1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Non-Human Primate Models of Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Juliet C. Peña1, Wen-Zhe Ho2
  • Editors: William R. Jacobs Jr.4, Helen McShane5, Valerie Mizrahi6, Ian M. Orme7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140; 2: Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140; 3: Animal Biosafety Level III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China; 4: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 5: University of Oxford, Oxford OX3 7DQ, United Kingdom; 6: University of Cape Town, Rondebosch 7701, South Africa; 7: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
  • Received 13 January 2016 Accepted 29 February 2016 Published 01 July 2016
  • Wen-Zhe Ho, wenzheho@temple.edu
image of Non-Human Primate Models of Tuberculosis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Non-Human Primate Models of Tuberculosis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/TBTB2-0007-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/4/TBTB2-0007-2016-2.gif
  • Abstract:

    Among the animal models of tuberculosis (TB), the non-human primates, particularly rhesus macaques () and cynomolgus macaques (), share the greatest anatomical and physiological similarities with humans. Macaques are highly susceptible to infection and manifest the complete spectrum of clinical and pathological manifestations of TB as seen in humans. Therefore, the macaque models have been used extensively for investigating the pathogenesis of infection and for preclinical testing of drugs and vaccines against TB. This review focuses on published major studies that exemplify how the rhesus and cynomolgus macaques have enhanced and may continue to advance global efforts in TB research.

  • Citation: Peña J, Ho W. 2016. Non-Human Primate Models of Tuberculosis. Microbiol Spectrum 4(4):TBTB2-0007-2016. doi:10.1128/microbiolspec.TBTB2-0007-2016.

References

1. Ackermann RR (ed). 2003. A comparative primate dissection guide, version 1.0. See more at http://www.archaeology.uct.ac.za/age/faculty-and-staff/rebecca-rogers-ackermann#sthash.M7Y7sPzv.dpuf.
2. Carlsson HE, Schapiro SJ, Farah I, Hau J. 2004. Use of primates in research: a global overview. Am J Primatol 63:225–237. http://dx.doi.org/10.1002/ajp.20054. [PubMed][CrossRef]
3. O’Neil RM, Ashack RJ, Goodman FR. 1981. A comparative study of the respiratory responses to bronchoactive agents in rhesus and cynomolgus monkeys. J Pharmacol Methods 5:267–273. http://dx.doi.org/10.1016/0160-5402(81)90094-2. [PubMed][CrossRef]
4. Capuano SV III, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, Bissel S, Fuhrman C, Klein E, Flynn JL. 2003. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71:5831–5844. http://dx.doi.org/10.1128/IAI.71.10.5831-5844.2003. [CrossRef]
5. Flynn JL. 2006. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect 8:1179–1188. http://dx.doi.org/10.1016/j.micinf.2005.10.033. [PubMed][CrossRef]
6. Wolf RH, Gibson SV, Watson EA, Baskin GB. 1988. Multidrug chemotherapy of tuberculosis in rhesus monkeys. Lab Anim Sci 38:25–33. [PubMed]
7. Schmidt LH. 1966. Studies on the antituberculous activity of ethambutol in monkeys. Ann N Y Acad Sci 135(2 New Antituber):747–758. http://dx.doi.org/10.1111/j.1749-6632.1966.tb45520.x. [CrossRef]
8. Darrah PA, Bolton DL, Lackner AA, Kaushal D, Aye PP, Mehra S, Blanchard JL, Didier PJ, Roy CJ, Rao SS, Hokey DA, Scanga CA, Sizemore DR, Sadoff JC, Roederer M, Seder RA. 2014. Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. J Immunol 193:1799–1811. http://dx.doi.org/10.4049/jimmunol.1400676. [PubMed][CrossRef]
9. Mehra S, Alvarez X, Didier PJ, Doyle LA, Blanchard JL, Lackner AA, Kaushal D. 2013. Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J Infect Dis 207:1115–1127. http://dx.doi.org/10.1093/infdis/jis778. [PubMed][CrossRef]
10. Larsen MH, Biermann K, Chen B, Hsu T, Sambandamurthy VK, Lackner AA, Aye PP, Didier P, Huang D, Shao L, Wei H, Letvin NL, Frothingham R, Haynes BF, Chen ZW, Jacobs WR Jr. 2009. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine 27:4709–4717. http://dx.doi.org/10.1016/j.vaccine.2009.05.050. [CrossRef]
11. McMurray DN. 2000. A nonhuman primate model for preclinical testing of new tuberculosis vaccines. Clin Infect Dis 30(Suppl 3):S210–S212. http://dx.doi.org/10.1086/313885. [PubMed][CrossRef]
12. Good RC. 1968. Biology of the mycobacterioses. Simian tuberculosis: immunologic aspects. Ann N Y Acad Sci 154(1 Biology of My):200–213. http://dx.doi.org/10.1111/j.1749-6632.1968.tb16710.x. [PubMed][CrossRef]
13. Barclay WR, Anacker RL, Brehmer W, Leif W, Ribi E. 1970. Aerosol-induced tuberculosis in subhuman primates and the course of the disease after intravenous BCG vaccination. Infect Immun 2:574–582. [PubMed]
14. Baram P, Soltysik L, Condoulis W. 1971. The in vitro assay of tuberculin hypersensitivity in Macaca mulatta sensitized with bacille Calmette Guerin cell wall vaccine and-or infected with virulent Mycobacterium tuberculosis. Lab Anim Sci 21:727–733. [PubMed]
15. Ribi E, Anacker RL, Barclay WR, Brehmer W, Harris SC, Leif WR, Simmons J. 1971. Efficacy of mycobacterial cell walls as a vaccine against airborne tuberculosis in the Rheusus monkey. J Infect Dis 123:527–538. http://dx.doi.org/10.1093/infdis/123.5.527. [PubMed][CrossRef]
16. Barclay WR, Busey WM, Dalgard DW, Good RC, Janicki BW, Kasik JE, Ribi E, Ulrich CE, Wolinsky E. 1973. Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guerin. Am Rev Respir Dis 107:351–358. [PubMed]
17. Janicki BW, Good RC, Minden P, Affronti LF, Hymes WF. 1973. Immune responses in rhesus monkeys after bacillus Calmette-Guerin vaccination and aerosol challenge with Mycobacterium tuberculosis. Am Rev Respir Dis 107:359–366. [PubMed]
18. Chaparas SD, Good RC, Janicki BW. 1975. Tuberculin-induced lymphocyte transformation and skin reactivity in monkeys vaccinated or not vaccinated with Bacille Calmette-Guérin, then challenged with virulent Mycobacterium tuberculosis. Am Rev Respir Dis 112:43–47. [PubMed]
19. Harper GJ, Morton JD. 1953. The respiratory retention of bacterial aerosols: experiments with radioactive spores. J Hyg (Lond) 51:372–385. http://dx.doi.org/10.1017/S0022172400015801. [PubMed][CrossRef]
20. Walsh GP, Tan EV, dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, Cellona RV, Nazareno JB, Horwitz MA. 1996. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 2:430–436. http://dx.doi.org/10.1038/nm0496-430. [CrossRef]
21. Gormus BJ, Blanchard JL, Alvarez XH, Didier PJ. 2004. Evidence for a rhesus monkey model of asymptomatic tuberculosis. J Med Primatol 33:134–145. http://dx.doi.org/10.1111/j.1600-0684.2004.00062.x. [PubMed][CrossRef]
22. Lewinsohn DM, Tydeman IS, Frieder M, Grotzke JE, Lines RA, Ahmed S, Prongay KD, Primack SL, Colgin LM, Lewis AD, Lewinsohn DA. 2006. High resolution radiographic and fine immunologic definition of TB disease progression in the rhesus macaque. Microbes Infect 8:2587–2598. http://dx.doi.org/10.1016/j.micinf.2006.07.007. [CrossRef]
23. Magalhaes I, Sizemore DR, Ahmed RK, Mueller S, Wehlin L, Scanga C, Weichold F, Schirru G, Pau MG, Goudsmit J, Kühlmann-Berenzon S, Spångberg M, Andersson J, Gaines H, Thorstensson R, Skeiky YA, Sadoff J, Maeurer M. 2008. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One 3:e3790. http://dx.doi.org/10.1371/journal.pone.0003790. [CrossRef]
24. Rahman S, Magalhaes I, Rahman J, Ahmed RK, Sizemore DR, Scanga CA, Weichold F, Verreck F, Kondova I, Sadoff J, Thorstensson R, Spångberg M, Svensson M, Andersson J, Maeurer M, Brighenti S. 2012. Prime-boost vaccination with rBCG/rAd35 enhances CD8+ cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates. Mol Med 18:647–658. http://dx.doi.org/10.2119/molmed.2011.00222. [CrossRef]
25. Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM, Kersbergen A, Ottenhoff TH, Heidt PJ, Gilbert SC, Gicquel B, Hill AV, Martin C, McShane H, Thomas AW. 2009. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4:e5264. http://dx.doi.org/10.1371/journal.pone.0005264. (Erratum 6:doi:10.1371/annotation/e599dafd-8208-4655-a792-21cb125f7f66).
26. Sharpe SA, McShane H, Dennis MJ, Basaraba RJ, Gleeson F, Hall G, McIntyre A, Gooch K, Clark S, Beveridge NE, Nuth E, White A, Marriott A, Dowall S, Hill AV, Williams A, Marsh PD. 2010. Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints for vaccine testing. Clin Vaccine Immunol 17:1170–1182. http://dx.doi.org/10.1128/CVI.00079-10. [CrossRef]
27. Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K, Alvarez X, Kaushal D. 2010. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5:e12266. http://dx.doi.org/10.1371/journal.pone.0012266. [CrossRef]
28. Dutta NK, Mehra S, Didier PJ, Roy CJ, Doyle LA, Alvarez X, Ratterree M, Be NA, Lamichhane G, Jain SK, Lacey MR, Lackner AA, Kaushal D. 2010. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 201:1743–1752. http://dx.doi.org/10.1086/652497. [PubMed][CrossRef]
29. Zhang J, Ye YQ, Wang Y, Mo PZ, Xian QY, Rao Y, Bao R, Dai M, Liu JY, Guo M, Wang X, Huang ZX, Sun LH, Tang ZJ, Ho WZ. 2011. M. tuberculosis H37Rv infection of Chinese rhesus macaques. J Neuroimmune Pharmacol 6:362–370. http://dx.doi.org/10.1007/s11481-010-9245-4. [PubMed][CrossRef]
30. Zhang J, Xian Q, Guo M, Huang Z, Rao Y, Wang Y, Wang X, Bao R, Evans TG, Hokey D, Sizemore D, Ho WZ. 2014. Mycobacterium tuberculosis Erdman infection of rhesus macaques of Chinese origin. Tuberculosis (Edinb) 94:634–643. http://dx.doi.org/10.1016/j.tube.2014.08.005. [CrossRef]
31. Mehra S, Golden NA, Dutta NK, Midkiff CC, Alvarez X, Doyle LA, Asher M, Russell-Lodrigue K, Monjure C, Roy CJ, Blanchard JL, Didier PJ, Veazey RS, Lackner AA, Kaushal D. 2011. Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. J Med Primatol 40:233–243. http://dx.doi.org/10.1111/j.1600-0684.2011.00485.x. [CrossRef]
32. Luciw PA, Oslund KL, Yang XW, Adamson L, Ravindran R, Canfield DR, Tarara R, Hirst L, Christensen M, Lerche NW, Offenstein H, Lewinsohn D, Ventimiglia F, Brignolo L, Wisner ER, Hyde DM. 2011. Stereological analysis of bacterial load and lung lesions in nonhuman primates (rhesus macaques) experimentally infected with Mycobacterium tuberculosis. Am J Physiol Lung Cell Mol Physiol 301:L731–L738. http://dx.doi.org/10.1152/ajplung.00120.2011. [CrossRef]
33. Dutta NK, Mehra S, Martinez AN, Alvarez X, Renner NA, Morici LA, Pahar B, Maclean AG, Lackner AA, Kaushal D. 2012. The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes. PLoS One 7:e28958. http://dx.doi.org/10.1371/journal.pone.0028958. [CrossRef]
34. Mehra S, Golden NA, Stuckey K, Didier PJ, Doyle LA, Russell-Lodrigue KE, Sugimoto C, Hasegawa A, Sivasubramani SK, Roy CJ, Alvarez X, Kuroda MJ, Blanchard JL, Lackner AA, Kaushal D. 2012. The Mycobacterium tuberculosis stress response factor SigH is required for bacterial burden as well as immunopathology in primate lungs. J Infect Dis 205:1203–1213. http://dx.doi.org/10.1093/infdis/jis102. [CrossRef]
35. Cepeda M, Salas M, Folwarczny J, Leandro AC, Hodara VL, de la Garza MA, Dick EJ Jr, Owston M, Armitige LY, Gauduin MC. 2013. Establishment of a neonatal rhesus macaque model to study Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 93(Suppl):S51–S59. http://dx.doi.org/10.1016/S1472-9792(13)70011-8. [CrossRef]
36. Luo Q, Mehra S, Golden NA, Kaushal D, Lacey MR. 2014. Identification of biomarkers for tuberculosis susceptibility via integrated analysis of gene expression and longitudinal clinical data. Front Genet 5:240. http://dx.doi.org/10.3389/fgene.2014.00240. [CrossRef]
37. Langermans JA, Andersen P, van Soolingen D, Vervenne RA, Frost PA, van der Laan T, van Pinxteren LA, van den Hombergh J, Kroon S, Peekel I, Florquin S, Thomas AW. 2001. Divergent effect of bacillus Calmette-Guérin (BCG) vaccination on Mycobacterium tuberculosis infection in highly related macaque species: implications for primate models in tuberculosis vaccine research. Proc Natl Acad Sci USA 98:11497–11502. http://dx.doi.org/10.1073/pnas.201404898. [CrossRef]
38. Ravindran R, Krishnan VV, Dhawan R, Wunderlich ML, Lerche NW, Flynn JL, Luciw PA, Khan IH. 2014. Plasma antibody profiles in non-human primate tuberculosis. J Med Primatol 43:59–71. http://dx.doi.org/10.1111/jmp.12097. [PubMed][CrossRef]
39. Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D. 2015. LAG3 expression in active Mycobacterium tuberculosis infections. Am J Pathol 185:820–833. http://dx.doi.org/10.1016/j.ajpath.2014.11.003. [CrossRef]
40. Mehra S, Foreman TW, Didier PJ, Ahsan MH, Hudock TA, Kissee R, Golden NA, Gautam US, Johnson AM, Alvarez X, Russell-Lodrigue KE, Doyle LA, Roy CJ, Niu T, Blanchard JL, Khader SA, Lackner AA, Sherman DR, Kaushal D. 2015. The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. Am J Respir Crit Care Med 191:1185–1196. http://dx.doi.org/10.1164/rccm.201408-1502OC.
41. Sibley L, Dennis M, Sarfas C, White A, Clark S, Gleeson F, McIntyre A, Rayner E, Pearson G, Williams A, Marsh P, Sharpe S. 2016. Route of delivery to the airway influences the distribution of pulmonary disease but not the outcome of Mycobacterium tuberculosis infection in rhesus macaques. Tuberculosis (Edinb) 96:141–149. http://dx.doi.org/10.1016/j.tube.2015.11.004 [CrossRef]
42. Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, Muraki Y, Kanamaru N, Hashimoto S, Takai H, Okada C, Fukunaga Y, Sakaguchi Y, Furukawa I, Yamada K, Inoue Y, Takemoto Y, Naito M, Yamada T, Matsumoto M, McMurray DN, Cruz EC, Tan EV, Abalos RM, Burgos JA, Gelber R, Skeiky Y, Reed S, Sakatani M, Okada M. 2005. Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine 23:2132–2135. http://dx.doi.org/10.1016/j.vaccine.2005.01.057. [PubMed][CrossRef]
43. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Fukamizu R, Tsunai Y, Inoue R, Nakatani H, Namie Y, Yamada J, Takao K, Asai R, Asaki R, Matsumoto M, McMurray DN, Dela Cruz EC, Tan EV, Abalos RM, Burgos JA, Gelber R, Sakatani M. 2007. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine 25:2990–2993. http://dx.doi.org/10.1016/j.vaccine.2007.01.014. [PubMed][CrossRef]
44. Reed SG, Coler RN, Dalemans W, Tan EV, Dela Cruz EC, Basaraba RJ, Orme IM, Skeiky YA, Alderson MR, Cowgill KD, Prieels JP, Abalos RM, Dubois MC, Cohen J, Mettens P, Lobet Y. 2009. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci USA 106:2301–2306 (Erratum 106:7678). http://dx.doi.org/10.1073/pnas.0712077106. [PubMed][CrossRef]
45. Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C, Chiosea I, Capuano SV, Fuhrman C, Klein E, Flynn JL. 2009. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77:4631–4642. http://dx.doi.org/10.1128/IAI.00592-09. [PubMed][CrossRef]
46. Lin PL, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek NN, Capuano SV, Klein E, Flynn JL. 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–350. [PubMed]
47. Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL. 2010. CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202:533–541. http://dx.doi.org/10.1086/654896. [PubMed][CrossRef]
48. Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J, Sturgeon TJ, Montelaro RC, Lin PL, Flynn JL. 2010. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5:e9611 (Erratum PLoS One 2015). http://dx.doi.org/10.1371/journal.pone.0009611. [PubMed][CrossRef]
49. Mattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL. 2011. Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. J Immunol 186:3527–3537. http://dx.doi.org/10.4049/jimmunol.1003773. [CrossRef]
50. Lin PL, Dietrich J, Tan E, Abalos RM, Burgos J, Bigbee C, Bigbee M, Milk L, Gideon HP, Rodgers M, Cochran C, Guinn KM, Sherman DR, Klein E, Janssen C, Flynn JL, Andersen P. 2012. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122:303–314. http://dx.doi.org/10.1172/JCI46252. [CrossRef]
51. Phuah JY, Mattila JT, Lin PL, Flynn JL. 2012. Activated b cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am J Pathol 181:508–514. http://dx.doi.org/10.1016/j.ajpath.2012.05.009. [CrossRef]
52. Ragheb MN, Ford CB, Chase MR, Lin PL, Flynn JL, Fortune SM. 2013. The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection. BMC Genomics 14:145. http://dx.doi.org/10.1186/1471-2164-14-145. [PubMed][CrossRef]
53. Chen CY, Yao SY, Huang D, Wei HY, Sicard H, Zeng GC, Jomaa H, Larsen MH, Jacobs WR, Wang R, Letvin N, Shen Y, Qiu LY, Shen L, Chen ZW. 2013. Phosphoantigen/IL2 expansion and differentiation of Vγ2Vδ2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog 9:e1003501. [PubMed][CrossRef]
54. Lin PL, Coleman T, Carney JP, Lopresti BJ, Tomko J, Fillmore D, Dartois V, Scanga C, Frye LJ, Janssen C, Klein E, Barry CE III, Flynn JL. 2013. Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother 57:4237–4244. http://dx.doi.org/10.1128/AAC.00277-13. [CrossRef]
55. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL. 2014. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20:75–79. http://dx.doi.org/10.1038/nm.3412. [PubMed][CrossRef]
56. Roodgar M, Lackner A, Kaushal D, Sankaran S, Dandekar S, Trask JS, Drake C, Smith DG. 2013. Expression levels of 10 candidate genes in lung tissue of vaccinated and TB-infected cynomolgus macaques. J Med Primatol 42:161–164. http://dx.doi.org/10.1111/jmp.12040. [PubMed][CrossRef]
57. Dutta NK, McLachlan J, Mehra S, Kaushal D. 2014. Humoral and lung immune responses to Mycobacterium tuberculosis infection in a primate model of protection. Trials Vaccinol 3:47–51. http://dx.doi.org/10.1016/j.trivac.2014.02.001. [PubMed][CrossRef]
58. Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE. 2015. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 83:324–338. http://dx.doi.org/10.1128/IAI.02494-14. [PubMed][CrossRef]
59. Sharpe S, White A, Gleeson F, McIntyre A, Smyth D, Clark S, Sarfas C, Laddy D, Rayner E, Hall G, Williams A, Dennis M. 2016. Ultra low dose aerosol challenge with Mycobacterium tuberculosis leads to divergent outcomes in rhesus and cynomolgus macaques. Tuberculosis (Edinb) 96:1–12. http://dx.doi.org/10.1016/j.tube.2015.10.004. [CrossRef]
60. Sharpe SA, Eschelbach E, Basaraba RJ, Gleeson F, Hall GA, McIntyre A, Williams A, Kraft SL, Clark S, Gooch K, Hatch G, Orme IM, Marsh PD, Dennis MJ. 2009. Determination of lesion volume by MRI and stereology in a macaque model of tuberculosis. Tuberculosis (Edinb) 89:405–416. http://dx.doi.org/10.1016/j.tube.2009.09.002. [CrossRef]
61. Vervenne RA, Jones SL, van Soolingen D, van der Laan T, Andersen P, Heidt PJ, Thomas AW, Langermans JA. 2004. TB diagnosis in non-human primates: comparison of two interferon-gamma assays and the skin test for identification of Mycobacterium tuberculosis infection. Vet Immunol Immunopathol 100:61–71. http://dx.doi.org/10.1016/j.vetimm.2004.03.003.
62. Kanaujia GV, Motzel S, Garcia MA, Andersen P, Gennaro ML. 2004. Recognition of ESAT-6 sequences by antibodies in sera of tuberculous nonhuman primates. Clin Diagn Lab Immunol 11:222–226. [PubMed][CrossRef]
63. Lyashchenko KP, Greenwald R, Esfandiari J, Greenwald D, Nacy CA, Gibson S, Didier PJ, Washington M, Szczerba P, Motzel S, Handt L, Pollock JM, McNair J, Andersen P, Langermans JA, Verreck F, Ervin S, Ervin F, McCombs C. 2007. PrimaTB STAT-PAK assay, a novel, rapid lateral-flow test for tuberculosis in nonhuman primates. Clin Vaccine Immunol 14:1158–1164. http://dx.doi.org/10.1128/CVI.00230-07. [CrossRef]
64. Khan IH, Ravindran R, Yee J, Ziman M, Lewinsohn DM, Gennaro ML, Flynn JL, Goulding CW, DeRiemer K, Lerche NW, Luciw PA. 2008. Profiling antibodies to Mycobacterium tuberculosis by multiplex microbead suspension arrays for serodiagnosis of tuberculosis. Clin Vaccine Immunol 15:433–438. http://dx.doi.org/10.1128/CVI.00354-07. [CrossRef]
65. Rivera-Hernandez T, Carnathan DG, Moyle PM, Toth I, West NP, Young PR, Silvestri G, Walker MJ. 2014. The contribution of non-human primate models to the development of human vaccines. Discov Med 18:313–322. [PubMed]
66. Huang D, Qiu L, Wang R, Lai X, Du G, Seghal P, Shen Y, Shao L, Halliday L, Fortman J, Shen L, Letvin NL, Chen ZW. 2007. Immune gene networks of mycobacterial vaccine-elicited cellular responses and immunity. J Infect Dis 195:55–69. http://dx.doi.org/10.1086/509895. [PubMed][CrossRef]
67. Philips JA, Ernst JD. 2012. Tuberculosis pathogenesis and immunity. Annu Rev Pathol 7:353–384. http://dx.doi.org/10.1146/annurev-pathol-011811-132458. [PubMed][CrossRef]
68. Guo M, Ho WZ. 2014. Animal models to study Mycobacterium tuberculosis and HIV co-infection. Dongwuxue Yanjiu 35:163–169. [PubMed]
69. Shen Y, Shen L, Sehgal P, Zhou D, Simon M, Miller M, Enimi EA, Henckler B, Chalifoux L, Sehgal N, Gastron M, Letvin NL, Chen ZW. 2001. Antiretroviral agents restore Mycobacterium-specific T-cell immune responses and facilitate controlling a fatal tuberculosis-like disease in Macaques coinfected with simian immunodeficiency virus and Mycobacterium bovis BCG. J Virol 75:8690–8696. http://dx.doi.org/10.1128/JVI.75.18.8690-8696.2001.
70. Shen Y, Zhou D, Chalifoux L, Shen L, Simon M, Zeng X, Lai X, Li Y, Sehgal P, Letvin NL, Chen ZW. 2002. Induction of an AIDS virus-related tuberculosis-like disease in macaques: a model of simian immunodeficiency virus- Mycobacterium coinfection. Infect Immun 70:869–877. http://dx.doi.org/10.1128/IAI.70.2.869-877.2002. [CrossRef]
71. Via LE, Weiner DM, Schimel D, Lin PL, Dayao E, Tankersley SL, Cai Y, Coleman MT, Tomko J, Paripati P, Orandle M, Kastenmayer RJ, Tartakovsky M, Rosenthal A, Portevin D, Eum SY, Lahouar S, Gagneux S, Young DB, Flynn JL, Barry CE III. 2013. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). Infect Immun 81:2909–2919. http://dx.doi.org/10.1128/IAI.00632-13. [CrossRef]
72. Lerche NW, Yee JL, Capuano SV, Flynn JL. 2008. New approaches to tuberculosis surveillance in nonhuman primates. ILAR J 49:170–178. http://dx.doi.org/10.1093/ilar.49.2.170. [PubMed][CrossRef]
microbiolspec.TBTB2-0007-2016.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0007-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0007-2016
2016-07-01
2017-09-26

Abstract:

Among the animal models of tuberculosis (TB), the non-human primates, particularly rhesus macaques () and cynomolgus macaques (), share the greatest anatomical and physiological similarities with humans. Macaques are highly susceptible to infection and manifest the complete spectrum of clinical and pathological manifestations of TB as seen in humans. Therefore, the macaque models have been used extensively for investigating the pathogenesis of infection and for preclinical testing of drugs and vaccines against TB. This review focuses on published major studies that exemplify how the rhesus and cynomolgus macaques have enhanced and may continue to advance global efforts in TB research.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

“Golden Age” of TB research using rhesus macaques. This timeline illustrates major studies of experimental infection in Indian rhesus macaques during the so-called “Golden Age” from the 1960s to 1970s ( 7 , 12 18 ). Events are organized chronologically by year of publication. Thus, the 10-year study by Good et al. ( 12 ) actually began before the first reported investigation in 1966. The location of the experiments (in red) and the first/corresponding author (in blue) are indicated as well. BCG, bacillus Calmette-Guérin; BPRC, Biomedical Primate Research Center; Hazleton Laboratories (former organization purchased by Covance Inc.); , intracutaneous; , intramuscular; , intratracheal; , intravenous; ; NBL, Naval Biological Laboratories; NPRC, National Primate Research Center; PPD, purified protein derivative; , subcutaneous; UC, University of California.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Twenty-first century TB research using rhesus and cynomolgus macaques. This is a summary timeline of important studies of experimental infection in rhesus and cynomolgus macaques from 1996 to 2016. Only one study ( 20 ) was published before 2001.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Comparison of TB in humans versus rhesus and cynomolgus macaques

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
Generic image for table
TABLE 2

TB studies using both rhesus macaques and cynomolgus macaques

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
Generic image for table
TABLE 3

TB studies using rhesus macaques

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
Generic image for table
TABLE 4

TB studies using cynomolgus macaques

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016
Generic image for table
TABLE 5

Novel TB vaccine models using macaques

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.TBTB2-0007-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error