1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Randall J. Basaraba1, Anil K. Ojha2
  • Editors: William R. Jacobs Jr.3, Helen McShane4, Valerie Mizrahi5, Ian M. Orme6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Co 80524; 2: Wadsworth Center, NY State Department of Health and University at Albany, Albany, NY 12208; 3: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 4: University of Oxford, Oxford OX3 7DQ, United Kingdom; 5: University of Cape Town, Rondebosch 7701, South Africa; 6: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0024-2016
  • Received 20 July 2016 Accepted 31 March 2017 Published 09 June 2017
  • Anil K. Ojha, anil.ojha@health.ny.gov
image of Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/TBTB2-0024-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/TBTB2-0024-2016-2.gif
  • Abstract:

    Under detergent-free conditions, , the etiological agent of tuberculosis in humans, spontaneously forms organized multicellular structures called biofilms. Moreover, biofilms of are more persistent against antibiotics than their single-cell planktonic counterparts, thereby raising questions about the occurrence of biofilms in the host tissues and their significance in persistence during chemotherapy of tuberculosis. In this article, we present arguments that extracellular in necrotizing lesions likely grows as biofilms.

  • Citation: Basaraba R, Ojha A. 2017. Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. Microbiol Spectrum 5(3):TBTB2-0024-2016. doi:10.1128/microbiolspec.TBTB2-0024-2016.

Key Concept Ranking

Urinary Tract Infections
0.46039885
0.46039885

References

1. WHO. 2015. The WHO End TB Strategy. http://www.who.int/tb/post2015_strategy/en/ [PubMed]
2. Hunter RL, Actor JK, Hwang SA, Karev V, Jagannath C. 2014. Pathogenesis of post primary tuberculosis: immunity and hypersensitivity in the development of cavities. Ann Clin Lab Sci 44:365–387.
3. Hunter RL. 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91:497–509 http://dx.doi.org/10.1016/j.tube.2011.03.007.
4. Hunter RL. 2016. Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 97:8–17 http://dx.doi.org/10.1016/j.tube.2015.11.010.
5. Grosset J. 2003. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47:833–836 http://dx.doi.org/10.1128/AAC.47.3.833-836.2003.
6. Hoff DR, Ryan GJ, Driver ER, Ssemakulu CC, De Groote MA, Basaraba RJ, Lenaerts AJ. 2011. Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One 6:e17550 http://dx.doi.org/10.1371/journal.pone.0017550.
7. Lenaerts A, Barry CE III, Dartois V. 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264:288–307 http://dx.doi.org/10.1111/imr.12252.
8. Barclay WR, Ebert RH, Manthei RW, Roth LJ. 1953. Distribution of C14 labeled isoniazid in sensitive and resistant tubercle bacilli and in infected and uninfected tissues in tuberculous patients. Trans Annu Meet Natl Tuberc Assoc 49:192–195. [PubMed]
9. Manthei RW, Roth LJ, Barclay WR, Ebert RH. 1954. The distribution of C14 labeled isoniazid in normal and infected guinea pigs. Arch Int Pharmacodyn Ther 98:183–192. [PubMed]
10. Prideaux B, ElNaggar MS, Zimmerman M, Wiseman JM, Li X, Dartois V. 2015. Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. Int J Mass Spectrom 377:699–708 http://dx.doi.org/10.1016/j.ijms.2014.08.024.
11. Datta M, Via LE, Chen W, Baish JW, Xu L, Barry CE III, Jain RK. 2016. Mathematical model of oxygen transport in tuberculosis granulomas. Ann Biomed Eng 44:863–872 http://dx.doi.org/10.1007/s10439-015-1415-3.
12. Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE III. 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2333–2340 http://dx.doi.org/10.1128/IAI.01515-07.
13. Via LE, Schimel D, Weiner DM, Dartois V, Dayao E, Cai Y, Yoon YS, Dreher MR, Kastenmayer RJ, Laymon CM, Carny JE, Flynn JL, Herscovitch P, Barry CE III. 2012. Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [18F]2-fluoro-deoxy-d-glucose positron emission tomography and computed tomography. Antimicrob Agents Chemother 56:4391–4402 http://dx.doi.org/10.1128/AAC.00531-12.
14. Prideaux B, Via LE, Zimmerman MD, Eum S, Sarathy J, O’Brien P, Chen C, Kaya F, Weiner DM, Chen PY, Song T, Lee M, Shim TS, Cho JS, Kim W, Cho SN, Olivier KN, Barry CE III, Dartois V. 2015. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21:1223–1227 http://dx.doi.org/10.1038/nm.3937.
15. Karakousis PC, Yoshimatsu T, Lamichhane G, Woolwine SC, Nuermberger EL, Grosset J, Bishai WR. 2004. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med 200:647–657 http://dx.doi.org/10.1084/jem.20040646.
16. Goren MB, D’Arcy Hart P, Young MR, Armstrong JA. 1976. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 73:2510–2514 http://dx.doi.org/10.1073/pnas.73.7.2510.
17. Weiss G, Schaible UE. 2015. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264:182–203 http://dx.doi.org/10.1111/imr.12266. [PubMed]
18. Canetti G. 1950. Exogenous reinfection and pulmonary tuberculosis a study of the pathology. Tubercle 31:224–233 http://dx.doi.org/10.1016/S0041-3879(50)80092-2. [PubMed]
19. Canetti G. 1956. Dynamic aspects of the pathology and bacteriology of tuberculous lesions. Am Rev Tuberc 74:13–21, discussion, 22–27. [PubMed]
20. Canetti G, Israel R, Hertzog P, Daumet P, Toty L. 1954. [Koch’s bacillus in resected tuberculous lesions after chemotherapy: 97 cases]. Poumon Coeur 10:465–485. [PubMed]
21. Canetti GJ. 1959. Changes in tuberculosis as seen by a pathologist. Am Rev Tuberc 79:684–686. [PubMed]
22. Ryan GJ, Shapiro HM, Lenaerts AJ. 2014. Improving acid-fast fluorescent staining for the detection of mycobacteria using a new nucleic acid staining approach. Tuberculosis (Edinb) 94:511–518 http://dx.doi.org/10.1016/j.tube.2014.07.004.
23. Nyka W, O’Neill EF. 1970. A new approach to the study of non-acid-fast mycobacteria. Ann N Y Acad Sci 174(2 Unusual Isola):862–871 http://dx.doi.org/10.1111/j.1749-6632.1970.tb45605.x.
24. Nyka W. 1977. The chromophobic tubercle bacilli and the problem of endogenous reactivation of tuberculosis. Mater Med Pol 9:175–185. [PubMed]
25. Nyka W. 1967. Method for staining both acid-fast and chromophobic tubercle bacilli with carbolfuschsin. J Bacteriol 93:1458–1460. [PubMed]
26. Nyka W. 1963. Studies on Mycobacterium tuberculosis in lesions of the human lung. A new method of staining tubercle bacilli in tissue sections. Am Rev Respir Dis 88:670–679. [PubMed]
27. Richards JP, Ojha AK. 2014. Mycobacterial biofilms. Microbiol Spectr 2:http://dx.doi.org/10.1128/microbiolspec.MGM2-0004-2013.
28. López D, Vlamakis H, Kolter R. 2010. Biofilms. Cold Spring Harb Perspect Biol 2:a000398 http://dx.doi.org/10.1101/cshperspect.a000398. [PubMed]
29. Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209 http://dx.doi.org/10.1146/annurev.micro.56.012302.160705. [PubMed]
30. Mah TF, O’Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 http://dx.doi.org/10.1016/S0966-842X(00)01913-2.
31. Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122 http://dx.doi.org/10.1038/nrd1008. [PubMed]
32. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873 http://dx.doi.org/10.1016/j.cell.2005.09.012.
33. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174 http://dx.doi.org/10.1111/j.1365-2958.2008.06274.x.
34. Recht J, Kolter R. 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:5718–5724 http://dx.doi.org/10.1128/JB.183.19.5718-5724.2001.
35. Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, Aubry J, Milon G, Legras P, André JP, Leroy C, Cottin J, Guillou ML, Reysset G, Cole ST. 2007. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3:e62 http://dx.doi.org/10.1371/journal.ppat.0030062.
36. Hall-Stoodley L, Brun OS, Polshyna G, Barker LP. 2006. Mycobacterium marinum biofilm formation reveals cording morphology. FEMS Microbiol Lett 257:43–49 http://dx.doi.org/10.1111/j.1574-6968.2006.00143.x.
37. Wong KW, Jacobs WR Jr. 2016. postprimary tuberculosis and macrophage necrosis: is there a big conNECtion? MBio 7:e01589-15 http://dx.doi.org/10.1128/mBio.01589-15. [PubMed]
38. Orme IM. 2014. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94:8–14 http://dx.doi.org/10.1016/j.tube.2013.07.004.
39. Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. 2004. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol 12:424–430 http://dx.doi.org/10.1016/j.tim.2004.07.005.
40. Berry RE, Klumpp DJ, Schaeffer AJ. 2009. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect Immun 77:2762–2772 http://dx.doi.org/10.1128/IAI.00323-09.
41. Hunstad DA, Justice SS. 2010. Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu Rev Microbiol 64:203–221 http://dx.doi.org/10.1146/annurev.micro.112408.134258.
42. Scott VC, Haake DA, Churchill BM, Justice SS, Kim JH. 2015. Intracellular bacterial communities: a potential etiology for chronic lower urinary tract symptoms. Urology 86:425–431 http://dx.doi.org/10.1016/j.urology.2015.04.002.
43. Lanoix JP, Lenaerts AJ, Nuermberger EL. 2015. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8:603–610 http://dx.doi.org/10.1242/dmm.019513.
44. Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, Orme IM, Basaraba RJ. 2007. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51:3338–3345 http://dx.doi.org/10.1128/AAC.00276-07.
45. Ojha AK, Trivelli X, Guerardel Y, Kremer L, Hatfull GF. 2010. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 285:17380–17389 http://dx.doi.org/10.1074/jbc.M110.112813.
46. Basaraba RJ. 2008. Experimental tuberculosis: the role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb) 88(Suppl 1):S35–S47 http://dx.doi.org/10.1016/S1472-9792(08)70035-0.
47. Parks QM, Young RL, Poch KR, Malcolm KC, Vasil ML, Nick JA. 2009. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 58:492–502 http://dx.doi.org/10.1099/jmm.0.005728-0.
48. Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA. 2005. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701 http://dx.doi.org/10.1128/IAI.73.6.3693-3701.2005.
49. Ackart DF, Hascall-Dove L, Caceres SM, Kirk NM, Podell BK, Melander C, Orme IM, Leid JG, Nick JA, Basaraba RJ. 2014. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog Dis 70:359–369 http://dx.doi.org/10.1111/2049-632X.12144.
50. Ackart DF, Lindsey EA, Podell BK, Melander RJ, Basaraba RJ, Melander C. 2014. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathog Dis 70:370–378 http://dx.doi.org/10.1111/2049-632X.12143.
51. Furlani RE, Richardson MA, Podell BK, Ackart DF, Haugen JD, Melander RJ, Basaraba RJ, Melander C. 2015. Second generation 2-aminoimidazole based advanced glycation end product inhibitors and breakers. Bioorg Med Chem Lett 25:4820–4823 http://dx.doi.org/10.1016/j.bmcl.2015.06.080.
52. Domenech M, Ramos-Sevillano E, García E, Moscoso M, Yuste J. 2013. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun 81:2606–2615 http://dx.doi.org/10.1128/IAI.00491-13.
53. Hernández-Jiménez E, Del Campo R, Toledano V, Vallejo-Cremades MT, Muñoz A, Largo C, Arnalich F, García-Rio F, Cubillos-Zapata C, López-Collazo E. 2013. Biofilm vs. planktonic bacterial mode of growth: which do human macrophages prefer? Biochem Biophys Res Commun 441:947–952 http://dx.doi.org/10.1016/j.bbrc.2013.11.012.
54. Hirschfeld J. 2014. Dynamic interactions of neutrophils and biofilms. J Oral Microbiol 6:26102 http://dx.doi.org/10.3402/jom.v6.26102. [PubMed]
55. Ryan GJ, Hoff DR, Driver ER, Voskuil MI, Gonzalez-Juarrero M, Basaraba RJ, Crick DC, Spencer JS, Lenaerts AJ. 2010. Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS One 5:e11108 http://dx.doi.org/10.1371/journal.pone.0011108.
56. Arciola CR. 2010. Host defense against implant infection: the ambivalent role of phagocytosis. Int J Artif Organs 33:565–567. [PubMed]
57. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR. 2011. Extracellular DNA in biofilms. Int J Artif Organs 34:824–831 http://dx.doi.org/10.5301/ijao.5000051. [PubMed]
58. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE III. 1995. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92:6630–6634 http://dx.doi.org/10.1073/pnas.92.14.6630. [PubMed]
59. Dkhar HK, Nanduri R, Mahajan S, Dave S, Saini A, Somavarapu AK, Arora A, Parkesh R, Thakur KG, Mayilraj S, Gupta P. 2014. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J Immunol 193:295–305 http://dx.doi.org/10.4049/jimmunol.1400092.
60. Sambandan D, Dao DN, Weinrick BC, Vilchèze C, Gurcha SS, Ojha A, Kremer L, Besra GS, Hatfull GF, Jacobs WR Jr. 2013. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 4:e00222-13 http://dx.doi.org/10.1128/mBio.00222-13.
61. Dubnau E, Chan J, Raynaud C, Mohan VP, Lanéelle MA, Yu K, Quémard A, Smith I, Daffé M. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637 http://dx.doi.org/10.1046/j.1365-2958.2000.01882.x.
microbiolspec.TBTB2-0024-2016.citations
cm/5/3
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0024-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0024-2016
2017-06-09
2017-07-26

Abstract:

Under detergent-free conditions, , the etiological agent of tuberculosis in humans, spontaneously forms organized multicellular structures called biofilms. Moreover, biofilms of are more persistent against antibiotics than their single-cell planktonic counterparts, thereby raising questions about the occurrence of biofilms in the host tissues and their significance in persistence during chemotherapy of tuberculosis. In this article, we present arguments that extracellular in necrotizing lesions likely grows as biofilms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Visualization of growth in a microfluidic device by time-lapse microscopy. The numbers at the bottom of the snapshots denote the time in minutes at which the snaps were taken. Note the distinct foci of multicellular communities from growth of individual cells. (Data collected by Jacob Richards in the laboratory of Anil Ojha).

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0024-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error