1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Role of Host Genetics (and Genomics) in Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Vivek Naranbhai1
  • Editors: William R. Jacobs Jr.2, Helen McShane3, Valerie Mizrahi4, Ian M. Orme5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire OX37BN, United Kingdom; Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa; 2: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 3: University of Oxford, Oxford OX3 7DQ, United Kingdom; 4: University of Cape Town, Rondebosch 7701, South Africa; 5: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.TBTB2-0011-2016
  • Received 26 January 2016 Accepted 31 March 2016 Published 28 October 2016
  • Vivek Naranbhai, vivekn@well.ox.ac.uk
image of The Role of Host Genetics (and Genomics) in Tuberculosis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Role of Host Genetics (and Genomics) in Tuberculosis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/5/TBTB2-0011-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/5/TBTB2-0011-2016-2.gif
  • Abstract:

    Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.

  • Citation: Naranbhai V. 2016. The Role of Host Genetics (and Genomics) in Tuberculosis. Microbiol Spectrum 4(5):TBTB2-0011-2016. doi:10.1128/microbiolspec.TBTB2-0011-2016.

Key Concept Ranking

Tumor Necrosis Factor alpha
0.44808865
Transforming Growth Factor beta
0.4240687
0.44808865

References

1. Comstock GW. 1978. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624. [PubMed]
2. Diehl K, von Verschner OF. 1933. Zwillingsforschung und erbliche Tuberkulosedisposition, Zwillingstuberkulose: Zwillingsforschung und erbliche Tuberkulosedisposition. 1.
3. Kallmann FJ, Reisner D. 1943. Twin studies on genetic variations in resistance to tuberculosis. J Hered 34:269–276.
4. van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT. 2007. Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med 176:1281–1288 http://dx.doi.org/10.1164/rccm.200703-435OC.
5. Cobat A, Gallant CJ, Simkin L, Black GF, Stanley K, Hughes J, Doherty TM, Hanekom WA, Eley B, Beyers N, Jaïs JP, van Helden P, Abel L, Hoal EG, Alcaic A, Schurr E. 2010. High heritability of antimycobacterial immunity in an area of hyperendemicity for tuberculosis disease. J Infect Dis 201:15–19 http://dx.doi.org/10.1086/648611. [CrossRef]
6. Stein CM, Guwatudde D, Nakakeeto M, Peters P, Elston RC, Tiwari HK, Mugerwa R, Whalen CC. 2003. Heritability analysis of cytokines as intermediate phenotypes of tuberculosis. J Infect Dis 187:1679–1685 http://dx.doi.org/10.1086/375249. [PubMed][CrossRef]
7. Sepulveda RL, Heiba IM, Navarrete C, Elston RC, Gonzalez B, Sorensen RU. 1994. Tuberculin reactivity after newborn BCG immunization in mono- and dizygotic twins. Tuber Lung Dis 75:138–143. [PubMed][CrossRef]
8. Cottle LE. 2011. Mendelian susceptibility to mycobacterial disease. Clin Genet 79:17–22 http://dx.doi.org/10.1111/j.1399-0004.2010.01510.x. [CrossRef]
9. Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, Agader A, Hassani A, El Hafidi N, Mrani NA, Jouhadi Z, Ailal F, Najib J, Reisli I, Zamani A, Yosunkaya S, Gulle-Girit S, Yildiran A, Cipe FE, Torun SH, Metin A, Atikan BY, Hatipoglu N, Aydogmus C, Kilic SS, Dogu F, Karaca N, Aksu G, Kutukculer N, Keser-Emiroglu M, Somer A, Tanir G, Aytekin C, Adimi P, Mahdaviani SA, Mamishi S, Bousfiha A, Sanal O, Mansouri D, Casanova JL, Abel L. 2015. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev 264:103–120 http://dx.doi.org/10.1111/imr.12272. [CrossRef]
10. Meyer CG, Intemann CD, Förster B, Owusu-Dabo E, Franke A, Horstmann RD, Thye T. 2016. No significant impact of IFN-γ pathway gene variants on tuberculosis susceptibility in a West African population. Eur J Hum Genet 24:748–755. doi:10.1038/ejhg.2015.172. [CrossRef]
11. Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82 http://dx.doi.org/10.1016/j.ajhg.2010.11.011. [PubMed][CrossRef]
12. Shaw MA, Collins A, Peacock CS, Miller EN, Black GF, Sibthorpe D, Lins-Lainson Z, Shaw JJ, Ramos F, Silveira F, Blackwell JM. 1997. Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tuber Lung Dis 78:35–45. [CrossRef]
13. Greenwood CM, Fujiwara TM, Boothroyd LJ, Miller MA, Frappier D, Fanning EA, Schurr E, Morgan K. 2000. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet 67:405–416 http://dx.doi.org/10.1086/303012. [CrossRef]
14. Bellamy R. 2000. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen. Clin Sci (Lond) 98:245–250. [PubMed][CrossRef]
15. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P, Bester D, Meyer M, Corrah T, Collin M, Camidge DR, Wilkinson D, Hoal-Van Helden E, Whittle HC, Amos W, van Helden P, Hill AV. 2000. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 97:8005–8009 http://dx.doi.org/10.1073/pnas.140201897. [PubMed][CrossRef]
16. Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M, Lazrak F, Archane MI, Casanova JL, Benslimane A, Schurr E, Abel L. 2006. An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 203:1679–1684 http://dx.doi.org/10.1084/jem.20060269. [CrossRef]
17. Stein CM, Zalwango S, Malone LL, Won S, Mayanja-Kizza H, Mugerwa RD, Leontiev DV, Thompson CL, Cartier KC, Elston RC, Iyengar SK, Boom WH, Whalen CC. 2008. Genome scan of M. tuberculosis infection and disease in Ugandans. PLoS One 3:e4094 http://dx.doi.org/10.1371/journal.pone.0004094. [PubMed][CrossRef]
18. Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JM, Shaw MA, Burgner D, Xu W, Lins-Lainson Z, Shaw JJ, Ramos F, Silveira F, Blackwell JM. 2004. Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 5:46–57 http://dx.doi.org/10.1038/sj.gene.6364029. [CrossRef]
19. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. 2014. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(D1):D1001–D1006 http://dx.doi.org/10.1093/nar/gkt1229. [PubMed][CrossRef]
20. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR, 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. Nature 526:68–74. [PubMed][CrossRef]
21. Altshuler DM, et al, International HapMap 3 Consortium. 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58 http://dx.doi.org/10.1038/nature09298. [PubMed][CrossRef]
22. Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J, Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, Ngwira B, Teo YY, Small K, Rockett K, Kwiatkowski D, Fine PE, Hill PC, Newport M, Lienhardt C, Adegbola RA, Corrah T, Ziegler A, Morris AP, Meyer CG, Horstmann RD, Hill AV, African TB Genetics Consortium, Wellcome Trust Case Control Consortium. 2010. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet 42:739–741 http://dx.doi.org/10.1038/ng.639. [CrossRef]
23. Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J, Yuliwulandari R, Wichukchinda N, Yowang A, Yamada N, Kantipong P, Takahashi A, Kubo M, Sawanpanyalert P, Kamatani N, Nakamura Y, Tokunaga K. 2012. Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet 57:363–367 http://dx.doi.org/10.1038/jhg.2012.35. [CrossRef]
24. Png E, Alisjahbana B, Sahiratmadja E, Marzuki S, Nelwan R, Balabanova Y, Nikolayevskyy V, Drobniewski F, Nejentsev S, Adnan I, van de Vosse E, Hibberd ML, van Crevel R, Ottenhoff TH, Seielstad M. 2012. A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians. BMC Med Genet 13:5 http://dx.doi.org/10.1186/1471-2350-13-5. [CrossRef]
25. Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E, Balabanova Y, Ehmen C, Muntau B, Ruge G, Sievertsen J, Gyapong J, Nikolayevskyy V, Hill PC, Sirugo G, Drobniewski F, van de Vosse E, Newport M, Alisjahbana B, Nejentsev S, Ottenhoff TH, Hill AV, Horstmann RD, Meyer CG. 2012. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet 44:257–259 http://dx.doi.org/10.1038/ng.1080. [PubMed][CrossRef]
26. Curtis J, Luo Y, Zenner HL, Cuchet-Lourenço D, Wu C, Lo K, Maes M, Alisaac A, Stebbings E, Liu JZ, Kopanitsa L, Ignatyeva O, Balabanova Y, Nikolayevskyy V, Baessmann I, Thye T, Meyer CG, Nürnberg P, Horstmann RD, Drobniewski F, Plagnol V, Barrett JC, Nejentsev S. 2015. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat Genet 47:523–527 http://dx.doi.org/10.1038/ng.3248. [PubMed][CrossRef]
27. Chimusa ER, Zaitlen N, Daya M, Möller M, van Helden PD, Mulder NJ, Price AL, Hoal EG. 2014. Genome-wide association study of ancestry-specific TB risk in the South African Coloured population. Hum Mol Genet 23:796–809 http://dx.doi.org/10.1093/hmg/ddt462. [PubMed][CrossRef]
28. Thuong NT, Dunstan SJ, Chau TT, Thorsson V, Simmons CP, Quyen NT, Thwaites GE, Thi Ngoc Lan N, Hibberd M, Teo YY, Seielstad M, Aderem A, Farrar JJ, Hawn TR. 2008. Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles. PLoS Pathog 4:e1000229 http://dx.doi.org/10.1371/journal.ppat.1000229. [PubMed][CrossRef]
29. Lesho E, Forestiero FJ, Hirata MH, Hirata RD, Cecon L, Melo FF, Paik SH, Murata Y, Ferguson EW, Wang Z, Ooi GT. 2011. Transcriptional responses of host peripheral blood cells to tuberculosis infection. Tuberculosis (Edinb) 91:390–399 http://dx.doi.org/10.1016/j.tube.2011.07.002. [CrossRef]
30. Guerra-Laso JM, Raposo-García S, García-García S, Diez-Tascón C, Rivero-Lezcano OM. 2015. Microarray analysis of Mycobacterium tuberculosis-infected monocytes reveals IL26 as a new candidate gene for tuberculosis susceptibility. Immunology 144:291–301 http://dx.doi.org/10.1111/imm.12371. [CrossRef]
31. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977 http://dx.doi.org/10.1038/nature09247. [CrossRef]
32. Bloom CI, Graham CM, Berry MP, Rozakeas F, Redford PS, Wang Y, Xu Z, Wilkinson KA, Wilkinson RJ, Kendrick Y, Devouassoux G, Ferry T, Miyara M, Bouvry D, Valeyre D, Gorochov G, Blankenship D, Saadatian M, Vanhems P, Beynon H, Vancheeswaran R, Wickremasinghe M, Chaussabel D, Banchereau J, Pascual V, Ho LP, Lipman M, O’Garra A. 2013. Transcriptional blood signatures distinguish pulmonary tuberculosis,pulmonary sarcoidosis, pneumonias and lung cancers. PLoS One 8:e70630 (Erratum: 8[8]) http://dx.doi.org/10.1371/journal.pone.0070630. [CrossRef]
33. Ottenhoff TH, Dass RH, Yang N, Zhang MM, Wong HE, Sahiratmadja E, Khor CC, Alisjahbana B, van Crevel R, Marzuki S, Seielstad M, van de Vosse E, Hibberd ML. 2012. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One 7:e45839 http://dx.doi.org/10.1371/journal.pone.0045839. [CrossRef]
34. Maertzdorf J, Ota M, Repsilber D, Mollenkopf HJ, Weiner J, Hill PC, Kaufmann SH. 2011. Functional correlations of pathogenesis-driven geneexpression signatures in tuberculosis. PLoS One 6:e26938 http://dx.doi.org/10.1371/journal.pone.0026938. [PubMed][CrossRef]
35. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE III, Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103 http://dx.doi.org/10.1038/nature13489. [CrossRef]
36. Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, Duncan K, Van Helden PD, Walzl G, Dockrell HM. 2013. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 207:18–29 http://dx.doi.org/10.1093/infdis/jis499. [CrossRef]
37. Kaforou M, Wright VJ, Oni T, French N, Anderson ST, Bangani N, Banwell CM, Brent AJ, Crampin AC, Dockrell HM, Eley B, Heyderman RS, Hibberd ML, Kern F, Langford PR, Ling L, Mendelson M, Ottenhoff TH, Zgambo F, Wilkinson RJ, Coin LJ, Levin M. 2013. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med 10:e1001538 http://dx.doi.org/10.1371/journal.pmed.1001538. [CrossRef]
38. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, Crampin AC, Dockrell HM, French N, Hamilton MS, Hibberd ML, Kern F, Langford PR, Ling L, Mlotha R, Ottenhoff TH, Pienaar S, Pillay V, Scott JA, Twahir H, Wilkinson RJ, Coin LJ, Heyderman RS, Levin M, Eley B, ILULU Consortium, KIDS TB Study Group. 2014. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 370:1712–1723 http://dx.doi.org/10.1056/NEJMoa1303657. [CrossRef]
39. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, Kirschner DE, Lin PL, Flynn JL. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11:e1004603 http://dx.doi.org/10.1371/journal.ppat.1004603. [CrossRef]
40. Fletcher HA, Filali-Mouhim A, Nemes E, Hawkridge A, Keyser A, Njikan S, Hatherill M, Scriba TJ, Abel B, Kagina BM, Veldsman A, Agudelo NM, Kaplan G, Hussey GD, Sekaly RP, Hanekom WA; BCG study team. 2016. Human newborn bacille Calmette-Guérin vaccination and risk of tuberculosis disease: a case-control study. BMC Med 14:76. http://dx.doi.org/10.1186/s12916-016-0617-3. [CrossRef]
41. Zak DE et al; ACS and GC6-74 cohort study groups. 2016. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387:(10035):2312–2322. http://dx.doi.org/10.1016/S0140-6736(15)01316-1. [PubMed][CrossRef]
42. Cliff JM, Cho JE, Lee JS, Ronacher K, King EC, van Helden P, Walzl G, Dockrell HM. 2016. Excessive cytolytic responses predict tuberculosis relapse after apparently successful treatment. J Infect Dis 213:485–495 http://dx.doi.org/10.1093/infdis/jiv447. [CrossRef]
43. Zuk O, Hechter E, Sunyaev SR, Lander ES. 2012. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198 http://dx.doi.org/10.1073/pnas.1119675109. [CrossRef]
44. Mahajan A, et al, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) Consortium. 2014. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244 http://dx.doi.org/10.1038/ng.2897. [CrossRef]
45. Band G, Rockett KA, Spencer CC, Kwiatkowski DP, Malaria Genomic Epidemiology Network. 2015. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526:253–257 http://dx.doi.org/10.1038/nature15390. [CrossRef]
46. Malaria Genomic Epidemiology Network. 2014. Reappraisal of known malaria resistance loci in a large multicenter study. Nat Genet 46:1197–1204 http://dx.doi.org/10.1038/ng.3107. [CrossRef]
47. Duncan C, Jamieson F, Mehaffy C. 2015. Preliminary evaluation of exome sequencing to identify genetic markers of susceptibility to tuberculosis disease. BMC Res Notes 8:750 http://dx.doi.org/10.1186/s13104-015-1740-5. [CrossRef]
48. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182 http://dx.doi.org/10.1038/ng.2744. [CrossRef]
49. Lipsitch M, Sousa AO. 2002. Historical intensity of natural selection for resistance to tuberculosis. Genetics 161:1599–1607. [PubMed]
50. Jostins L, et al, International IBD Genetics Consortium (IIBDGC). 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124 http://dx.doi.org/10.1038/nature11582. [CrossRef]
51. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S. 2010. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503 http://dx.doi.org/10.1038/ng.590. [PubMed][CrossRef]
52. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, Raychaudhuri S. 2013. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45:124–130 http://dx.doi.org/10.1038/ng.2504. [PubMed][CrossRef]
53. Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, Gilad Y. 2012. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 109:1204–1209 http://dx.doi.org/10.1073/pnas.1115761109. [CrossRef]
54. Pacis A, Tailleux L, Morin AM, Lambourne J, MacIsaac JL, Yotova V, Dumaine A, Danckaert A, Luca F, Grenier JC, Hansen KD, Gicquel B, Yu M, Pai A, He C, Tung J, Pastinen T, Kobor MS, Pique-Regi R, Gilad Y, Barreiro LB. 2015. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res 25:1801–1811 http://dx.doi.org/10.1101/gr.192005.115. [CrossRef]
55. Yaseen I, Kaur P, Nandicoori VK, Khosla S. 2015. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 6:8922 http://dx.doi.org/10.1038/ncomms9922. [PubMed][CrossRef]
56. Qu HQ, Rentfro AR, Lu Y, Nair S, Hanis CL, McCormick JB, Fisher-Hoch SP. 2012. Host susceptibility to tuberculosis: insights from a longitudinal study of gene expression in diabetes. Int J Tuberc Lung Dis 16:370–372. [PubMed][CrossRef]
57. van Crevel R, Dockrell HM, TANDEM Consortium. 2014. TANDEM: understanding diabetes and tuberculosis. Lancet Diabetes Endocrinol 2:270–272 http://dx.doi.org/10.1016/S2213-8587(14)70011-7. [PubMed][CrossRef]
58. Goldstein BA, Knowles JW, Salfati E, Ioannidis JP, Assimes TL. 2014. Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example. Front Genet 5:254 http://dx.doi.org/10.3389/fgene.2014.00254. [CrossRef]
59. Jostins L, Barrett JC. 2011. Genetic risk prediction in complex disease. Hum Mol Genet 20(R2):R182–R188 http://dx.doi.org/10.1093/hmg/ddr378. [PubMed][CrossRef]
60. Evans DM, Davey Smith G. 2015. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu Rev Genomics Hum Genet 16:327–350 http://dx.doi.org/10.1146/annurev-genom-090314-050016. [PubMed][CrossRef]
61. Voight BF, et al. 2012. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380:572–580 http://dx.doi.org/10.1016/S0140-6736(12)60312-2. [PubMed][CrossRef]
62. Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Leong A, Greenwood CM, Thanassoulis G, Richards JB. 2015. Vitamin D and risk of multiple sclerosis: a mendelian randomization study. PLoS Med 12:e1001866 http://dx.doi.org/10.1371/journal.pmed.1001866. [CrossRef]
63. Matsumiya M, Stylianou E, Griffiths K, Lang Z, Meyer J, Harris SA, Rowland R, Minassian AM, Pathan AA, Fletcher H, McShane H. 2013. Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A. PLoS One 8:e67922 http://dx.doi.org/10.1371/journal.pone.0067922. [CrossRef]
64. Matsumiya M, Harris SA, Satti I, Stockdale L, Tanner R, O’Shea MK, Tameris M, Mahomed H, Hatherill M, Scriba TJ, Hanekom WA, McShane H, Fletcher HA. 2014. Inflammatory and myeloid-associated gene expression before and one day after infant vaccination with MVA85A correlates with induction of a T cell response. BMC Infect Dis 14:314 http://dx.doi.org/10.1186/1471-2334-14-314. [CrossRef]
65. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA 109:17537–17542 http://dx.doi.org/10.1073/pnas.1202870109. [CrossRef]
66. Matsumoto T, Ohno M, Azuma J. 2014. Future of pharmacogenetics-based therapy for tuberculosis. Pharmacogenomics 15:601–607 http://dx.doi.org/10.2217/pgs.14.38. [PubMed][CrossRef]
67. McIlleron H, Abdel-Rahman S, Dave JA, Blockman M, Owen A. 2015. Special populations and pharmacogenetic issues in tuberculosis drug development and clinical research. J Infect Dis 211(Suppl 3):S115–S125 http://dx.doi.org/10.1093/infdis/jiu600. [PubMed][CrossRef]
68. Wallis RS, Hafner R. 2015. Advancing host-directed therapy for tuberculosis. Nat Rev Immunol 15:255–263 http://dx.doi.org/10.1038/nri3813. [PubMed][CrossRef]
69. Gra OA, Kozhekbaeva ZM, Litvinov VI. 2010. [Analysis of genetic predisposition to pulmonary tuberculosis in native Russians]. Genetika 46:262–271. [PubMed][CrossRef]
70. Pontillo A, Carvalho MS, Kamada AJ, Moura R, Schindler HC, Duarte AJ, Crovella S. 2013. Susceptibility to Mycobacterium tuberculosis infection in HIV-positive patients is associated with CARD8 genetic variant. J Acquir Immune Defic Syndr 63:147–151 http://dx.doi.org/10.1097/QAI.0b013e31828f93bb. [CrossRef]
71. Wang X, Cao Z, Jiang J, Zhu Y, Dong M, Tong A, Cheng X. 2010. AKT1 polymorphisms are associated with tuberculosis in the Chinese population. Int J Immunogenet 37:97–101 http://dx.doi.org/10.1111/j.1744-313X.2010.00897.x. [PubMed][CrossRef]
72. Herb F, Thye T, Niemann S, Browne EN, Chinbuah MA, Gyapong J, Osei I, Owusu-Dabo E, Werz O, Rüsch-Gerdes S, Horstmann RD, MeyerCG. 2008. ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17:1052–1060 http://dx.doi.org/10.1093/hmg/ddm378. [CrossRef]
73. Wozniak MA, Maude RJ, Innes JA, Hawkey PM, Itzhaki RF. 2009. Apolipoprotein E-ε2 confers risk of pulmonary tuberculosis in women from the Indian subcontinent–a preliminary study. J Infect 59:219–222 http://dx.doi.org/10.1016/j.jinf.2009.07.003. [CrossRef]
74. Songane M, Kleinnijenhuis J, Alisjahbana B, Sahiratmadja E, Parwati I, Oosting M, Plantinga TS, Joosten LA, Netea MG, Ottenhoff TH, van de Vosse E, van Crevel R. 2012. Polymorphisms in autophagy genes and susceptibility to tuberculosis. PLoS One 7:e41618 http://dx.doi.org/10.1371/journal.pone.0041618. [PubMed][CrossRef]
75. Etokebe GE, Bulat-Kardum L, Munthe LA, Balen S, Dembic Z. 2014. Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis. PLoS One 9:e91385 http://dx.doi.org/10.1371/journal.pone.0091385. [CrossRef]
76. Lian Y, Yue J, Han M, Liu J, Liu L. 2010. Analysis of the association between BTNL2 polymorphism and tuberculosis in Chinese Han population. Infect Genet Evol 10:517–521. [PubMed][CrossRef]
77. Moller M, Kwiatkowski R, Nebel A, van Helden PD, Hoal EG, Schreiber S. 2007. Allelic variation in BTNL2 and susceptibility to tuberculosis in a South African population. Microbes Infect 9:522–528. [PubMed][CrossRef]
78. Adams LA, Möller M, Nebel A, Schreiber S, van der Merwe L, van Helden PD, Hoal EG. 2011. Polymorphisms in MC3R promoter and CTSZ 3’UTR are associated with tuberculosis susceptibility. Eur J Hum Genet 19:676–681 http://dx.doi.org/10.1038/ejhg.2011.1. [PubMed][CrossRef]
79. Baker AR, Zalwango S, Malone LL, Igo RP Jr, Qiu F, Nsereko M, Adams MD, Supelak P, Mayanja-Kizza H, Boom WH, Stein CM. 2011. Genetic susceptibility to tuberculosis associated with cathepsin Z haplotype in a Ugandan household contact study. Hum Immunol 72:426–430 http://dx.doi.org/10.1016/j.humimm.2011.02.016. [CrossRef]
80. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G, Sow O, Gustafson P, Mwangulu F, van Helden P, Fine P, Hoal EG, Hill AV. 2008. Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178:203–207 http://dx.doi.org/10.1164/rccm.200710-1554OC. [PubMed][CrossRef]
81. Alagarasu K, Selvaraj P, Swaminathan S, Raghavan S, Narendran G, Narayanan PR. 2009. CCR2, MCP-1, SDF-1a & DC-SIGN gene polymorphisms in HIV-1 infected patients with & without tuberculosis. Indian J Med Res 130:444–450. [PubMed]
82. Arji N, Busson M, Iraqi G, Bourkadi JE, Benjouad A, Boukouaci W, Lahlou O, Ben Amor J, Krishnamoorthy R, Charron D, El Aouad R, Tamouza R. 2012. The MCP-1 (CCL2) -2518 GG genotype is associated with protection against pulmonary tuberculosis in Moroccan patients. J Infect Dev Ctries 6:73–78. [PubMed]
83. Ben-Selma W, Harizi H, Boukadida J. 2011. MCP-1 -2518 A/G functional polymorphism is associated with increased susceptibility to active pulmonary tuberculosis in Tunisian patients. Mol Biol Rep 38:5413–5419 http://dx.doi.org/10.1007/s11033-011-0695-4. [CrossRef]
84. Buijtels PC, van de Sande WW, Parkinson S, Petit PL, van der Sande MA, van Soolingen D, Verbrugh HA, van Belkum A. 2008. Polymorphism in CC-chemokine ligand 2 associated with tuberculosis in Zambia. Int J Tuberc Lung Dis 12:1485–1488. [PubMed]
85. Chu SF, Tam CM, Wong HS, Kam KM, Lau YL, Chiang AK. 2007. Association between RANTES functional polymorphisms and tuberculosis in Hong Kong Chinese. Genes Immun 8:475–479 http://dx.doi.org/10.1038/sj.gene.6364412. [CrossRef]
86. Flores-Villanueva PO, Ruiz-Morales JA, Song CH, Flores LM, Jo EK, Montaño M, Barnes PF, Selman M, Granados J. 2005. A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 202:1649–1658 http://dx.doi.org/10.1084/jem.20050126. [CrossRef]
87. Ganachari M, Ruiz-Morales JA, Gomez de la Torre Pretell JC, Dinh J, Granados J, Flores-Villanueva PO. 2010. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals. PLoS One 5:e8881 http://dx.doi.org/10.1371/journal.pone.0008881. [CrossRef]
88. Gao Q, Du Q, Zhang H, Guo C, Lu S, Deng A, Tang M, Liu S, Wang Y, Huang J, Guo Q. 2014. Monocyte chemotactic protein-1 -2518 gene polymorphism and susceptibility to spinal tuberculosis. Arch Med Res 45:183–187 http://dx.doi.org/10.1016/j.arcmed.2013.12.007. [CrossRef]
89. Hussain R, Ansari A, Talat N, Hasan Z, Dawood G. 2011. CCL2/MCP-I genotype-phenotype relationship in latent tuberculosis infection. PLoS One 6:e25803 http://dx.doi.org/10.1371/journal.pone.0025803. [CrossRef]
90. Larcombe LA, Orr PH, Lodge AM, Brown JS, Dembinski IJ, Milligan LC, Larcombe EA, Martin BD, Nickerson PW. 2008. Functional gene polymorphisms in Canadian aboriginal populations with high rates of tuberculosis. J Infect Dis 198:1175–1179 http://dx.doi.org/10.1086/592049. [PubMed][CrossRef]
91. Mishra G, Poojary SS, Raj P, Tiwari PK. 2012. Genetic polymorphisms of CCL2, CCL5, CCR2 and CCR5 genes in Sahariya tribe of North Central India: an association study with pulmonary tuberculosis. Infect Genet Evol 12:1120–1127. [PubMed][CrossRef]
92. Möller M, Nebel A, Valentonyte R, van Helden PD, Schreiber S, Hoal EG. 2009. Investigation of chromosome 17 candidate genes in susceptibility to TB in a South African population. Tuberculosis (Edinb) 89:189–194 http://dx.doi.org/10.1016/j.tube.2008.10.001. [CrossRef]
93. Naderi M, Hashemi M, Karami H, Moazeni-Roodi A, Sharifi-Mood B, Kouhpayeh H, Taheri M, Ghavami S. 2011. Lack of association between rs1024611 (-2581 A/G) polymorphism in CC-chemokine Ligand 2 and susceptibility to pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med Rep 112:272–278. [PubMed]
94. Tamouza R, Labie D. 2006. [A promotor polymorphism in monocyte chemoattractant is associated with increased susceptibility to pulmonary tuberculosis]. Med Sci (Paris) 22:571–572 http://dx.doi.org/10.1051/medsci/20062267571. [CrossRef]
95. Thye T, Nejentsev S, Intemann CD, Browne EN, Chinbuah MA, Gyapong J, Osei I, Owusu-Dabo E, Zeitels LR, Herb F, Horstmann RD, Meyer CG. 2009. MCP-1 promoter variant -362C associated with protection from pulmonary tuberculosis in Ghana, West Africa. Hum Mol Genet 18:381–388 http://dx.doi.org/10.1093/hmg/ddn352. [PubMed][CrossRef]
96. Velez Edwards DR, Tacconelli A, Wejse C, Hill PC, Morris GA, Edwards TL, Gilbert JR, Myers JL, Park YS, Stryjewski ME, Abbate E, Estevan R, Rabna P, Novelli G, Hamilton CD, Adegbola R, Østergaard L, Williams SM, Scott WK, Sirugo G. 2012. MCP1 SNPs and pulmonary tuberculosis in cohorts from West Africa, the USA and Argentina: lack of association or epistasis with IL12B polymorphisms. PLoS One 7:e32275 http://dx.doi.org/10.1371/journal.pone.0032275. [CrossRef]
97. Xu ZE, Xie YY, Chen JH, Xing LL, Zhang AH, Li BX, Zhu CM. 2009. [Monocyte chemotactic protein-1 gene polymorphism and monocyte chemotactic protein-1 expression in Chongqing Han children with tuberculosis]. Zhonghua Er Ke Za Zhi 47:200–203. [PubMed]
98. Yang BF, Zhuang B, Li F, Zhang CZ, Song AQ. 2009. [The relationship between monocyte chemoattractant protein-1 gene polymorphisms and the susceptibility to pulmonary tuberculosis]. Zhonghua Jie He He Hu Xi Za Zhi 32:454–456. [PubMed]
99. Feng WX, Flores-Villanueva PO, Mokrousov I, Wu XR, Xiao J, Jiao WW, Sun L, Miao Q, Shen C, Shen D, Liu F, Jia ZW, Shen A. 2012. CCL2-2518 (A/G) polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 16:150–156. [PubMed][CrossRef]
100. Gong T, Yang M, Qi L, Shen M, Du Y. 2013. Association of MCP-1 -2518A/G and -362G/C variants and tuberculosis susceptibility: a meta-analysis. Infect Genet Evol 20:1–7 http://dx.doi.org/10.1016/j.meegid.2013.08.001. [PubMed][CrossRef]
101. VÁsquez-Loarte T, Trubnykova M, Guio H. 2015. Genetic association meta-analysis: a new classification to assess ethnicity using the association of MCP-1 -2518 polymorphism and tuberculosis susceptibility as a model. BMC Genet 16:128 http://dx.doi.org/10.1186/s12863-015-0280-2. [CrossRef]
102. Carpenter D, Taype C, Goulding J, Levin M, Eley B, Anderson S, Shaw MA, Armour JA. 2014. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis. BMC Med Genet 15:5 http://dx.doi.org/10.1186/1471-2350-15-5. [PubMed][CrossRef]
103. Mamtani M, Mummidi S, Ramsuran V, Pham MH, Maldonado R, Begum K, Valera MS, Sanchez R, Castiblanco J, Kulkarni H, Ndung’u T, He W, Anaya JM, Ahuja SK. 2011. Influence of variations in CCL3L1 and CCR5 on tuberculosis in a northwestern Colombian population. J Infect Dis 203:1590–1594 http://dx.doi.org/10.1093/infdis/jir145. [PubMed][CrossRef]
104. Ben-Selma W, Harizi H, Bougmiza I, Ben Kahla I, Letaief M, Boukadida J. 2011. Polymorphisms in the RANTES gene increase susceptibility to active tuberculosis in Tunisia. DNA Cell Biol 30:789–800 http://dx.doi.org/10.1089/dna.2010.1200. [PubMed][CrossRef]
105. de Wit E, van der Merwe L, van Helden PD, Hoal EG. 2011. Gene-gene interaction between tuberculosis candidate genes in a South African population. Mamm Genome 22:100–110. [PubMed][CrossRef]
106. Mhmoud N, Fahal A, van de Sande WJ. 2013. Association of IL-10 and CCL5 single nucleotide polymorphisms with tuberculosis in the Sudanese population. Trop Med Int Health 18:1119–1127 http://dx.doi.org/10.1111/tmi.12141. [CrossRef]
107. Sanchez-Castanon M, Baquero IC, Sanchez-Velasco P, Farinas MC, Ausin F, Leyva-Cobian F, Ocejo-Vinyals JG. 2009. Polymorphisms in CCL5 promoter are associated with pulmonary tuberculosis in northern Spain. Int J Tuberc Lung Dis 13:480–485. [PubMed]
108. Selvaraj P, Alagarasu K, Singh B, Afsal K. 2011. CCL5 (RANTES) gene polymorphisms in pulmonary tuberculosis patients of south India. Int J Immunogenet 38:397–402 http://dx.doi.org/10.1111/j.1744-313X.2011.01021.x. [PubMed][CrossRef]
109. Seshadri C, Thuong NT, Yen NT, Bang ND, Chau TT, Thwaites GE, Dunstan SJ, Hawn TR. 2014. A polymorphism in human CD1A is associated with susceptibility to tuberculosis. Genes Immun 15:195–198 http://dx.doi.org/10.1038/gene.2014.5. [PubMed][CrossRef]
110. Alavi-Naini R, Salimi S, Sharifi-Mood B, Davoodikia AA, Moody B, Naghavi A. 2012. Association between the CD14 gene C-159T polymorphism and serum soluble CD14 with pulmonary tuberculosis. Int J Tuberc Lung Dis 16:1383–1387 http://dx.doi.org/10.5588/ijtld.11.0827. [CrossRef]
111. Ayaslioglu E, Kalpaklioglu F, Kavut AB, Erturk A, Capan N, Birben E. 2013. The role of CD14 gene promoter polymorphism in tuberculosis susceptibility. J Microbiol Immunol Infect 46:158–163 http://dx.doi.org/10.1016/j.jmii.2012.05.008. [CrossRef]
112. Druszczynska M, Strapagiel D, Kwiatkowska S, Kowalewicz-Kulbat M, Rozalska B, Chmiela M, Rudnicka W. 2006. Tuberculosis bacilli still posing a threat. Polymorphism of genes regulating anti-mycobacterial properties of macrophages. Pol J Microbiol 55:7–12. [PubMed]
113. Kang YA, Lee HW, Kim YW, Han SK, Shim YS, Yim JJ. 2009. Association between the -159C/T CD14 gene polymorphism and tuberculosis in a Korean population. FEMS Immunol Med Microbiol 57:229–235 http://dx.doi.org/10.1111/j.1574-695X.2009.00602.x. [PubMed][CrossRef]
114. Pacheco E, Fonseca C, Montes C, Zabaleta J, García LF, Arias MA. 2004. CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol Med Microbiol 40:207–213 http://dx.doi.org/10.1016/S0928-8244(03)00369-9. [CrossRef]
115. Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, Caballero-Olin G, Arce-Mendoza AY. 2007. CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J Infect Dis 196:1698–1706 http://dx.doi.org/10.1086/522147. [PubMed][CrossRef]
116. Xue Y, Zhao ZQ, Chen F, Zhang L, Li GD, Ma KW, Bai XF, Zuo YJ. 2012. Polymorphisms in the promoter of the CD14 gene and their associations with susceptibility to pulmonary tuberculosis. Tissue Antigens 80:437–443 http://dx.doi.org/10.1111/j.1399-0039.2012.01958.x. [CrossRef]
117. Zhao MY, Xue Y, Zhao ZQ, Li FJ, Fan DP, Wei LL, Sun XJ, Zhang X, Wang XC, Zhang YX, Li JC. 2012. Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population. Genet Mol Res 11:3425–3431 http://dx.doi.org/10.4238/2012.September.25.11. [PubMed][CrossRef]
118. Zhao J, Lin G, Zhang WH, Ge M, Zhang Y. 2013. Contribution of CD14-159C/T polymorphism to tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 17:1472–1478 http://dx.doi.org/10.5588/ijtld.13.0264. [PubMed][CrossRef]
119. Miao R, Ge H, Xu L, Xu F. 2014. CD14 -159C/T polymorphism contributes to the susceptibility to tuberculosis: evidence from pooled 1,700 cases and 1,816 controls. Mol Biol Rep 41:3481–3486 http://dx.doi.org/10.1007/s11033-014-3210-x. [PubMed][CrossRef]
120. Campbell SJ, Sabeti P, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bellamy R, Bennett S, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Hill AV. 2003. Variants of the CD40 ligand gene are not associated with increased susceptibility to tuberculosis in West Africa. Immunogenetics 55:502–507 http://dx.doi.org/10.1007/s00251-003-0602-9. [CrossRef]
121. Möller M, Flachsbart F, Till A, Thye T, Horstmann RD, Meyer CG, Osei I, van Helden PD, Hoal EG, Schreiber S, Nebel A, Franke A. 2010. A functional haplotype in the 3’untranslated region of TNFRSF1B is associated with tuberculosis in two African populations. Am J Respir Crit Care Med 181:388–393 http://dx.doi.org/10.1164/rccm.200905-0678OC. [PubMed][CrossRef]
122. Zhang X, Jiang F, Wei L, Li F, Liu J, Wang C, Zhao M, Jiang T, Xu D, Fan D, Sun X, Li JC. 2012. Polymorphic allele of human MRC1 confer protection against tuberculosis in a Chinese population. Int J Biol Sci 8:375–382 http://dx.doi.org/10.7150/ijbs.4047. [CrossRef]
123. Zhang X, Li X, Zhang W, Wei L, Jiang T, Chen Z, Meng C, Liu J, Wu F, Wang C, Li F, Sun X, Li Z, Li JC. 2013. The novel human MRC1 gene polymorphisms are associated with susceptibility to pulmonary tuberculosis in Chinese Uygur and Kazak populations. Mol Biol Rep 40:5073–5083 http://dx.doi.org/10.1007/s11033-013-2610-7. [PubMed][CrossRef]
124. Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, Helden PD, Hoal EG, Gicquel B, Quintana-Murci L. 2006. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20 http://dx.doi.org/10.1371/journal.pmed.0030020. [PubMed][CrossRef]
125. Ben-Ali M, Barreiro LB, Chabbou A, Haltiti R, Braham E, Neyrolles O, Dellagi K, Gicquel B, Quintana-Murci L, Barbouche MR. 2007. Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol 68:908–912 http://dx.doi.org/10.1016/j.humimm.2007.09.003. [CrossRef]
126. Gómez LM, Anaya JM, Sierra-Filardi E, Cadena J, Corbí A, Martín J. 2006. Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol 67:808–811 http://dx.doi.org/10.1016/j.humimm.2006.07.003. [PubMed][CrossRef]
127. Kobayashi K, Yuliwulandari R, Yanai H, Lien LT, Hang NT, Hijikata M, Keicho N, Tokunaga K. 2011. Association of CD209 polymorphisms with tuberculosis in an Indonesian population. Hum Immunol 72:741–745 http://dx.doi.org/10.1016/j.humimm.2011.04.004. [PubMed][CrossRef]
128. Naderi M, Hashemi M, Taheri M, Pesarakli H, Eskandari-Nasab E, Bahari G. 2014. CD209 promoter -336 A/G (rs4804803) polymorphism is associated with susceptibility to pulmonary tuberculosis in Zahedan, southeast Iran. J Microbiol Immunol Infect 47:171–175 http://dx.doi.org/10.1016/j.jmii.2013.03.013. [PubMed][CrossRef]
129. Ogarkov O, Mokrousov I, Sinkov V, Zhdanova S, Antipina S, Savilov E. 2012. ’Lethal’ combination of Mycobacterium tuberculosis Beijing genotype and human CD209 -336G allele in Russian male population. Infect Genet Evol 12:732–736. [PubMed][CrossRef]
130. Olesen R, Wejse C, Velez DR, Bisseye C, Sodemann M, Aaby P, Rabna P, Worwui A, Chapman H, Diatta M, Adegbola RA, Hill PC, Østergaard L, Williams SM, Sirugo G. 2007. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 8:456–467 http://dx.doi.org/10.1038/sj.gene.6364410. [CrossRef]
131. Sadki K, Lamsyah H, Rueda B, Lahlou O, El Aouad R, Martin J. 2009. CD209 promoter single nucleotide polymorphism -336A/G and the risk of susceptibility to tuberculosis disease in the Moroccan population. Int J Hum Genet 9:239–243.
132. Selvaraj P, Alagarasu K, Swaminathan S, Harishankar M, Narendran G. 2009. CD209 gene polymorphisms in South Indian HIV and HIV-TB patients. Infect Genet Evol 9:256–262. [PubMed][CrossRef]
133. Vannberg FO, Chapman SJ, Khor CC, Tosh K, Floyd S, Jackson-Sillah D, Crampin A, Sichali L, Bah B, Gustafson P, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Sirugo G, Fine P, Hill AV. 2008. CD209 genetic polymorphism and tuberculosis disease. PLoS One 3:e1388 http://dx.doi.org/10.1371/journal.pone.0001388. [PubMed][CrossRef]
134. Zheng R, Zhou Y, Qin L, Jin R, Wang J, Lu J, Wang W, Tang S, Hu Z. 2011. Relationship between polymorphism of DC-SIGN (CD209) gene and the susceptibility to pulmonary tuberculosis in an eastern Chinese population. Hum Immunol 72:183–186 http://dx.doi.org/10.1016/j.humimm.2010.11.004. [CrossRef]
135. Chang K, Deng S, Lu W, Wang F, Jia S, Li F, Yu L, Chen M. 2012. Association between CD209 -336A/G and -871A/G polymorphisms and susceptibility of tuberculosis: a meta-analysis. PLoS One 7:e41519 http://dx.doi.org/10.1371/journal.pone.0041519. [PubMed][CrossRef]
136. Miao R, Li J, Sun Z, Li C, Xu F. 2012. Association between the CD209 promoter -336A/G polymorphism and susceptibility to tuberculosis: a meta-analysis. Respirology 17:847–853 http://dx.doi.org/10.1111/j.1440-1843.2012.02185.x. [PubMed][CrossRef]
137. Yi L, Zhang K, Mo Y, Zhen G, Zhao J. 2015. The association between CD209 gene polymorphisms and pulmonary tuberculosis susceptibility: a meta-analysis. Int J Clin Exp Pathol 8:12437–12445. [PubMed]
138. Ji LD, Xu WN, Chai PF, Zheng W, Qian HX, Xu J. 2014. Polymorphisms in the CISH gene are associated with susceptibility to tuberculosis in the Chinese Han population. Infect Genet Evol 28:240–244 http://dx.doi.org/10.1016/j.meegid.2014.10.006. [PubMed][CrossRef]
139. Khor CC, Vannberg FO, Chapman SJ, Guo H, Wong SH, Walley AJ, Vukcevic D, Rautanen A, Mills TC, Chang KC, Kam KM, Crampin AC, Ngwira B, Leung CC, Tam CM, Chan CY, Sung JJ, Yew WW, Toh KY, Tay SK, Kwiatkowski D, Lienhardt C, Hien TT, Day NP, Peshu N, Marsh K, Maitland K, Scott JA, Williams TN, Berkley JA, Floyd S, Tang NL, Fine PE, Goh DL, Hill AV. 2010. CISH and susceptibility to infectious diseases. N Engl J Med 362:2092–2101 http://dx.doi.org/10.1056/NEJMoa0905606. [CrossRef]
140. Sun L, Jin YQ, Shen C, Qi H, Chu P, Yin QQ, Li JQ, Tian JL, Jiao WW, Xiao J, Shen AD. 2014. Genetic contribution of CISH promoter polymorphisms to susceptibility to tuberculosis in Chinese children. PLoS One 9:e92020 http://dx.doi.org/10.1371/journal.pone.0092020. [PubMed][CrossRef]
141. Zhao L, Chu H, Xu X, Yue J, Li H, Wang M. 2014. Association between single-nucleotide polymorphism in CISH gene and susceptibility to tuberculosis in Chinese Han population. Cell Biochem Biophys 68:529–534 http://dx.doi.org/10.1007/s12013-013-9733-2. [PubMed][CrossRef]
142. Fitness J, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, Fine PE, Hill AV. 2004. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 71:341–349. [PubMed]
143. Senbagavalli P, Kumar N, Kaur G, Mehra NK, Geetha ST, Ramanathan VD. 2011. Major histocompatibility complex class III (C2, C4, factor B) and C3 gene variants in patients with pulmonary tuberculosis. Hum Immunol 72:173–178 http://dx.doi.org/10.1016/j.humimm.2010.11.002.
144. Noumsi GT, Tounkara A, Diallo H, Billingsley K, Moulds JJ, Moulds JM. 2011. Knops blood group polymorphism and susceptibility to Mycobacterium tuberculosis infection. Transfusion 51:2462–2469 http://dx.doi.org/10.1111/j.1537-2995.2011.03161.x. [CrossRef]
145. Zheng R, Liu H, Song P, Feng Y, Qin L, Huang X, Chen J, Yang H, Liu Z, Cui Z, Hu Z, Ge B. 2015. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis. Tuberculosis (Edinb) 95:497–504 http://dx.doi.org/10.1016/j.tube.2015.03.009. [CrossRef]
146. Ma X, Wright J, Dou S, Olsen P, Teeter L, Adams G, Graviss E. 2002. Ethnic divergence and linkage disequilibrium of novel SNPs in the human NLI-IF gene: evidence of human origin and lack of association with tuberculosis susceptibility. J Hum Genet 47:140–145 http://dx.doi.org/10.1007/s100380200016. [CrossRef]
147. Wang C, Jiang T, Wei L, Li F, Sun X, Fan D, Liu J, Zhang X, Xu D, Chen Z, Li Z, Fu X, Li JC. 2012. Association of CTLA4 gene polymorphisms with susceptibility and pathology correlation to pulmonary tuberculosis in Southern Han Chinese. Int J Biol Sci 8:945–952 http://dx.doi.org/10.7150/ijbs.4390. [CrossRef]
148. Tang NL, Fan HP, Chang KC, Ching JK, Kong KP, Yew WW, Kam KM, Leung CC, Tam CM, Blackwell J, Chan CY. 2009. Genetic association between a chemokine gene CXCL-10 (IP-10, interferon gamma inducible protein 10) and susceptibility to tuberculosis. Clin Chim Acta 406:98–102. [PubMed][CrossRef]
149. Liu Q, Wang J, Sandford AJ, Wu J, Wang Y, Wu S, Ji G, Chen G, Feng Y, Tao C, He JQ. 2015. Association of CYBB polymorphisms with tuberculosis susceptibility in the Chinese Han population. Infect Genet Evol 33:169–175 http://dx.doi.org/10.1016/j.meegid.2015.04.026. [PubMed][CrossRef]
150. Feng WX, Liu F, Gu Y, Jiao WW, Sun L, Xiao J, Wu XR, Miao Q, Shen C, Shen D, Shen A. 2012. Functional polymorphisms in CYP2C19 & CYP3A5 genes associated with decreased susceptibility for paediatric tuberculosis. Indian J Med Res 135:642–649. [PubMed]
151. Qrafli M, Amar Y, Bourkadi J, Ben Amor J, Iraki G, Bakri Y, Amzazi S, Lahlou O, Seghrouchni F, El Aouad R, Sadki K. 2014. The CYP7A1 gene rs3808607 variant is associated with susceptibility of tuberculosis in Moroccan population. Pan Afr Med J 18:1 http://dx.doi.org/10.11604/pamj.2014.18.1.3397. [PubMed][CrossRef]
152. Wu XM, Gong LY, Lin J, Wang HH. 2012. [Association between human beta defensin-1 single nucleotide polymorphisms and susceptibility to pulmonary tuberculosis]. Zhonghua Yu Fang Yi Xue Za Zhi 46:912–915. [PubMed]
153. Thuong NT, Hawn TR, Chau TT, Bang ND, Yen NT, Thwaites GE, Teo YY, Seielstad M, Hibberd M, Lan NT, Caws M, Farrar JJ, Dunstan SJ. 2012. Epiregulin (EREG) variation is associated with susceptibility to tuberculosis. Genes Immun 13:275–281 http://dx.doi.org/10.1038/gene.2011.83. [PubMed][CrossRef]
154. White MJ, Tacconelli A, Chen JS, Wejse C, Hill PC, Gomes VF, Velez-Edwards DR, Østergaard LJ, Hu T, Moore JH, Novelli G, Scott WK, Williams SM, Sirugo G. 2014. Epiregulin (EREG) and human V-ATPase (TCIRG1): genetic variation, ethnicity and pulmonary tuberculosis susceptibility in Guinea-Bissau and The Gambia. Genes Immun 15:370–377 http://dx.doi.org/10.1038/gene.2014.28. [CrossRef]
155. Sadki K, Lamsyah H, Rueda B, Akil E, Sadak A, Martin J, El Aouad R. 2010. Analysis of MIF, FCGR2A and FCGR3A gene polymorphisms with susceptibility to pulmonary tuberculosis in Moroccan population. J Genet Genomics 37:257–264. [PubMed][CrossRef]
156. Chalmers JD, Matsushita M, Kilpatrick DC, Hill AT. 2015. No strong relationship between components of the lectin pathway of complement and susceptibility to pulmonary tuberculosis. Inflammation 38:1731–1737 http://dx.doi.org/10.1007/s10753-015-0150-0. [CrossRef]
157. Xu DD, Wang C, Jiang F, Wei LL, Shi LY, Yu XM, Liu CM, Liu XH, Feng XM, Ping ZP, Jiang TT, Chen ZL, Li ZJ, Li JC. 2015. Association of the FCN2 gene single nucleotide polymorphisms with susceptibility to pulmonary tuberculosis. PLoS One 10:e0138356 http://dx.doi.org/10.1371/journal.pone.0138356. [CrossRef]
158. Baker MA, Wilson D, Wallengren K, Sandgren A, Iartchouk O, Broodie N, Goonesekera SD, Sabeti PC, Murray MB. 2012. Polymorphisms in the gene that encodes the iron transport protein ferroportin 1 influence susceptibility to tuberculosis. J Infect Dis 205:1043–1047 http://dx.doi.org/10.1093/infdis/jis026. [CrossRef]
159. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. 1998. Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuber Lung Dis 79:83–89. [PubMed][CrossRef]
160. Insanov AB, Abdullaev FM, Ragimov AA, Talybova AM, Umniashkin AA. 1989. [Pulmonary tuberculosis in patients with hereditary glucose-6-phosphate dehydrogenase deficiency]. Ter Arkh 61:75–77. [PubMed]
161. Adams CH, Werely CJ, Victor TC, Hoal EG, Rossouw G, van Helden PD. 2003. Allele frequencies for glutathione S-transferase and N-acetyltransferase 2 differ in African population groups and may be associated with oesophageal cancer or tuberculosis incidence. Clin Chem Lab Med 41:600–605. [PubMed][CrossRef]
162. Kasvosve I, Gomo ZA, Mvundura E, Moyo VM, Saungweme T, Khumalo H, Gordeuk VR, Boelaert JR, Delanghe JR, De Bacquer D, Gangaidzo IT. 2000. Haptoglobin polymorphism and mortality in patients with tuberculosis. Int J Tuberc Lung Dis 4:771–775. [PubMed]
163. Akgunes A, Coban AY, Durupinar B. 2011. Human leucocyte antigens and cytokine gene polymorphisms and tuberculosis. Indian J Med Microbiol 29:28–32 http://dx.doi.org/10.4103/0255-0857.76520. [CrossRef]
164. Amirzargar AA, Yalda A, Hajabolbaghi M, Khosravi F, Jabbari H, Rezaei N, Niknam MH, Ansari B, Moradi B, Nikbin B. 2004. The association of HLA-DRB, DQA1, DQB1 alleles and haplotype frequency in Iranian patients with pulmonary tuberculosis. Int J Tuberc Lung Dis 8:1017–1021. [PubMed]
165. Balamurugan A, Sharma SK, Mehra NK. 2004. Human leukocyte antigen class I supertypes influence susceptibility and severity of tuberculosis. J Infect Dis 189:805–811 http://dx.doi.org/10.1086/381689. [CrossRef]
166. Chandanayingyong D, Maranetra N, Bovornkitti S. 1988. HLA antigen profiles in Thai tuberculosis patients. Asian Pac J Allergy Immunol 6:77–80. [PubMed]
167. Delgado JC, Baena A, Thim S, Goldfeld AE. 2006. Aspartic acid homozygosity at codon 57 of HLA-DQ beta is associated with susceptibility to pulmonary tuberculosis in Cambodia. J Immunol 176:1090–1097 http://dx.doi.org/10.4049/jimmunol.176.2.1090. [PubMed][CrossRef]
168. Duarte R, Carvalho C, Pereira C, Bettencourt A, Carvalho A, Villar M, Domingos A, Barros H, Marques J, Pinho Costa P, Mendonça D, Martins B. 2011. HLA class II alleles as markers of tuberculosis susceptibility and resistance. Rev Port Pneumol 17:15–19 http://dx.doi.org/10.1016/S0873-2159(11)70005-8. [CrossRef]
169. Dubaniewicz A, Dubaniewicz-Wybieralska M, Moszkowska G, Sternau A. 2006. Comparative analysis of DR and DQ alleles occurrence in sarcoidosis and tuberculosis in the same ethnic group: preliminary study. Sarcoidosis Vasc Diffuse Lung Dis 23:180–189. [PubMed]
170. Dubaniewicz A, Lewko B, Moszkowska G, Zamorska B, Stepinski J. 2000. Molecular subtypes of the HLA-DR antigens in pulmonary tuberculosis. Int J Infectious Dis 4:129–133. [PubMed][CrossRef]
171. Dubaniewicz A, Moszkowska G. 2007. [Analysis of occurrence of DRB and DQ alleles in sarcoidosis and tuberculosis from Northern Poland]. Pneumonol Alergol Pol 75:13–21. [PubMed]
172. Figueiredo JF, Rodrigues Mde L, Deghaide NH, Donadi EA. 2008. HLA profile in patients with AIDS and tuberculosis. Braz J Infect Dis 12:278–280. [PubMed][CrossRef]
173. Goldfeld AE, Delgado JC, Thim S, Bozon MV, Uglialoro AM, Turbay D, Cohen C, Yunis EJ. 1998. Association of an HLA-DQ allele with clinical tuberculosis. JAMA 279:226–228 http://dx.doi.org/10.1001/jama.279.3.226. [PubMed][CrossRef]
174. Hafez M, el-Fiky A, Bassiouny MR, el-Hafez SA, el-Morsy A, Khaled A, el-Ziny M, al-Tonbary Y, Settein A. 1992. Clinico-immunogenetic study on Egyptian multicase tuberculous families. Dis Markers 10:143–149. [PubMed]
175. Hafez M, el-Salab S, el-Shennawy F, Bassiony MR. 1985. HLA-antigens and tuberculosis in the Egyptian population. Tubercle 66:35–40 http://dx.doi.org/10.1016/0041-3879(85)90051-0. [CrossRef]
176. Harfouch-Hammoud EI, Daher NA. 2008. Susceptibility to and severity of tuberculosis is genetically controlled by human leukocyte antigens. Saudi Med J 29:1625–1629. [PubMed]
177. Jagannathan L, Chaturvedi M, Satish B, Satish KS, Desai A, Subbakrishna DK, Satishchandra P, Pitchappan R, Balakrishnan K, Kondaiah P, Ravi V. 2011. HLA-B57 and gender influence the occurrence of tuberculosis in HIV infected people of south India. Clin Dev Immunol 2011:549023 http://dx.doi.org/10.1155/2011/549023. [PubMed][CrossRef]
178. John GT, Murugesan K, Jeyaseelan L, Pulimood RB, Jacob CK, Shastry JC. 1995. HLA phenotypes in Asians developing tuberculosis on dialysis or after renal transplantation. Natl Med J India 8:144, 146. [PubMed]
179. Khomenko AG, Pospelov LE, Malenko AF, Chukanova VP, Romanov VV. 1985. [HLA antigens in lung diseases]. Ter Arkh 57:77–80. [PubMed]
180. Kim HS, Park MH, Song EY, Park H, Kwon SY, Han SK, Shim YS. 2005. Association of HLA-DR and HLA-DQ genes with susceptibility to pulmonary tuberculosis in Koreans: preliminary evidence of associations with drug resistance, disease severity, and disease recurrence. Hum Immunol 66:1074–1081 http://dx.doi.org/10.1016/j.humimm.2005.08.242. [CrossRef]
181. Lombard Z, Dalton DL, Venter PA, Williams RC, Bornman L. 2006. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol 67:643–654 http://dx.doi.org/10.1016/j.humimm.2006.04.008. [PubMed][CrossRef]
182. Louie LG, Hartogensis WE, Jackman RP, Schultz KA, Zijenah LS, Yiu CH, Nguyen VD, Sohsman MY, Katzenstein DK, Mason PR. 2004. Mycobacterium tuberculosis/HIV-1 coinfection and disease: role of human leukocyte antigen variation. J Infect Dis 189:1084–1090 http://dx.doi.org/10.1086/382030. [CrossRef]
183. Lucena-Silva N, Baliza MD, Martins AE, Deghaide NH, Teixeira KM, Rodrigues LC, Ximenes R, Donadi EA, de Albuquerque M. 2010. Relatedness and HLA-DRB1 typing may discriminate the magnitude of the genetic susceptibility to tuberculosis using a household contact model. J Epidemiol Community Health 64:513–517 http://dx.doi.org/10.1136/jech.2008.086801. [CrossRef]
184. Lugo-Zamudio GE, Yamamoto-Furusho JK, Delgado-Ochoa D, Nunez-Farfan RM, Vargas-Alarcon G, Barbosa-Cobos RE, Granados J. 2010. Human leukocyte antigen typing in tuberculous rheumatism: Poncet’s disease. Int J Tuberc Lung Dis 14:916–920. [PubMed]
185. Magira EE, Papasteriades C, Kanterakis S, Toubis M, Roussos C, Monos DS. 2012. HLA-A and HLA-DRB1 amino acid polymorphisms are associated with susceptibility and protection to pulmonary tuberculosis in a Greek population. Hum Immunol 73:641–646 http://dx.doi.org/10.1016/j.humimm.2012.03.008. [PubMed][CrossRef]
186. Mahmoudzadeh-Niknam H, Khalili G, Fadavi P. 2003. Allelic distribution of human leukocyte antigen in Iranian patients with pulmonary tuberculosis. Hum Immunol 64:124–129 http://dx.doi.org/10.1016/S0198-8859(02)00703-6. [CrossRef]
187. Mehra NK. 1990. Role of HLA linked factors in governing susceptibility to leprosy and tuberculosis. Trop Med Parasitol 41:352–354. [PubMed]
188. Pospelov LE, Matrakshin AG, Chernousova LN, Tsoi KN, Afanasjev KI, Rubtsova GA, Yeremeyev VV. 1996. Association of various genetic markers with tuberculosis and other lung diseases in Tuvinian children. Tuber Lung Dis 77:77–80. [PubMed][CrossRef]
189. Pospelova LE, Matrashkin AG, Larionova EE, Eremeev VV, Mes’ko EM. 2005. [The association of tuberculosis with the specificities of the HLA gene DRB1 in different regions of Tuva]. Probl Tuberk Bolezn Legk (7):23–25. [PubMed]
190. Raghavan S, Selvaraj P, Swaminathan S, Alagarasu K, Narendran G, Narayanan PR. 2009. Haplotype analysis of HLA-A, -B antigens and -DRB1 alleles in south Indian HIV-1-infected patients with and without pulmonary tuberculosis. Int J Immunogenet 36:129–133 http://dx.doi.org/10.1111/j.1744-313X.2009.00835.x. [CrossRef]
191. Rakhimov AK, Pospelov LE. 1990. [Study of genetic markers in families of patients with tuberculosis]. Probl Tuberk (9):7–8. [PubMed]
192. Rojas-Alvarado Mde L, Diaz-Mendoza ML, Said-FernÁndez S, Caballero-Olín G, Cerda-Flores RM. 2008. [Association of pulmonary tuberculosis with HLA system antigens in Northeastern Mexico.] Gac Med Mex 144:233–238. [PubMed]
193. Sanjeevi CB, Narayanan PR, Prabakar R, Charles N, Thomas BE, Balasubramaniam R, Olerup O. 1992. No association or linkage with HLA-DR or -DQ genes in south Indians with pulmonary tuberculosis. Tuber Lung Dis 73:280–284. [CrossRef]
194. Selvaraj P, Kurian SM, Uma H, Reetha AM, Narayanan PR. 2000. Influence of non-MHC genes on lymphocyte response to Mycobacterium tuberculosis antigens & tuberculin reactive status in pulmonary tuberculosis. Indian J Med Res 112:86–92. [PubMed]
195. Selvaraj P, Raghavan S, Swaminathan S, Alagarasu K, Narendran G, Narayanan PR. 2008. HLA-DQB1 and -DPB1 allele profile in HIV infected patients with and without pulmonary tuberculosis of south India. Infect Genet Evol 8:664–671. [PubMed][CrossRef]
196. Sharma SK, Turaga KK, Balamurugan A, Saha PK, Pandey RM, Jain NK, Katoch VM, Mehra NK. 2003. Clinical and genetic risk factors for the development of multi-drug resistant tuberculosis in non-HIV infected patients at a tertiary care center in India: a case-control study. Infect Genet Evol 3:183–188. [CrossRef]
197. Shi GL, Hu XL, Yang L, Rong CL, Guo YL, Song CX. 2011. Association of HLA-DRB alleles and pulmonary tuberculosis in North Chinese patients. Genet Mol Res 10:1331–1336 http://dx.doi.org/10.4238/vol10-3gmr1132. [PubMed][CrossRef]
198. Singh SP, Mehra NK, Dingley HB, Pande JN, Vaidya MC. 1983. Human leukocyte antigen (HLA)-linked control of susceptibility to pulmonary tuberculosis and association with HLA-DR types. J Infect Dis 148:676–681 http://dx.doi.org/10.1093/infdis/148.4.676. [CrossRef]
199. Sinch SP, Mehra NK, Dingley HB, Pande JN, Vaidya MC. 1984. HLA haplotype segregation study in multiple case families of pulmonary tuberculosis. Tissue Antigens 23:84–86 http://dx.doi.org/10.1111/j.1399-0039.1984.tb00014.x. [CrossRef]
200. Souza CF, Noguti EN, Visentainer JE, Cardoso RF, Petzl-Erler ML, Tsuneto LT. 2012. HLA and MICA genes in patients with tuberculosis in Brazil. Tissue Antigens 79:58–63 http://dx.doi.org/10.1111/j.1399-0039.2011.01789.x. [PubMed][CrossRef]
201. TerÁn-Escandón D, TerÁn-Ortiz L, Camarena-Olvera A, GonzÁlez-Avila G, Vaca-Marín MA, Granados J, Selman M. 1999. Human leukocyte antigen-associated susceptibility to pulmonary tuberculosis: molecular analysis of class II alleles by DNA amplification and oligonucleotide hybridization in Mexican patients. Chest 115:428–433 http://dx.doi.org/10.1378/chest.115.2.428. [CrossRef]
202. Vasilca V, Oana R, Munteanu D, Zugun F, Constantinescu D, Carasevici E. 2004. HLA-A and -B phenotypes associated with tuberculosis in population from north-eastern Romania. Roum Arch Microbiol Immunol 63:209–221. [PubMed]
203. Vejbaesya S, Chierakul N, Luangtrakool K, Srinak D, Stephens HA. 2002. Associations of HLA class II alleles with pulmonary tuberculosis in Thais. Eur J Immunogenet 29:431–434. [PubMed][CrossRef]
204. Vijaya Lakshmi V, Rakh SS, Anu Radha B, Hari Sai Priya V, Pantula V, Jasti S, Suman Latha G, Murthy KJ. 2006. Role of HLA-B51 and HLA-B52 in susceptibility to pulmonary tuberculosis. Infect Genet Evol 6:436–439. [PubMed][CrossRef]
205. Wu F, Zhang W, Zhang L, Wu J, Li C, Meng X, Wang X, He P, Zhang J. 2013. NRAMP1, VDR, HLA-DRB1, and HLA-DQB1 gene polymorphisms in susceptibility to tuberculosis among the Chinese Kazakh population: a case-control study. BioMed Res Int 2013:484535 http://dx.doi.org/10.1155/2013/484535. [PubMed][CrossRef]
206. Yuliwulandari R, Sachrowardi Q, Nakajima H, Kashiwase K, Hirayasu K, Mabuchi A, Sofro AS, Tokunaga K. 2010. Association of HLA-A, -B, and -DRB1 with pulmonary tuberculosis in western Javanese Indonesia. Hum Immunol 71:697–701 http://dx.doi.org/10.1016/j.humimm.2010.04.005. [PubMed][CrossRef]
207. Zhang NR, Fan G, Deng YF, Wang XF, Lu C, Zhang CZ, Dong ZF, Zhang J, Li L, Zhao SM, Lu ZM. 2012. [A preliminary study on the relationship between HLA-Cw polymorphism and susceptibility to pulmonary tuberculosis]. Zhonghua Jie He He Hu Xi Za Zhi 35:120–124. [PubMed]
208. Li CP, Zhou Y, Xiang X, Zhou Y, He M. 2015. Relationship of HLA-DRB1 gene polymorphism with susceptibility to pulmonary tuberculosis: updated meta-analysis. Int J Tuberc Lung Dis 19:841–849 http://dx.doi.org/10.5588/ijtld.14.0521. [PubMed][CrossRef]
209. Raja lingam R, Mehra NK, Singal DP. 2000. Polymorphism in heat-shock protein 70-1 (HSP70-1) gene promoter region and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians. Indian J Exp Biol 38:658–662.
210. Shen C, Wu XR, Jiao WW, Sun L, Feng WX, Xiao J, Miao Q, Liu F, Yin QQ, Zhang CG, Guo YJ, Shen AD. 2013. A functional promoter polymorphism of IFITM3 is associated with susceptibility to pediatric tuberculosis in Han Chinese population. PLoS One 8:e67816 http://dx.doi.org/10.1371/journal.pone.0067816. [PubMed][CrossRef]
211. Amim LH, Pacheco AG, Fonseca-Costa J, Loredo CS, Rabahi MF, Melo MH, Ribeiro FC, Mello FC, Oliveira MM, Lapa e Silva JR, Ottenhoff TH, Kritski AL, Santos AR. 2008. Role of IFN-gamma +874 T/A single nucleotide polymorphism in the tuberculosis outcome among Brazilians subjects. Mol Biol Rep 35:563–566 http://dx.doi.org/10.1007/s11033-007-9123-1. [CrossRef]
212. Ansari A, Hasan Z, Dawood G, Hussain R. 2011. Differential combination of cytokine and interferon- γ +874 T/A polymorphisms determines disease severity in pulmonary tuberculosis. PLoS One 6:e27848 http://dx.doi.org/10.1371/journal.pone.0027848. [CrossRef]
213. Ansari A, Talat N, Jamil B, Hasan Z, Razzaki T, Dawood G, Hussain R. 2009. Cytokine gene polymorphisms across tuberculosis clinical spectrum in Pakistani patients. PLoS One 4:e4778 http://dx.doi.org/10.1371/journal.pone.0004778. [CrossRef]
214. Awomoyi AA, Nejentsev S, Richardson A, Hull J, Koch O, Podinovskaia M, Todd JA, McAdam KP, Blackwell JM, Kwiatkowski D, Newport MJ. 2004. No association between interferon-gamma receptor-1 gene polymorphism and pulmonary tuberculosis in a Gambian population sample. Thorax 59:291–294 http://dx.doi.org/10.1136/thx.2003.013029. [CrossRef]
215. Ben Selma W, Harizi H, Bougmiza I, Hannachi N, Ben Kahla I, Zaieni R, Boukadida J. 2011. Interferon gamma +874T/A polymorphism is associated with susceptibility to active pulmonary tuberculosis development in Tunisian patients. DNA Cell Biol 30:379–387 http://dx.doi.org/10.1089/dna.2010.1157. [CrossRef]
216. Abhimanyu, Bose M, Jha P, Indian Genome Variation Consortium. 2012. Footprints of genetic susceptibility to pulmonary tuberculosis: cytokine gene variants in north Indians. Indian J Med Res 135:763–770.
217. Cooke GS, Campbell SJ, Sillah J, Gustafson P, Bah B, Sirugo G, Bennett S, McAdam KP, Sow O, Lienhardt C, Hill AV. 2006. Polymorphism within the interferon-gamma/receptor complex is associated with pulmonary tuberculosis. Am J Respir Crit Care Med 174:339–343 http://dx.doi.org/10.1164/rccm.200601-088OC. [CrossRef]
218. de Albuquerque AC, Rocha LQ, de Morais Batista AH, Teixeira AB, Dos Santos DB, Nogueira NA. 2012. Association of polymorphism +874 A/T of interferon-gamma and susceptibility to the development of tuberculosis: meta-analysis. Eur J Clin Microbiol Infect Dis 31:2887–2895. [PubMed][CrossRef]
219. Ding S, Li L, Zhu X. 2008. Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum Immunol 69:129–133 http://dx.doi.org/10.1016/j.humimm.2007.11.006. [PubMed][CrossRef]
220. Etokebe GE, Bulat-Kardum L, Johansen MS, Knezevic J, Balen S, Matakovic-Mileusnic N, Matanic D, Flego V, Pavelic J, Beg-Zec Z, Dembic Z. 2006. Interferon-gamma gene (T874A and G2109A) polymorphisms are associated with microscopy-positive tuberculosis. Scand J Immunol 63:136–141 http://dx.doi.org/10.1111/j.1365-3083.2005.01716.x. [CrossRef]
221. Fraser DA, Bulat-Kardum L, Knezevic J, Babarovic P, Matakovic-Mileusnic N, Dellacasagrande J, Matanic D, Pavelic J, Beg-Zec Z, Dembic Z. 2003. Interferon-gamma receptor-1 gene polymorphism in tuberculosis patients from Croatia. Scand J Immunol 57:480–484 http://dx.doi.org/10.1046/j.1365-3083.2003.01253.x. [CrossRef]
222. Hashemi M, Sharifi-Mood B, Nezamdoost M, Moazeni-Roodi A, Naderi M, Kouhpayeh H, Taheri M, Ghavami S. 2011. Functional polymorphism of interferon-γ (IFN-γ) gene +874T/A polymorphism is associated with pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med Rep 112:38–43. [PubMed]
223. He J, Wang J, Lei D, Ding S. 2010. Analysis of functional SNP in ifng/ifngr1 in Chinese Han population with tuberculosis. Scand J Immunol 71:452–458 http://dx.doi.org/10.1111/j.1365-3083.2010.02393.x. [PubMed][CrossRef]
224. Henao MI, Montes C, París SC, García LF. 2006. Cytokine gene polymorphisms in Colombian patients with different clinical presentations of tuberculosis. Tuberculosis (Edinb) 86:11–19 http://dx.doi.org/10.1016/j.tube.2005.03.001. [CrossRef]
225. Hwang JH, Kim EJ, Kim SY, Lee SH, Suh GY, Kwon OJ, Ji Y, Kang M, Kim DH, Koh WJ. 2007. Polymorphisms of interferon-gamma and interferon-gamma receptor 1 genes and pulmonary tuberculosis in Koreans. Respirology 12:906–910 http://dx.doi.org/10.1111/j.1440-1843.2007.01171.x. [CrossRef]
226. Leandro AC, Rocha MA, Lamoglia-Souza A, VandeBerg JL, Rolla VC, Bonecini-Almeida MG. 2013. No association of IFNG+874T/A SNP and NOS2A-954G/C SNP variants with nitric oxide radical serum levels or susceptibility to tuberculosis in a Brazilian population subset. BioMed Res Int 2013:901740 http://dx.doi.org/10.1155/2013/901740. [CrossRef]
227. Lee SW, Chuang TY, Huang HH, Lee KF, Chen TT, Kao YH, Wu LS. 2015. Interferon gamma polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population. J Microbiol Immunol Infect 48:376–380 http://dx.doi.org/10.1016/j.jmii.2014.11.007. [CrossRef]
228. Lio D, Marino V, Serauto A, Gioia V, Scola L, Crivello A, Forte GI, Colonna-Romano G, Candore G, Caruso C. 2002. Genotype frequencies of the +874T-->A single nucleotide polymorphism in the first intron of the interferon-gamma gene in a sample of Sicilian patients affected by tuberculosis. Eur J Immunogenet 29:371–374 http://dx.doi.org/10.1046/j.1365-2370.2002.00327.x. [CrossRef]
229. Liu YD, Zheng RJ, Xiao HP, Sha W, Zhang Q, Wu FR, Sun H, Zhang ZS, Cui HY, Liu ZB, Tang SJ. 2011. [Study on the correlation between polymorphisms of genes with susceptibility to tuberculosis and drug-resistant tuberculosis in Chinese Han population]. Zhonghua Liu Xing Bing Xue Za Zhi 32:279–284. [PubMed]
230. López-Maderuelo D, Arnalich F, Serantes R, GonzÁlez A, Codoceo R, Madero R, VÁzquez JJ, Montiel C. 2003. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 167:970–975 http://dx.doi.org/10.1164/rccm.200205-438BC. [PubMed][CrossRef]
231. Mirsaeidi SM, Houshmand M, Tabarsi P, Banoei MM, Zargari L, Amiri M, Mansouri SD, Sanati MH, Masjedi MR. 2006. Lack of association between interferon-gamma receptor-1 polymorphism and pulmonary TB in Iranian population sample. J Infect 52:374–377 http://dx.doi.org/10.1016/j.jinf.2005.08.009. [CrossRef]
232. Möller M, Nebel A, van Helden PD, Schreiber S, Hoal EG. 2010. Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case-control association study. BMC Infect Dis 10:154 http://dx.doi.org/10.1186/1471-2334-10-154. [CrossRef]
233. Moran A, Ma X, Reich RA, Graviss EA. 2007. No association between the +874T/A single nucleotide polymorphism in the IFN-gamma gene and susceptibility to TB. Int J Tuberc Lung Dis 11:113–115. [PubMed]
234. Mosaad YM, Soliman OE, Tawhid ZE, Sherif DM. 2010. Interferon-gamma +874 T/A and interleukin-10 -1082 A/G single nucleotide polymorphism in Egyptian children with tuberculosis. Scand J Immunol 72:358–364 http://dx.doi.org/10.1111/j.1365-3083.2010.02426.x. [CrossRef]
235. Onay H, Ekmekci AY, Durmaz B, Sayin E, Cosar H, Bayram N, Can D, Akin H, Ozkinay C, Ozkinay F. 2010. Interferon-gamma gene and interferon-gamma receptor-1 gene polymorphisms in children with tuberculosis from Turkey. Scand J Infect Dis 42:39–42 http://dx.doi.org/10.3109/00365540903253502. [PubMed][CrossRef]
236. Oral HB, Budak F, Uzaslan EK, BaŞtürk B, Bekar A, Akalin H, Ege E, Ener B, Göral G. 2006. Interleukin-10 (IL-10) gene polymorphism as a potential host susceptibility factor in tuberculosis. Cytokine 35:143–147 http://dx.doi.org/10.1016/j.cyto.2006.07.015. [PubMed][CrossRef]
237. Park GY, Im YH, Ahn CH, Park JW, Jeong SW, Ahn JY, Hwang YJ. 2004. Functional and genetic assessment of IFN-gamma receptor in patients with clinical tuberculosis. Int J Tuberc Lung Dis 8:1221–1227. [PubMed]
238. Rosenzweig SD, Schäffer AA, Ding L, Sullivan R, Enyedi B, Yim JJ, Cook JL, Musser JM, Holland SM. 2004. Interferon-gamma receptor 1 promoter polymorphisms: population distribution and functional implications. Clin Immunol 112:113–119 http://dx.doi.org/10.1016/j.clim.2004.03.018. [CrossRef]
239. Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG. 2003. Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 361:1871–1872 http://dx.doi.org/10.1016/S0140-6736(03)13491-5. [CrossRef]
240. Sahiratmadja E, Baak-Pablo R, de Visser AW, Alisjahbana B, Adnan I, van Crevel R, Marzuki S, van Dissel JT, Ottenhoff TH, van de Vosse E. 2007. Association of polymorphisms in IL-12/IFN-gamma pathway genes with susceptibility to pulmonary tuberculosis in Indonesia. Tuberculosis (Edinb) 87:303–311 http://dx.doi.org/10.1016/j.tube.2007.02.001. [CrossRef]
241. Sallakci N, Coskun M, Berber Z, Gürkan F, Kocamaz H, Uysal G, Bhuju S, Yavuzer U, Singh M, Yeğin O. 2007. Interferon-gamma gene+874T-A polymorphism is associated with tuberculosis and gamma interferon response. Tuberculosis (Edinb) 87:225–230 http://dx.doi.org/10.1016/j.tube.2006.10.002. [CrossRef]
242. Selvaraj P, Alagarasu K, Harishankar M, Vidyarani M, Nisha Rajeswari D, Narayanan PR. 2008. Cytokine gene polymorphisms and cytokine levels in pulmonary tuberculosis. Cytokine 43:26–33 http://dx.doi.org/10.1016/j.cyto.2008.04.011. [PubMed][CrossRef]
243. Trajkov D, Trajchevska M, Arsov T, Petlichkovski A, Strezova A, Efinska-Mladenovska O, Sandevski A, Spiroski M. 2009. Association of 22 cytokine gene polymorphisms with tuberculosis in Macedonians. Indian J Tuberc 56:117–131. [PubMed]
244. Tso HW, Lau YL, Tam CM, Wong HS, Chiang AK. 2004. Associations between IL12B polymorphisms and tuberculosis in the Hong Kong Chinese population. J Infect Dis 190:913–919 http://dx.doi.org/10.1086/422693. [PubMed][CrossRef]
245. Vallinoto AC, Graça ES, Araújo MS, Azevedo VN, Cayres-Vallinoto I, Machado LF, Ishak MO, Ishak R. 2010. IFNG +874T/A polymorphism and cytokine plasma levels are associated with susceptibility to Mycobacterium tuberculosis infection and clinical manifestation of tuberculosis. Hum Immunol 71:692–696 http://dx.doi.org/10.1016/j.humimm.2010.03.008. [CrossRef]
246. Vidyarani M, Selvaraj P, Prabhu Anand S, Jawahar MS, Adhilakshmi AR, Narayanan PR. 2006. Interferon gamma (IFNgamma) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis. Indian J Med Res 124:403–410. [PubMed]
247. Wang J, Tang S, Shen H. 2010. Association of genetic polymorphisms in the IL12-IFNG pathway with susceptibility to and prognosis of pulmonary tuberculosis in a Chinese population. Eur J Clin Microbiol Infect Dis 29:1291–1295. [PubMed][CrossRef]
248. Wu F, Qu Y, Tang Y, Cao D, Sun P, Xia Z. 2008. Lack of association between cytokine gene polymorphisms and silicosis and pulmonary tuberculosis in Chinese iron miners. J Occup Health 50:445–454 http://dx.doi.org/10.1539/joh.L8006. [PubMed][CrossRef]
249. Pacheco AG, Cardoso CC, Moraes MO. 2008. IFNG +874T/A, IL10 -1082G/A and TNF -308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study. Hum Genet 123:477–484 http://dx.doi.org/10.1007/s00439-008-0497-5. [PubMed][CrossRef]
250. Tian C, Zhang Y, Zhang J, Deng Y, Li X, Xu D, Huang H, Huang J, Fan H. 2011. The +874T/A polymorphism in the interferon-γ gene and tuberculosis risk: an update by meta-analysis. Hum Immunol 72:1137–1142 http://dx.doi.org/10.1016/j.humimm.2011.07.310. [PubMed][CrossRef]
251. de Albuquerque AC, Rocha LQ, de Morais Batista AH, Teixeira AB, Dos Santos DB, Nogueira NA. 2012. Association of polymorphism +874 A/T of interferon-γ and susceptibility to the development of tuberculosis: meta-analysis. Eur J Clin Microbiol Infect Dis 31:2887–2895 http://dx.doi.org/10.1007/s10096-012-1660-4. [PubMed][CrossRef]
252. Bulat-Kardum L, Etokebe GE, Knezevic J, Balen S, Matakovic-Mileusnic N, Zaputovic L, Pavelic J, Beg-Zec Z, Dembic Z. 2006. Interferon-gamma receptor-1 gene promoter polymorphisms (G-611A; T-56C) and susceptibility to tuberculosis. Scand J Immunol 63:142–150 http://dx.doi.org/10.1111/j.1365-3083.2005.01694.x. [CrossRef]
253. Ding S, Li F, Wang J, Xu K, Li L. 2008. Interferon gamma receptor 1 gene polymorphism in patients with tuberculosis in China. Scand J Immunol 68:140–144 http://dx.doi.org/10.1111/j.1365-3083.2008.02125.x. [PubMed][CrossRef]
254. Newport MJ, Awomoyi AA, Blackwell JM. 2003. Polymorphism in the interferon-gamma receptor-1 gene and susceptibility to pulmonary tuberculosis in The Gambia. Scand J Immunol 58:383–385 http://dx.doi.org/10.1046/j.1365-3083.2003.01328.x. [PubMed][CrossRef]
255. Velez DR, Hulme WF, Myers JL, Weinberg JB, Levesque MC, Stryjewski ME, Abbate E, Estevan R, Patillo SG, Gilbert JR, Hamilton CD, Scott WK. 2009. NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans. Hum Genet 126:643–653 http://dx.doi.org/10.1007/s00439-009-0713-y. [CrossRef]
256. Wang W, Ren W, Zhang X, Liu Y, Li C. 2014. Association between interferon gamma receptor 1-56C/T gene polymorphism and tuberculosis susceptibility: a meta-analysis. Chin Med J (Engl) 127:3782–3788. [PubMed]
257. Gomez LM, Camargo JF, Castiblanco J, Ruiz-NarvÁez EA, Cadena J, Anaya JM. 2006. Analysis of IL1B, TAP1, TAP2 and IKBL polymorphisms on susceptibility to tuberculosis. Tissue Antigens 67:290–296 http://dx.doi.org/10.1111/j.1399-0039.2006.00566.x. [PubMed][CrossRef]
258. Amirzargar AA, Rezaei N, Jabbari H, Danesh AA, Khosravi F, Hajabdolbaghi M, Yalda A, Nikbin B. 2006. Cytokine single nucleotide polymorphisms in Iranian patients with pulmonary tuberculosis. Eur Cytokine Netw 17:84–89. [PubMed]
259. Awomoyi AA, Charurat M, Marchant A, Miller EN, Blackwell JM, McAdam KP, Newport MJ. 2005. Polymorphism in IL1B: IL1B-511 association with tuberculosis and decreased lipopolysaccharide-induced IL-1beta in IFN-gamma primed ex-vivo whole blood assay. J Endotoxin Res 11:281–286. [CrossRef]
260. Delgado JC, Baena A, Thim S, Goldfeld AE. 2002. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 186:1463–1468 http://dx.doi.org/10.1086/344891. [PubMed][CrossRef]
261. Meenakshi P, Ramya S, Shruthi T, Lavanya J, Mohammed HH, Mohammed SA, Vijayalakshmi V, Sumanlatha G. 2013. Association of IL-1β +3954 C/T and IL-10-1082 G/A cytokine gene polymorphisms with susceptibility to tuberculosis. Scand J Immunol 78:92–97 http://dx.doi.org/10.1111/sji.12055. [PubMed][CrossRef]
262. Motsinger-Reif AA, Antas PR, Oki NO, Levy S, Holland SM, Sterling TR. 2010. Polymorphisms in IL-1beta, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis. BMC Med Genet 11:37 http://dx.doi.org/10.1186/1471-2350-11-37. [CrossRef]
263. Naslednikova IO, Urazova OI, Voronkova OV, Strelis AK, Novitsky VV, Nikulina EL, Hasanova RR, Kononova TE, Serebryakova VA, Vasileva OA, Suhalentseva NA, Churina EG, Kolosova AE, Fedorovich TV. 2009. Allelic polymorphism of cytokine genes during pulmonary tuberculosis. Bull Exp Biol Med 148:175–180 http://dx.doi.org/10.1007/s10517-009-0674-0. [CrossRef]
264. Taype CA, Shamsuzzaman S, Accinelli RA, Espinoza JR, Shaw MA. 2010. Genetic susceptibility to different clinical forms of tuberculosis in the Peruvian population. Infect Genet Evol 10:495–504. [PubMed][CrossRef]
265. Zhang G, Zhou B, Li S, Yue J, Yang H, Wen Y, Zhan S, Wang W, Liao M, Zhang M, Zeng G, Feng CG, Sassetti CM, Chen X. 2014. Allele-specific induction of IL-1β expression by C/EBPβ and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathog 10:e1004426 http://dx.doi.org/10.1371/journal.ppat.1004426. [PubMed][CrossRef]
266. Mao X, Ke Z, Liu S, Tang B, Wang J, Huang H, Chen S. 2015. IL-1β+3953C/T, -511T/C and IL-6 -174C/G polymorphisms in association with tuberculosis susceptibility: a meta-analysis. Gene 573:75–83 http://dx.doi.org/10.1016/j.gene.2015.07.025. [PubMed][CrossRef]
267. Zhang G, Zhou B, Wang W, Zhang M, Zhao Y, Wang Z, Yang L, Zhai J, Feng CG, Wang J, Chen X. 2012. A functional single-nucleotide polymorphism in the promoter of the gene encoding interleukin 6 is associated with susceptibility to tuberculosis. J Infect Dis 205:1697–1704 http://dx.doi.org/10.1093/infdis/jis266. [CrossRef]
268. Ke Z, Yuan L, Ma J, Zhang X, Guo Y, Xiong H. 2015. IL-10 polymorphisms and tuberculosis susceptibility: an updated meta-analysis. Yonsei Med J 56:1274–1287 http://dx.doi.org/10.3349/ymj.2015.56.5.1274. [PubMed][CrossRef]
269. Cooke GS, Campbell SJ, Fielding K, Sillah J, Manneh K, Sirugo G, Bennett S, McAdam KP, Lienhardt C, Hill AV. 2004. Interleukin-8 polymorphism is not associated with pulmonary tuberculosis in the gambia. J Infect Dis 189:1545–1546, author reply 1546 http://dx.doi.org/10.1086/382489. [PubMed][CrossRef]
270. Lindenau JD, Guimarães LS, Friedrich DC, Hurtado AM, Hill KR, Salzano FM, Hutz MH. 2014. Cytokine gene polymorphisms are associated with susceptibility to tuberculosis in an Amerindian population. Int J Tuberc Lung Dis 18:952–957 http://dx.doi.org/10.5588/ijtld.14.0060. [PubMed][CrossRef]
271. Ma X, Reich RA, Wright JA, Tooker HR, Teeter LD, Musser JM, Graviss EA. 2003. Association between interleukin-8 gene alleles and human susceptibility to tuberculosis disease. J Infect Dis 188:349–355 http://dx.doi.org/10.1086/376559. [CrossRef]
272. Ates O, Musellim B, Ongen G, Topal-Sarikaya A. 2008. Interleukin-10 and tumor necrosis factor-alpha gene polymorphisms in tuberculosis. J Clin Immunol 28:232–236 http://dx.doi.org/10.1007/s10875-007-9155-2. [PubMed][CrossRef]
273. Awomoyi AA, Marchant A, Howson JM, McAdam KP, Blackwell JM, Newport MJ. 2002. Interleukin-10, polymorphism in SLC11A1 (formerly NRAMP1), and susceptibility to tuberculosis. J Infect Dis 186:1808–1814 http://dx.doi.org/10.1086/345920. [PubMed][CrossRef]
274. Ben-Selma W, Ben-Abderrahmen Y, Boukadida J, Harizi H. 2012. IL-10R1 S138G loss-of-function polymorphism is associated with extrapulmonary tuberculosis risk development in Tunisia. Mol Biol Rep 39:51–56 http://dx.doi.org/10.1007/s11033-011-0709-2. [PubMed][CrossRef]
275. Ben-Selma W, Harizi H, Boukadida J. 2011. Association of TNF-αand IL-10 polymorphisms with tuberculosis in Tunisian populations. Microbes Infect 13:837–843. [PubMed][CrossRef]
276. García-Elorriaga G, Vera-Ramírez L, del Rey-Pineda G, GonzÁlez-Bonilla C. 2013. -592 and -1082 interleukin-10 polymorphisms in pulmonary tuberculosis with type 2 diabetes. Asian Pac J Trop Med 6:505–509. [PubMed][CrossRef]
277. Garcia-Laorden MI, Pena MJ, Caminero JA, Garcia-Saavedra A, Campos-Herrero MI, Caballero A, Rodriguez-Gallego C. 2006. Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol Immunol 43:2143–2150 http://dx.doi.org/10.1016/j.molimm.2006.01.008. [CrossRef]
278. Liang L, Zhao YL, Yue J, Liu JF, Han M, Wang H, Xiao H. 2011. Association of SP110 gene polymorphisms with susceptibility to tuberculosis in a Chinese population. Infect Genet Evol 11:934–939. [PubMed][CrossRef]
279. Ma MJ, Xie LP, Wu SC, Tang F, Li H, Zhang ZS, Yang H, Chen SL, Liu N, Liu W, Cao WC. 2010. Toll-like receptors, tumor necrosis factor-α, and interleukin-10 gene polymorphisms in risk of pulmonary tuberculosis and disease severity. Hum Immunol 71:1005–1010 http://dx.doi.org/10.1016/j.humimm.2010.07.009. [CrossRef]
280. Meilang Q, Zhang Y, Zhang J, Zhao Y, Tian C, Huang J, Fan H. 2012. Polymorphisms in the SLC11A1 gene and tuberculosis risk: a meta-analysis update. Int J Tuberc Lung Dis 16:437–446 http://dx.doi.org/10.5588/ijtld.10.0743. [PubMed][CrossRef]
281. Oh JH, Yang CS, Noh YK, Kweon YM, Jung SS, Son JW, Kong SJ, Yoon JU, Lee JS, Kim HJ, Park JK, Jo EK, Song CH. 2007. Polymorphisms of interleukin-10 and tumour necrosis factor-alpha genes are associated with newly diagnosed and recurrent pulmonary tuberculosis. Respirology 12:594–598 http://dx.doi.org/10.1111/j.1440-1843.2007.01108.x. [CrossRef]
282. Prabhu Anand S, Selvaraj P, Jawahar MS, Adhilakshmi AR, Narayanan PR. 2007. Interleukin-12B & interleukin-10 gene polymorphisms in pulmonary tuberculosis. Indian J Med Res 126:135–138. [PubMed]
283. Scola L, Crivello A, Marino V, Gioia V, Serauto A, Candore G, Colonna-Romano G, Caruso C, Lio D. 2003. IL-10 and TNF-alpha polymorphisms in a sample of Sicilian patients affected by tuberculosis: implication for ageing and life span expectancy. Mech Ageing Dev 124:569–572 http://dx.doi.org/10.1016/S0047-6374(03)00038-1. [CrossRef]
284. Shin HD, Park BL, Kim YH, Cheong HS, Lee IH, Park SK. 2005. Common interleukin 10 polymorphism associated with decreased risk of tuberculosis. Exp Mol Med 37:128–132 http://dx.doi.org/10.1038/emm.2005.17. [PubMed][CrossRef]
285. Thye T, Browne EN, Chinbuah MA, Gyapong J, Osei I, Owusu-Dabo E, Brattig NW, Niemann S, Rüsch-Gerdes S, Horstmann RD, Meyer CG. 2009. IL10 haplotype associated with tuberculin skin test response but not with pulmonary TB. PLoS One 4:e5420 http://dx.doi.org/10.1371/journal.pone.0005420. [PubMed][CrossRef]
286. Ulger M, EmekdaŞ G, Aslan G, TaŞ D, Ilvan A, Tezcan S, Calıkoğlu M, Erdal ME, Kartaloğlu Z. 2013. [Determination of the cytokine gene polymorphism and genetic susceptibility in tuberculosis patients]. Mikrobiyol Bul 47:250–264 http://dx.doi.org/10.5578/mb.4699. [CrossRef]
287. Yang H, Liang ZH, Liu XL, Wang F. 2010. [Association between polymorphisms of interleukin-10, interferon-γ gene and the susceptibility to pulmonary tuberculosis]. Zhonghua Liu Xing Bing Xue Za Zhi 31:155–158. [PubMed]
288. Zembrzuski VM, Basta PC, Callegari-Jacques SM, Santos RV, Coimbra CE, Salzano FM, Hutz MH. 2010. Cytokine genes are associated with tuberculin skin test response in a native Brazilian population. Tuberculosis(Edinb) 90:44–49 http://dx.doi.org/10.1016/j.tube.2009.11.002. [CrossRef]
289. Zhang J, Chen Y, Nie XB, Wu WH, Zhang H, Zhang M, He XM, Lu JX. 2011. Interleukin-10 polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 15:594–601. [PubMed][CrossRef]
290. Gao X, Chen J, Tong Z, Yang G, Yao Y, Xu F, Zhou J. 2015. Interleukin-10 promoter gene polymorphisms and susceptibility to tuberculosis: a meta-analysis. PLoS One 10:e0127496 http://dx.doi.org/10.1371/journal.pone.0127496. [PubMed][CrossRef]
291. Kusuhara K, Yamamoto K, Okada K, Mizuno Y, Hara T. 2007. Association of IL12RB1 polymorphisms with susceptibility to and severity of tuberculosis in Japanese: a gene-based association analysis of 21 candidate genes. Int J Immunogenet 34:35–44 http://dx.doi.org/10.1111/j.1744-313X.2007.00653.x. [PubMed][CrossRef]
292. Ma X, Reich RA, Gonzalez O, Pan X, Fothergill AK, Starke JR, Teeter LD, Musser JM, Graviss EA. 2003. No evidence for association between the polymorphism in the 3′ untranslated region of interleukin-12B and human susceptibility to tuberculosis. J Infect Dis 188:1116–1118 http://dx.doi.org/10.1086/378674. [CrossRef]
293. Morahan G, Kaur G, Singh M, Rapthap CC, Kumar N, Katoch K, Mehra NK, Huang D. 2007. Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 69(Suppl 1):234–236 http://dx.doi.org/10.1111/j.1399-0039.2006.773_3.x. [PubMed][CrossRef]
294. Morris GA, Edwards DR, Hill PC, Wejse C, Bisseye C, Olesen R, Edwards TL, Gilbert JR, Myers JL, Stryjewski ME, Abbate E, Estevan R, Hamilton CD, Tacconelli A, Novelli G, Brunetti E, Aaby P, Sodemann M, Østergaard L, Adegbola R, Williams SM, Scott WK, Sirugo G. 2011. Interleukin 12B (IL12B) genetic variation and pulmonary tuberculosis: a study of cohorts from The Gambia, Guinea-Bissau, United States and Argentina. PLoS One 6:e16656 http://dx.doi.org/10.1371/journal.pone.0016656. [CrossRef]
295. Puzyrev VP, Freĭdin MB, Rudko AA, Strelis AK, Kolokolova OV. 2002. [Polymorphisms of the candidate genes for genetic susceptibility to tuberculosis in the Slavic population of Siberia: a pilot study]. Mol Biol (Mosk) 36:788–791. [PubMed][CrossRef]
296. Akahoshi M, Nakashima H, Miyake K, Inoue Y, Shimizu S, Tanaka Y, Okada K, Otsuka T, Harada M. 2003. Influence of interleukin-12 receptor beta1 polymorphisms on tuberculosis. Hum Genet 112:237–243. [PubMed]
297. Lee HW, Lee HS, Kim DK, Ko DS, Han SK, Shim YS, Yim JJ. 2005. Lack of an association between interleukin-12 receptor beta1 polymorphisms and tuberculosis in Koreans. Respiration 72:365–368. [PubMed][CrossRef]
298. Remus N, El Baghdadi J, Fieschi C, Feinberg J, Quintin T, Chentoufi M, Schurr E, Benslimane A, Casanova JL, Abel L. 2004. Association of IL12RB1 polymorphisms with pulmonary tuberculosis in adults in Morocco. J Infect Dis 190:580–587 http://dx.doi.org/10.1086/422534. [PubMed][CrossRef]
299. Peng R, Yue J, Han M, Zhao Y, Liu L, Liang L. 2013. The IL-17F sequence variant is associated with susceptibility to tuberculosis. Gene 515:229–232 http://dx.doi.org/10.1016/j.gene.2012.11.017. [PubMed][CrossRef]
300. Han M, Yue J, Lian YY, Zhao YL, Wang HX, Liu LR. 2011. Relationship between single nucleotide polymorphism of interleukin-18 and susceptibility to pulmonary tuberculosis in the Chinese Han population. Microbiol Immunol 55:388–393 http://dx.doi.org/10.1111/j.1348-0421.2011.00332.x. [CrossRef]
301. Harishankar M, Selvaraj P, Rajeswari DN, Anand SP, Narayanan PR. 2007. Promoter polymorphism of IL-18 gene in pulmonary tuberculosis in South Indian population. Int J Immunogenet 34:317–320 http://dx.doi.org/10.1111/j.1744-313X.2007.00714.x. [PubMed][CrossRef]
302. Zhang J, Zheng L, Zhu D, An H, Yang Y, Liang Y, Zhao W, Ding W, Wu X. 2014. Polymorphisms in the interleukin 18 receptor 1 gene and tuberculosis susceptibility among Chinese. PLoS One 9:e110734 http://dx.doi.org/10.1371/journal.pone.0110734. [CrossRef]
303. Zhou C, Ouyang N, Li QH, Luo SX, He Q, Lei H, Liu Q. 2015. The -137G/C single nucleotide polymorphism in IL-18 gene promoter contributes to tuberculosis susceptibility in Chinese Han population. Infect Genet Evol 36:376–380 http://dx.doi.org/10.1016/j.meegid.2015.10.014. [CrossRef]
304. Jiang D, Wubuli A, Hu X, Ikramullah S, Maimaiti A, Zhang W, Wushouer Q. 2015. The variations of IL-23R are associated with susceptibility and severe clinical forms of pulmonary tuberculosis in Chinese Uygurs. BMC Infect Dis 15:550 http://dx.doi.org/10.1186/s12879-015-1284-2. [CrossRef]
305. Gómez LM, Anaya JM, Vilchez JR, Cadena J, Hinojosa R, Vélez L, Lopez-Nevot MA, Martín J. 2007. A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis (Edinb) 87:288–294 http://dx.doi.org/10.1016/j.tube.2007.03.002. [PubMed][CrossRef]
306. Qu Y, Tang Y, Cao D, Wu F, Liu J, Lu G, Zhang Z, Xia Z. 2007. Genetic polymorphisms in alveolar macrophage response-related genes, and risk of silicosis and pulmonary tuberculosis in Chinese iron miners. Int J Hyg Environ Health 210:679–689 http://dx.doi.org/10.1016/j.ijheh.2006.11.010.
307. Velez DR, Hulme WF, Myers JL, Stryjewski ME, Abbate E, Estevan R, Patillo SG, Gilbert JR, Hamilton CD, Scott WK. 2009. Association of SLC11A1 with tuberculosis and interactions with NOS2A and TLR2 in African-Americans and Caucasians. Int J Tuberc Lung Dis 13:1068–1076. [PubMed]
308. Ding S, Jiang T, He J, Qin B, Lin S, Li L. 2012. Tagging single nucleotide polymorphisms in the IRF1 and IRF8 genes and tuberculosis susceptibility. PLoS One 7:e42104 http://dx.doi.org/10.1371/journal.pone.0042104.
309. Vollstedt S, Yuliwulandari R, Okamoto K, Lien LT, Keicho N, Rochani JT, Wikaningrum R, Tokunaga K. 2009. No evidence for association between the interferon regulatory factor 1 (IRF1) gene and clinical tuberculosis. Tuberculosis (Edinb) 89:71–76 http://dx.doi.org/10.1016/j.tube.2008.09.006. [CrossRef]
310. Bahari G, Hashemi M, Taheri M, Naderi M, Eskandari-Nasab E, Atabaki M. 2012. Association of IRGM polymorphisms and susceptibility to pulmonary tuberculosis in Zahedan, Southeast Iran. Scientific World Journal 2012:950801 http://dx.doi.org/10.1100/2012/950801. [PubMed][CrossRef]
311. Che N, Li S, Gao T, Zhang Z, Han Y, Zhang X, Sun Y, Liu Y, Sun Z, Zhang J, Ren W, Tian M, Li Y, Li W, Cheng J, Li C. 2010. Identification of a novel IRGM promoter single nucleotide polymorphism associated with tuberculosis. Clin Chim Acta 411:1645–1649. [PubMed][CrossRef]
312. King KY, Lew JD, Ha NP, Lin JS, Ma X, Graviss EA, Goodell MA. 2011. Polymorphic allele of human IRGM1 is associated with susceptibility to tuberculosis in African Americans. PLoS One 6:e16317 http://dx.doi.org/10.1371/journal.pone.0016317. [PubMed][CrossRef]
313. Braun K, Larcombe L, Orr P, Nickerson P, Wolfe J, Sharma M. 2013. Killer immunoglobulin-like receptor (KIR) centromeric-AA haplotype is associated with ethnicity and tuberculosis disease in a Canadian First Nations cohort. PLoS One 8:e67842 http://dx.doi.org/10.1371/journal.pone.0067842. [CrossRef]
314. Lu C, Bai XL, Deng YF, Wang CY, Fan G, Shen YJ, Liu YQ, Zhang BC, Zhao YR, Huan C, Zhang CZ, Lu ZM. 2014. Killer cell immunoglobulin-like receptor genotypes and haplotypes with susceptibility to pulmonary tuberculosis infection. Clin Lab 60:821–825. [PubMed]
315. Lu C, Shen YJ, Deng YF, Wang CY, Fan G, Liu YQ, Zhao SM, Zhang BC, Zhao YR, Wang ZE, Zhang CZ, Lu ZM. 2012. Association of killer cell immunoglobulin-like receptors with pulmonary tuberculosis in Chinese Han. Genet Mol Res 11:1370–1378 http://dx.doi.org/10.4238/2012.May.15.7. [PubMed][CrossRef]
316. Salie M, Daya M, Möller M, Hoal EG. 2015. Activating KIRs alter susceptibility to pulmonary tuberculosis in a South African population. Tuberculosis (Edinb) 95:817–821 http://dx.doi.org/10.1016/j.tube.2015.09.003. [CrossRef]
317. Shahsavar F, Mousavi T, Azargon A, Entezami K. 2012. Association of KIR3DS1+HLA-B Bw4Ile80 combination with susceptibility to tuberculosis in Lur population of Iran. Iran J Immunol 9:39–47. [PubMed]
318. Tajik N, Shah-hosseini A, Mohammadi A, Jafari M, Nasiri M, Radjabzadeh MF, Farnia P, Jalali A. 2012. Susceptibility to pulmonary tuberculosis in Iranian individuals is not affected by compound KIR/HLA genotype. Tissue Antigens 79:90–96 http://dx.doi.org/10.1111/j.1399-0039.2011.01812.x. [CrossRef]
319. Curtis J, Kopanitsa L, Stebbings E, Speirs A, Ignatyeva O, Balabanova Y, Nikolayevskyy V, Hoffner S, Horstmann R, Drobniewski F, Nejentsev S. 2011. Association analysis of the LTA4H gene polymorphisms and pulmonary tuberculosis in 9115 subjects. Tuberculosis (Edinb) 91:22–25 http://dx.doi.org/10.1016/j.tube.2010.11.001. [CrossRef]
320. García-Elorriaga G, Carrillo-Montes G, Mendoza-Aguilar M, GonzÁlez-Bonilla C. 2010. Polymorphisms in tumor necrosis factor and lymphotoxin A in tuberculosis without and with response to treatment. Inflammation 33:267–275 http://dx.doi.org/10.1007/s10753-010-9181-8.
321. Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King MC, Hawn TR, Moens CB, Ramakrishnan L. 2010. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730 http://dx.doi.org/10.1016/j.cell.2010.02.013. [PubMed][CrossRef]
322. Xue Y, Zhao ZQ, Hong D, Zhao MY, Zhang YX, Wang HJ, Wang Y, Li JC. 2010. Lack of association between MD-2 promoter gene variants and tuberculosis. Genet Mol Res 9:1584–1590 http://dx.doi.org/10.4238/vol9-3gmr771. [PubMed][CrossRef]
323. Han M, Liang L, Liu LR, Yue J, Zhao YL, Xiao HP. 2014. Liver X receptor gene polymorphisms in tuberculosis: effect on susceptibility. PLoS One 9:e95954 http://dx.doi.org/10.1371/journal.pone.0095954. [PubMed][CrossRef]
324. Bowdish DM, Sakamoto K, Lack NA, Hill PC, Sirugo G, Newport MJ, Gordon S, Hill AV, Vannberg FO. 2013. Genetic variants of MARCO are associated with susceptibility to pulmonary tuberculosis in a Gambian population. BMC Med Genet 14:47 http://dx.doi.org/10.1186/1471-2350-14-47. [PubMed][CrossRef]
325. Ma MJ, Wang HB, Li H, Yang JH, Yan Y, Xie LP, Qi YC, Li JL, Chen MJ, Liu W, Cao WC. 2011. Genetic variants in MARCO are associated with the susceptibility to pulmonary tuberculosis in Chinese Han population. PLoS One 6:e24069 http://dx.doi.org/10.1371/journal.pone.0024069. [PubMed][CrossRef]
326. Chen M, Deng J, Su C, Li J, Wang M, Abuaku BK, Hu S, Tan H, Wen SW. 2014. Impact of passive smoking, cooking with solid fuel exposure, and MBL/MASP-2 gene polymorphism upon susceptibility to tuberculosis. Int J Infect Dis 29:1–6 http://dx.doi.org/10.1016/j.ijid.2014.08.010. [PubMed][CrossRef]
327. Chen M, Liang Y, Li W, Wang M, Hu L, Abuaku BK, Huang X, Tan H, Wen SW. 2015. Impact of MBL and MASP-2 gene polymorphism and its interaction on susceptibility to tuberculosis. BMC Infect Dis 15:151 http://dx.doi.org/10.1186/s12879-015-0879-y. [PubMed][CrossRef]
328. Alagarasu K, Selvaraj P, Swaminathan S, Raghavan S, Narendran G, Narayanan PR. 2007. Mannose binding lectin gene variants and susceptibility to tuberculosis in HIV-1 infected patients of South India. Tuberculosis (Edinb) 87:535–543 http://dx.doi.org/10.1016/j.tube.2007.07.007. [PubMed][CrossRef]
329. Bellamy R, Ruwende C, McAdam KP, Thursz M, Sumiya M, Summerfield J, Gilbert SC, Corrah T, Kwiatkowski D, Whittle HC, Hill AV. 1998. Mannose binding protein deficiency is not associated with malaria, hepatitis B carriage nor tuberculosis in Africans. QJM 91:13–18 http://dx.doi.org/10.1093/qjmed/91.1.13. [PubMed][CrossRef]
330. Capparelli R, Iannaccone M, Palumbo D, Medaglia C, Moscariello E, Russo A, Iannelli D. 2009. Role played by human mannose-binding lectin polymorphisms in pulmonary tuberculosis. J Infect Dis 199:666–672 http://dx.doi.org/10.1086/596658. [CrossRef]
331. Cosar H, Ozkinay F, Onay H, Bayram N, Bakiler AR, Anil M, Can D, Ozkinay C. 2008. Low levels of mannose-binding lectin confers protection against tuberculosis in Turkish children. Eur J Clin Microbiol Infect Dis 27:1165–1169 http://dx.doi.org/10.1007/s10096-008-0573-8. [CrossRef]
332. da Cruz HL, da Silva RC, Segat L, de Carvalho MS, Brandão LA, Guimarães RL, Santos FC, de Lira LA, Montenegro LM, Schindler HC, Crovella S. 2013. MBL2 gene polymorphisms and susceptibility to tuberculosis in a northeastern Brazilian population. Infect Genet Evol 19:323–329 http://dx.doi.org/10.1016/j.meegid.2013.03.002. [PubMed][CrossRef]
333. El Sahly HM, Reich RA, Dou SJ, Musser JM, Graviss EA. 2004. The effect of mannose binding lectin gene polymorphisms on susceptibility to tuberculosis in different ethnic groups. Scand J Infect Dis 36:106–108 http://dx.doi.org/10.1080/00365540310018860. [PubMed][CrossRef]
334. Feng FM, Guo M, Liu Q, Wang D, Gao BX, Sun YH, An YC, Ji CM. 2006. [Study on mannose-binding protein gene polymorphisms and susceptibility to pulmonary tuberculosis]. Zhonghua Liu Xing Bing Xue Za Zhi 27:1082–1085. [PubMed]
335. Mombo LE, Lu CY, Ossari S, Bedjabaga I, Sica L, Krishnamoorthy R, Lapoumeroulie C. 2003. Mannose-binding lectin alleles in sub-Saharan Africans and relation with susceptibility to infections. Genes Immun 4:362–367 http://dx.doi.org/10.1038/sj.gene.6363979. [PubMed][CrossRef]
336. OzbaŞ-Gerçeker F, Tezcan I, Berkel AI, Ozkara S, Ozcan A, Ersoy F, Sanal O, Ozgüç M. 2003. The effect of mannose-binding protein gene polymorphisms in recurrent respiratory system infections in children and lung tuberculosis. Turk J Pediatr 45:95–98. [PubMed]
337. Selvaraj P, Narayanan PR, Reetha AM. 1999. Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India. Tuber Lung Dis 79:221–227. [PubMed][CrossRef]
338. Singla N, Gupta D, Joshi A, Batra N, Singh J, Birbian N. 2012. Association of mannose-binding lectin gene polymorphism with tuberculosis susceptibility and sputum conversion time. Int J Immunogenet 39:10–14 http://dx.doi.org/10.1111/j.1744-313X.2011.01047.x. [PubMed][CrossRef]
339. Søborg C, Andersen AB, Range N, Malenganisho W, Friis H, Magnussen P, Temu MM, Changalucha J, Madsen HO, Garred P. 2007. Influence of candidate susceptibility genes on tuberculosis in a high endemic region. Mol Immunol 44:2213–2220 http://dx.doi.org/10.1016/j.molimm.2006.11.002. [PubMed]
340. Søborg C, Madsen HO, Andersen AB, Lillebaek T, Kok-Jensen A, Garred P. 2003. Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 188:777–782 http://dx.doi.org/10.1086/377183. [PubMed][CrossRef]
341. Solğun HA, TaŞtemir D, Aksaray N, Inan I, Demirhan O. 2011. Polymorphisms in NRAMP1 and MBL2 genes and their relations with tuberculosis in Turkish children. Tuberk Toraks 59:48–53 http://dx.doi.org/10.5578/tt.2385. [PubMed][CrossRef]
342. Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Rüsch-Gerdes S, Horstmann RD, Ehlers S, Meyer CG. 2011. Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One 6:e20908 http://dx.doi.org/10.1371/journal.pone.0020908. [CrossRef]
343. Wu L, Deng H, Zheng Y, Mansjö M, Zheng X, Hu Y, Xu B. 2015. An association study of NRAMP1, VDR, MBL and their interaction with the susceptibility to tuberculosis in a Chinese population. Int J Infect Dis 38:129–135 http://dx.doi.org/10.1016/j.ijid.2015.08.003. [PubMed][CrossRef]
344. Denholm JT, McBryde ES, Eisen DP. 2010. Mannose-binding lectin and susceptibility to tuberculosis: a meta-analysis. Clin Exp Immunol 162:84–90 http://dx.doi.org/10.1111/j.1365-2249.2010.04221.x. [PubMed][CrossRef]
345. Shi J, Xie M, Wang JM, Xu YJ, Xiong WN, Liu XS. 2013. Mannose-binding lectin two gene polymorphisms and tuberculosis susceptibility in Chinese population: a meta-analysis. J Huazhong Univ Sci Technolog Med Sci 33:166–171 http://dx.doi.org/10.1007/s11596-013-1091-1. [PubMed][CrossRef]
346. Shin HD, Cheong HS, Park BL, Kim LH, Han CS, Lee IH, Park SK. 2008. Common MCL1 polymorphisms associated with risk of tuberculosis. BMB Rep 41:334–337 http://dx.doi.org/10.5483/BMBRep.2008.41.4.334. [PubMed][CrossRef]
347. Gómez LM, SÁnchez E, Ruiz-Narvaez EA, López-Nevot MA, Anaya JM, Martín J. 2007. Macrophage migration inhibitory factor gene influences the risk of developing tuberculosis in northwestern Colombian population. Tissue Antigens 70:28–33 http://dx.doi.org/10.1111/j.1399-0039.2007.00843.x. [CrossRef]
348. Li Y, Zeng Z, Deng S. 2012. Study of the relationship between human MIF level, MIF-794CATT5-8 microsatellite polymorphism, and susceptibility of tuberculosis in Southwest China. Braz J Infect Dis 16:383–386 http://dx.doi.org/10.1016/j.bjid.2012.06.018. [PubMed][CrossRef]
349. Liu A, Li J, Bao F, Zhu Z, Feng S, Yang J, Wang L, Shi M, Wen X, Zhao H, Voravuthikunchai SP. 2016. Single nucleotide polymorphisms in cytokine MIF gene promoter region are closely associated with human susceptibility to tuberculosis in a southwestern province of China. Infect Genet Evol 39:219–224 10.1016/j.meegid.2015.12.003. [CrossRef]
350. Li D, Wang T, Song X, Qucuo M, Yang B, Zhang J, Wang J, Ying B, Tao C, Wang L. 2011. Genetic study of two single nucleotide polymorphisms within corresponding microRNAs and susceptibility to tuberculosis in a Chinese Tibetan and Han population. Hum Immunol 72:598–602 http://dx.doi.org/10.1016/j.humimm.2011.03.004. [CrossRef]
351. Naderi M, Hashemi M, Khorgami P, Koshki M, Ebrahimi M, Amininia S, Sharifi-Mood B, Taheri M. 2015. Lack of association between miRNA-146a rs2910164 and miRNA-499 rs3746444 gene polymorphisms and susceptibility to pulmonary tuberculosis. Int J Mol Cell Med 4:40–45. [PubMed]
352. Song X, Li S, QuCuo M, Zhou M, Zhou Y, Hu X, Zhou J, Lu X, Wang J, Hua W, Ye Y, Ying B, Wang L. 2013. Association between SNPs in microRNA-machinery genes and tuberculosis susceptibility in Chinese Tibetan population. Mol Biol Rep 40:6027–6033 http://dx.doi.org/10.1007/s11033-013-2712-2. [CrossRef]
353. Zhang X, Li Y, Li X, Zhang W, Pan Z, Wu F, Wang C, Chen Z, Jiang T, Xu D, Ping Z, Liu J, Liu C, Li Z, Li JC. 2015. Association of the miR-146a, miR-149, miR-196a2 and miR-499 polymorphisms with susceptibility to pulmonary tuberculosis in the Chinese Uygur, Kazak and Southern Han populations. BMC Infect Dis 15:41 http://dx.doi.org/10.1186/s12879-015-0771-9. [PubMed][CrossRef]
354. Lee SH, Han SK, Shim YS, Yim JJ. 2009. Effect of matrix metalloproteinase-9 -1562C/T gene polymorphism on manifestations of pulmonary tuberculosis. Tuberculosis (Edinb) 89:68–70 http://dx.doi.org/10.1016/j.tube.2008.08.001. [PubMed][CrossRef]
355. Sánchez D, Lefebvre C, Rioux J, García LF, Barrera LF. 2012. Evaluation of Toll-like receptor and adaptor molecule polymorphisms for susceptibility to tuberculosis in a Colombian population. Int J Immunogenet 39:216–223 http://dx.doi.org/10.1111/j.1744-313X.2011.01077.x. [PubMed][CrossRef]
356. Austin CM, Ma X, Graviss EA. 2008. Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J Infect Dis 197:1713–1716 h