 2004. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun 72:5511–5514. http://dx.doi.org/10.1128/IAI.72.9.5511-5514.2004.
75. Geffner L, Yokobori N, Basile J, Schierloh P, Balboa L, Romero MM, Ritacco V, Vescovo M, González Montaner P, Lopez B, Barrera L, Alemán M, Abatte E, Sasiain MC, de la Barrera S. 2009. Patients with multidrug-resistant tuberculosis display impaired Th1 responses and enhanced regulatory T-cell levels in response to an outbreak of multidrug-resistant Mycobacterium tuberculosis M and Ra strains. Infect Immun 77:5025–5034. http://dx.doi.org/10.1128/IAI.00224-09.
76. Basile JI, Geffner LJ, Romero MM, Balboa L, Sabio Y García C, Ritacco V, García A, Cuffré M, Abbate E, López B, Barrera L, Ambroggi M, Alemán M, Sasiain MC, de la Barrera SS. 2011. Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis 204:1054–1064. http://dx.doi.org/10.1093/infdis/jir460.
77. Wergeland I, Assmus J, Dyrhol-Riise AM. 2011. T regulatory cells and immune activation in Mycobacterium tuberculosis infection and the effect of preventive therapy. Scand J Immunol 73:234–242. http://dx.doi.org/10.1111/j.1365-3083.2010.02496.x. [PubMed]
78. Lim HJ, Park JS, Cho YJ, Yoon HI, Park KU, Lee CT, Lee JH. 2013. CD4(+)FoxP3(+) T regulatory cells in drug-susceptible and multidrug-resistant tuberculosis. Tuberculosis (Edinb) 93:523–528. http://dx.doi.org/10.1016/j.tube.2013.06.001. [PubMed]
79. Singh A, Dey AB, Mohan A, Sharma PK, Mitra DK. 2012. Foxp3+ regulatory T cells among tuberculosis patients: impact on prognosis and restoration of antigen specific IFN-γ producing T cells. PLoS One 7:e44728. http://dx.doi.org/10.1371/journal.pone.0044728.
80. Wu YE, Peng WG, Cai YM, Zheng GZ, Zheng GL, Lin JH, Zhang SW, Li K. 2010. Decrease in CD4+CD25+FoxP3+ Treg cells after pulmonary resection in the treatment of cavity multidrug-resistant tuberculosis. Int J Infect Dis 14:e815–e822. http://dx.doi.org/10.1016/j.ijid.2010.04.005.
81. Roberts T, Beyers N, Aguirre A, Walzl G. 2007. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta, and interleukin-4 mRNA levels. J Infect Dis 195:870–878. http://dx.doi.org/10.1086/511277.
82. Nemeth J, Winkler HM, Zwick RH, Rumetshofer R, Schenk P, Burghuber OC, Graninger W, Ramharter M, Winkler S. 2009. Recruitment of Mycobacterium tuberculosis specific CD4+ T cells to the site of infection for diagnosis of active tuberculosis. J Intern Med 265:163–168. http://dx.doi.org/10.1111/j.1365-2796.2008.02012.x.
83. Barnes PF, Mistry SD, Cooper CL, Pirmez C, Rea TH, Modlin RL. 1989. Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J Immunol 142:1114–1119. [PubMed]
84. Brighenti S, Andersson J. 2012. Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 205(Suppl 2):S316–S324. http://dx.doi.org/10.1093/infdis/jis043. [PubMed]
85. Flynn JL, Chan J, Lin PL. 2011. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4:271–278. http://dx.doi.org/10.1038/mi.2011.14. [PubMed]
86. Andersson J, Samarina A, Fink J, Rahman S, Grundström S. 2007. Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect Immun 75:5210–5222. http://dx.doi.org/10.1128/IAI.00624-07.
87. Rahman S, Gudetta B, Fink J, Granath A, Ashenafi S, Aseffa A, Derbew M, Svensson M, Andersson J, Brighenti SG. 2009. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions. Am J Pathol 174:2211–2224. http://dx.doi.org/10.2353/ajpath.2009.080941. [PubMed]
88. Larson RP, Shafiani S, Urdahl KB. 2013. Foxp3(+) regulatory T cells in tuberculosis. Adv Exp Med Biol 783:165–180. http://dx.doi.org/10.1007/978-1-4614-6111-1_9. [PubMed]
89. Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN, Tanverdi M, Mathema B, Ramaswamy SV, Walther G, Steyn LM, Barry CE III, Bekker LG. 2003. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71:7099–7108. http://dx.doi.org/10.1128/IAI.71.12.7099-7108.2003.
90. Rahman S, Rehn A, Rahman J, Andersson J, Svensson M, Brighenti S. 2015. Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin Immunol 156:85–97. http://dx.doi.org/10.1016/j.clim.2014.12.003.
91. Sharma PK, Saha PK, Singh A, Sharma SK, Ghosh B, Mitra DK. 2009. FoxP3+ regulatory T cells suppress effector T-cell function at pathologic site in miliary tuberculosis. Am J Respir Crit Care Med 179:1061–1070. http://dx.doi.org/10.1164/rccm.200804-529OC. [PubMed]
92. Herzmann C, Ernst M, Ehlers S, Stenger S, Maertzdorf J, Sotgiu G, Lange C. 2012. Increased frequencies of pulmonary regulatory T-cells in latent Mycobacterium tuberculosis infection. Eur Respir J 40:1450–1457. http://dx.doi.org/10.1183/09031936.00214611.
93. Sun Q, Zhang Q, Xiao H, Cui H, Su B. 2012. Significance of the frequency of CD4+CD25+CD127- T-cells in patients with pulmonary tuberculosis and diabetes mellitus. Respirology 17:876–882. http://dx.doi.org/10.1111/j.1440-1843.2012.02184.x. [PubMed]
94. Ibrahim L, Salah M, Abd El Rahman A, Zeidan A, Ragb M. 2013. Crucial role of CD4+CD 25+ FOXP3+ T regulatory cell, interferon-γ and interleukin-16 in malignant and tuberculous pleural effusions. Immunol Invest 42:122–136. http://dx.doi.org/10.3109/08820139.2012.736116.
95. Geffner L, Basile JI, Yokobori N, Sabio Y García C, Musella R, Castagnino J, Sasiain MC, de la Barrera S. 2014. CD4(+) CD25(high) forkhead box protein 3(+) regulatory T lymphocytes suppress interferon-γ and CD107 expression in CD4(+) and CD8(+) T cells from tuberculous pleural effusions. Clin Exp Immunol 175:235–245. http://dx.doi.org/10.1111/cei.12227. [PubMed]
96. Orme IM. 2005. Mouse and guinea pig models for testing new tuberculosis vaccines. Tuberculosis (Edinb) 85:13–17. http://dx.doi.org/10.1016/j.tube.2004.08.001. [PubMed]
97. Lenaerts A, Barry CE III, Dartois V. 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264:288–307. http://dx.doi.org/10.1111/imr.12252.
98. Sharpe SA, Eschelbach E, Basaraba RJ, Gleeson F, Hall GA, McIntyre A, Williams A, Kraft SL, Clark S, Gooch K, Hatch G, Orme IM, Marsh PD, Dennis MJ. 2009. Determination of lesion volume by MRI and stereology in a macaque model of tuberculosis. Tuberculosis (Edinb) 89:405–416. http://dx.doi.org/10.1016/j.tube.2009.09.002.
99. Quinn KM, McHugh RS, Rich FJ, Goldsack LM, de Lisle GW, Buddle BM, Delahunt B, Kirman JR. 2006. Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunol Cell Biol 84:467–474. http://dx.doi.org/10.1111/j.1440-1711.2006.01460.x.
100. Ordway D, Palanisamy G, Henao-Tamayo M, Smith EE, Shanley C, Orme IM, Basaraba RJ. 2007. The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179:2532–2541. http://dx.doi.org/10.4049/jimmunol.179.4.2532. [PubMed]
101. McMurray DN. 2003. Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host-pathogen interface in secondary tubercles. Tuberculosis (Edinb) 83:131–134. http://dx.doi.org/10.1016/S1472-9792(02)00079-3.
102. Turner OC, Basaraba RJ, Orme IM. 2003. Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect Immun 71:864–871. http://dx.doi.org/10.1128/IAI.71.2.864-871.2003.
103. Somashekar BS, Amin AG, Tripathi P, MacKinnon N, Rithner CD, Shanley CA, Basaraba R, Henao-Tamayo M, Kato-Maeda M, Ramamoorthy A, Orme IM, Ordway DJ, Chatterjee D. 2012. Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res 11:4873–4884. http://dx.doi.org/10.1021/pr300345x.
104. Kato-Maeda M, Shanley CA, Ackart D, Jarlsberg LG, Shang S, Obregon-Henao A, Harton M, Basaraba RJ, Henao-Tamayo M, Barrozo JC, Rose J, Kawamura LM, Coscolla M, Fofanov VY, Koshinsky H, Gagneux S, Hopewell PC, Ordway DJ, Orme IM. 2012. Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 19:1227–1237. http://dx.doi.org/10.1128/CVI.00250-12. [PubMed]
105. Shang S, Shanley CA, Caraway ML, Orme EA, Henao-Tamayo M, Hascall-Dove L, Ackart D, Orme IM, Ordway DJ, Basaraba RJ. 2012. Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine 30:1572–1582. http://dx.doi.org/10.1016/j.vaccine.2011.12.114.
106. Ordway D, Henao-Tamayo M, Shanley C, Smith EE, Palanisamy G, Wang B, Basaraba RJ, Orme IM. 2008. Influence of Mycobacterium bovis BCG vaccination on cellular immune response of guinea pigs challenged with Mycobacterium tuberculosis. Clin Vaccine Immunol 15:1248–1258. http://dx.doi.org/10.1128/CVI.00019-08.
107. Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, Coler RN, Reed SG. 2010. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2:53ra74. http://dx.doi.org/10.1126/scitranslmed.3001094.
108. Shang S, Shanley CA, Caraway ML, Orme EA, Henao-Tamayo M, Hascall-Dove L, Ackart D, Lenaerts AJ, Basaraba RJ, Orme IM, Ordway DJ. 2011. Activities of TMC207, rifampin, and pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrob Agents Chemother 55:124–131. http://dx.doi.org/10.1128/AAC.00978-10.
109. Flynn JL, Gideon HP, Mattila JT, Lin PL. 2015. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264:60–73. http://dx.doi.org/10.1111/imr.12258. [PubMed]
110. Sharpe SA, McShane H, Dennis MJ, Basaraba RJ, Gleeson F, Hall G, McIntyre A, Gooch K, Clark S, Beveridge NE, Nuth E, White A, Marriott A, Dowall S, Hill AV, Williams A, Marsh PD. 2010. Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints for vaccine testing. Clin Vaccine Immunol 17:1170–1182. http://dx.doi.org/10.1128/CVI.00079-10.
111. Flynn JL, Capuano SV, Croix D, Pawar S, Myers A, Zinovik A, Klein E. 2003. Non-human primates: a model for tuberculosis research. Tuberculosis (Edinb) 83:116–118. http://dx.doi.org/10.1016/S1472-9792(02)00059-8.
112. Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL. 2010. CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202:533–541. http://dx.doi.org/10.1086/654896. [PubMed]
113. Ordway D, Henao-Tamayo M, Harton M, Palanisamy G, Troudt J, Shanley C, Basaraba RJ, Orme IM. 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179:522–531. http://dx.doi.org/10.4049/jimmunol.179.1.522. [PubMed]
114. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, Bevan MJ, Urdahl KB. 2007. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204:2159–2169. http://dx.doi.org/10.1084/jem.20062105.
115. Cooper AM. 2009. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422. http://dx.doi.org/10.1146/annurev.immunol.021908.132703.
116. Kursar M, Koch M, Mittrücker HW, Nouailles G, Bonhagen K, Kamradt T, Kaufmann SH. 2007. Cutting Edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol 178:2661–2665 http://dx.doi.org/10.4049/jimmunol.178.5.2661.
117. Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. 2014. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12:289–299. http://dx.doi.org/10.1038/nrmicro3230. [PubMed]
118. Henao-Tamayo MI, Obregon-Henao A, Arnett K, Shanley CA, Podell B, Orme IM, Ordway D. 2016. Effect of BCG vaccination on CD4+Foxp3+ T cells during the acquired immune response to Mycobacterium tuberculosis infection. J Leukoc Biol 99:605–617. [PubMed]
119. Orme IM, Robinson RT, Cooper AM. 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16:57–63. http://dx.doi.org/10.1038/ni.3048. [PubMed]
120. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254. http://dx.doi.org/10.1038/nature10434.
121. Kuhn KA, Stappenbeck TS. 2013. Peripheral education of the immune system by the colonic microbiota. Semin Immunol 25:364–369. http://dx.doi.org/10.1016/j.smim.2013.10.002. [PubMed]
122. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB. 2010. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420. http://dx.doi.org/10.1084/jem.20091885.
123. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. 2008. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275. http://dx.doi.org/10.1126/science.1160062. [PubMed]
124. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. 2008. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 105:10113–10118. http://dx.doi.org/10.1073/pnas.0711106105.
125. Urdahl KB, Shafiani S, Ernst JD. 2011. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4:288–293. http://dx.doi.org/10.1038/mi.2011.10. [PubMed]
126. Belkaid Y, Tarbell K. 2009. Regulatory T cells in the control of host-microorganism interactions (*). Annu Rev Immunol 27:551–589. http://dx.doi.org/10.1146/annurev.immunol.021908.132723. [PubMed]
127. Ertelt JM, Rowe JH, Johanns TM, Lai JC, McLachlan JB, Way SS. 2009. Selective priming and expansion of antigen-specific Foxp3- CD4+ T cells during Listeria monocytogenes infection. J Immunol 182:3032–3038. http://dx.doi.org/10.4049/jimmunol.0803402.
128. Antunes I, Tolaini M, Kissenpfennig A, Iwashiro M, Kuribayashi K, Malissen B, Hasenkrug K, Kassiotis G. 2008. Retrovirus-specificity of regulatory T cells is neither present nor required in preventing retrovirus-induced bone marrow immune pathology. Immunity 29:782–794. http://dx.doi.org/10.1016/j.immuni.2008.09.016. [PubMed]
129. Gratz IK, Campbell DJ. 2014. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Front Immunol 5:333. http://dx.doi.org/10.3389/fimmu.2014.00333.
130. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. 2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602. http://dx.doi.org/10.1038/ni.1731. [PubMed]
131. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991. http://dx.doi.org/10.1126/science.1172702. [PubMed]
132. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY. 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–356. http://dx.doi.org/10.1038/nature07674. [PubMed]
133. Campbell DJ, Koch MA. 2011. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11:119–130. http://dx.doi.org/10.1038/nri2916. [PubMed]
134. Arvey A, van der Veeken J, Samstein RM, Feng Y, Stamatoyannopoulos JA, Rudensky AY. 2014. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat Immunol 15:580–587. http://dx.doi.org/10.1038/ni.2868. [PubMed]
135. McBride A, Konowich J, Salgame P. 2013. Host defense and recruitment of Foxp3? T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. PLoS Pathog 9:e1003397. http://dx.doi.org/10.1371/journal.ppat.1003397.
136. Leepiyasakulchai C, Ignatowicz L, Pawlowski A, Källenius G, Sköld M. 2012. Failure to recruit anti-inflammatory CD103+ dendritic cells and a diminished CD4+ Foxp3+ regulatory T cell pool in mice that display excessive lung inflammation and increased susceptibility to Mycobacterium tuberculosis. Infect Immun 80:1128–1139. http://dx.doi.org/10.1128/IAI.05552-11.
137. Henao-Tamayo M, Obregón-Henao A, Creissen E, Shanley C, Orme I, Ordway DJ. 2015. Differential Mycobacterium bovis BCG vaccine-derived efficacy in C3Heb/FeJ and C3H/HeOuJ mice exposed to a clinical strain of Mycobacterium tuberculosis. Clin Vaccine Immunol 22:91–98. http://dx.doi.org/10.1128/CVI.00466-14.
138. Bai X, Shang S, Henao-Tamayo M, Basaraba RJ, Ovrutsky AR, Matsuda JL, Takeda K, Chan MM, Dakhama A, Kinney WH, Trostel J, Bai A, Honda JR, Achcar R, Hartney J, Joosten LA, Kim SH, Orme I, Dinarello CA, Ordway DJ, Chan ED. 2015. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 112:5111–5116. http://dx.doi.org/10.1073/pnas.1424302112.
139. Ndure J, Flanagan KL. 2014. Targeting regulatory T cells to improve vaccine immunogenicity in early life. Front Microbiol 5:477. http://dx.doi.org/10.3389/fmicb.2014.00477. [PubMed]
140. Fine PE. 1995. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346:1339–1345. http://dx.doi.org/10.1016/S0140-6736(95)92348-9. [PubMed]
141. Pitt JM, Blankley S, McShane H, O’Garra A. 2013. Vaccination against tuberculosis: how can we better BCG? Microb Pathog 58:2–16. http://dx.doi.org/10.1016/j.micpath.2012.12.002. [PubMed]
142. Orme IM. 2013. Vaccine development for tuberculosis: current progress. Drugs 73:1015–1024. http://dx.doi.org/10.1007/s40265-013-0081-8. [PubMed]
143. Ordway DJ, Shang S, Henao-Tamayo M, Obregon-Henao A, Nold L, Caraway M, Shanley CA, Basaraba RJ, Duncan CG, Orme IM. 2011. Mycobacterium bovis BCG-mediated protection against W-Beijing strains of Mycobacterium tuberculosis is diminished concomitant with the emergence of regulatory T cells. Clin Vaccine Immunol 18:1527–1535. http://dx.doi.org/10.1128/CVI.05127-11.
144. Feruglio SL, Tonby K, Kvale D, Dyrhol-Riise AM. 2015. Early dynamics of T helper cell cytokines and T regulatory cells in response to treatment of active Mycobacterium tuberculosis infection. Clin Exp Immunol 179:454–465. http://dx.doi.org/10.1111/cei.12468.
145. Henao-Tamayo M, Obregón-Henao A, Ordway DJ, Shang S, Duncan CG, Orme IM. 2012. A mouse model of tuberculosis reinfection. Tuberculosis (Edinb) 92:211–217. http://dx.doi.org/10.1016/j.tube.2012.02.008. [PubMed]
146. Shang S, Harton M, Tamayo MH, Shanley C, Palanisamy GS, Caraway M, Chan ED, Basaraba RJ, Orme IM, Ordway DJ. 2011. Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis. Tuberculosis (Edinb) 91:378–385. http://dx.doi.org/10.1016/j.tube.2011.06.001. [PubMed]
147. Podell BK, Ackart DF, Obregon-Henao A, Eck SP, Henao-Tamayo M, Richardson M, Orme IM, Ordway DJ, Basaraba RJ. 2014. Increased severity of tuberculosis in Guinea pigs with type 2 diabetes: a model of diabetes-tuberculosis comorbidity. Am J Pathol 184:1104–1118. http://dx.doi.org/10.1016/j.ajpath.2013.12.015. [PubMed]
148. Capuano SV III, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, Bissel S, Fuhrman C, Klein E, Flynn JL. 2003. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71:5831–5844. http://dx.doi.org/10.1128/IAI.71.10.5831-5844.2003.
149. Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C, Chiosea I, Capuano SV, Fuhrman C, Klein E, Flynn JL. 2009. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77:4631–4642. http://dx.doi.org/10.1128/IAI.00592-09.
150. Kaushal D, Mehra S, Didier PJ, Lackner AA. 2012. The non-human primate model of tuberculosis. J Med Primatol 41:191–201. http://dx.doi.org/10.1111/j.1600-0684.2012.00536.x. [PubMed]
151. Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D. 2015. LAG3 expression in active Mycobacterium tuberculosis infections. Am J Pathol 185:820–833. http://dx.doi.org/10.1016/j.ajpath.2014.11.003.
152. Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K, Alvarez X, Kaushal D. 2010. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5:e12266. http://dx.doi.org/10.1371/journal.pone.0012266.
153. Chen CY, Huang D, Yao S, Halliday L, Zeng G, Wang RC, Chen ZW. 2012. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J Immunol 188:4278–4288. http://dx.doi.org/10.4049/jimmunol.1101291.
154. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, Kirschner DE, Lin PL, Flynn JL. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11:e1004603. http://dx.doi.org/10.1371/journal.ppat.1004603.
microbiolspec.TBTB2-0006-2016.citations
cm/4/6
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0006-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0006-2016
2016-12-09
2017-11-21

Abstract:

Immunity against requires a balance between adaptive immune responses to constrain bacterial replication and the prevention of potentially damaging immune activation. Regulatory T (Treg) cells express the transcription factor Foxp3+ and constitute an essential counterbalance of inflammatory Th1 responses and are required to maintain immune homeostasis. The first reports describing the presence of Foxp3-expressing CD4+ Treg cells in tuberculosis (TB) emerged in 2006. Different Treg cell subsets, most likely specialized for different tissues and microenvironments, have been shown to expand in both human TB and animal models of TB. Recently, additional functional roles for Treg cells have been demonstrated during different stages and spectrums of TB disease. Foxp3+ regulatory cells can quickly expand during early infection and impede the onset of cellular immunity and persist during chronic TB infection. Increased frequencies of Treg cells have been associated with a detrimental outcome of active TB, and may be dependent on the strain, animal model, local environment, and the stage of infection. Some investigations also suggest that Treg cells are required together with effector T cell responses to obtain reduced pathology and sterilizing immunity. In this review, we will first provide an overview of the regulatory cells and mechanisms that control immune homeostasis. Then, we will review what is known about the phenotype and function of Treg cells from studies in human TB and experimental animal models of TB. We will discuss the potential role of Treg cells in the progression of TB disease and the relevance of this knowledge for future efforts to prevent, modulate, and treat TB.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Regulatory T cell suppression of antigen-presenting cells (APCs). CTLA-4 on the surface of Treg cells can prevent or depress the upregulation of CD80 and CD86, the major costimulatory molecules on APC. LAG-3 on Treg cells can interact with MHC class II on APCs, by binding of LAG-3 to MHC class II molecules on immature DCs, causing an inhibitory signal that suppresses DC maturation and immaturity. Tissue destruction results in extracellular ATP that functions as an indicator and exerts inflammatory effects on DCs. Catalytic inactivation of extracellular ATP by CD39 represents an anti-inflammatory mechanism that may be used by Treg cells to prevent the deleterious effects of ATP on antigen-presenting cell function. In contrast, Nrp-1 (neuropilin) promotes extended interactions between Treg cells and immature DCs and limits access of the effector cells to APCs.

Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

A combination of host immune factors and strain virulence can result in a distinctive host immunophenotype over time, resulting in multiple outcomes. During infection too little Treg activity can lead to a greater Th1 immune response, resulting in tissue damage and bacterial growth. A balance of both Th1 and Treg immunity can result in proper antibacterial immunity, leading to reduced TB growth. Excessive Treg activity results in a counterregulatory Treg response that ultimately impairs host immunity against the tubercle bacillus, allowing disease progression.

Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of proposed regulatory T cell suppression in mice BCG vaccinated and exposed to clinical and clinical alone. The initial BCG vaccination results in bacterial lymph node persistence in the animal TB model that leads to the presence of Treg and Th17 cells. Upon a subsequent infection with Th1 and Th17 cells expand at a high rate, causing GR1+ influx and pulmonary tissue damage. In an attempt to limit this damage Tregs expand with Th1 immunity and produce IL-10 and CTLA4 binds to CD80/CD86 costimulatory molecules to limit effector T cell expansion. The abundance of Th17 cells can also have a negative regulatory feedback on Th1 effector cells. infection in mice results in expansion of Th1 IFN-γ effector cells capable of limiting further expansion of Th17 cells producing IL-17 induction of GR1+ cells and pulmonary pathology. Treg cells will expand with the Th1 effector immunity limiting Th17 cells through IL-2 consumption with CD25 or IL-10 production.

Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Impacts of Foxp3+ on host defense against

Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0006-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error