1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Impact of Genetic Diversity on the Biology of Complex Strains

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Stefan Niemann1, Matthias Merker3, Thomas Kohl4, Philip Supply5
  • Editors: William R. Jacobs Jr.6, Helen McShane7, Valerie Mizrahi8, Ian M. Orme9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, 23845 Borstel, Germany; 2: German Center for Infection Research (DZIF), partner site Borstel, 23845 Borstel, Germany; 3: Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, 23845 Borstel, Germany; 4: Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, 23845 Borstel, Germany; 5: Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d’Infection et d’Immunité de Lille, F-59000 Lille, France; 6: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 7: University of Oxford, Oxford OX3 7DQ, United Kingdom; 8: University of Cape Town, Rondebosch 7701, South Africa; 9: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0022-2016
  • Received 18 July 2016 Accepted 01 August 2016 Published 11 November 2016
  • S. Niemann, sniemann@fz-borstel.de, and P. Supply, Philip.Supply@pasteur-lille.fr
image of Impact of Genetic Diversity on the Biology of <span class="jp-italic">Mycobacterium tuberculosis</span> Complex Strains
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Impact of Genetic Diversity on the Biology of Complex Strains, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/6/TBTB2-0022-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/6/TBTB2-0022-2016-2.gif
  • Abstract:

    Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.

  • Citation: Niemann S, Merker M, Kohl T, Supply P. 2016. Impact of Genetic Diversity on the Biology of Complex Strains. Microbiol Spectrum 4(6):TBTB2-0022-2016. doi:10.1128/microbiolspec.TBTB2-0022-2016.

Key Concept Ranking

Multilocus Sequence Typing
0.4730152
Single Nucleotide Polymorphism
0.43814543
Bacterial Diseases
0.42748433
Horizontal Gene Transfer
0.4243679
Frameshift Mutation
0.42045793
0.4730152

References

1. Diel R, Vandeputte J, de Vries G, Stillo J, Wanlin M, Nienhaus A. 2014. Costs of tuberculosis disease in the European Union: a systematic analysis and cost calculation. Eur Respir J 43:554–565 http://dx.doi.org/10.1183/09031936.00079413. [CrossRef]
2. Dye C, Williams BG. 2010. The population dynamics and control of tuberculosis. Science 328:856–861 http://dx.doi.org/10.1126/science.1185449. [CrossRef]
3. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J. 2010. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843 http://dx.doi.org/10.1016/S0140-6736(10)60410-2. [CrossRef]
4. Marais BJ. 2016. The global tuberculosis situation and the inexorable rise of drug-resistant disease. Adv Drug Deliv Rev 102:3–9 http://dx.doi.org/10.1016/j.addr.2016.01.021. [CrossRef]
5. Skrahina A, Hurevich H, Zalutskaya A, Sahalchyk E, Astrauko A, Hoffner S, Rusovich V, Dadu A, de Colombani P, Dara M, van Gemert W, Zignol M. 2013. Multidrug-resistant tuberculosis in Belarus: the size of the problem and associated risk factors. Bull World Health Organ 91:36–45 http://dx.doi.org/10.2471/BLT.12.104588. [CrossRef]
6. Hoffmann H, Kohl TA, Hofmann-Thiel S, Merker M, Beckert P, Jaton K, Nedialkova L, Sahalchyk E, Rothe T, Keller PM, Niemann S. 2016. Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. Am J Respir Crit Care Med 193:337–340 http://dx.doi.org/10.1164/rccm.201502-0372LE. [CrossRef]
7. Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Hömke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Böttger EC. 2015. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988 http://dx.doi.org/10.1056/NEJMc1505196. [CrossRef]
8. Anuradha R, Munisankar S, Bhootra Y, Kumar NP, Dolla C, Kumaran P, Babu S. 2016. Coexistent malnutrition is associated with perturbations in systemic and antigen-specific cytokine responses in latent tuberculosis infection. Clin Vaccine Immunol 23:339–345 http://dx.doi.org/10.1128/CVI.00009-16. [CrossRef]
9. Chan J, Tian Y, Tanaka KE, Tsang MS, Yu K, Salgame P, Carroll D, Kress Y, Teitelbaum R, Bloom BR. 1996. Effects of protein calorie malnutrition on tuberculosis in mice. Proc Natl Acad Sci USA 93:14857–14861 http://dx.doi.org/10.1073/pnas.93.25.14857. [CrossRef]
10. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163:1009–1021 http://dx.doi.org/10.1001/archinte.163.9.1009. [CrossRef]
11. Kwan CK, Ernst JD. 2011. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24:351–376 http://dx.doi.org/10.1128/CMR.00042-10. [CrossRef]
12. Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. 2012. Tuberculosis and HIV co-infection. PLoS Pathog 8:e1002464 http://dx.doi.org/10.1371/journal.ppat.1002464. [CrossRef]
13. Gagneux S, Small PM. 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7:328–337 http://dx.doi.org/10.1016/S1473-3099(07)70108-1.
14. Wells AQ. 1949. Vaccination with the murine type of tubercle bacillus (vole bacillus). Lancet 254:53–55 http://dx.doi.org/10.1016/S0140-6736(49)91043-0. [CrossRef]
15. Magnus K. 1966. Epidemiological basis of tuberculosis eradication. 3. Risk of pulmonary tuberculosis after human and bovine infection. Bull World Health Organ 35:483–508.
16. Bhatia AL, Csillag A, Mitchison DA, Selkon JB, Somasundaram PR, Subbaiah TV. 1961. The virulence in the guinea-pig of tubercle bacilli isolated before treatment from South Indian patients with pulmonary tuberculosis. 2. Comparison with virulence of tubercle bacilli from British patients. Bull World Health Organ 25:313–322.
17. Kapur V, Whittam TS, Musser JM. 1994. Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis 170:1348–1349 http://dx.doi.org/10.1093/infdis/170.5.1348. [CrossRef]
18. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94:9869–9874 http://dx.doi.org/10.1073/pnas.94.18.9869. [CrossRef]
19. Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PW, Martín C, Palittapongarnpim P, Plikaytis BB, Riley LW, Yakrus MA, Musser JM, van Embden JD. 1999. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37:2607–2618.
20. Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. 2001. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 7:390–396 http://dx.doi.org/10.3201/10.3201/eid0703.0107304. [CrossRef]
21. Sola C, Filliol I, Legrand E, Mokrousov I, Rastogi N. 2001. Mycobacterium tuberculosis phylogeny reconstruction based on combined numerical analysis with IS1081, IS6110, VNTR, and DR-based spoligotyping suggests the existence of two new phylogeographical clades. J Mol Evol 53:680–689 http://dx.doi.org/10.1007/s002390010255. [CrossRef]
22. Brudey K, et al. 2006. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23 http://dx.doi.org/10.1186/1471-2180-6-23. [CrossRef]
23. Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valétudie G, Anh DD, Barlow R, Banerjee D, Bifani PJ, Brudey K, Cataldi A, Cooksey RC, Cousins DV, Dale JW, Dellagostin OA, Drobniewski F, Engelmann G, Ferdinand S, Gascoyne-Binzi D, Gordon M, Gutierrez MC, Haas WH, Heersma H, Kassa-Kelembho E, Ly HM, Makristathis A, Mammina C, Martin G, Moström P, Mokrousov I, Narbonne V, Narvskaya O, Nastasi A, Niobe-Eyangoh SN, Pape JW, Rasolofo-Razanamparany V, Ridell M, Rossetti ML, Stauffer F, Suffys PN, Takiff H, Texier-Maugein J, Vincent V, de Waard JH, Sola C, Rastogi N. 2003. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41:1963–1970 http://dx.doi.org/10.1128/JCM.41.5.1963-1970.2003. [CrossRef]
24. Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C. 2001. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39:3563–3571 http://dx.doi.org/10.1128/JCM.39.10.3563-3571.2001. [CrossRef]
25. Supply P, Warren RM, Bañuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C. 2003. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 47:529–538 http://dx.doi.org/10.1046/j.1365-2958.2003.03315.x. [CrossRef]
26. Baker L, Brown T, Maiden MC, Drobniewski F. 2004. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10:1568–1577 http://dx.doi.org/10.3201/eid1009.040046. [CrossRef]
27. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99:3684–3689 http://dx.doi.org/10.1073/pnas.052548299. [CrossRef]
28. Mostowy S, Cousins D, Brinkman J, Aranaz A, Behr MA. 2002. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186:74–80 http://dx.doi.org/10.1086/341068. [CrossRef]
29. Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM. 2004. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101:4871–4876 http://dx.doi.org/10.1073/pnas.0305627101. [CrossRef]
30. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S. 2010. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503 http://dx.doi.org/10.1038/ng.590. [CrossRef]
31. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182 http://dx.doi.org/10.1038/ng.2744. [CrossRef]
32. Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, Portugal I, Pain A, Martin N, Clark TG. 2014. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812 http://dx.doi.org/10.1038/ncomms5812. [CrossRef]
33. Merker M, et al. 2015. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47:242–249 http://dx.doi.org/10.1038/ng.3195. [CrossRef]
34. Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q. 2015. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci USA 112:8136–8141 http://dx.doi.org/10.1073/pnas.1424063112. [CrossRef]
35. Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K, van Soolingen D, Rüsch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S. 2008. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4:e1000160 http://dx.doi.org/10.1371/journal.ppat.1000160. [CrossRef]
36. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Médigue C, Parkhill J, Cruveiller S, Brosch R. 2013. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45:172–179 http://dx.doi.org/10.1038/ng.2517. [CrossRef]
37. Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, Hauck Y, Boulais C, Andriamanantena D, Martinaud C, Martin É, Pourcel C, Vergnaud G. 2014. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis 20:21–28 http://dx.doi.org/10.3201/eid2001.130652. [CrossRef]
38. Fabre M, Koeck JL, Le Flèche P, Simon F, Hervé V, Vergnaud G, Pourcel C. 2004. High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of “Mycobacterium canettii” strains indicates that the M. tuberculosis complex is a recently emerged clone of “M. canettii”. J Clin Microbiol 42:3248–3255 http://dx.doi.org/10.1128/JCM.42.7.3248-3255.2004. [CrossRef]
39. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V. 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:e5 http://dx.doi.org/10.1371/journal.ppat.0010005. [CrossRef]
40. Fabre M, Hauck Y, Soler C, Koeck JL, van Ingen J, van Soolingen D, Vergnaud G, Pourcel C. 2010. Molecular characteristics of “Mycobacterium canettii” the smooth Mycobacterium tuberculosis bacilli. Infect Genet Evol 10:1165–1173 http://dx.doi.org/10.1016/j.meegid.2010.07.016. [CrossRef]
41. van Soolingen D, Hoogenboezem T, de Haas PE, Hermans PW, Koedam MA, Teppema KS, Brennan PJ, Besra GS, Portaels F, Top J, Schouls LM, van Embden JD. 1997. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol 47:1236–1245 http://dx.doi.org/10.1099/00207713-47-4-1236. [CrossRef]
42. Boritsch EC, Supply P, Honoré N, Seeman T, Stinear TP, Brosch R. 2014. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol 93:835–852. (Erratum, 94:742.) http://dx.doi.org/10.1111/mmi.12720. [CrossRef]
43. Coscolla M, Gagneux S. 2014. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26:431–444 http://dx.doi.org/10.1016/j.smim.2014.09.012. [CrossRef]
44. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM. 2006. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:2869–2873 http://dx.doi.org/10.1073/pnas.0511240103. [CrossRef]
45. Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG. 2006. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681 http://dx.doi.org/10.1038/nrmicro1472. [CrossRef]
46. Niemann S, Supply P. 2014. Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med 4:a021188 http://dx.doi.org/10.1101/cshperspect.a021188. [CrossRef]
47. van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, Qing HZ, Enkhsaikan D, Nymadawa P, van Embden JD. 1995. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33:3234–3238.
48. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D. 2006. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510 http://dx.doi.org/10.1128/JCM.01392-06. [CrossRef]
49. van Embden JD, et al. 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409.
50. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914.
51. Frothingham R, Meeker-O’Connell WA. 1998. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196 http://dx.doi.org/10.1099/00221287-144-5-1189. [CrossRef]
52. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. 2000. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36:762–771 http://dx.doi.org/10.1046/j.1365-2958.2000.01905.x. [CrossRef]
53. Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P. 2001. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98:1901–1906 http://dx.doi.org/10.1073/pnas.98.4.1901. [CrossRef]
54. Cowan LS, Diem L, Brake MC, Crawford JT. 2004. Transfer of a Mycobacterium tuberculosis genotyping method, Spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system. J Clin Microbiol 42:474–477 http://dx.doi.org/10.1128/JCM.42.1.474-477.2004. [CrossRef]
55. Driscoll JR, Bifani PJ, Mathema B, McGarry MA, Zickas GM, Kreiswirth BN, Taber HW. 2002. Spoligologos: a bioinformatic approach to displaying and analyzing Mycobacterium tuberculosis data. Emerg Infect Dis 8:1306–1309 http://dx.doi.org/10.3201/eid0811.020174. [CrossRef]
56. Comas I, Homolka S, Niemann S, Gagneux S. 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4:e7815 http://dx.doi.org/10.1371/journal.pone.0007815. [CrossRef]
57. Cole ST, Supply P, Honoré N. 2001. Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr Rev 72:449–461 http://dx.doi.org/10.5935/0305-7518.20010053. [CrossRef]
58. Supply P, Magdalena J, Himpens S, Locht C. 1997. Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26:991–1003 http://dx.doi.org/10.1046/j.1365-2958.1997.6361999.x. [CrossRef]
59. Smittipat N, Palittapongarnpim P. 2000. Identification of possible loci of variable number of tandem repeats in Mycobacterium tuberculosis. Tuber Lung Dis 80:69–74 http://dx.doi.org/10.1054/tuld.2000.0236. [CrossRef]
60. Cardoso Oelemann M, Gomes HM, Willery E, Possuelo L, Batista Lima KV, Allix-Béguec C, Locht C, Goguet de la Salmonière YO, Gutierrez MC, Suffys P, Supply P. 2011. The forest behind the tree: phylogenetic exploration of a dominant Mycobacterium tuberculosis strain lineage from a high tuberculosis burden country. PLoS One 6:e18256 http://dx.doi.org/10.1371/journal.pone.0018256. [CrossRef]
61. Allix-Béguec C, Wahl C, Hanekom M, Nikolayevskyy V, Drobniewski F, Maeda S, Campos-Herrero I, Mokrousov I, Niemann S, Kontsevaya I, Rastogi N, Samper S, Sng LH, Warren RM, Supply P. 2014. Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of Mycobacterium tuberculosis Beijing isolates. J Clin Microbiol 52:164–172 http://dx.doi.org/10.1128/JCM.02519-13. [CrossRef]
62. Trovato A, Tafaj S, Battaglia S, Alagna R, Bardhi D, Kapisyzi P, Bala S, Haldeda M, Borroni E, Hafizi H, Cirillo DM. 2016. Implementation of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci in Mycobacterium tuberculosis molecular epidemiology. J Clin Microbiol 54:478–482 http://dx.doi.org/10.1128/JCM.02945-15. [CrossRef]
63. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. 2008. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46:2692–2699 http://dx.doi.org/10.1128/JCM.00540-08. [CrossRef]
64. Weniger T, Krawczyk J, Supply P, Niemann S, Harmsen D. 2010. MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res 38(Suppl):W326–W331 http://dx.doi.org/10.1093/nar/gkq351. [CrossRef]
65. Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N. 2012. SITVITWEB--a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12:755–766 http://dx.doi.org/10.1016/j.meegid.2012.02.004. [CrossRef]
66. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet de la Salmoniere YO, Aman K, Kato-Maeda M, Small PM. 2004. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci USA 101:4865–4870 http://dx.doi.org/10.1073/pnas.0305634101. [CrossRef]
67. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S. 2008. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311 http://dx.doi.org/10.1371/journal.pbio.0060311. [CrossRef]
68. Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, Musser JM. 2006. Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193:121–128 http://dx.doi.org/10.1086/498574. [CrossRef]
69. Gutacker MM, Smoot JC, Migliaccio CA, Ricklefs SM, Hua S, Cousins DV, Graviss EA, Shashkina E, Kreiswirth BN, Musser JM. 2002. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162:1533–1543.
70. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbón MH, Bobadilla del Valle M, Fyfe J, García-García L, Rastogi N, Sola C, Zozio T, Guerrero MI, León CI, Crabtree J, Angiuoli S, Eisenach KD, Durmaz R, Joloba ML, Rendón A, Sifuentes-Osornio J, Ponce de León A, Cave MD, Fleischmann R, Whittam TS, Alland D. 2006. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188:759–772 http://dx.doi.org/10.1128/JB.188.2.759-772.2006. [CrossRef]
71. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497 http://dx.doi.org/10.1038/nature13591. [CrossRef]
72. Homolka S, Projahn M, Feuerriegel S, Ubben T, Diel R, Nübel U, Niemann S. 2012. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS One 7:e39855 http://dx.doi.org/10.1371/journal.pone.0039855. [CrossRef]
73. Niobe-Eyangoh SN, Kuaban C, Sorlin P, Thonnon J, Vincent V, Gutierrez MC. 2004. Molecular characteristics of strains of the Cameroon family, the major group of Mycobacterium tuberculosis in a country with a high prevalence of tuberculosis. J Clin Microbiol 42:5029–5035 http://dx.doi.org/10.1128/JCM.42.11.5029-5035.2004. [CrossRef]
74. Fenner L, Egger M, Bodmer T, Furrer H, Ballif M, Battegay M, Helbling P, Fehr J, Gsponer T, Rieder HL, Zwahlen M, Hoffmann M, Bernasconi E, Cavassini M, Calmy A, Dolina M, Frei R, Janssens JP, Borrell S, Stucki D, Schrenzel J, Böttger EC, Gagneux S, Swiss HIV Cohort and Molecular Epidemiology of Tuberculosis Study Groups. 2013. HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLoS Genet 9:e1003318 http://dx.doi.org/10.1371/journal.pgen.1003318.
75. Pasipanodya JG, Moonan PK, Vecino E, Miller TL, Fernandez M, Slocum P, Drewyer G, Weis SE. 2013. Allopatric tuberculosis host-pathogen relationships are associated with greater pulmonary impairment. Infect Genet Evol 16:433–440 http://dx.doi.org/10.1016/j.meegid.2013.02.015. [CrossRef]
76. Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Rüsch-Gerdes S, Horstmann RD, Ehlers S, Meyer CG. 2011. Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One 6:e20908 http://dx.doi.org/10.1371/journal.pone.0020908. [CrossRef]
77. Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Helm S, Rüsch-Gerdes S, Horstmann RD, Meyer CG. 2009. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5:e1000577 http://dx.doi.org/10.1371/journal.ppat.1000577. [CrossRef]
78. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV. 2009. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7:537–544 http://dx.doi.org/10.1038/nrmicro2165. [CrossRef]
79. Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C, Moreau F, Laval F, Daffé M, Martin C, Brosch R, Guilhot C. 2014. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci USA 111:11491–11496 http://dx.doi.org/10.1073/pnas.1406693111. [CrossRef]
80. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717 http://dx.doi.org/10.1046/j.1365-2958.2002.03237.x. [CrossRef]
81. Koeck JL, Fabre M, Simon F, Daffé M, Garnotel E, Matan AB, Gérôme P, Bernatas JJ, Buisson Y, Pourcel C. 2011. Clinical characteristics of the smooth tubercle bacilli ‘Mycobacterium canettii’ infection suggest the existence of an environmental reservoir. Clin Microbiol Infect 17:1013–1019 http://dx.doi.org/10.1111/j.1469-0691.2010.03347.x. [CrossRef]
82. Pfyffer GE, Auckenthaler R, van Embden JD, van Soolingen D. 1998. Mycobacterium canettii, the smooth variant of M. tuberculosis, isolated from a Swiss patient exposed in Africa. Emerg Infect Dis 4:631–634 http://dx.doi.org/10.3201/eid0404.980414. [CrossRef]
83. Somoskovi A, Dormandy J, Mayrer AR, Carter M, Hooper N, Salfinger M. 2009. “Mycobacterium canettii” isolated from a human immunodeficiency virus-positive patient: first case recognized in the United States. J Clin Microbiol 47:255–257 http://dx.doi.org/10.1128/JCM.01268-08. [CrossRef]
84. Derbyshire KM, Gray TA. 2014. Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spectr 2:MGM2-0022-2013.
85. Mortimer TD, Pepperell CS. 2014. Genomic signatures of distributive conjugal transfer among mycobacteria. Genome Biol Evol 6:2489–2500 http://dx.doi.org/10.1093/gbe/evu175. [CrossRef]
86. Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Birren B, Galagan J, Feldman MW. 2013. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 9:e1003543 (Erratum, 9) http://dx.doi.org/10.1371/journal.ppat.1003543. [CrossRef]
87. Braden CR, Morlock GP, Woodley CL, Johnson KR, Colombel AC, Cave MD, Yang Z, Valway SE, Onorato IM, Crawford JT. 2001. Simultaneous infection with multiple strains of Mycobacterium tuberculosis. Clin Infect Dis 33:e42–e47 http://dx.doi.org/10.1086/322635. [CrossRef]
88. Chaves F, Dronda F, Alonso-Sanz M, Noriega AR. 1999. Evidence of exogenous reinfection and mixed infection with more than one strain of Mycobacterium tuberculosis among Spanish HIV-infected inmates. AIDS 13:615–620 http://dx.doi.org/10.1097/00002030-199904010-00011. [CrossRef]
89. García de Viedma D, Marín M, Ruiz Serrano MJ, Alcalá L, Bouza E. 2003. Polyclonal and compartmentalized infection by Mycobacterium tuberculosis in patients with both respiratory and extrarespiratory involvement. J Infect Dis 187:695–699 http://dx.doi.org/10.1086/368368. [CrossRef]
90. Shamputa IC, Jugheli L, Sadradze N, Willery E, Portaels F, Supply P, Rigouts L. 2006. Mixed infection and clonal representativeness of a single sputum sample in tuberculosis patients from a penitentiary hospital in Georgia. Respir Res 7:99 http://dx.doi.org/10.1186/1465-9921-7-99. [CrossRef]
91. Shamputa IC, Rigouts L, Eyongeta LA, El Aila NA, van Deun A, Salim AH, Willery E, Locht C, Supply P, Portaels F. 2004. Genotypic and phenotypic heterogeneity among Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients. J Clin Microbiol 42:5528–5536 http://dx.doi.org/10.1128/JCM.42.12.5528-5536.2004. [CrossRef]
92. Al-Hajoj SA, Akkerman O, Parwati I, al-Gamdi S, Rahim Z, van Soolingen D, van Ingen J, Supply P, van der Zanden AG. 2010. Microevolution of Mycobacterium tuberculosis in a tuberculosis patient. J Clin Microbiol 48:3813–3816 http://dx.doi.org/10.1128/JCM.00556-10. [CrossRef]
93. de Viedma DG, Marín M, Andrés S, Lorenzo G, Ruiz-Serrano MJ, Bouza E. 2006. Complex clonal features in an mycobacterium tuberculosis infection in a two-year-old child. Pediatr Infect Dis J 25:457–459 http://dx.doi.org/10.1097/01.inf.0000217473.90673.00. [CrossRef]
94. de Boer AS, Borgdorff MW, de Haas PE, Nagelkerke NJ, van Embden JD, van Soolingen D. 1999. Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. J Infect Dis 180:1238–1244 http://dx.doi.org/10.1086/314979. [CrossRef]
95. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TE. 2013. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13:137–146 http://dx.doi.org/10.1016/S1473-3099(12)70277-3. [CrossRef]
96. Savine E, Warren RM, van der Spuy GD, Beyers N, van Helden PD, Locht C, Supply P. 2002. Stability of variable-number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis. J Clin Microbiol 40:4561–4566 http://dx.doi.org/10.1128/JCM.40.12.4561-4566.2002. [CrossRef]
97. Pérez-Lago L, Comas I, Navarro Y, González-Candelas F, Herranz M, Bouza E, García-de-Viedma D. 2014. Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis 209:98–108 http://dx.doi.org/10.1093/infdis/jit439. [CrossRef]
98. Walker TM, Lalor MK, Broda A, Ortega LS, Morgan M, Parker L, Churchill S, Bennett K, Golubchik T, Giess AP, Del Ojo Elias C, Jeffery KJ, Bowler IC, Laurenson IF, Barrett A, Drobniewski F, McCarthy ND, Anderson LF, Abubakar I, Thomas HL, Monk P, Smith EG, Walker AS, Crook DW, Peto TE, Conlon CP. 2014. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, with whole pathogen genome sequences: an observational study. Lancet Respir Med 2:285–292 http://dx.doi.org/10.1016/S2213-2600(14)70027-X. [CrossRef]
99. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, Wirth T, Jaenicke S, Schuback S, Rüsch-Gerdes S, Supply P, Kalinowski J, Niemann S. 2013. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10:e1001387 http://dx.doi.org/10.1371/journal.pmed.1001387. [CrossRef]
100. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsåker T, Mengshoel AT, Dyrhol-Riise AM, Balloux F. 2014. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15:490 http://dx.doi.org/10.1186/s13059-014-0490-3. [CrossRef]
101. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rüsch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, Niemann S. 2013. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 8:e82551 http://dx.doi.org/10.1371/journal.pone.0082551. [CrossRef]
102. Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, Zheng H, Tian W, Wang S, Barry CE III, Mei J, Gao Q. 2012. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis 206:1724–1733 http://dx.doi.org/10.1093/infdis/jis601. [CrossRef]
103. Niemann S, Richter E, Rüsch-Gerdes S, Schlaak M, Greinert U. 2000. Double infection with a resistant and a multidrug-resistant strain of Mycobacterium tuberculosis. Emerg Infect Dis 6:548–551 http://dx.doi.org/10.3201/eid0605.000518. [CrossRef]
104. Theisen A, Reichel C, Rüsch-Gerdes S, Haas WH, Rockstroh JK, Spengler U, Sauerbruch T. 1995. Mixed-strain infection with a drug-sensitive and multidrug-resistant strain of Mycobacterium tuberculosis. Lancet 345:1512–1513 http://dx.doi.org/10.1016/S0140-6736(95)91073-5. [CrossRef]
105. Wells AQ. 1937. Tuberculosis in wild voles. Lancet 229:1221 http://dx.doi.org/10.1016/S0140-6736(00)83505-9. [CrossRef]
106. de Jong BC, Hill PC, Brookes RH, Gagneux S, Jeffries DJ, Otu JK, Donkor SA, Fox A, McAdam KP, Small PM, Adegbola RA. 2006. Mycobacterium africanum elicits an attenuated T cell response to early secreted antigenic target, 6 kDa, in patients with tuberculosis and their household contacts. J Infect Dis 193:1279–1286 http://dx.doi.org/10.1086/502977. [CrossRef]
107. de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ, Fox A, Deriemer K, Gagneux S, Borgdorff MW, McAdam KP, Corrah T, Small PM, Adegbola RA. 2008. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198:1037–1043 http://dx.doi.org/10.1086/591504. [CrossRef]
108. Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT, Stepniewska K, Huyen MN, Bang ND, Loc TH, Gagneux S, van Soolingen D, Kremer K, van der Sande M, Small P, Anh PT, Chinh NT, Quy HT, Duyen NT, Tho DQ, Hieu NT, Torok E, Hien TT, Dung NH, Nhu NT, Duy PM, van Vinh Chau N, Farrar J. 2008. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4:e1000034 http://dx.doi.org/10.1371/journal.ppat.1000034. [CrossRef]
109. Kong Y, Cave MD, Zhang L, Foxman B, Marrs CF, Bates JH, Yang ZH. 2007. Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol 45:409–414 http://dx.doi.org/10.1128/JCM.01459-06. [CrossRef]
110. Rakotosamimanana N, Raharimanga V, Andriamandimby SF, Soares JL, Doherty TM, Ratsitorahina M, Ramarokoto H, Zumla A, Huggett J, Rook G, Richard V, Gicquel B, Rasolofo-Razanamparany V, VACSEL/VACSIS Study Group. 2010. Variation in gamma interferon responses to different infecting strains of Mycobacterium tuberculosis in acid-fast bacillus smear-positive patients and household contacts in Antananarivo, Madagascar. Clin Vaccine Immunol 17:1094–1103 http://dx.doi.org/10.1128/CVI.00049-10. [CrossRef]
111. López B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V, Barrera L, Kremer K, Hernandez-Pando R, Huygen K, van Soolingen D. 2003. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133:30–37 http://dx.doi.org/10.1046/j.1365-2249.2003.02171.x. [CrossRef]
112. Homolka S, Niemann S, Russell DG, Rohde KH. 2010. Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6:e1000988 http://dx.doi.org/10.1371/journal.ppat.1000988. [CrossRef]
113. Portevin D, Gagneux S, Comas I, Young D. 2011. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7:e1001307 http://dx.doi.org/10.1371/journal.ppat.1001307. [CrossRef]
114. Reiling N, Homolka S, Walter K, Brandenburg J, Niwinski L, Ernst M, Herzmann C, Lange C, Diel R, Ehlers S, Niemann S. 2013. Clade-specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. MBio 4:eDD250-13 http://dx.doi.org/10.1128/mBio.00250-13. [CrossRef]
115. Ribeiro SC, Gomes LL, Amaral EP, Andrade MR, Almeida FM, Rezende AL, Lanes VR, Carvalho EC, Suffys PN, Mokrousov I, Lasunskaia EB. 2014. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol 52:2615–2624 http://dx.doi.org/10.1128/JCM.00498-14. [CrossRef]
116. Krishnan N, Malaga W, Constant P, Caws M, Chau TTH, Salmons J, Lan NT, Bang ND, Daffé M, Young DB, Robertson BD, Guilhot C, Thwaites GE. 2011. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One 6:e23870 http://dx.doi.org/10.1371/journal.pone.0023870.
117. Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB. 2013. Mapping of genotype-phenotype diversity among clinical isolates of Mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol Evol 5:1849–1862 http://dx.doi.org/10.1093/gbe/evt138. [CrossRef]
118. Coscolla M, Gagneux S. 2010. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7:e43–e59 http://dx.doi.org/10.1016/j.ddmec.2010.09.004. [CrossRef]
119. Gagneux S. 2013. Genetic diversity in Mycobacterium tuberculosis. Curr Top Microbiol Immunol 374:1–25 http://dx.doi.org/10.1007/82_2013_329. [CrossRef]
120. Parwati I, van Crevel R, van Soolingen D. 2010. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis 10:103–111 http://dx.doi.org/10.1016/S1473-3099(09)70330-5. [CrossRef]
121. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490 http://dx.doi.org/10.1128/JB.184.19.5479-5490.2002. [CrossRef]
122. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. 2003. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882 http://dx.doi.org/10.1073/pnas.1130426100. [CrossRef]
123. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST. 1999. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655 http://dx.doi.org/10.1046/j.1365-2958.1999.01383.x. [CrossRef]
124. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282.
125. Alland D, Lacher DW, Hazbón MH, Motiwala AS, Qi W, Fleischmann RD, Whittam TS. 2007. Role of large sequence polymorphisms (LSPs) in generating genomic diversity among clinical isolates of Mycobacterium tuberculosis and the utility of LSPs in phylogenetic analysis. J Clin Microbiol 45:39–46 http://dx.doi.org/10.1128/JCM.02483-05. [CrossRef]
126. Domenech P, Kolly GS, Leon-Solis L, Fallow A, Reed MB. 2010. Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing family. J Bacteriol 192:4562–4570 http://dx.doi.org/10.1128/JB.00536-10. [CrossRef]
127. Weiner B, Gomez J, Victor TC, Warren RM, Sloutsky A, Plikaytis BB, Posey JE, van Helden PD, Gey van Pittius NC, Koehrsen M, Sisk P, Stolte C, White J, Gagneux S, Birren B, Hung D, Murray M, Galagan J. 2012. Independent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region. PLoS One 7:e26038 http://dx.doi.org/10.1371/journal.pone.0026038. [CrossRef]
128. McEvoy CR, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM. 2007. The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 87:393–404 http://dx.doi.org/10.1016/j.tube.2007.05.010. [CrossRef]
129. Ho TB, Robertson BD, Taylor GM, Shaw RJ, Young DB. 2000. Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast 17:272–282 http://dx.doi.org/10.1002/1097-0061(200012)17:4<272::AID-YEA48>3.0.CO;2-2.
130. Brosch R, Philipp WJ, Stavropoulos E, Colston MJ, Cole ST, Gordon SV. 1999. Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect Immun 67:5768–5774.
131. Casart Y, Turcios L, Florez I, Jaspe R, Guerrero E, de Waard J, Aguilar D, Hérnandez-Pando R, Salazar L. 2008. IS6110 in oriC affects the morphology and growth of Mycobacterium tuberculosis and attenuates virulence in mice. Tuberculosis (Edinb) 88:545–552 http://dx.doi.org/10.1016/j.tube.2008.03.006. [CrossRef]
132. Soto CY, Menéndez MC, Pérez E, Samper S, Gómez AB, García MJ, Martín C. 2004. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 42:212–219 http://dx.doi.org/10.1128/JCM.42.1.212-219.2004. [CrossRef]
133. Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:737–756.
134. Smith JM, Haigh J. 1974. The hitch-hiking effect of a favourable gene. Genet Res 23:23–35 http://dx.doi.org/10.1017/S0016672300014634. [CrossRef]
135. Domenech P, Rog A, Moolji JU, Radomski N, Fallow A, Leon-Solis L, Bowes J, Behr MA, Reed MB. 2014. Origins of a 350-kilobase genomic duplication in Mycobacterium tuberculosis and its impact on virulence. Infect Immun 82:2902–2912 http://dx.doi.org/10.1128/IAI.01791-14.
136. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 http://dx.doi.org/10.1126/science.284.5419.1520. [CrossRef]
137. Brodin P, Eiglmeier K, Marmiesse M, Billault A, Garnier T, Niemann S, Cole ST, Brosch R. 2002. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun 70:5568–5578 http://dx.doi.org/10.1128/IAI.70.10.5568-5578.2002. [CrossRef]
138. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539 http://dx.doi.org/10.1038/nm859. [CrossRef]
139. Stanley SA, Raghavan S, Hwang WW, Cox JS. 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 100:13001–13006 http://dx.doi.org/10.1073/pnas.2235593100. [CrossRef]
140. Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51:359–370 http://dx.doi.org/10.1046/j.1365-2958.2003.03844.x. [CrossRef]
141. Bold TD, Davis DC, Penberthy KK, Cox LM, Ernst JD, de Jong BC. 2012. Impaired fitness of Mycobacterium africanum despite secretion of ESAT-6. J Infect Dis 205:984–990 http://dx.doi.org/10.1093/infdis/jir883. [CrossRef]
142. Winglee K, Manson McGuire A, Maiga M, Abeel T, Shea T, Desjardins CA, Diarra B, Baya B, Sanogo M, Diallo S, Earl AM, Bishai WR. 2016. Whole genome sequencing of Mycobacterium africanum strains from Mali provides insights into the mechanisms of geographic restriction. PLoS Negl Trop Dis 10:e0004332 http://dx.doi.org/10.1371/journal.pntd.0004332. [CrossRef]
143. Safi H, Barnes PF, Lakey DL, Shams H, Samten B, Vankayalapati R, Howard ST. 2004. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol Microbiol 52:999–1012 http://dx.doi.org/10.1111/j.1365-2958.2004.04037.x. [CrossRef]
144. Rivero A, Márquez M, Santos J, Pinedo A, Sánchez MA, Esteve A, Samper S, Martín C. 2001. High rate of tuberculosis reinfection during a nosocomial outbreak of multidrug-resistant tuberculosis caused by Mycobacterium bovis strain B. Clin Infect Dis 32:159–161 http://dx.doi.org/10.1086/317547. [CrossRef]
145. Gopinath K, Moosa A, Mizrahi V, Warner DF. 2013. Vitamin B(12) metabolism in Mycobacterium tuberculosis. Future Microbiol 8:1405–1418 http://dx.doi.org/10.2217/fmb.13.113. [CrossRef]
146. Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V, Warner DF. 2013. A vitamin B12 transporter in Mycobacterium tuberculosis. Open Biol 3:120175 http://dx.doi.org/10.1098/rsob.120175. [CrossRef]
147. Schoonmaker MK, Bishai WR, Lamichhane G. 2014. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to β-lactams. J Bacteriol 196:1394–1402 http://dx.doi.org/10.1128/JB.01396-13. [CrossRef]
148. Koeck JL, Bernatas JJ, Gerome P, Fabre M, Houmed A, Herve V, Teyssou R. 2002. [Epidemiology of resistance to antituberculosis drugs in Mycobacterium tuberculosis complex strains isolated from adenopathies in Djibouti. Prospective study carried out in 1999.] (In French.) Med Trop (Mars) 62:70–72.
149. Boritsch EC, Frigui W, Cascioferro A, Malaga W, Etienne G, Laval F, Pawlik A, Le Chevalier F, Orgeur M, Ma L, Bouchier C, Stinear TP, Supply P, Majlessi L, Daffé M, Guilhot C, Brosch R. 2016. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. New Microbiol 1:15019 http://dx.doi.org/10.1038/nmicrobiol.2015.19. [CrossRef]
150. Niemann S, Diel R, Khechinashvili G, Gegia M, Mdivani N, Tang YW. 2010. Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J Clin Microbiol 48:3544–3550 http://dx.doi.org/10.1128/JCM.00715-10. [CrossRef]
151. Cowley D, Govender D, February B, Wolfe M, Steyn L, Evans J, Wilkinson RJ, Nicol MP. 2008. Recent and rapid emergence of W-Beijing strains of Mycobacterium tuberculosis in Cape Town, South Africa. Clin Infect Dis 47:1252–1259 http://dx.doi.org/10.1086/592575. [CrossRef]
152. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. 2002. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8:843–849 http://dx.doi.org/10.3201/eid0805.020002. [CrossRef]
153. Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry CE III, Kaplan G. 2004. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun 72:5511–5514 http://dx.doi.org/10.1128/IAI.72.9.5511-5514.2004. [CrossRef]
154. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87 http://dx.doi.org/10.1038/nature02837. [CrossRef]
155. Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, Roholl P, Arend SM, van Soolingen D. 2004. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol 137:460–468 http://dx.doi.org/10.1111/j.1365-2249.2004.02551.x. [CrossRef]
156. Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB, Mathema B, Barry CE III, Kaplan G. 2005. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis 192:98–106 http://dx.doi.org/10.1086/430614. [CrossRef]
157. Jeon BY, Derrick SC, Lim J, Kolibab K, Dheenadhayalan V, Yang AL, Kreiswirth B, Morris SL. 2008. Mycobacterium bovis BCG immunization induces protective immunity against nine different Mycobacterium tuberculosis strains in mice. Infect Immun 76:5173–5180 http://dx.doi.org/10.1128/IAI.00019-08. [CrossRef]
158. Ordway DJ, Shang S, Henao-Tamayo M, Obregon-Henao A, Nold L, Caraway M, Shanley CA, Basaraba RJ, Duncan CG, Orme IM. 2011. Mycobacterium bovis BCG-mediated protection against W-Beijing strains of Mycobacterium tuberculosis is diminished concomitant with the emergence of regulatory T cells. Clin Vaccine Immunol 18:1527–1535 http://dx.doi.org/10.1128/CVI.05127-11. [CrossRef]
159. Kato-Maeda M, Kim EY, Flores L, Jarlsberg LG, Osmond D, Hopewell PC. 2010. Differences among sublineages of the East-Asian lineage of Mycobacterium tuberculosis in genotypic clustering. Int J Tuberc Lung Dis 14:538–544.
160. Kato-Maeda M, Shanley CA, Ackart D, Jarlsberg LG, Shang S, Obregon-Henao A, Harton M, Basaraba RJ, Henao-Tamayo M, Barrozo JC, Rose J, Kawamura LM, Coscolla M, Fofanov VY, Koshinsky H, Gagneux S, Hopewell PC, Ordway DJ, Orme IM. 2012. Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 19:1227–1237 http://dx.doi.org/10.1128/CVI.00250-12. [CrossRef]
161. Aguilar D, Hanekom LM, Mata D, Gey van Pittius NC, van Helden PD, Warren RM, Hernandez-Pando R. 2010. Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb) 90:319–325 http://dx.doi.org/10.1016/j.tube.2010.08.004. [CrossRef]
162. Hanekom M, van der Spuy GD, Streicher E, Ndabambi SL, McEvoy CR, Kidd M, Beyers N, Victor TC, van Helden PD, Warren RM. 2007. A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J Clin Microbiol 45:1483–1490 http://dx.doi.org/10.1128/JCM.02191-06.
163. Mokrousov I. 2013. Insights into the origin, emergence, and current spread of a successful Russian clone of Mycobacterium tuberculosis. Clin Microbiol Rev 26:342–360 http://dx.doi.org/10.1128/CMR.00087-12. [CrossRef]
164. Sinsimer D, Huet G, Manca C, Tsenova L, Koo MS, Kurepina N, Kana B, Mathema B, Marras SA, Kreiswirth BN, Guilhot C, Kaplan G. 2008. The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 76:3027–3036 http://dx.doi.org/10.1128/IAI.01663-07. [CrossRef]
165. Reed MB, Gagneux S, Deriemer K, Small PM, Barry CE III. 2007. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol 189:2583–2589 http://dx.doi.org/10.1128/JB.01670-06. [CrossRef]
166. Fallow A, Domenech P, Reed MB. 2010. Strains of the East Asian (W/Beijing) lineage of Mycobacterium tuberculosis are DosS/DosT-DosR two-component regulatory system natural mutants. J Bacteriol 192:2228–2238 http://dx.doi.org/10.1128/JB.01597-09. [CrossRef]
167. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. 2006. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312:1944–1946 http://dx.doi.org/10.1126/science.1124410. [CrossRef]
168. Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, Billman-Jacobe H, Lavender C, Fyfe J, García-García L, León CI, Bose M, Chaves F, Murray M, Eisenach KD, Sifuentes-Osornio J, Cave MD, Ponce de León A, Alland D. 2006. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50:2640–2649 http://dx.doi.org/10.1128/AAC.00112-06. [CrossRef]
169. Shcherbakov D, Akbergenov R, Matt T, Sander P, Andersson DI, Böttger EC. 2010. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol Microbiol 77:830–840 http://dx.doi.org/10.1111/j.1365-2958.2010.07218.x. [CrossRef]
170. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S. 2011. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106–110 http://dx.doi.org/10.1038/ng.1038. [CrossRef]
171. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, Bentley SD, Parkhill J, Nejentsev S, Hoffner SE, Horstmann RD, Brown T, Drobniewski F. 2012. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 22:735–745 http://dx.doi.org/10.1101/gr.128678.111. [CrossRef]
172. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J, Bryant J, Parkhill J, Nejentsev S, Horstmann RD, Brown T, Drobniewski F. 2014. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 46:279–286 http://dx.doi.org/10.1038/ng.2878. [CrossRef]
173. Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, Walker BJ, Bantubani N, Almeida DV, Alvarado L, Chapman SB, Mvelase NR, Duffy EY, Fitzgerald MG, Govender P, Gujja S, Hamilton S, Howarth C, Larimer JD, Maharaj K, Pearson MD, Priest ME, Zeng Q, Padayatchi N, Grosset J, Young SK, Wortman J, Mlisana KP, O’Donnell MR, Birren BW, Bishai WR, Pym AS, Earl AM. 2015. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 12:e1001880 http://dx.doi.org/10.1371/journal.pmed.1001880. [CrossRef]
174. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, Balloux F. 2015. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 6:7119 http://dx.doi.org/10.1038/ncomms8119. [CrossRef]
175. Müller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29:160–169 http://dx.doi.org/10.1016/j.tig.2012.11.005. [CrossRef]
176. de Steenwinkel JE, Soolingen D, Bakker-Woudenberg IA. 2013. Mycobacterium tuberculosis Beijing type mutation frequency--author’s response. Emerg Infect Dis 19:522–523 http://dx.doi.org/10.3201/eid1903.121849. [CrossRef]
177. de Steenwinkel JE, ten Kate MT, de Knegt GJ, Kremer K, Aarnoutse RE, Boeree MJ, Verbrugh HA, van Soolingen D, Bakker-Woudenberg IA. 2012. Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB. Emerg Infect Dis 18:660–663 http://dx.doi.org/10.3201/eid1804.110912. [CrossRef]
178. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM. 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45:784–790 http://dx.doi.org/10.1038/ng.2656. [CrossRef]
179. McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. 2014. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69:292–302 http://dx.doi.org/10.1093/jac/dkt364. [CrossRef]
180. Mestre O, Luo T, Dos Vultos T, Kremer K, Murray A, Namouchi A, Jackson C, Rauzier J, Bifani P, Warren R, Rasolofo V, Mei J, Gao Q, Gicquel B. 2011. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair. PLoS One 6:e16020 http://dx.doi.org/10.1371/journal.pone.0016020. [CrossRef]
181. Werngren J. 2013. Mycobacterium tuberculosis Beijing type mutation frequency. Emerg Infect Dis 19:522 http://dx.doi.org/10.3201/eid1903.121001. [CrossRef]
182. Werngren J, Hoffner SE. 2003. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol 41:1520–1524 http://dx.doi.org/10.1128/JCM.41.4.1520-1524.2003. [CrossRef]
183. Bergval I, Kwok B, Schuitema A, Kremer K, van Soolingen D, Klatser P, Anthony R. 2012. Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS One 7:e29108 http://dx.doi.org/10.1371/journal.pone.0029108.
184. World Health Organization. 2015. Global Health Observatory data. World Health Organization, Geneva, Switzerland. http://www.who.int/gho/tb/en/.
microbiolspec.TBTB2-0022-2016.citations
cm/4/6
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0022-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0022-2016
2016-11-11
2017-06-25

Abstract:

Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Global phylogenetic structure of complex (MTBC) strains presented in a neighbor joining tree with 1,000 bootstrap replicates based on 35,577 variable sites. MTBC isolates can be classified into seven major lineages that are often composed of further geographically confined subgroups. So-called “modern” MTBC lineages (lineages 2, 3, 4) are distributed worldwide, whereas infections with “ancestral” MTBC strains are mainly restricted to western and eastern Africa. (Sequence data compiled from Comas et al. [ 31 ] and Merker et al. [ 33 ]).

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0022-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic reconstruction of the MTBC Beijing lineage population. Midpoint-rooted maximum-likelihood tree based on 110 genomes and a total of 6,001 concatenated SNPs. Characteristic mutations differentiating modern and ancestral Beijing strain types are mapped on the tree— encoding p.Arg48Gly (branch a), encoding p.Arg37Leu (branch b), and encoding p.Gly58Arg (branch c)—as is the absence of the RD181 and RD150 regions of difference. Black squares correspond to strains with an MDR or XDR phenotype, and a number sign indicates strains lacking drug susceptibility test information. Numbers on branches correspond to bootstrap values. The tree topology remains the same when H37Rv is used as an outgroup (Merker et al. [ 33 ]).

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0022-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Geographical distribution of nearly 5,000 clinical Beijing (i.e., lineage 2) isolates (data from Merker et al. [ 33 ]). Evolutionary ancestral Beijing strains are mainly dominating in East Asia, the likely origin of this MTBC lineage, whereas modern Beijing strains are globally distributed, suggesting a more virulent phenotype. In addition, the effects of globalization also shape the diversity of MTBC strains in different settings, yet with unknown consequences on host-pathogen interactions and tuberculosis progression (world map from flickr.com).

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TBTB2-0022-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error