No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Gregory M. Cook1, Kiel Hards3, Elyse Dunn4, Adam Heikal5, Yoshio Nakatani7, Chris Greening9, Dean C. Crick11, Fabio L. Fontes12, Kevin Pethe13, Erik Hasenoehrl14, Michael Berney15
  • Editors: William R. Jacobs Jr.16, Helen McShane17, Valerie Mizrahi18, Ian M. Orme19
    Affiliations: 1: University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand; 2: Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland 1042, New Zealand; 3: University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand; 4: University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand; 5: University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand; 6: Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland 1042, New Zealand; 7: University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand; 8: Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland 1042, New Zealand; 9: The Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Acton ACT, Australia; 10: Monash University, School of Biological Sciences, Clayton VIC, Australia; 11: Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO 80523; 12: Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO 80523; 13: Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 14: Albert Einstein School of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461; 15: Albert Einstein School of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461; 16: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 17: University of Oxford, Oxford OX3 7DQ, United Kingdom; 18: University of Cape Town, Rondebosch 7701, South Africa; 19: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0014-2016
  • Received 09 February 2016 Accepted 31 March 2017 Published 09 June 2017
  • Greg Cook, gregory.cook@otago.ac.nz
image of Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions
    Preview this microbiology spectrum article:
    Zoom in

    Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/TBTB2-0014-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/TBTB2-0014-2016-2.gif
  • Abstract:

    The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.

  • Citation: Cook G, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick D, Fontes F, Pethe K, Hasenoehrl E, Berney M. 2017. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiol Spectrum 5(3):TBTB2-0014-2016. doi:10.1128/microbiolspec.TBTB2-0014-2016.

Key Concept Ranking

Type II NADH Dehydrogenase


1. Brodie AF, Gutnik DL (ed). 1972. Electron Transport and Oxidative Phosphorylation in Microbial Systems. Marcel Dekker Inc., New York, NY.
2. Rao M, Streur TL, Aldwell FE, Cook GM. 2001. Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology 147:1017–1024 http://dx.doi.org/10.1099/00221287-147-4-1017.
3. Rao SP, Alonso S, Rand L, Dick T, Pethe K. 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 105:11945–11950 http://dx.doi.org/10.1073/pnas.0711697105.
4. Jormakka M, Byrne B, Iwata S. 2003. Protonmotive force generation by a redox loop mechanism. FEBS Lett 545:25–30 http://dx.doi.org/10.1016/S0014-5793(03)00389-2.
5. Dimroth P, Cook GM. 2004. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218 http://dx.doi.org/10.1016/S0065-2911(04)49004-3.
6. Haagsma AC, Driessen NN, Hahn MM, Lill H, Bald D. 2010. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction. FEMS Microbiol Lett 313:68–74 http://dx.doi.org/10.1111/j.1574-6968.2010.02123.x.
7. Otto R, Sonnenberg AS, Veldkamp H, Konings WN. 1980. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc Natl Acad Sci USA 77:5502–5506 http://dx.doi.org/10.1073/pnas.77.9.5502.
8. Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE III, Boshoff HI. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287 http://dx.doi.org/10.1371/journal.ppat.1002287.
9. Pecsi I, Hards K, Ekanayaka N, Berney M, Hartman T, Jacobs WR Jr, Cook GM. 2014. Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia. MBio 5:e01093-14 http://dx.doi.org/10.1128/mBio.01093-14.
10. Higashi T, Kalra VK, Lee SH, Bogin E, Brodie AF. 1975. Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei. I. Purification, homogeneity, and properties. J Biol Chem 250:6541–6548. [PubMed]
11. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227 http://dx.doi.org/10.1126/science.1106753.
12. Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I, Guillemont J, Bald D, Andries K. 2007. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324 http://dx.doi.org/10.1038/nchembio884.
13. Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Göhlmann HW, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K. 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283:25273–25280 http://dx.doi.org/10.1074/jbc.M803899200.
14. Huitric E, Verhasselt P, Andries K, Hoffner SE. 2007. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51:4202–4204 http://dx.doi.org/10.1128/AAC.00181-07.
15. Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI. 2010. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54:1022–1028 http://dx.doi.org/10.1128/AAC.01611-09.
16. Preiss L, Langer JD, Yildiz Ö, Eckhardt-Strelau L, Guillemont JE, Koul A, Meier T. 2015. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 1:e1500106 http://dx.doi.org/10.1126/sciadv.1500106.
17. Hards K, Robson JR, Berney M, Shaw L, Bald D, Koul A, Andries K, Cook GM. 2015. Bactericidal mode of action of bedaquiline. J Antimicrob Chemother 70:2028–2037.
18. Feng X, Zhu W, Schurig-Briccio LA, Lindert S, Shoen C, Hitchings R, Li J, Wang Y, Baig N, Zhou T, Kim BK, Crick DC, Cynamon M, McCammon JA, Gennis RB, Oldfield E. 2015. Antiinfectives targeting enzymes and the proton motive force. Proc Natl Acad Sci USA 112:E7073–E7082.
19. Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M, Zhao N, Burns K, Liu G, Ehrt S, Warren JD, Andersen OS, Brickner SJ, Nathan C. 2013. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis. PLoS One 8:e68942 http://dx.doi.org/10.1371/journal.pone.0068942.
20. Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D, McColm AA, Duncan K, Lonsdale JT, Rubin H. 2005. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci USA 102:4548–4553 http://dx.doi.org/10.1073/pnas.0500469102.
21. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG. 2001. Massive gene decay in the leprosy bacillus. Nature 409:1007–1011 http://dx.doi.org/10.1038/35059006.
22. Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR Jr, Porcelli SA, Briken V. 2007. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3:e110 http://dx.doi.org/10.1371/journal.ppat.0030110.
23. Yano T, Li LS, Weinstein E, Teh JS, Rubin H. 2006. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J Biol Chem 281:11456–11463 http://dx.doi.org/10.1074/jbc.M508844200.
24. Yano T, Rahimian M, Aneja KK, Schechter NM, Rubin H, Scott CP. 2014. Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites. Biochemistry 53:1179–1190 http://dx.doi.org/10.1021/bi4013897.
25. Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84 http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x.
26. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251 http://dx.doi.org/10.1371/journal.ppat.1002251.
27. Warman AJ, Rito TS, Fisher NE, Moss DM, Berry NG, O’Neill PM, Ward SA, Biagini GA. 2013. Antitubercular pharmacodynamics of phenothiazines. J Antimicrob Chemother 68:869–880 http://dx.doi.org/10.1093/jac/dks483.
28. Teh JS, Yano T, Rubin H. 2007. Type II NADH: menaquinone oxidoreductase of Mycobacterium tuberculosis. Infect Disord Drug Targets 7:169–181 http://dx.doi.org/10.2174/187152607781001781.
29. Dunn EA, Roxburgh M, Larsen L, Smith RA, McLellan AD, Heikal A, Murphy MP, Cook GM. 2014. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Bioorg Med Chem 22:5320–5328 http://dx.doi.org/10.1016/j.bmc.2014.07.050.
30. Shirude PS, Paul B, Roy Choudhury N, Kedari C, Bandodkar B, Ugarkar BG. 2012. Quinolinyl pyrimidines: potent inhibitors of NDH-2 as a novel class of anti-TB agents. ACS Med Chem Lett 3:736–740 http://dx.doi.org/10.1021/ml300134b.
31. Ordway D, Viveiros M, Leandro C, Bettencourt R, Almeida J, Martins M, Kristiansen JE, Molnar J, Amaral L. 2003. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:917–922 http://dx.doi.org/10.1128/AAC.47.3.917-922.2003.
32. Amaral L, Kristiansen JE, Abebe LS, Millett W. 1996. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J Antimicrob Chemother 38:1049–1053 http://dx.doi.org/10.1093/jac/38.6.1049.
33. Bettencourt MV, Bosne-David S, Amaral L. 2000. Comparative in vitro activity of phenothiazines against multidrug-resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 16:69–71 http://dx.doi.org/10.1016/S0924-8579(00)00199-0.
34. Madrid PB, Polgar WE, Toll L, Tanga MJ. 2007. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg Med Chem Lett 17:3014–3017 http://dx.doi.org/10.1016/j.bmcl.2007.03.064.
35. Mogi T, Matsushita K, Murase Y, Kawahara K, Miyoshi H, Ui H, Shiomi K, Omura S, Kita K. 2009. Identification of new inhibitors for alternative NADH dehydrogenase (NDH-II). FEMS Microbiol Lett 291:157–161 http://dx.doi.org/10.1111/j.1574-6968.2008.01451.x.
36. Mogi T, Murase Y, Mori M, Shiomi K, Omura S, Paranagama MP, Kita K. 2009. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem 146:491–499 http://dx.doi.org/10.1093/jb/mvp096.
37. Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H. 2011. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286:10276–10287 http://dx.doi.org/10.1074/jbc.M110.200501.
38. Hartkoorn RC, Uplekar S, Cole ST. 2014. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2979–2981 http://dx.doi.org/10.1128/AAC.00037-14.
39. Vilchèze C, Weisbrod TR, Chen B, Kremer L, Hazbón MH, Wang F, Alland D, Sacchettini JC, Jacobs WR Jr. 2005. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49:708–720 http://dx.doi.org/10.1128/AAC.49.2.708-720.2005.
40. Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, Cook GM. 2014. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol 91:950–964 http://dx.doi.org/10.1111/mmi.12507.
41. Sena FV, Batista AP, Catarino T, Brito JA, Archer M, Viertler M, Madl T, Cabrita EJ, Pereira MM. 2015. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. Mol Microbiol 98:272–288 http://dx.doi.org/10.1111/mmi.13120.
42. Anderson AC. 2003. The process of structure-based drug design. Chem Biol 10:787–797 http://dx.doi.org/10.1016/j.chembiol.2003.09.002.
43. Feng Y, Li W, Li J, Wang J, Ge J, Xu D, Liu Y, Wu K, Zeng Q, Wu JW, Tian C, Zhou B, Yang M. 2012. Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 491:478–482 http://dx.doi.org/10.1038/nature11541.
44. Maklashina E, Cecchini G, Dikanov SA. 2013. Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. Biochim Biophys Acta 1827:668–678 http://dx.doi.org/10.1016/j.bbabio.2013.01.010.
45. Lancaster CR. 2013. The di-heme family of respiratory complex II enzymes. Biochim Biophys Acta 1827:679–687 http://dx.doi.org/10.1016/j.bbabio.2013.02.012.
46. Hartman T, Weinrick B, Vilchèze C, Berney M, Tufariello J, Cook GM, Jacobs WR Jr. 2014. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis. PLoS Pathog 10:e1004510 http://dx.doi.org/10.1371/journal.ppat.1004510.
47. Eoh H, Rhee KY. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:6554–6559 http://dx.doi.org/10.1073/pnas.1219375110.
48. Hägerhäll C. 1997. Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1320:107–141 http://dx.doi.org/10.1016/S0005-2728(97)00019-4.
49. Lemos RS, Fernandes AS, Pereira MM, Gomes CM, Teixeira M. 2002. Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. Biochim Biophys Acta 1553:158–170 http://dx.doi.org/10.1016/S0005-2728(01)00239-0.
50. Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY, Anderson VE, Berry EA. 2006. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281:5965–5972 http://dx.doi.org/10.1074/jbc.M511270200.
51. Alston TA, Mela L, Bright HJ. 1977. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 74:3767–3771 http://dx.doi.org/10.1073/pnas.74.9.3767.
52. Cecchini G, Schröder I, Gunsalus RP, Maklashina E. 2002. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 1553:140–157 http://dx.doi.org/10.1016/S0005-2728(01)00238-9.
53. Park SW, Hwang EH, Park H, Kim JA, Heo J, Lee KH, Song T, Kim E, Ro YT, Kim SW, Kim YM. 2003. Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol 185:142–147 http://dx.doi.org/10.1128/JB.185.1.142-147.2003.
54. Kim YM, Hegeman GD. 1983. Oxidation of carbon monoxide by bacteria. Int Rev Cytol 81:1–32 http://dx.doi.org/10.1016/S0074-7696(08)62333-5.
55. Ragsdale SW. 2004. Life with carbon monoxide. Crit Rev Biochem Mol Biol 39:165–195 http://dx.doi.org/10.1080/10409230490496577.
56. Park SW, Song T, Kim SY, Kim E, Oh JI, Eom CY, Kim YM. 2007. Carbon monoxide dehydrogenase in mycobacteria possesses a nitric oxide dehydrogenase activity. Biochem Biophys Res Commun 362:449–453 http://dx.doi.org/10.1016/j.bbrc.2007.08.011.
57. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O. 2001. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293:1281–1285 http://dx.doi.org/10.1126/science.1061500.
58. Dobbek H, Svetlitchnyi V, Liss J, Meyer O. 2004. Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase. J Am Chem Soc 126:5382–5387 http://dx.doi.org/10.1021/ja037776v.
59. Santiago B, Schübel U, Egelseer C, Meyer O. 1999. Sequence analysis, characterization and CO-specific transcription of the cox gene cluster on the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 236:115–124 http://dx.doi.org/10.1016/S0378-1119(99)00245-0.
60. Oh JI, Park SJ, Shin SJ, Ko IJ, Han SJ, Park SW, Song T, Kim YM. 2010. Identification of trans- and cis-control elements involved in regulation of the carbon monoxide dehydrogenase genes in Mycobacterium sp. strain JC1 DSM 3803. J Bacteriol 192:3925–3933 http://dx.doi.org/10.1128/JB.00286-10.
61. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ. 2012. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 8:e1002946 http://dx.doi.org/10.1371/journal.ppat.1002946. (Erratum, 9:10.1371/annotation/4669e9e7-fd12-4a01-be2a-617b956ec0bb. doi:10.1371/annotation/4669e9e7-fd12-4a01-be2a-617b956ec0bb.)
62. Shiloh MU, Manzanillo P, Cox JS. 2008. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3:323–330 http://dx.doi.org/10.1016/j.chom.2008.03.007.
63. Sousa EH, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. 2007. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 16:1708–1719 http://dx.doi.org/10.1110/ps.072897707.
64. Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan BS, Kramnik I, Agarwal A, Steyn AJ. 2008. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283:18032–18039 http://dx.doi.org/10.1074/jbc.M802274200.
65. Kumar A, Toledo JC, Patel RP, Lancaster JR Jr, Steyn AJ. 2007. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci USA 104:11568–11573 http://dx.doi.org/10.1073/pnas.0705054104.
66. Shi T, Xie J. 2011. Molybdenum enzymes and molybdenum cofactor in mycobacteria. J Cell Biochem 112:2721–2728 http://dx.doi.org/10.1002/jcb.23233.
67. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O. 2002. Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution. Proc Natl Acad Sci USA 99:15971–15976 http://dx.doi.org/10.1073/pnas.212640899.
68. Ahmed FH, Carr PD, Lee BM, Afriat-Jurnou L, Mohamed AE, Hong NS, Flanagan J, Taylor MC, Greening C, Jackson CJ. 2015. Sequence-structure-function classification of a catalytically diverse oxidoreductase superfamily in mycobacteria. J Mol Biol 427:3554–3571 http://dx.doi.org/10.1016/j.jmb.2015.09.021.
69. Purwantini E, Gillis TP, Daniels L. 1997. Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett 146:129–134 http://dx.doi.org/10.1111/j.1574-6968.1997.tb10182.x.
70. Taylor MC, Jackson CJ, Tattersall DB, French N, Peat TS, Newman J, Briggs LJ, Lapalikar GV, Campbell PM, Scott C, Russell RJ, Oakeshott JG. 2010. Identification and characterization of two families of F420 H2-dependent reductases from mycobacteria that catalyse aflatoxin degradation. Mol Microbiol 78:561–575 http://dx.doi.org/10.1111/j.1365-2958.2010.07356.x.
71. Cellitti SE, Shaffer J, Jones DH, Mukherjee T, Gurumurthy M, Bursulaya B, Boshoff HI, Choi I, Nayyar A, Lee YS, Cherian J, Niyomrattanakit P, Dick T, Manjunatha UH, Barry CE III, Spraggon G, Geierstanger BH. 2012. Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824. Structure 20:101–112 http://dx.doi.org/10.1016/j.str.2011.11.001.
72. Gurumurthy M, Rao M, Mukherjee T, Rao SP, Boshoff HI, Dick T, Barry CE III, Manjunatha UH. 2013. A novel F(420) -dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol 87:744–755 http://dx.doi.org/10.1111/mmi.12127.
73. Purwantini E, Mukhopadhyay B. 2009. Conversion of NO2 to NO by reduced coenzyme F420 protects mycobacteria from nitrosative damage. Proc Natl Acad Sci USA 106:6333–6338 http://dx.doi.org/10.1073/pnas.0812883106.
74. Hasan MR, Rahman M, Jaques S, Purwantini E, Daniels L. 2010. Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 285:19135–19144 http://dx.doi.org/10.1074/jbc.M109.074310.
75. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR. 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966 http://dx.doi.org/10.1038/35016103.
76. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE III. 2008. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395 http://dx.doi.org/10.1126/science.1164571.
77. Gurumurthy M, Mukherjee T, Dowd CS, Singh R, Niyomrattanakit P, Tay JA, Nayyar A, Lee YS, Cherian J, Boshoff HI, Dick T, Barry CE III, Manjunatha UH. 2012. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles. FEBS J 279:113–125 http://dx.doi.org/10.1111/j.1742-4658.2011.08404.x.
78. Lewis JM, Sloan DJ. 2015. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag 11:779–791.
79. Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Hömke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Böttger EC. 2015. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988 http://dx.doi.org/10.1056/NEJMc1505196.
80. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, Ng SH, Tan BH, Cherian J, Duraiswamy J, Bifani P, Lim V, Lee BH, Ling Ma N, Beer D, Thayalan P, Kuhen K, Chatterjee A, Supek F, Glynne R, Zheng J, Boshoff HI, Barry CE III, Dick T, Pethe K, Camacho LR. 2012. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 7:1190–1197 http://dx.doi.org/10.1021/cb2004884.
81. Molenaar D, van der Rest ME, Drysch A, Yücel R. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol 182:6884–6891 http://dx.doi.org/10.1128/JB.182.24.6884-6891.2000.
82. van der Rest ME, Frank C, Molenaar D. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 182:6892–6899 http://dx.doi.org/10.1128/JB.182.24.6892-6899.2000.
83. Berney M, Weimar MR, Heikal A, Cook GM. 2012. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 84:664–681 http://dx.doi.org/10.1111/j.1365-2958.2012.08053.x.
84. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354. [PubMed]
85. Anand A, Verma P, Singh AK, Kaushik S, Pandey R, Shi C, Kaur H, Chawla M, Elechalawar CK, Kumar D, Yang Y, Bhavesh NS, Banerjee R, Dash D, Singh A, Natarajan VT, Ojha AK, Aldrich CC, Gokhale RS. 2015. Polyketide quinones are alternate intermediate electron carriers during mycobacterial respiration in oxygen-deficient niches. Mol Cell 60:637–650 http://dx.doi.org/10.1016/j.molcel.2015.10.016.
86. Upadhyay A, Fontes FL, Gonzalez-Juarrero M, McNeil MR, Crans DC, Jackson M, Crick DC. 2015. Partial saturation of menaquinone in Mycobacterium tuberculosis: function and essentiality of a novel reductase. MenJ. ACS Cent Sci 1:292–302 http://dx.doi.org/10.1021/acscentsci.5b00212.
87. Chen M, Ma X, Chen X, Jiang M, Song H, Guo Z. 2013. Identification of a hotdog fold thioesterase involved in the biosynthesis of menaquinone in Escherichia coli. J Bacteriol 195:2768–2775 http://dx.doi.org/10.1128/JB.00141-13.
88. Dhiman RK, Mahapatra S, Slayden RA, Boyne ME, Lenaerts A, Hinshaw JC, Angala SK, Chatterjee D, Biswas K, Narayanasamy P, Kurosu M, Crick DC. 2009. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72:85–97 http://dx.doi.org/10.1111/j.1365-2958.2009.06625.x.
89. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, Kurosu M. 2012. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 55:3739–3755 http://dx.doi.org/10.1021/jm201608g.
90. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. 2012. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. ChemBioChem 13:129–136 http://dx.doi.org/10.1002/cbic.201100585.
91. Lu X, Zhang H, Tonge PJ, Tan DS. 2008. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Bioorg Med Chem Lett 18:5963–5966 http://dx.doi.org/10.1016/j.bmcl.2008.07.130.
92. Truglio JJ, Theis K, Feng Y, Gajda R, Machutta C, Tonge PJ, Kisker C. 2003. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem 278:42352–42360 http://dx.doi.org/10.1074/jbc.M307399200.
93. Sassetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994 http://dx.doi.org/10.1073/pnas.2134250100.
94. Jiang M, Cao Y, Guo ZF, Chen M, Chen X, Guo Z. 2007. Menaquinone biosynthesis in Escherichia coli: identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry 46:10979–10989 http://dx.doi.org/10.1021/bi700810x.
95. Rengarajan J, Bloom BR, Rubin EJ. 2005. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102:8327–8332 http://dx.doi.org/10.1073/pnas.0503272102.
96. Mougous JD, Senaratne RH, Petzold CJ, Jain M, Lee DH, Schelle MW, Leavell MD, Cox JS, Leary JA, Riley LW, Bertozzi CR. 2006. A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:4258–4263 http://dx.doi.org/10.1073/pnas.0510861103.
97. Bott M, Niebisch A. 2003. The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153 http://dx.doi.org/10.1016/S0168-1656(03)00144-5.
98. Niebisch A, Bott M. 2003. Purification of a cytochrome bc-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1. J Biol Chem 278:4339–4346 http://dx.doi.org/10.1074/jbc.M210499200.
99. Kim MS, Jang J, Ab Rahman NB, Pethe K, Berry EA, Huang LS. 2015. Isolation and characterization of a hybrid respiratory supercomplex consisting of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatis cytochrome aa3. J Biol Chem 290:14350–14360 http://dx.doi.org/10.1074/jbc.M114.624312.
100. Megehee JA, Hosler JP, Lundrigan MD. 2006. Evidence for a cytochrome bcc-aa3 interaction in the respiratory chain of Mycobacterium smegmatis. Microbiology 152:823–829 http://dx.doi.org/10.1099/mic.0.28723-0.
101. Niebisch A, Bott M. 2001. Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175:282–294 http://dx.doi.org/10.1007/s002030100262.
102. Matsoso LG, Kana BD, Crellin PK, Lea-Smith DJ, Pelosi A, Powell D, Dawes SS, Rubin H, Coppel RL, Mizrahi V. 2005. Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bacteriol 187:6300–6308 http://dx.doi.org/10.1128/JB.187.18.6300-6308.2005.
103. Small JL, Park SW, Kana BD, Ioerger TR, Sacchettini JC, Ehrt S. 2013. Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis. MBio 4:e00475-13 http://dx.doi.org/10.1128/mBio.00475-13.
104. Abrahams KA, Cox JA, Spivey VL, Loman NJ, Pallen MJ, Constantinidou C, Fernández R, Alemparte C, Remuiñán MJ, Barros D,Ballell L, Besra GS. 2012. Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS One 7:e52951 http://dx.doi.org/10.1371/journal.pone.0052951.
105. Arora K, Ochoa-Montaño B, Tsang PS, Blundell TL, Dawes SS, Mizrahi V, Bayliss T, Mackenzie CJ, Cleghorn LA, Ray PC, Wyatt PG, Uh E, Lee J, Barry CE III, Boshoff HI. 2014. Respiratory flexibility in response to inhibition of cytochrome c oxidase in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:6962–6965 http://dx.doi.org/10.1128/AAC.03486-14.
106. Pethe K, et al. 2013. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160 http://dx.doi.org/10.1038/nm.3262.
107. Rybniker J, Vocat A, Sala C, Busso P, Pojer F, Benjak A, Cole ST. 2015. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nat Commun 6:7659 http://dx.doi.org/10.1038/ncomms8659.
108. Moraski GC, Markley LD, Cramer J, Hipskind PA, Boshoff H, Bailey M, Alling T, Ollinger J, Parish T, Miller MJ. 2013. Advancement of imidazo[1,2-a]pyridines with improved pharmacokinetics and nM activity vs. Mycobacterium tuberculosis. ACS Med Chem Lett 4:675–679 http://dx.doi.org/10.1021/ml400088y.
109. Kang S, Kim RY, Seo MJ, Lee S, Kim YM, Seo M, Seo JJ, Ko Y, Choi I, Jang J, Nam J, Park S, Kang H, Kim HJ, Kim J, Ahn S, Pethe K, Nam K, No Z, Kim J. 2014. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug resistant antituberculosis agent. J Med Chem 57:5293–5305 http://dx.doi.org/10.1021/jm5003606.
110. Demangel C, Stinear TP, Cole ST. 2009. Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 7:50–60 http://dx.doi.org/10.1038/nrmicro2077.
111. Kana BD, Weinstein EA, Avarbock D, Dawes SS, Rubin H, Mizrahi V. 2001. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J Bacteriol 183:7076–7086 http://dx.doi.org/10.1128/JB.183.24.7076-7086.2001.
112. Poole RK, Cook GM. 2000. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224 http://dx.doi.org/10.1016/S0065-2911(00)43005-5.
113. Borisov VB, Murali R, Verkhovskaya ML, Bloch DA, Han H, Gennis RB, Verkhovsky MI. 2011. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc Natl Acad Sci USA 108:17320–17324 http://dx.doi.org/10.1073/pnas.1108217108.
114. Holyoake LV, Poole RK, Shepherd M. 2015. The CydDC family of transporters and their roles in oxidase assembly and homeostasis. Adv Microb Physiol 66:1–53 http://dx.doi.org/10.1016/bs.ampbs.2015.04.002.
115. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. 2011. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807:1398–1413 http://dx.doi.org/10.1016/j.bbabio.2011.06.016.
116. Cook GM, Greening C, Hards K, Berney M. 2014. Energetics of pathogenic bacteria and opportunities for drug development. Adv Microb Physiol 65:1–62 http://dx.doi.org/10.1016/bs.ampbs.2014.08.001.
117. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. 2014. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 1837:1178–1187. [PubMed]
118. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ. 2013. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155:1296–1308 http://dx.doi.org/10.1016/j.cell.2013.10.045.
119. Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V, Gennaro ML. 2005. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 102:15629–15634 http://dx.doi.org/10.1073/pnas.0507850102.
120. Dhar N, McKinney JD. 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107:12275–12280 http://dx.doi.org/10.1073/pnas.1003219107.
121. Berney M, Hartman TE, Jacobs WR Jr. 2014. A Mycobacterium tuberculosis cytochrome bd oxidase mutant is hypersensitive to bedaquiline. MBio 5:e01275-14 http://dx.doi.org/10.1128/mBio.01275-14.
122. Lu P, Heineke MH, Koul A, Andries K, Cook GM, Lill H, van Spanning R, Bald D. 2015. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci Rep 5:10333 http://dx.doi.org/10.1038/srep10333.
123. Voskuil MI, Visconti KC, Schoolnik GK. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 84:218–227 http://dx.doi.org/10.1016/j.tube.2004.02.003.
124. Wayne LG, Sohaskey CD. 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163 http://dx.doi.org/10.1146/annurev.micro.55.1.139.
125. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18 http://dx.doi.org/10.1016/S0378-1097(03)00856-5.
126. Wayne LG, Hayes LG. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069. [PubMed]
127. Koul A, Vranckx L, Dhar N, Göhlmann HW, Özdemir E, Neefs JM, Schulz M, Lu P, Mørtz E, McKinney JD, Andries K, Bald D. 2014. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun 5:3369 http://dx.doi.org/10.1038/ncomms4369.
128. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE III. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174–40184 http://dx.doi.org/10.1074/jbc.M406796200.
129. Aung HL, Berney M, Cook GM. 2014. Hypoxia-activated cytochrome bd expression in Mycobacterium smegmatis is cyclic AMP receptor protein dependent. J Bacteriol 196:3091–3097 http://dx.doi.org/10.1128/JB.01771-14.
130. Barry CE III, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855.
131. Boshoff HI, Barry CE III. 2005. Tuberculosis: metabolism and respiration in the absence of growth. Nat Rev Microbiol 3:70–80 http://dx.doi.org/10.1038/nrmicro1065.
132. Gomez JE, McKinney JD. 2004. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84:29–44 http://dx.doi.org/10.1016/j.tube.2003.08.003.
133. Dick T. 2001. Dormant tubercle bacilli: the key to more effective TB chemotherapy? J Antimicrob Chemother 47:117–118 http://dx.doi.org/10.1093/jac/47.1.117.
134. Meunier B, Madgwick SA, Reil E, Oettmeier W, Rich PR. 1995. New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry 34:1076–1083 http://dx.doi.org/10.1021/bi00003a044.
135. Jünemann S, Wrigglesworth JM, Rich PR. 1997. Effects of decyl-aurachin D and reversed electron transfer in cytochrome bd. Biochemistry 36:9323–9331 http://dx.doi.org/10.1021/bi970055m.
136. Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM. 2013. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 81:3198–3209 http://dx.doi.org/10.1128/IAI.00611-13.
137. Arya S, Sethi D, Singh S, Hade MD, Singh V, Raju P, Chodisetti SB, Verma D, Varshney GC, Agrewala JN, Dikshit KL. 2013. Truncated hemoglobin, HbN, is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection. J Biol Chem 288:29987–29999 http://dx.doi.org/10.1074/jbc.M113.507301.
138. Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, Horst S, Ackermann B, Schmidt M, Wohlleben W, Ehlers S, Geffers R, Reuther J, Bange FC. 2009. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155:1332–1339 http://dx.doi.org/10.1099/mic.0.023275-0.
139. Sohaskey CD, Wayne LG. 2003. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185:7247–7256 http://dx.doi.org/10.1128/JB.185.24.7247-7256.2003.
140. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713 http://dx.doi.org/10.1084/jem.20030205.
141. Sohaskey CD. 2005. Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology 151:3803–3810 http://dx.doi.org/10.1099/mic.0.28263-0.
142. Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, Ng SH, Lee BH, Camacho L, Schnappinger D, Ehrt S, Dick T, Pethe K, Alonso S. 2010. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 5:e13356 http://dx.doi.org/10.1371/journal.pone.0013356. doi:10.1038/ncomms4369.
143. Sohaskey CD. 2008. Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190:2981–2986 http://dx.doi.org/10.1128/JB.01857-07.
144. Cunningham-Bussel A, Bange FC, Nathan CF. 2013. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiologyopen 2:901–911 http://dx.doi.org/10.1002/mbo3.126.
145. Akhtar S, Khan A, Sohaskey CD, Jagannath C, Sarkar D. 2013. Nitrite reductase NirBD is induced and plays an important role during in vitro dormancy of Mycobacterium tuberculosis. J Bacteriol 195:4592–4599 http://dx.doi.org/10.1128/JB.00698-13.
146. Holden JK, Li H, Jing Q, Kang S, Richo J, Silverman RB, Poulos TL. 2013. Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proc Natl Acad Sci USA 110:18127–18131 http://dx.doi.org/10.1073/pnas.1314080110.
147. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248 http://dx.doi.org/10.1073/pnas.94.10.5243.
148. Rustad TR, Harrell MI, Liao R, Sherman DR. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3:e1502 http://dx.doi.org/10.1371/journal.pone.0001502.
149. Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K. 2012. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells. Biochim Biophys Acta 1820:643–651 http://dx.doi.org/10.1016/j.bbagen.2011.12.013.
150. Berney M, Greening C, Conrad R, Jacobs WR Jr, Cook GM. 2014. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA 111:11479–11484 http://dx.doi.org/10.1073/pnas.1407034111.
151. von Ballmoos C, Cook GM, Dimroth P. 2008. Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64 http://dx.doi.org/10.1146/annurev.biophys.37.032807.130018.
152. Tran SL, Cook GM. 2005. The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bacteriol 187:5023–5028 http://dx.doi.org/10.1128/JB.187.14.5023-5028.2005.
153. Friedl P, Hoppe J, Gunsalus RP, Michelsen O, von Meyenburg K, Schairer HU. 1983. Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. EMBO J 2:99–103. [PubMed]
154. Santana M, Ionescu MS, Vertes A, Longin R, Kunst F, Danchin A, Glaser P. 1994. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176:6802–6811 http://dx.doi.org/10.1128/jb.176.22.6802-6811.1994.
155. Cox RA, Cook GM. 2007. Growth regulation in the mycobacterial cell. Curr Mol Med 7:231–245 http://dx.doi.org/10.2174/156652407780598584.
156. Tran SL, Rao M, Simmers C, Gebhard S, Olsson K, Cook GM. 2005. Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Microbiology 151:665–672 http://dx.doi.org/10.1099/mic.0.27624-0.
157. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 http://dx.doi.org/10.1084/jem.20030846.
158. Berney M, Cook GM. 2010. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 5:e8614 http://dx.doi.org/10.1371/journal.pone.0008614.
159. Beste DJ, Laing E, Bonde B, Avignone-Rossa C, Bushell ME, McFadden JJ. 2007. Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 189:3969–3976 http://dx.doi.org/10.1128/JB.01787-06.
160. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R, Bantubani N, Narasimooloo R, De Marez T, van Heeswijk R, Lounis N, Meyvisch P, Andries K, McNeeley DF. 2012. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother 56:3271–3276 http://dx.doi.org/10.1128/AAC.06126-11.
161. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, McNeeley DF. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405 http://dx.doi.org/10.1056/NEJMoa0808427.
162. Diacon AH, Pym A, Grobusch MP, de los Rios JM, Gotuzzo E, Vasilyeva I, Leimane V, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M, Lounis N, Meyvisch P, De Paepe E, van Heeswijk RP, Dannemann B, TMC207-C208 Study Group. 2014. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 371:723–732 http://dx.doi.org/10.1056/NEJMoa1313865.
163. Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D. 2011. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One 6:e23575 http://dx.doi.org/10.1371/journal.pone.0023575.
164. Lu P, Lill H, Bald D. 2014. ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochim Biophys Acta 1837:1208–1218 http://dx.doi.org/10.1016/j.bbabio.2014.01.022.
165. Frampton R, Aggio RB, Villas-Bôas SG, Arcus VL, Cook GM. 2012. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 287:5340–5356 http://dx.doi.org/10.1074/jbc.M111.286856.
166. Lobritz MA, Belenky P, Porter CB, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ. 2015. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci USA 112:8173–8180 http://dx.doi.org/10.1073/pnas.1509743112.
167. Meganathan R. 2001. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61:173–218 http://dx.doi.org/10.1016/S0083-6729(01)61006-9.

Citations loading...


Article metrics loading...



The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Generalized schematic overview of relevant electron transfer components of . Complexes indicated in blue oxidize various substrates to reduce quinones. The resulting (mena)quinol molecules (orange) can be oxidized to result in reduction of various terminal electron acceptors, mediated by the complexes shown in purple.

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0014-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Mechanisms by which a proton motive (membrane potential [Δψ] + transmembrane pH gradient [ZΔpH]) force can be generated in mycobacteria. Cotransport of protons driven by solute (succinate) symport into the periplasm. Redox-loop separation of charge; (mena)quinol oxidation results in proton release into the periplasm by virtue of (mena)quinol site proximity to the periplasm, while electrons are transferred to reduce a terminal electron acceptor (e.g., nitrate, fumarate) in the cytoplasm that results in neutralization of charge. Proton translocation mediated by primary proton-pumping complexes ( - supercomplex).

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0014-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Traditional inhibitors of proton motive force generation. Valinomycin is an ionophore, selective for potassium ions, which equilibrates the potassium gradient—dissipating the Δψ (electrogenic). Nigericin is a hydrophobic weak carboxylic acid which can traverse the membrane as its either protonated acid or neutral salt. It dissipates chemical gradients (i.e., ΔpH) but maintains the charge (one positive charge exchanged for one positive charge—electroneutral) ( 3 ). Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) is an electrogenic protonophore. CCCP is driven to the periplasm by the Δψ, while CCCPH is driven to the cytoplasm by the ΔpH. It can equilibrate both Δψ and ΔpH. Model for uncoupling by either pyrazinamide (PZA) or BDQ. (Left side) PZA diffuses into the cell and is converted to pyrazinoic acid (POA) by PncA (pyrazinamidase). Anionic POA could effectively inhibit growth through anion accumulation in the neutral pH of the cytoplasm and/or efflux from the cells to become protonated in the acidic extracellular environment (POA-H). POA-H would then diffuse back into the cell driven by the ΔpH gradient and dissociate in the cytoplasm (neutral pH), leading to intracellular acidification and cell death. (Right side) In a typical mycobacterial cell, the majority of ATP synthesis is respiratory, driven by the PMF. The binding of BDQ to the c-ring most likely perturbs the a-c subunit interface, causing an uncontrolled proton leak uncoupled from ATP synthesis and resulting in a futile proton cycle. Compensation by the exchange of other cations (i.e., K) would allow the process to remain electroneutral.

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0014-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Inhibitors of the electron transport chain and FF-ATP synthase of . Selected inhibitors of these complexes are indicated with flathead arrows and do not reflect the binding site of the inhibitors. Abbreviations: QPs, quinolinyl pyrimidines; TPZ, trifluoperazine; CFZ, clofazimine; 3-NP, 3-nitropropionate; SQ109, -adamantan-2-yl--(()-3,7-dimethyl-octa-2,6-dienyl)-ethane-1,2-diamine; LPZ, lansoprazole; Q203, imidazopyridine amide; BDQ, bedaquiline.

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0014-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Proposed menaquinone biosynthesis pathway in mycobacteria based on the known pathway in . In this scheme the product of MenA is depicted as the quinone rather than the quinol. This is consistent with the majority of the menaquinone literature ( 167 ), which indicates that the oxidation from quinol to quinone is spontaneous but differs from ubiquinone synthesis. The arrows indicate C2 and C3 of menaquinone-9(II-H). Abbreviations: DHNA, 1,4-dihydroxy-2-naphthoate; DHNA-CoA, 1,4-dihydroxy-2-naphthoyl-CoA; OSB, -succinylbenzoate; OSB-CoA, -succinylbenzoyl-CoA; SEPHCHC, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate; SHCHC, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate.

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0014-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error