No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Killing : What Model Systems Can Teach Us

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Tracy L. Keiser1, Georgiana E. Purdy2
  • Editors: William R. Jacobs Jr.3, Helen McShane4, Valerie Mizrahi5, Ian M. Orme6
    Affiliations: 1: Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; 2: Department of Microbiology and Immunology, Oregon Health Sciences University, Portland OR, 97239; 3: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 4: University of Oxford, Oxford OX3 7DQ, United Kingdom; 5: University of Cape Town, Rondebosch 7701, South Africa; 6: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.TBTB2-0028-2016
  • Received 09 August 2016 Accepted 31 March 2017 Published 09 June 2017
  • Tracy L. Keiser, tracy.keiser@einstein.yu.edu
image of Killing <span class="jp-italic">Mycobacterium tuberculosis In Vitro</span>: What Model Systems Can Teach Us
    Preview this microbiology spectrum article:
    Zoom in

    Killing : What Model Systems Can Teach Us, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/TBTB2-0028-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/TBTB2-0028-2016-2.gif
  • Abstract:

    Tuberculosis is one of the most successful human diseases in our history due in large part to the multitude of virulence factors exhibited by the causative agent, . Understanding the pathogenic nuances of this organism in the context of its human host is an ongoing topic of study facilitated by isolating cells from model organisms such as mice and non-human primates. However, is an obligate intracellular human pathogen, and disease progression and outcome in these model systems can differ from that of human disease. Current models of infection include primary macrophages and macrophage-like immortalized cell lines as well as the induced pluripotent stem cell-derived cell types. This article will discuss these model systems in general, what we have learned so far about utilizing them to answer questions about pathogenesis, the potential role of other cell types in innate control of infection, and the development of new coculture systems with multiple cell types. As we continue to expand current systems and institute new ones, the knowledge gained will improve our understanding of not only tuberculosis but all infectious diseases.

  • Citation: Keiser T, Purdy G. 2017. Killing : What Model Systems Can Teach Us. Microbiol Spectrum 5(3):TBTB2-0028-2016. doi:10.1128/microbiolspec.TBTB2-0028-2016.

Key Concept Ranking

Murine leukemia virus
Simian immunodeficiency virus
Murine leukemia virus
Simian immunodeficiency virus
Murine leukemia virus
Simian immunodeficiency virus
Small Interfering RNA


1. Anastasiou E, Mitchell PD. 2013. Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations. Gene 528:33–40 http://dx.doi.org/10.1016/j.gene.2013.06.017.
2. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182 http://dx.doi.org/10.1038/ng.2744.
3. Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. 2015. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 264:220–232 http://dx.doi.org/10.1111/imr.12268. [PubMed]
4. Murray PJ, Wynn TA. 2011. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737 http://dx.doi.org/10.1038/nri3073. [PubMed]
5. Khan N, Vidyarthi A, Javed S, Agrewala JN. 2016. Innate immunity holding the flanks until reinforced by adaptive immunity against Mycobacterium tuberculosis infection. Front Microbiol 7:328 http://dx.doi.org/10.3389/fmicb.2016.00328.
6. Arango Duque G, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491 http://dx.doi.org/10.3389/fimmu.2014.00491. [PubMed]
7. Rieder HL. 1999. Epidemiologic Basis of Tuberculosis Control, p 17–43. International Union against Tuberculosis and Lung Disease, Paris, France.
8. Sobota RS, Stein CM, Kodaman N, Scheinfeldt LB, Maro I, Wieland-Alter W, Igo RP Jr, Magohe A, Malone LL, Chervenak K, Hall NB, Modongo C, Zetola N, Matee M, Joloba M, Froment A, Nyambo TB, Moore JH, Scott WK, Lahey T, Boom WH, von Reyn CF, Tishkoff SA, Sirugo G, Williams SM. 2016. A locus at 5q33.3 confers resistance to tuberculosis in highly susceptible individuals. Am J Hum Genet 98:514–524 http://dx.doi.org/10.1016/j.ajhg.2016.01.015.
9. Opie EL, Aronson JD. 1927. Tubercle bacilli in latent tuberculous lesions in lung tissue without tuberculous lesions. Arch Pathol Lab Med 4:1–21.
10. Canetti G. 1946. Le Bacille de Koch dans la Lésion Tuberculeuse du Poumon. Éditions Médicales Flammarion, Paris, France.
11. Suter E. 1952. The multiplication of tubercle bacilli within normal phagocytes in tissue culture. J Exp Med 96:137–150 http://dx.doi.org/10.1084/jem.96.2.137.
12. Raschke WC, Baird S, Ralph P, Nakoinz I. 1978. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261–267 http://dx.doi.org/10.1016/0092-8674(78)90101-0.
13. Ralph P, Nakoinz I. 1975. Phagocytosis and cytolysis by a macrophage tumour and its cloned cell line. Nature 257:393–394 http://dx.doi.org/10.1038/257393a0. [PubMed]
14. Ralph P, Nakoinz I. 1977. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J Immunol 119:950–954. [PubMed]
15. Ralph P, Nakoinz I. 1981. Differences in antibody-dependent cellular cytotoxicity and activated killing of tumor cells by macrophage cell lines. Cancer Res 41:3546–3550. [PubMed]
16. Indrigo J, Hunter RL Jr, Actor JK. 2003. Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:2049–2059 http://dx.doi.org/10.1099/mic.0.26226-0.
17. Perez RL, Roman J, Roser S, Little C, Olsen M, Indrigo J, Hunter RL, Actor JK. 2000. Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. J Interferon Cytokine Res 20:795–804 http://dx.doi.org/10.1089/10799900050151067.
18. Rao V, Fujiwara N, Porcelli SA, Glickman MS. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543 http://dx.doi.org/10.1084/jem.20041668.
19. Rao V, Gao F, Chen B, Jacobs WR Jr, Glickman MS. 2006. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. J Clin Invest 116:1660–1667 http://dx.doi.org/10.1172/JCI27335.
20. Adams LB, Fukutomi Y, Krahenbuhl JL. 1993. Regulation of murine macrophage effector functions by lipoarabinomannan from mycobacterial strains with different degrees of virulence. Infect Immun 61:4173–4181. [PubMed]
21. Stuehr DJ, Marletta MA. 1987. Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Res 47:5590–5594. [PubMed]
22. Radzioch D, Hudson T, Boulé M, Barrera L, Urbance JW, Varesio L, Skamene E. 1991. Genetic resistance/susceptibility to mycobacteria: phenotypic expression in bone marrow derived macrophage lines. J Leukoc Biol 50:263–272. [PubMed]
23. Blasi E, Mathieson BJ, Varesio L, Cleveland JL, Borchert PA, Rapp UR. 1985. Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318:667–670 http://dx.doi.org/10.1038/318667a0.
24. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–480 http://dx.doi.org/10.1016/j.chom.2012.03.007.
25. Mbawuike IN, Herscowitz HB. 1989. MH-S, a murine alveolar macrophage cell line: morphological, cytochemical, and functional characteristics. J Leukoc Biol 46:119–127. [PubMed]
26. Melo MD, Stokes RW. 2000. Interaction of Mycobacterium tuberculosis with MH-S, an immortalized murine alveolar macrophage cell line: a comparison with primary murine macrophages. Tuber Lung Dis 80:35–46 http://dx.doi.org/10.1054/tuld.1999.0228.
27. Palleroni AV, Hajos S, Wright RB, Palleroni NJ. 1998. Nitric oxide synthase induction in lines of macrophages from different anatomical sites. Cell Mol Biol 44:527–535. [PubMed]
28. Palleroni AV, Varesio L, Wright RB, Brunda MJ. 1991. Tumoricidal alveolar macrophage and tumor infiltrating macrophage cell lines. Int J Cancer 49:296–302 http://dx.doi.org/10.1002/ijc.2910490226.
29. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330 http://dx.doi.org/10.1111/j.1365-2958.2006.05102.x.
30. Kramnik I, Beamer G. 2016. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin Immunopathol 38:221–237 http://dx.doi.org/10.1007/s00281-015-0538-9.
31. Bogdan C. 2015. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 36:161–178 http://dx.doi.org/10.1016/j.it.2015.01.003. [PubMed]
32. Gross TJ, Kremens K, Powers LS, Brink B, Knutson T, Domann FE, Philibert RA, Milhem MM, Monick MM. 2014. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol 192:2326–2338 http://dx.doi.org/10.4049/jimmunol.1301758.
33. Rengarajan J, Bloom BR, Rubin EJ. 2005. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102:8327–8332 http://dx.doi.org/10.1073/pnas.0503272102.
34. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C. 2001. Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194:1123–1140 http://dx.doi.org/10.1084/jem.194.8.1123.
35. Homolka S, Niemann S, Russell DG, Rohde KH. 2010. Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6:e1000988 http://dx.doi.org/10.1371/journal.ppat.1000988.
36. Alonso S, Pethe K, Russell DG, Purdy GE. 2007. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci USA 104:6031–6036 http://dx.doi.org/10.1073/pnas.0700036104.
37. Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HW IV, Kyei GB, Johansen T, Vergne I, Deretic V. 2010. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32:329–341 http://dx.doi.org/10.1016/j.immuni.2010.02.009.
38. Flesch IE, Kaufmann SH. 1990. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect Immun 58:2675–2677. [PubMed]
39. Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, Deretic V. 1998. Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111:897–905. [PubMed]
40. Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296. [PubMed]
41. Briken V, Ahlbrand SE, Shah S. 2013. Mycobacterium tuberculosis and the host cell inflammasome: a complex relationship. Front Cell Infect Microbiol 3:62 http://dx.doi.org/10.3389/fcimb.2013.00062. [PubMed]
42. Pelegrin P, Surprenant A. 2009. The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5:129–137 http://dx.doi.org/10.1007/s11302-009-9141-7.
43. Damiani G, Kiyotaki C, Soeller W, Sasada M, Peisach J, Bloom BR. 1980. Macrophage variants in oxygen metabolism. J Exp Med 152:808–822 http://dx.doi.org/10.1084/jem.152.4.808.
44. Chan J, Xing Y, Magliozzo RS, Bloom BR. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175:1111–1122 http://dx.doi.org/10.1084/jem.175.4.1111.
45. Jayaswal S, Kamal MA, Dua R, Gupta S, Majumdar T, Das G, Kumar D, Rao KV. 2010. Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen. PLoS Pathog 6:e1000839 http://dx.doi.org/10.1371/journal.ppat.1000839.
46. Flynn JL, Gideon HP, Mattila JT, Lin PL. 2015. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264:60–73 http://dx.doi.org/10.1111/imr.12258. [PubMed]
47. Lin PL, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek NN, Capuano SV, Klein E, Flynn JL. 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–350. [PubMed]
48. Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J, Sturgeon TJ, Montelaro RC, Lin PL, Flynn JL. 2010. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5:e9611 http://dx.doi.org/10.1371/journal.pone.0009611.
49. Mehra S, Golden NA, Dutta NK, Midkiff CC, Alvarez X, Doyle LA, Asher M, Russell-Lodrigue K, Monjure C, Roy CJ, Blanchard JL, Didier PJ, Veazey RS, Lackner AA, Kaushal D. 2011. Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. J Med Primatol 40:233–243 http://dx.doi.org/10.1111/j.1600-0684.2011.00485.x.
50. Dutta NK, Karakousis PC. 2014. Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 78:343–371 http://dx.doi.org/10.1128/MMBR.00010-14.
51. Zinman G, Brower-Sinning R, Emeche CH, Ernst J, Huang GT, Mahony S, Myers AJ, O’Dee DM, Flynn JL, Nau GJ, Ross TM, Salter RD, Benos PV, Bar Joseph Z, Morel PA. 2011. Large scale comparison of innate responses to viral and bacterial pathogens in mouse and macaque. PLoS One 6:e22401 http://dx.doi.org/10.1371/journal.pone.0022401.
52. Pacheco SA, Powers KM, Engelmann F, Messaoudi I, Purdy GE. 2013. Autophagic killing effects against Mycobacterium tuberculosis by alveolar macrophages from young and aged rhesus macaques. PLoS One 8:e66985 http://dx.doi.org/10.1371/journal.pone.0066985.
53. Gautam US, Mehra S, Ahsan MH, Alvarez X, Niu T, Kaushal D. 2014. Role of TNF in the altered interaction of dormant Mycobacterium tuberculosis with host macrophages. PLoS One 9:e95220 http://dx.doi.org/10.1371/journal.pone.0095220.
54. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K. 1982. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536. [PubMed]
55. Schwende H, Fitzke E, Ambs P, Dieter P. 1996. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 59:555–561. [PubMed]
56. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. 2010. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5:e8668 http://dx.doi.org/10.1371/journal.pone.0008668.
57. Schlesinger LS. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150:2920–2930. [PubMed]
58. Schlesinger LS. 1996. Role of mononuclear phagocytes in M tuberculosis pathogenesis. J Investig Med 44:312–323. [PubMed]
59. Takahashi K, Okita K, Nakagawa M, Yamanaka S. 2007. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089 http://dx.doi.org/10.1038/nprot.2007.418. [PubMed]
60. Karlsson KR, Cowley S, Martinez FO, Shaw M, Minger SL, James W. 2008. Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp Hematol 36:1167–1175 http://dx.doi.org/10.1016/j.exphem.2008.04.009.
61. van Wilgenburg B, Browne C, Vowles J, Cowley SA. 2013. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS One 8:e71098 http://dx.doi.org/10.1371/journal.pone.0071098.
62. van Wilgenburg B, Moore MD, James WS, Cowley SA. 2014. The productive entry pathway of HIV-1 in macrophages is dependent on endocytosis through lipid rafts containing CD4. PLoS One 9:e86071 http://dx.doi.org/10.1371/journal.pone.0086071.
63. Verma RK, Agrawal AK, Singh AK, Mohan M, Gupta A, Gupta P, Gupta UD, Misra A. 2013. Inhalable microparticles of nitric oxide donors induce phagosome maturation and kill Mycobacterium tuberculosis. Tuberculosis (Edinb) 93:412–417 http://dx.doi.org/10.1016/j.tube.2013.02.012.
64. Jordao L, Bleck CK, Mayorga L, Griffiths G, Anes E. 2008. On the killing of mycobacteria by macrophages. Cell Microbiol 10:529–548 10.1111/j.1462-5822.2007.01067.x.
65. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681 http://dx.doi.org/10.1126/science.8303277.
66. Clemens DL, Lee BY, Horwitz MA. 2000. Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate. Infect Immun 68:2671–2684 http://dx.doi.org/10.1128/IAI.68.5.2671-2684.2000.
67. Via LE, Deretic D, Ulmer RJ, Hibler NS, Huber LA, Deretic V. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272:13326–13331 http://dx.doi.org/10.1074/jbc.272.20.13326.
68. d’Arcy Hart P. 1975. Response of macrophages to bacterial infection with special reference to their lysosomes. Pathol Biol (Paris) 23:451–452. [PubMed]
69. Vergne I, Chua J, Deretic V. 2003. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198:653–659 http://dx.doi.org/10.1084/jem.20030527.
70. Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V. 2004. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 15:751–760 http://dx.doi.org/10.1091/mbc.E03-05-0307.
71. Pethe K, Swenson DL, Alonso S, Anderson J, Wang C, Russell DG. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101:13642–13647 http://dx.doi.org/10.1073/pnas.0401657101.
72. MacGurn JA, Cox JS. 2007. A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun 75:2668–2678 http://dx.doi.org/10.1128/IAI.01872-06.
73. Baker JJ, Johnson BK, Abramovitch RB. 2014. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol Microbiol 94:56–69 http://dx.doi.org/10.1111/mmi.12688.
74. Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD. 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52:1291–1302 http://dx.doi.org/10.1111/j.1365-2958.2004.04078.x.
75. Edwards KM, Cynamon MH, Voladri RK, Hager CC, DeStefano MS, Tham KT, Lakey DL, Bochan MR, Kernodle DS. 2001. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 164:2213–2219 http://dx.doi.org/10.1164/ajrccm.164.12.2106093. [PubMed]
76. Dussurget O, Stewart G, Neyrolles O, Pescher P, Young D, Marchal G. 2001. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect Immun 69:529–533 http://dx.doi.org/10.1128/IAI.69.1.529-533.2001.
77. Shi S, Ehrt S. 2006. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 74:56–63 http://dx.doi.org/10.1128/IAI.74.1.56-63.2006.
78. Guo FH, De Raeve HR, Rice TW, Stuehr DJ, Thunnissen FB, Erzurum SC. 1995. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci USA 92:7809–7813 http://dx.doi.org/10.1073/pnas.92.17.7809.
79. Asano K, Chee CB, Gaston B, Lilly CM, Gerard C, Drazen JM, Stamler JS. 1994. Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc Natl Acad Sci USA 91:10089–10093 http://dx.doi.org/10.1073/pnas.91.21.10089.
80. Guo FH, Uetani K, Haque SJ, Williams BR, Dweik RA, Thunnissen FB, Calhoun W, Erzurum SC. 1997. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. J Clin Invest 100:829–838 http://dx.doi.org/10.1172/JCI119598.
81. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA. 2011. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89:873–891 http://dx.doi.org/10.1189/jlb.1010550.
82. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766 http://dx.doi.org/10.1016/j.cell.2004.11.038.
83. Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S. 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14:849–854 http://dx.doi.org/10.1038/nm.1795.
84. Purdy GE, Niederweis M, Russell DG. 2009. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 73:844–857 http://dx.doi.org/10.1111/j.1365-2958.2009.06801.x.
85. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773 http://dx.doi.org/10.1126/science.1123933.
86. Liu PT, Stenger S, Tang DH, Modlin RL. 2007. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179:2060–2063 http://dx.doi.org/10.4049/jimmunol.179.4.2060.
87. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. 2007. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 82:934–945 http://dx.doi.org/10.1189/jlb.0407216.
88. Gilmore SA, Schelle MW, Holsclaw CM, Leigh CD, Jain M, Cox JS, Leary JA, Bertozzi CR. 2012. Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages. ACS Chem Biol 7:863–870 http://dx.doi.org/10.1021/cb200311s.
89. Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, Divangahi M, Remold HG. 2011. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4:279–287 http://dx.doi.org/10.1038/mi.2011.3.
90. Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, Fenton MJ, Kornfeld H. 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65:298–304. [PubMed]
91. Keane J, Remold HG, Kornfeld H. 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164:2016–2020 http://dx.doi.org/10.4049/jimmunol.164.4.2016.
92. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG. 2008. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9:1189–1197 http://dx.doi.org/10.1038/ni.1654.
93. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG. 2009. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10:899–906 http://dx.doi.org/10.1038/ni.1758.
94. Keane J, Shurtleff B, Kornfeld H. 2002. TNF-dependent BALB/c murine macrophage apoptosis following Mycobacterium tuberculosis infection inhibits bacillary growth in an IFN-gamma independent manner. Tuberculosis (Edinb) 82:55–61 http://dx.doi.org/10.1054/tube.2002.0322.
95. Wong KW, Jacobs WR Jr. 2011. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol 13:1371–1384 http://dx.doi.org/10.1111/j.1462-5822.2011.01625.x.
96. Sun J, Siroy A, Lokareddy RK, Speer A, Doornbos KS, Cingolani G, Niederweis M. 2015. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat Struct Mol Biol 22:672–678 http://dx.doi.org/10.1038/nsmb.3064.
97. Cooper AM, Mayer-Barber KD, Sher A. 2011. Role of innate cytokines in mycobacterial infection. Mucosal Immunol 4:252–260 http://dx.doi.org/10.1038/mi.2011.13.
98. Underhill DM, Ozinsky A, Smith KD, Aderem A. 1999. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96:14459–14463 http://dx.doi.org/10.1073/pnas.96.25.14459.
99. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724 http://dx.doi.org/10.1084/jem.20051782.
100. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger EM, Stenger S, Andersen P, Ruland J, Brown GD, Wells C, Lang R. 2010. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184:2756–2760 http://dx.doi.org/10.4049/jimmunol.0904013.
101. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17:811–819 http://dx.doi.org/10.1016/j.chom.2015.05.004.
102. Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA. 2009. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500 http://dx.doi.org/10.1371/journal.ppat.1000500.
103. Shah S, Bohsali A, Ahlbrand SE, Srinivasan L, Rathinam VA, Vogel SN, Fitzgerald KA, Sutterwala FS, Briken V. 2013. Cutting edge: mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. J Immunol 191:3514–3518 http://dx.doi.org/10.4049/jimmunol.1301331. [PubMed]
104. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152 http://dx.doi.org/10.4049/jimmunol.178.5.3143.
105. Dutronc Y, Porcelli SA. 2002. The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 60:337–353 http://dx.doi.org/10.1034/j.1399-0039.2002.600501.x. [PubMed]
106. Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE, Furlong ST, Ye S, Reinhold VN, Sieling PA, Modlin RL, Besra GS, Porcelli SA. 1997. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283–286 http://dx.doi.org/10.1126/science.278.5336.283.
107. Van Rhijn I, Ly D, Moody DB. 2013. CD1a, CD1b, and CD1c in immunity against mycobacteria. Adv Exp Med Biol 783:181–197 http://dx.doi.org/10.1007/978-1-4614-6111-1_10.
108. Moody DB, Ulrichs T, Mühlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888 http://dx.doi.org/10.1038/35009119.
109. Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582 http://dx.doi.org/10.1038/nrmicro1710. [PubMed]
110. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho S-N, Via LE, Barry CE III. 2010. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:122–128 http://dx.doi.org/10.1378/chest.09-0903.
111. Orme IM. 2014. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94:8–14 http://dx.doi.org/10.1016/j.tube.2013.07.004.
112. Denis M. 1991. Human neutrophils, activated with cytokines or not, do not kill virulent Mycobacterium tuberculosis. J Infect Dis 163:919–920 http://dx.doi.org/10.1093/infdis/163.4.919.
113. Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. 2012. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol 14:1109–1121 http://dx.doi.org/10.1111/j.1462-5822.2012.01783.x.
114. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, Packe GE, Davidson RN, Griffiths CJ, Wilkinson RJ. 2007. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117:1988–1994 http://dx.doi.org/10.1172/JCI31097.
115. Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, Gonzalez-Pozos S, Muñiz-Hernandez S, Rojas-Espinosa O, Chacón-Salinas R, Estrada-Parra S, Estrada-García I. 2009. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb) 89:29–37 http://dx.doi.org/10.1016/j.tube.2008.09.009.
116. McDonough KA, Kress Y. 1995. Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun 63:4802–4811. [PubMed]
117. Bermudez LE, Goodman J. 1996. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 64:1400–1406. [PubMed]
118. Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC, Lewinsohn DM. 2014. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells. PLoS One 9:e97515 http://dx.doi.org/10.1371/journal.pone.0097515.
119. Hernández-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H, Harboe M, Rook GA, Bjune G. 2000. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356:2133–2138 http://dx.doi.org/10.1016/S0140-6736(00)03493-0.
120. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM. 2010. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8:e1000407 http://dx.doi.org/10.1371/journal.pbio.1000407.
121. Gold MC, Napier RJ, Lewinsohn DM. 2015. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264:154–166 http://dx.doi.org/10.1111/imr.12271.
122. Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. 2012. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun 80:3256–3267 http://dx.doi.org/10.1128/IAI.00279-12.
123. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. 2008. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 4:e1000239 http://dx.doi.org/10.1371/journal.ppat.1000239.
124. Brill KJ, Li Q, Larkin R, Canaday DH, Kaplan DR, Boom WH, Silver RF. 2001. Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect Immun 69:1755–1765 http://dx.doi.org/10.1128/IAI.69.3.1755-1765.2001.
125. Canaday DH, Wilkinson RJ, Li Q, Harding CV, Silver RF, Boom WH. 2001. CD4(+) and CD8(+) T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol 167:2734–2742 http://dx.doi.org/10.4049/jimmunol.167.5.2734. [PubMed]
126. Carranza C, Juárez E, Torres M, Ellner JJ, Sada E, Schwander SK. 2006. Mycobacterium tuberculosis growth control by lung macrophages and CD8 cells from patient contacts. Am J Respir Crit Care Med 173:238–245 http://dx.doi.org/10.1164/rccm.200503-411OC.
127. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125 http://dx.doi.org/10.1126/science.282.5386.121.
128. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL. 1997. Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687 http://dx.doi.org/10.1126/science.276.5319.1684.
129. Tan BH, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa MT, Krutzik SR, Bloom BR, Ganz T, Modlin RL, Stenger S. 2006. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol 177:1864–1871 http://dx.doi.org/10.4049/jimmunol.177.3.1864.
130. Paige C, Bishai WR. 2010. Penitentiary or penthouse condo: the tuberculous granuloma from the microbe’s point of view. Cell Microbiol 12:301–309 http://dx.doi.org/10.1111/j.1462-5822.2009.01424.x. [PubMed]
131. Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F. 2004. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 6:423–433 http://dx.doi.org/10.1111/j.1462-5822.2004.00371.x.
132. Guirado E, Mbawuike U, Keiser TL, Arcos J, Azad AK, Wang SH, Schlesinger LS. 2015. Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model. MBio 6:e02537–e14 http://dx.doi.org/10.1128/mBio.02537-14.
133. Kapoor N, Pawar S, Sirakova TD, Deb C, Warren WL, Kolattukudy PE. 2013. Human granuloma in vitro model, for TB dormancy and resuscitation. PLoS One 8:e53657 http://dx.doi.org/10.1371/journal.pone.0053657.
134. Pagán AJ, Ramakrishnan L. 2014. Immunity and immunopathology in the tuberculous granuloma. Cold Spring Harb Perspect Med 5:a018499 http://dx.doi.org/10.1101/cshperspect.a018499. [PubMed]
135. Sershen CL, Plimpton SJ, May EE. 2016. Oxygen modulates the effectiveness of granuloma mediated host response to Mycobacterium tuberculosis: a multiscale computational biology approach. Front Cell Infect Microbiol 6:6 http://dx.doi.org/10.3389/fcimb.2016.00006.
136. Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, Wang F, Jacobs WR Jr. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 112:10008–10013 http://dx.doi.org/10.1073/pnas.1513033112.
137. Arcos J, Sasindran SJ, Fujiwara N, Turner J, Schlesinger LS, Torrelles JB. 2011. Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J Immunol 187:372–381 http://dx.doi.org/10.4049/jimmunol.1100823.
138. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL. 2014. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20:75–79 http://dx.doi.org/10.1038/nm.3412.
139. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, Kirschner DE, Lin PL, Flynn JL. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11:e1004603 http://dx.doi.org/10.1371/journal.ppat.1004603.

Citations loading...


Article metrics loading...



Tuberculosis is one of the most successful human diseases in our history due in large part to the multitude of virulence factors exhibited by the causative agent, . Understanding the pathogenic nuances of this organism in the context of its human host is an ongoing topic of study facilitated by isolating cells from model organisms such as mice and non-human primates. However, is an obligate intracellular human pathogen, and disease progression and outcome in these model systems can differ from that of human disease. Current models of infection include primary macrophages and macrophage-like immortalized cell lines as well as the induced pluripotent stem cell-derived cell types. This article will discuss these model systems in general, what we have learned so far about utilizing them to answer questions about pathogenesis, the potential role of other cell types in innate control of infection, and the development of new coculture systems with multiple cell types. As we continue to expand current systems and institute new ones, the knowledge gained will improve our understanding of not only tuberculosis but all infectious diseases.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error