1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Targeting Phenotypically Tolerant

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Ben Gold1, Carl Nathan2
  • Editors: William R. Jacobs Jr.3, Helen McShane4, Valerie Mizrahi5, Ian M. Orme6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065; 2: Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065; 3: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 4: University of Oxford, Oxford OX3 7DQ, United Kingdom; 5: University of Cape Town, Rondebosch 7701, South Africa; 6: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
  • Received 26 September 2016 Accepted 28 October 2016 Published 24 February 2017
  • Ben Gold, bsg2001@med.cornell.edu
image of Targeting Phenotypically Tolerant <span class="jp-italic">Mycobacterium tuberculosis</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Targeting Phenotypically Tolerant , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/TBTB2-0031-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/TBTB2-0031-2016-2.gif
  • Abstract:

    While the immune system is credited with averting tuberculosis in billions of individuals exposed to , the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of . The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating . With this goal, we review methods of high-throughput screening to target nonreplicating and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating revealed a rich diversity in pharmacophores.

  • Citation: Gold B, Nathan C. 2017. Targeting Phenotypically Tolerant . Microbiol Spectrum 5(1):TBTB2-0031-2016. doi:10.1128/microbiolspec.TBTB2-0031-2016.

Key Concept Ranking

Bacterial Diseases
0.4715091
Fatty Acid Biosynthesis
0.43410543
Nitric Oxide Synthase
0.43063256
Bacterial Cell Wall
0.4152095
Positron Emission Tomography
0.40754837
0.4715091

References

1. Nathan C. 2011. Making space for anti-infective drug discovery. Cell Host Microbe 9:343–348. http://dx.doi.org/10.1016/j.chom.2011.04.013 [PubMed]
2. Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. http://dx.doi.org/10.1128/MMBR.00016-10 [PubMed][CrossRef]
3. Hobby GL, Meyer K, Chaffee E. 1942. Observations on the mechanism of action of penicillin. Exp Biol Med 50:281–285. http://dx.doi.org/10.3181/00379727-50-13773
4. Bigger J. 1944. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244:497–500. http://dx.doi.org/10.1016/S0140-6736(00)74210-3
5. Hobby GL, Lenert TF. 1957. The in vitro action of antituberculous agents against multiplying and non-multiplying microbial cells. Am Rev Tuberc 76:1031–1048. [PubMed]
6. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. 2011. The challenge of new drug discovery for tuberculosis. Nature 469:483–490. http://dx.doi.org/10.1038/nature09657 [PubMed]
7. McCune RM, Feldmann FM, Lambert HP, McDermott W. 1966. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 123:445–468. http://dx.doi.org/10.1084/jem.123.3.445 [PubMed]
8. Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL. 1999. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67:4531–4538. [PubMed]
9. Pai SR, Actor JK, Sepulveda E, Hunter RL Jr, Jagannath C. 2000. Identification of viable and non-viable Mycobacterium tuberculosis in mouse organs by directed RT-PCR for antigen 85B mRNA. Microb Pathog 28:335–342. http://dx.doi.org/10.1006/mpat.2000.0353
10. Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR. 2010. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am J Respir Crit Care Med 181:174–180. http://dx.doi.org/10.1164/rccm.200905-0661OC
11. Chengalroyen MD, Beukes GM, Gordhan BG, Streicher EM, Churchyard G, Hafner R, Warren R, Otwombe K, Martinson N, Kana BD. 2016. Detection and quantification of differentially culturable tubercle bacteria in sputum from tuberculosis patients. Am J Respir Crit Care Med [Epub ahead of print]. http://dx.doi.org/10.1164/rccm.201604-0769OC
12. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731. http://dx.doi.org/10.1046/j.1365-2958.2002.02779.x
13. Brooks JV, Furney SK, Orme IM. 1999. Metronidazole therapy in mice infected with tuberculosis. Antimicrob Agents Chemother 43:1285–1288. PMCID: PMC89261 [PubMed]
14. Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, Lee M, Lee J, Via LE, Lee S, Eum SY, Lee SJ, Goldfeder LC, Cai Y, Jin B, Kim Y, Oh T, Chen RY, Dodd LE, Gu W, Dartois V, Park SK, Kim CT, Barry CE III, Cho SN. 2013. Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother 57:3903–3909. http://dx.doi.org/10.1128/AAC.00753-13
15. Hoff DR, Caraway ML, Brooks EJ, Driver ER, Ryan GJ, Peloquin CA, Orme IM, Basaraba RJ, Lenaerts AJ. 2008. Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:4137–4140. http://dx.doi.org/10.1128/AAC.00196-08
16. Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, Klein E, Barry CE III, Flynn JL. 2012. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci USA 109:14188–14193. http://dx.doi.org/10.1073/pnas.1121497109
17. Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE III. 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2333–2340. http://dx.doi.org/10.1128/IAI.01515-07
18. Wayne LG. 1994. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13:908–914. http://dx.doi.org/10.1007/BF02111491 [PubMed]
19. Wayne LG, Sramek HA. 1994. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38:2054–2058. http://dx.doi.org/10.1128/AAC.38.9.2054
20. Boshoff HI, Barry CE III. 2005. Tuberculosis: metabolism and respiration in the absence of growth. Nat Rev Microbiol 3:70–80. http://dx.doi.org/10.1038/nrmicro1065 [PubMed]
21. Cunningham-Bussel A, Zhang T, Nathan CF. 2013. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci USA 110:E4256–E4265. http://dx.doi.org/10.1073/pnas.1316894110
22. Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE III, Boshoff HI. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287. http://dx.doi.org/10.1371/journal.ppat.1002287
23. Wade MM, Zhang Y. 2004. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J Med Microbiol 53:769–773. http://dx.doi.org/10.1099/jmm.0.45639-0
24. Coates A, Hu Y, Bax R, Page C. 2002. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1:895–910. http://dx.doi.org/10.1038/nrd940 [PubMed]
25. Nathan C. 2012. Fresh approaches to anti-infective therapies. Sci Transl Med 4:140sr2. http://dx.doi.org/10.1126/scitranslmed.3003081 [PubMed]
26. Nathan C. 2015. Cooperative development of antimicrobials: looking back to look ahead. Nat Rev Microbiol 13:651–657. http://dx.doi.org/10.1038/nrmicro3523 [PubMed]
27. Nathan C, Barry CE III. 2015. TB drug development: immunology at the table. Immunol Rev 264:308–318. http://dx.doi.org/10.1111/imr.12275 [PubMed]
28. Warrier T, et al. 2015. Identification of novel anti-mycobacterial compounds by screening a pharmaceutical small-molecule library against nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 1:580–585. 10.1021/acsinfecdis.5b00025 [PubMed]
29. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, Ng SH, Tan BH, Cherian J, Duraiswamy J, Bifani P, Lim V, Lee BH, Ling Ma N, Beer D, Thayalan P, Kuhen K, Chatterjee A, Supek F, Glynne R, Zheng J, Boshoff HI, Barry CE III, Dick T, Pethe K, Camacho LR. 2012. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 7:1190–1197. http://dx.doi.org/10.1021/cb2004884 [PubMed]
30. Gold B, Roberts J, Ling Y, Quezada LL, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Warren JD, Nathan C. 2015. Rapid, semi-quantitative assay to discriminate among compounds with activity against replicating or non-replicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:6521–6538. http://dx.doi.org/10.1128/AAC.00803-15
31. Grosset JH, Tyagi S, Almeida DV, Converse PJ, Li SY, Ammerman NC, Bishai WR, Enarson D, Trébucq A. 2013. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med 188:608–612. http://dx.doi.org/10.1164/rccm.201304-0753OC [PubMed]
32. Lounis N, Gevers T, Van Den Berg J, Verhaeghe T, van Heeswijk R, Andries K. 2008. Prevention of drug carryover effects in studies assessing antimycobacterial efficacy of TMC207. J Clin Microbiol 46:2212–2215. http://dx.doi.org/10.1128/JCM.00177-08
33. Tasneen R, Williams K, Amoabeng O, Minkowski A, Mdluli KE, Upton AM, Nuermberger EL. 2015. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother 59:129–135. http://dx.doi.org/10.1128/AAC.03822-14 [PubMed]
34. de Carvalho LP, Lin G, Jiang X, Nathan C. 2009. Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J Med Chem 52:5789–5792. http://dx.doi.org/10.1021/jm9010719
35. Roostalu J, Jõers A, Luidalepp H, Kaldalu N, Tenson T. 2008. Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68. http://dx.doi.org/10.1186/1471-2180-8-68 [PubMed]
36. Orman MA, Brynildsen MP. 2013. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57:3230–3239. http://dx.doi.org/10.1128/AAC.00243-13
37. Vega NM, Allison KR, Khalil AS, Collins JJ. 2012. Signaling-mediated bacterial persister formation. Nat Chem Biol 8:431–433. http://dx.doi.org/10.1038/nchembio.915 [PubMed]
38. Dhar N, Dubée V, Ballell L, Cuinet G, Hugonnet JE, Signorino-Gelo F, Barros D, Arthur M, McKinney JD. 2015. Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother 59:1308–1319. http://dx.doi.org/10.1128/AAC.03461-14 [PubMed]
39. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622–1625. http://dx.doi.org/10.1126/science.1099390 [PubMed]
40. Allison KR, Brynildsen MP, Collins JJ. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220. http://dx.doi.org/10.1038/nature10069 [PubMed]
41. Allison KR, Brynildsen MP, Collins JJ. 2011. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14:593–598. http://dx.doi.org/10.1016/j.mib.2011.09.002 [PubMed]
42. Prideaux B, Via LE, Zimmerman MD, Eum S, Sarathy J, O’Brien P, Chen C, Kaya F, Weiner DM, Chen PY, Song T, Lee M, Shim TS, Cho JS, Kim W, Cho SN, Olivier KN, Barry CE III, Dartois V. 2015. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21:1223–1227. http://dx.doi.org/10.1038/nm.3937
43. Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T. 2004. Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Tuberculosis (Edinb) 84:239–246. http://dx.doi.org/10.1016/j.tube.2003.12.006 [PubMed]
44. Voskuil MI, Visconti KC, Schoolnik GK. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 84:218–227. http://dx.doi.org/10.1016/j.tube.2004.02.003 [PubMed]
45. Talaat AM, Howard ST, Hale W IV, Lyons R, Garner H, Johnston SA. 2002. Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. Nucleic Acids Res 30:e104. http://dx.doi.org/10.1093/nar/gnf103
46. Keren I, Minami S, Rubin E, Lewis K. 2011. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100–e00111. http://dx.doi.org/10.1128/mBio.00100-11
47. Benjak A, Uplekar S, Zhang M, Piton J, Cole ST, Sala C. 2016. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics 17:190. http://dx.doi.org/10.1186/s12864-016-2528-2
48. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713. http://dx.doi.org/10.1084/jem.20030205
49. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704. http://dx.doi.org/10.1084/jem.20030846
50. Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ. 2012. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 92:453–488. http://dx.doi.org/10.1016/j.tube.2012.07.003
51. Lakshminarayana SB, Huat TB, Ho PC, Manjunatha UH, Dartois V, Dick T, Rao SP. 2015. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother 70:857–867. http://dx.doi.org/10.1093/jac/dku457
52. Xie Z, Siddiqi N, Rubin EJ. 2005. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49:4778–4780. http://dx.doi.org/10.1128/AAC.49.11.4778-4780.2005
53. Gold B, Pingle M, Brickner SJ, Shah N, Roberts J, Rundell M, Bracken WC, Warrier T, Somersan S, Venugopal A, Darby C, Jiang X, Warren JD, Fernandez J, Ouerfelli O, Nuermberger EL, Cunningham-Bussel A, Rath P, Chidawanyika T, Deng H, Realubit R, Glickman JF, Nathan CF. 2012. Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials. Proc Natl Acad Sci USA 109:16004–16011. http://dx.doi.org/10.1073/pnas.1214188109
54. Grant SS, Kawate T, Nag PP, Silvis MR, Gordon K, Stanley SA, Kazyanskaya E, Nietupski R, Golas A, Fitzgerald M, Cho S, Franzblau SG, Hung DT. 2013. Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem Biol 8:2224–2234. http://dx.doi.org/10.1021/cb4004817
55. Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. 2012. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci USA 109:12147–12152. http://dx.doi.org/10.1073/pnas.1203735109 [PubMed]
56. Tuomanen E. 1986. Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria. Rev Infect Dis 8(Suppl 3):S279–S291. http://dx.doi.org/10.1093/clinids/8.Supplement_3.S279 [PubMed]
57. Torrey HL, Keren I, Via LE, Lee JS, Lewis K. 2016. High persister mutants in Mycobacterium tuberculosis. PLoS One 11:e0155127. http://dx.doi.org/10.1371/journal.pone.0155127 [PubMed]
58. Pattyn SR, Dockx P, Rollier MT, Rollier R, Saerens EJ. 1976. Mycobacterium leprae persisters after treatment with dapsone and rifampicin. Int J Lepr Other Mycobact Dis 44:154–158. [PubMed]
59. Mulcahy LR, Burns JL, Lory S, Lewis K. 2010. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199. http://dx.doi.org/10.1128/JB.01651-09 [PubMed]
60. Lafleur MD, Qi Q, Lewis K. 2010. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44. http://dx.doi.org/10.1128/AAC.00860-09 [PubMed]
61. Schumacher MA, Balani P, Min J, Chinnam NB, Hansen S, Vulić M, Lewis K, Brennan RG. 2015. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524:59–64. http://dx.doi.org/10.1038/nature14662 [PubMed]
62. Ahmad Z, Klinkenberg LG, Pinn ML, Fraig MM, Peloquin CA, Bishai WR, Nuermberger EL, Grosset JH, Karakousis PC. 2009. Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig. J Infect Dis 200:1136–1143. http://dx.doi.org/10.1086/605605
63. Ahmad Z, Pinn ML, Nuermberger EL, Peloquin CA, Grosset JH, Karakousis PC. 2010. The potent bactericidal activity of streptomycin in the guinea pig model of tuberculosis ceases due to the presence of persisters. J Antimicrob Chemother 65:2172–2175. http://dx.doi.org/10.1093/jac/dkq277 [PubMed]
64. Driver ER, Ryan GJ, Hoff DR, Irwin SM, Basaraba RJ, Kramnik I, Lenaerts AJ. 2012. Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:3181–3195. http://dx.doi.org/10.1128/AAC.00217-12
65. Singh R, Barry CE III, Boshoff HI. 2010. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 192:1279–1291. http://dx.doi.org/10.1128/JB.01285-09 [PubMed]
66. Nandakumar M, Nathan C, Rhee KY. 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun 5:4306. http://dx.doi.org/10.1038/ncomms5306 [PubMed]
67. Wiuff C, Zappala RM, Regoes RR, Garner KN, Baquero F, Levin BR. 2005. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother 49:1483–1494. http://dx.doi.org/10.1128/AAC.49.4.1483-1494.2005
68. Kim JS, Heo P, Yang TJ, Lee KS, Cho DH, Kim BT, Suh JH, Lim HJ, Shin D, Kim SK, Kweon DH. 2011. Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 55:5380–5383. http://dx.doi.org/10.1128/AAC.00708-11 [PubMed]
69. Black DS, Irwin B, Moyed HS. 1994. Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 176:4081–4091. [PubMed]
70. Black DS, Kelly AJ, Mardis MJ, Moyed HS. 1991. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 173:5732–5739. http://dx.doi.org/10.1128/jb.173.18.5732-5739.1991 [PubMed]
71. Moyed HS, Bertrand KP. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–775. [PubMed]
72. Moyed HS, Broderick SH. 1986. Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 166:399–403. http://dx.doi.org/10.1128/jb.166.2.399-403.1986
73. Slattery A, Victorsen AH, Brown A, Hillman K, Phillips GJ. 2013. Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. J Bacteriol 195:647–657. http://dx.doi.org/10.1128/JB.01397-12
74. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–548. http://dx.doi.org/10.1016/j.cell.2014.02.050 [PubMed][CrossRef]
75. Lewis K. 2012. Persister cells: molecular mechanisms related to antibiotic tolerance. Handbook Exp Pharmacol 211:121–133. http://dx.doi.org/10.1007/978-3-642-28951-4_8 [PubMed]
76. Lewis K. 2010. Persister cells. Annu Rev Microbiol 64:357–372. http://dx.doi.org/10.1146/annurev.micro.112408.134306
77. Lewis K. 2008. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131. http://dx.doi.org/10.1007/978-3-540-75418-3_6
78. Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56. http://dx.doi.org/10.1038/nrmicro1557 [PubMed]
79. Conlon BP, Rowe SE, Lewis K. 2015. Persister cells in biofilm associated infections. Adv Exp Med Biol 831:1–9. http://dx.doi.org/10.1007/978-3-319-09782-4_1 [PubMed]
80. Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M, Fortune SM. 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–104. http://dx.doi.org/10.1126/science.1216166
81. Vaubourgeix J, Lin G, Dhar N, Chenouard N, Jiang X, Botella H, Lupoli T, Mariani O, Yang G, Ouerfelli O, Unser M, Schnappinger D, McKinney J, Nathan C. 2015. Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. Cell Host Microbe 17:178–190. http://dx.doi.org/10.1016/j.chom.2014.12.008
82. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180. http://dx.doi.org/10.1128/JB.186.24.8172-8180.2004 [PubMed]
83. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. 2011. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 108:13206–13211. http://dx.doi.org/10.1073/pnas.1100186108 [PubMed]
84. Sala A, Bordes P, Genevaux P. 2014. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 6:1002–1020. http://dx.doi.org/10.3390/toxins6031002 [PubMed]
85. Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, Jain N, Pan M, Deighan P, Rubin EJ. 2014. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci USA 111:1132–1137. http://dx.doi.org/10.1073/pnas.1317580111
86. Su HW, Zhu JH, Li H, Cai RJ, Ealand C, Wang X, et al. 2016. The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat Microbiol 1:16147. doi:10.1038/nmicrobiol.2016.147. PMID: 27564922. [PubMed]
87. Dhar N, McKinney JD. 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107:12275–12280. http://dx.doi.org/10.1073/pnas.1003219107
88. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 2006. Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309. http://dx.doi.org/10.1371/journal.pbio.0040309 [PubMed]
89. Maamar H, Raj A, Dubnau D. 2007. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317:526–529. http://dx.doi.org/10.1126/science.1140818 [PubMed]
90. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95. http://dx.doi.org/10.1126/science.1229858 [PubMed]
91. Debbia EA, Roveta S, Schito AM, Gualco L, Marchese A. 2001. Antibiotic persistence: the role of spontaneous DNA repair response. Microb Drug Res 7:335–342. doi:10.1089/10766290152773347. PMID: 11822773. [PubMed]
92. Theodore A, Lewis K, Vulic M. 2013. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics 195:1265–1276. http://dx.doi.org/10.1534/genetics.113.152306
93. Dörr T, Lewis K, Vulić M. 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760. http://dx.doi.org/10.1371/journal.pgen.1000760 [PubMed]
94. Gold B, Warrier T, Nathan C. 2015. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. In Parish T, Roberts D (ed), Mycobacteria Protocols. Methods Mol Biol 1285:293–315. http://dx.doi.org/10.1007/978-1-4939-2450-9_18
95. Wayne LG, Hayes LG. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069. [PubMed]
96. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG. 2007. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1380–1385. http://dx.doi.org/10.1128/AAC.00055-06
97. Schnappinger D, Schoolnik GK, Ehrt S. 2006. Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another. Microbes Infect 8:1132–1140. https://www.ncbi.nlm.nih.gov/pubmed/16517202 [PubMed]
98. Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, Blanot D, Gutmann L, Mainardi JL. 2008. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol 190:4360–4366. http://dx.doi.org/10.1128/JB.00239-08
99. Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HI, Barry CE III. 2012. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 86:367–381. http://dx.doi.org/10.1111/j.1365-2958.2012.08199.x [PubMed]
100. Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C. 2008. Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3:137–145. http://dx.doi.org/10.1016/j.chom.2008.02.003
101. Darby CM, Nathan CF. 2010. Killing of non-replicating Mycobacterium tuberculosis by 8-hydroxyquinoline. J Antimicrob Chemother 65:1424–1427. http://dx.doi.org/10.1093/jac/dkq145 [PubMed]
102. Wang F, Sambandan D, Halder R, Wang J, Batt SM, Weinrick B, Ahmad I, Yang P, Zhang Y, Kim J, Hassani M, Huszar S, Trefzer C, Ma Z, Kaneko T, Mdluli KE, Franzblau S, Chatterjee AK, Johnsson K, Mikusova K, Besra GS, Fütterer K, Robbins SH, Barnes SW, Walker JR, Jacobs WR Jr, Schultz PG. 2013. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci USA 110:E2510–E2517. http://dx.doi.org/10.1073/pnas.1309171110
103. Zhang M, Sala C, Dhar N, Vocat A, Sambandamurthy VK, Sharma S, Marriner G, Balasubramanian V, Cole ST. 2014. In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:3217–3223. http://dx.doi.org/10.1128/AAC.02410-14 [PubMed]
104. Zhang M, Sala C, Hartkoorn RC, Dhar N, Mendoza-Losana A, Cole ST. 2012. Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis. Antimicrob Agents Chemother 56:5782–5789. http://dx.doi.org/10.1128/AAC.01125-12
105. Bassett IM, Lun S, Bishai WR, Guo H, Kirman JR, Altaf M, O’Toole RF. 2013. Detection of inhibitors of phenotypically drug-tolerant Mycobacterium tuberculosis using an in vitro bactericidal screen. J Microbiol 51:651–658. http://dx.doi.org/10.1007/s12275-013-3099-4
106. Lin G, Li D, de Carvalho LP, Deng H, Tao H, Vogt G, et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461(7264):621–626. doi:10.1038/nature08357
107. Brunner K, Maric S, Reshma RS, Almqvist H, Seashore-Ludlow B, Gustavsson AL, Poyraz Ö, Yogeeswari P, Lundbäck T, Vallin M, Sriram D, Schnell R, Schneider G. 2016. Inhibitors of the cysteine synthase CysM with antibacterial potency against dormant Mycobacterium tuberculosis. J Med Chem 59:6848–6859. http://dx.doi.org/10.1021/acs.jmedchem.6b00674
108. Chopra S, Matsuyama K, Tran T, Malerich JP, Wan B, Franzblau SG, Lun S, Guo H, Maiga MC, Bishai WR, Madrid PB. 2012. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J Antimicrob Chemother 67:415–421. http://dx.doi.org/10.1093/jac/dkr449
109. Dasgupta N, Kapur V, Singh KK, Das TK, Sachdeva S, Jyothisri K, Tyagi JS. 2000. Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis 80:141–159. http://dx.doi.org/10.1054/tuld.2000.0240 [PubMed]
110. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, Kurosu M. 2012. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 55:3739–3755. http://dx.doi.org/10.1021/jm201608g
111. Samala G, Devi PB, Saxena S, Meda N, Yogeeswari P, Sriram D. 2016. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Med Chem 24:1298–1307. http://dx.doi.org/10.1016/j.bmc.2016.01.059
112. Shirude PS, Madhavapeddi P, Tucker JA, Murugan K, Patil V, Basavarajappa H, Raichurkar AV, Humnabadkar V, Hussein S, Sharma S, Ramya VK, Narayan CB, Balganesh TS, Sambandamurthy VK. 2013. Aminopyrazinamides: novel and specific GyrB inhibitors that kill replicating and nonreplicating Mycobacterium tuberculosis. ACS Chem Biol 8:519–523. http://dx.doi.org/10.1021/cb300510w
113. Sridevi JP, Suryadevara P, Janupally R, Sridhar J, Soni V, Anantaraju HS, et al. 2015. Identification of potential Mycobacterium tuberculosis topoisomerase I inhibitors: a study against active, dormant and resistant tuberculosis. Eur J Pharm Sci 72:81–92. doi:10.1016/j.ejps.2015.02.017. PMID: 25769524. [PubMed]
114. Olaleye O, Raghunand TR, Bhat S, Chong C, Gu P, Zhou J, Zhang Y, Bishai WR, Liu JO. 2011. Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 91(Suppl 1):S61–S65. http://dx.doi.org/10.1016/j.tube.2011.10.012
115. Olaleye O, Raghunand TR, Bhat S, He J, Tyagi S, Lamichhane G, Gu P, Zhou J, Zhang Y, Grosset J, Bishai WR, Liu JO. 2010. Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets. Chem Biol 17:86–97. http://dx.doi.org/10.1016/j.chembiol.2009.12.014
116. Chakraborty S, Gruber T, Barry CE III, Boshoff HI, Rhee KY. 2013. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339:88–91. http://dx.doi.org/10.1126/science.1228980 [PubMed]
117. Chakraborty S, Rhee KY. 2015. Tuberculosis drug development: history and evolution of the mechanism-based paradigm. Cold Spring Harb Perspect Med 5:a021147. http://dx.doi.org/10.1101/cshperspect.a021147
118. Vocat A, Hartkoorn RC, Lechartier B, Zhang M, Dhar N, Cole ST, Sala C. 2015. Bioluminescence for assessing drug potency against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:4012–4019. http://dx.doi.org/10.1128/AAC.00528-15
119. Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M, Zhao N, Burns K, Liu G, Ehrt S, Warren JD, Andersen OS, Brickner SJ, Nathan C. 2013. Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis. PLoS One 8:e68942. http://dx.doi.org/10.1371/journal.pone.0068942
120. Brook I. 1989. Inoculum effect. Rev Infect Dis 11:361–368. http://dx.doi.org/10.1093/clinids/11.3.361 [PubMed]
121. Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry CE III. 2003. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA 100:10026–10031. http://dx.doi.org/10.1073/pnas.1631248100
122. Zhao N, Darby CM, Small J, Bachovchin DA, Jiang X, Burns-Huang KE, Botella H, Ehrt S, Boger DL, Anderson ED, Cravatt BF, Speers AE, Fernandez-Vega V, Hodder PS, Eberhart C, Rosen H, Spicer TP, Nathan CF. 2015. Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis. ACS Chem Biol 10:364–371. http://dx.doi.org/10.1021/cb500746z
123. Vandal OH, Nathan CF, Ehrt S. 2009. Acid resistance in Mycobacterium tuberculosis. J Bacteriol 191:4714–4721. doi:JB.00305-09. [PubMed]
124. Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S. 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14:849–854. doi:nm.1795 [pii] 10.1038/nm.1795. [PubMed]
125. Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehrt S. 2009. Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 191:625–631. doi:10.1128/JB.00932-08
126. Miesenböck G, De Angelis DA, Rothman JE. 1998. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195. http://dx.doi.org/10.1038/28190
127. Ackart DF, Hascall-Dove L, Caceres SM, Kirk NM, Podell BK, Melander C, Orme IM, Leid JG, Nick JA, Basaraba RJ. 2014. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog Dis 70:359–369. http://dx.doi.org/10.1111/2049-632X.12144
128. Recht J, Kolter R. 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:57185724. doi:10.1128/JB.183.19.5718-5724.2001.
129. Recht J, Martínez A, Torello S, Kolter R. 2000. Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 182:4348–4351. http://dx.doi.org/10.1128/JB.182.15.4348-4351.2000 [PubMed]
130. Piccaro G, Giannoni F, Filippini P, Mustazzolu A, Fattorini L. 2013. Activities of drug combinations against Mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions. Antimicrob Agents Chemother 57:1428–1433. http://dx.doi.org/10.1128/AAC.02154-12
131. Sala C, Dhar N, Hartkoorn RC, Zhang M, Ha YH, Schneider P, Cole ST. 2010. Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 54:4150–4158. http://dx.doi.org/10.1128/AAC.00821-10
132. Hartkoorn RC, Ryabova OB, Chiarelli LR, Riccardi G, Makarov V, Cole ST. 2014. Mechanism of action of 5-nitrothiophenes against Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2944–2947. http://dx.doi.org/10.1128/AAC.02693-13
133. Zheng P, Somersan-Karakaya S, Lu S, Roberts J, Pingle M, Warrier T, Little D, Guo X, Brickner SJ, Nathan CF, Gold B, Liu G. 2014. Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 57:3755–3772. http://dx.doi.org/10.1021/jm4019228
134. Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE. 2009. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4:e6077. http://dx.doi.org/10.1371/journal.pone.0006077
135. Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, Hwa T. 2013. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 342:1237435. http://dx.doi.org/10.1126/science.1237435
136. Salina EG, Waddell SJ, Hoffmann N, Rosenkrands I, Butcher PD, Kaprelyants AS. 2014. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biol 4:140106. http://dx.doi.org/10.1098/rsob.140106
137. Ignatov DV, Salina EG, Fursov MV, Skvortsov TA, Azhikina TL, Kaprelyants AS. 2015. Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA. BMC Genomics 16:954. http://dx.doi.org/10.1186/s12864-015-2197-6
138. Kazius J, McGuire R, Bursi R. 2005. Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48:312–320. http://dx.doi.org/10.1021/jm040835a
139. Baell JB. 2010. Observations on screening-based research and some concerning trends in the literature. Future Med Chem 2:1529–1546. http://dx.doi.org/10.4155/fmc.10.237
140. Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, et al. 2008. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4:609–616. doi:nchembio.109 [pii] 10.1038/nchembio.109. [PubMed]
141. Kozikowski BA, Burt TM, Tirey DA, Williams LE, Kuzmak BR, Stanton DT, Morand KL, Nelson SL. 2003. The effect of freeze/thaw cycles on the stability of compounds in DMSO. J Biomol Screen 8:210–215. http://dx.doi.org/10.1177/1087057103252618 [PubMed]
142. Baillargeon P, Scampavia L, Einsteder R, Hodder P. 2011. Monitoring of HTS compound library quality via a high-resolution image acquisition and processing instrument. J Lab Autom 16:197–203. http://dx.doi.org/10.1016/j.jala.2011.02.004 [PubMed]
143. Di L, Kerns EH. 2006. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov Today 11:446–451. http://dx.doi.org/10.1016/j.drudis.2006.03.004
144. Ekins S, Kaneko T, Lipinski CA, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, Ernst S, Yang J, Goncharoff N, Hohman MM, Bunin BA. 2010. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol Biosyst 6:2316–2324. http://dx.doi.org/10.1039/c0mb00104j
145. Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher LA, Porubsky P, Rogers S, Schoenen FJ, Nathan C, Aubé J. 2016. Novel cephalosporins selectively active on non-replicating Mycobacterium tuberculosis. J Med Chem 59:6027–6044. http://dx.doi.org/10.1021/acs.jmedchem.5b01833
146. Williams K, Minkowski A, Amoabeng O, Peloquin CA, Taylor D, Andries K, Wallis RS, Mdluli KE, Nuermberger EL. 2012. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 56:3114–3120. http://dx.doi.org/10.1128/AAC.00384-12
147. Ibrahim M, Truffot-Pernot C, Andries K, Jarlier V, Veziris N. 2009. Sterilizing activity of R207910 (TMC207)-containing regimens in the murine model of tuberculosis. Am J Respir Crit Care Med 180:553–557. http://dx.doi.org/10.1164/rccm.200807-1152OC
148. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Mc Neeley DF. 2009. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360:2397–2405. http://dx.doi.org/10.1056/NEJMoa0808427
149. Hohman M, Gregory K, Chibale K, Smith PJ, Ekins S, Bunin B. 2009. Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. Drug Discov Today 14:261–270. http://dx.doi.org/10.1016/j.drudis.2008.11.015
150. Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Göhlmann HW, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K. 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283:25273–25280. http://dx.doi.org/10.1074/jbc.M803899200 [PubMed]
151. Heifets LB, Cynamon MH. 1991. Drug Susceptibility in the Chemotherapy of Mycobacterial Infections. CRC Press, Boca Raton, FL.
152. Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H. 2005. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082–1087. http://dx.doi.org/10.1038/nm1306 [PubMed]
153. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. 2013. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. http://dx.doi.org/10.1038/nature12790
154. Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C. 2005. Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57:859–868. http://dx.doi.org/10.1111/j.1365-2958.2005.04741.x
155. Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295:1073–1077. http://dx.doi.org/10.1126/science.1067798
156. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C. 2001. Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194:1123–1140. http://dx.doi.org/10.1084/jem.194.8.1123
157. Rao SP, Alonso S, Rand L, Dick T, Pethe K. 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 105:11945–11950. http://dx.doi.org/10.1073/pnas.0711697105
158. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE III. 2008. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395. http://dx.doi.org/10.1126/science.1164571 [PubMed]
159. Khan SR, Singh S, Roy KK, Akhtar MS, Saxena AK, Krishnan MY. 2013. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Int J Antimicrob Agents 41:41–46. http://dx.doi.org/10.1016/j.ijantimicag.2012.09.012
160. Herbert D, Paramasivan CN, Venkatesan P, Kubendiran G, Prabhakar R, Mitchison DA. 1996. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother 40:2296–2299. [PubMed]
161. Hu Y, Coates AR, Mitchison DA. 2003. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:653–657. http://dx.doi.org/10.1128/AAC.47.2.653-657.2003 [PubMed]
162. Hu Y, Coates A. 2012. Nonmultiplying bacteria are profoundly tolerant to antibiotics. Handbook Exp Pharmacol 211:99–119. http://dx.doi.org/10.1007/978-3-642-28951-4_7 [PubMed]
163. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227. http://dx.doi.org/10.1126/science.1106753 [PubMed]
164. Gengenbacher M, Rao SP, Pethe K, Dick T. 2010. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156:81–87. http://dx.doi.org/10.1099/mic.0.033084-0
165. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM, Spigelman MK. 2012. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380:986–993. http://dx.doi.org/10.1016/S0140-6736(12)61080-0
166. Zhang Y. 2005. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564. http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120 [PubMed]
167. Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, Ng SH, Lee BH, Camacho L, Schnappinger D, Ehrt S, Dick T, Pethe K, Alonso S. 2010. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 5:e13356. http://dx.doi.org/10.1371/journal.pone.0013356
168. Eoh H, Rhee KY. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:6554–6559. http://dx.doi.org/10.1073/pnas.1219375110
169. Huang Q, Chen ZF, Li YY, Zhang Y, Ren Y, Fu Z, Xu SQ. 2007. Nutrient-starved incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. Chemotherapy 53:338–343. http://dx.doi.org/10.1159/000107723 [PubMed]
170. Zimhony O, Vilchèze C, Arai M, Welch JT, Jacobs WR Jr. 2007. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob Agents Chemother 51:752–754. http://dx.doi.org/10.1128/AAC.01369-06
171. Zimhony O, Cox JS, Welch JT, Vilchèze C, Jacobs WR Jr. 2000. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6:1043–1047. http://dx.doi.org/10.1038/79558 [PubMed]
172. Boshoff HI, Mizrahi V, Barry CE III. 2002. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J Bacteriol 184:2167–2172. http://dx.doi.org/10.1128/JB.184.8.2167-2172.2002
173. Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE III, Wang H, Zhang W, Zhang Y. 2011. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632. http://dx.doi.org/10.1126/science.1208813 [PubMed]
174. Shi W, Chen J, Feng J, Cui P, Zhang S, Weng X, Zhang W, Zhang Y. 2014. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect 3:e58. http://dx.doi.org/10.1038/emi.2014.61
175. Dillon NA, Peterson ND, Rosen BC, Baughn AD. 2014. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob Agents Chemother 58:7258–7263. http://dx.doi.org/10.1128/AAC.04028-14 [PubMed]
176. Sarathy J, Dartois V, Dick T, Gengenbacher M. 2013. Reduced drug uptake in phenotypically resistant nutrient-starved nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:1648–1653. http://dx.doi.org/10.1128/AAC.02202-12
177. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. 2007. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. http://dx.doi.org/10.1038/nrd2201
178. Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF. 2005. S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102:467–472. http://dx.doi.org/10.1073/pnas.0406133102
179. Vilchèze C, Baughn AD, Tufariello J, Leung LW, Kuo M, Basler CF, Alland D, Sacchettini JC, Freundlich JS, Jacobs WR Jr. 2011. Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob Agents Chemother 55:3889–3898. http://dx.doi.org/10.1128/AAC.00266-11
180. Martínez-Hoyos M, Perez-Herran E, Gulten G, Encinas L, Álvarez-Gómez D, Alvarez E, Ferrer-Bazaga S, García-Pérez A, Ortega F, Angulo-Barturen I, Rullas-Trincado J, Blanco Ruano D, Torres P, Castañeda P, Huss S, Fernández Menéndez R, González Del Valle S, Ballell L, Barros D, Modha S, Dhar N, Signorino-Gelo F, McKinney JD, García-Bustos JF, Lavandera JL, Sacchettini JC, Jimenez MS, Martín-Casabona N, Castro-Pichel J, Mendoza-Losana A. 2016. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine 8:291–301. http://dx.doi.org/10.1016/j.ebiom.2016.05.006
181. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR. 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966. http://dx.doi.org/10.1038/35016103
182. Manjunatha U, Boshoff HI, Barry CE. 2009. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2:215–218. http://dx.doi.org/10.4161/cib.2.3.7926 [PubMed]
183. Machaba KE, Cele FN, Mhlongo NN, Soliman ME. 2016. Sliding clamp of DNA polymerase III as a drug target for TB therapy: comprehensive conformational and binding analysis from molecular dynamic simulations. Cell Biochem Biophys [Epub ahead of print]. http://dx.doi.org/10.1007/s12013-016-0764-3
184. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, Zaburannyi N, Herrmann J, Wenzel SC, König C, Ammerman NC, Barrio MB, Borchers K, Bordon-Pallier F, Brönstrup M, Courtemanche G, Gerlitz M, Geslin M, Hammann P, Heinz DW, Hoffmann H, Klieber S, Kohlmann M, Kurz M, Lair C, Matter H, Nuermberger E, Tyagi S, Fraisse L, Grosset JH, Lagrange S, Müller R. 2015. Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348:1106–1112. http://dx.doi.org/10.1126/science.aaa4690
185. Herrmann J, Lukežič T, Kling A, Baumann S, Hüttel S, Petković H, Müller R. 2016. Strategies for the discovery and development of new antibiotics from natural products: three case studies. Curr Top Microbiol Immunol [Epub ahead of print] http://dx.doi.org/10.1007/82_2016_498
186. Higgins PG, Fluit AC, Schmitz FJ. 2003. Fluoroquinolones: structure and target sites. Curr Drug Targets 4:181–190. http://dx.doi.org/10.2174/1389450033346920
187. Hu YM, Butcher PD, Sole K, Mitchison DA, Coates AR. 1998. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett 158:139–145. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12813.x [PubMed]
188. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R, Das S, Madhura DB, Rathi C, Trivedi A, Villellas C, Lee RB, Rakesh, Waidyarachchi SL, Sun D, McNeil MR, Ainsa JA, Boshoff HI, Gonzalez-Juarrero M, Meibohm B, Böttger EC, Lenaerts AJ. 2014. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20:152–158. http://dx.doi.org/10.1038/nm.3458
189. Jarlier V, Nikaido H. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172:1418–1423. http://dx.doi.org/10.1128/jb.172.3.1418-1423.1990 [PubMed]
190. Kasik JE. 1965. The nature of mycobacterial penicillinase. Am Rev Respir Dis 91:117–119. http://dx.doi.org/10.1164/arrd.1965.91.1.117
191. Jarlier V, Gutmann L, Nikaido H. 1991. Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother 35:1937–1939. http://dx.doi.org/10.1128/AAC.35.9.1937
192. Finch R. 1986. Beta-lactam antibiotics and mycobacteria. J Antimicrob Chemother 18:6–8. http://dx.doi.org/10.1093/jac/18.1.6
193. Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE III, Blanchard JS. 2009. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323:1215–1218. http://dx.doi.org/10.1126/science.1167498 [PubMed]
194. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. 1986. The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132:1297–1304 10.1099/00221287-132-5-1297. [PubMed]
195. Schoonmaker MK, Bishai WR, Lamichhane G. 2014. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to β-lactams. J Bacteriol 196:1394–1402. http://dx.doi.org/10.1128/JB.01396-13
196. Vollmer W, Höltje JV. 2004. The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J Bacteriol 186:5978–5987. http://dx.doi.org/10.1128/JB.186.18.5978-5987.2004
197. Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR, Lamichhane G. 2010. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 16:466–469. http://dx.doi.org/10.1038/nm.2120
198. Diacon AH, van der Merwe L, Barnard M, von Groote-Bidlingmaier F, Lange C, García-Basteiro AL, Sevene E, Ballell L, Barros-Aguirre D. 2016. β-Lactams against tuberculosis—new trick for an old dog? N Engl J Med 375:393–394. doi:10.1056/NEJMc1513236.
199. Solapure S, Dinesh N, Shandil R, Ramachandran V, Sharma S, Bhattacharjee D, Ganguly S, Reddy J, Ahuja V, Panduga V, Parab M, Vishwas KG, Kumar N, Balganesh M, Balasubramanian V. 2013. In vitro and in vivo efficacy of β-lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:2506–2510. http://dx.doi.org/10.1128/AAC.00023-13
200. Borrelli S, Zandberg WF, Mohan S, Ko M, Martinez-Gutierrez F, Partha SK, Sanders DA, Av-Gay Y, Pinto BM. 2010. Antimycobacterial activity of UDP-galactopyranose mutase inhibitors. Int J Antimicrob Agents 36:364–368. http://dx.doi.org/10.1016/j.ijantimicag.2010.06.030
201. Engohang-Ndong J. 2012. Antimycobacterial drugs currently in Phase II clinical trials and preclinical phase for tuberculosis treatment. Expert Opin Investig Drugs 21:1789–1800. http://dx.doi.org/10.1517/13543784.2012.724397
202. Siricilla S, Mitachi K, Wan B, Franzblau SG, Kurosu M. 2015. Discovery of a capuramycin analog that kills nonreplicating Mycobacterium tuberculosis and its synergistic effects with translocase I inhibitors. J Antibiot (Tokyo) 68:271–278. http://dx.doi.org/10.1038/ja.2014.133
203. Ishizaki Y, Hayashi C, Inoue K, Igarashi M, Takahashi Y, Pujari V, Crick DC, Brennan PJ, Nomoto A. 2013. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem 288:30309–30319. http://dx.doi.org/10.1074/jbc.M113.492173
204. Singh S, Roy KK, Khan SR, Kashyap VK, Sharma A, Jaiswal S, Sharma SK, Krishnan MY, Chaturvedi V, Lal J, Sinha S, Dasgupta A, Srivastava R, Saxena AK. 2015. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg Med Chem 23:742–752. http://dx.doi.org/10.1016/j.bmc.2014.12.060
205. Danelishvili L, Wu M, Young LS, Bermudez LE. 2005. Genomic approach to identifying the putative target of and mechanisms of resistance to mefloquine in mycobacteria. Antimicrob Agents Chemother 49:3707–3714. http://dx.doi.org/10.1128/AAC.49.9.3707-3714.2005
206. Martín-Galiano AJ, Gorgojo B, Kunin CM, de la Campa AG. 2002. Mefloquine and new related compounds target the F(0) complex of the F(0)F(1) H(+)-ATPase of Streptococcus pneumoniae. Antimicrob Agents Chemother 46:1680–1687. http://dx.doi.org/10.1128/AAC.46.6.1680-1687.2002
207. Hongmanee P, Rukseree K, Buabut B, Somsri B, Palittapongarnpim P. 2007. In vitro activities of cloxyquin (5-chloroquinolin-8-ol) against Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1105–1106. http://dx.doi.org/10.1128/AAC.01310-06
208. Tison F. 1952. [The remarkable effect of a combination of iodochloroxyquinoline with a subactive dose of streptomycin on experimental tuberculosis in guinea pigs]. Ann Inst Pasteur (Paris) 83:275–276.
209. Shah S, Dalecki AG, Malalasekera AP, Crawford CL, Michalek SM, Kutsch O, Sun J, Bossmann SH, Wolschendorf F. 2016. 8-Hydroxyquinolines are boosting-agents of copper related toxicity in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60:5765–5776. http://dx.doi.org/10.1128/AAC.00325-16
210. Mao J, Wang Y, Wan B, Kozikowski AP, Franzblau SG. 2007. Design, synthesis, and pharmacological evaluation of mefloquine-based ligands as novel antituberculosis agents. ChemMedChem 2:1624–1630. http://dx.doi.org/10.1002/cmdc.200700112
211. Mao J, Yuan H, Wang Y, Wan B, Pieroni M, Huang Q, van Breemen RB, Kozikowski AP, Franzblau SG. 2009. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters. J Med Chem 52:6966–6978. http://dx.doi.org/10.1021/jm900340a
212. Jayaprakash S, Iso Y, Wan B, Franzblau SG, Kozikowski AP. 2006. Design, synthesis, and SAR studies of mefloquine-based ligands as potential antituberculosis agents. ChemMedChem 1:593–597. http://dx.doi.org/10.1002/cmdc.200600010 [PubMed]
213. Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. 2009. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 52:2109–2118. http://dx.doi.org/10.1021/jm900003c
214. Lilienkampf A, Pieroni M, Wan B, Wang Y, Franzblau SG, Kozikowski AP. 2010. Rational design of 5-phenyl-3-isoxazolecarboxylic acid ethyl esters as growth inhibitors of Mycobacterium tuberculosis. a potent and selective series for further drug development. J Med Chem 53:678–688. http://dx.doi.org/10.1021/jm901273n
215. Saxena AK, Roy KK, Singh S, Vishnoi SP, Kumar A, Kashyap VK, Kremer L, Srivastava R, Srivastava BS. 2013. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. Int J Antimicrob Agents 42:27–35. http://dx.doi.org/10.1016/j.ijantimicag.2013.03.007 [PubMed]
216. Low KL, Rao PS, Shui G, Bendt AK, Pethe K, Dick T, Wenk MR. 2009. Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin. J Bacteriol 191:5037–5043. http://dx.doi.org/10.1128/JB.00530-09
217. Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966. http://dx.doi.org/10.1126/science.1091176 [PubMed]
218. Fay A, Glickman MS. 2014. An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet 10:e1004516. http://dx.doi.org/10.1371/journal.pgen.1004516 [PubMed]
219. Raju RM, Unnikrishnan M, Rubin DH, Krishnamoorthy V, Kandror O, Akopian TN, Goldberg AL, Rubin EJ. 2012. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 8:e1002511. http://dx.doi.org/10.1371/journal.ppat.1002511
220. Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, Krastel P, Noble C, Beer D, Rao SP, Au M, Niyomrattanakit P, Lim V, Zheng J, Jeffery D, Pethe K, Camacho LR. 2011. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew Chem Int Ed Engl 50:5889–5891. http://dx.doi.org/10.1002/anie.201101740
221. Lee H, Suh JW. 2016. Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J Ind Microbiol Biotechnol 43:205–212. http://dx.doi.org/10.1007/s10295-015-1709-3
222. Lear S, Munshi T, Hudson AS, Hatton C, Clardy J, Mosely JA, Bull TJ, Sit CS, Cobb SL. 2016. Total chemical synthesis of lassomycin and lassomycin-amide. Org Biomol Chem 14:4534–4541. http://dx.doi.org/10.1039/C6OB00631K [PubMed]
223. Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H, Akopian T, Mueller A, Epstein S, Goldberg A, Clardy J, Lewis K. 2014. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 21:509–518. http://dx.doi.org/10.1016/j.chembiol.2014.01.014
224. Gao W, Kim JY, Anderson JR, Akopian T, Hong S, Jin YY, Kandror O, Kim JW, Lee IA, Lee SY, McAlpine JB, Mulugeta S, Sunoqrot S, Wang Y, Yang SH, Yoon TM, Goldberg AL, Pauli GF, Suh JW, Franzblau SG, Cho S. 2015. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 59:880–889. http://dx.doi.org/10.1128/AAC.04054-14
225. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515–1520. doi:nm1683 [pii] 10.1038/nm1683. PMID: 18059281. [PubMed]
226. Gandotra S, Lebron MB, Ehrt S. 2010. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 6:e1001040. http://dx.doi.org/10.1371/journal.ppat.1001040
227. Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, Blackburn C, Gigstad K, Sintchak M, Dick L, Nathan C. 2013. N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc 135:9968–9971. http://dx.doi.org/10.1021/ja400021x
228. Russo F, Gising J, Åkerbladh L, Roos AK, Naworyta A, Mowbray SL, Sokolowski A, Henderson I, Alling T, Bailey MA, Files M, Parish T, Karlén A, Larhed M. 2015. Optimization and evaluation of 5-styryl-oxathiazol-2-one Mycobacterium tuberculosis proteasome inhibitors as potential antitubercular agents. ChemistryOpen 4:342–362. http://dx.doi.org/10.1002/open.201500001 [PubMed]
229. Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD. 2003. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100:14321–14326. http://dx.doi.org/10.1073/pnas.2436197100
230. Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M. 2011. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108:1621–1626. http://dx.doi.org/10.1073/pnas.1009261108 [PubMed]
231. MacMicking JD, Taylor GA, McKinney JD. 2003. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659. http://dx.doi.org/10.1126/science.1088063 [PubMed]
232. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248. http://dx.doi.org/10.1073/pnas.94.10.5243 [PubMed]
233. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824. http://dx.doi.org/10.1073/pnas.1000715107
234. Gomez JE, McKinney JD. 2004. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84(1-2):29–44. doi:S1472979203000866 [pii]. PMID: 14670344. [PubMed]
235. Manina G, Dhar N, McKinney JD. 2015. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17:32–46. http://dx.doi.org/10.1016/j.chom.2014.11.016
236. Munoz-Elias EJ, McKinney JD. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644. doi:nm1252 [pii] 10.1038/nm1252. PMID: 15895072. [PubMed]
237. Munoz-Elias EJ, McKinney JD. 2006. Carbon metabolism of intracellular bacteria. Cell Microbiol 8:10–22. doi:CMI648 [pii] 10.1111/j.1462-5822.2005.00648.x. PMID: 16367862. [PubMed]
238. Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, Wang F, Jacobs WR Jr. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 112:10008–10013. http://dx.doi.org/10.1073/pnas.1513033112
239. Hondalus MK, Bardarov S, Russell R, Chan J, Jacobs WR Jr, Bloom BR. 2000. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun 68:2888–2898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC97501/ [PubMed]
240. Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr. 2002. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8:1171–1174. http://dx.doi.org/10.1038/nm765
241. Rodriguez GM, Smith I. 2003. Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47:1485–1494. http://dx.doi.org/10.1046/j.1365-2958.2003.03384.x
242. Gould TA, van de Langemheen H, Munoz-Elias EJ, McKinney JD, Sacchettini JC. 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61:940–947. doi:MMI5297 [pii] 10.1111/j.1365-2958.2006.05297.x. PMID: 16879647. [PubMed]
243. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330. doi:MMI5102 [pii] 10.1111/j.1365-2958.2006.05102.x. PMID: 16573683. [PubMed]
244. Miner MD, Chang JC, Pandey AK, Sassetti CM, Sherman DR. 2009. Role of cholesterol in Mycobacterium tuberculosis infection. Indian J Exp Biol 47:407–411. [PubMed]
245. Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, Patel NH, Dembek M, Tezera L, Green J, Moores R, Aigbirhio F, Al-Nahhas A, Fryer TD, Elkington PT, Friedland JS. 2016. Hypoxia and tissue destruction in pulmonary TB. Thorax [Epub ahead of print] thoraxjnl-2015-207402. http://dx.doi.org/10.1136/thoraxjnl-2015-207402 [PubMed]
246. Sperka T, Pitlik J, Bagossi P, Tözsér J. 2005. Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg Med Chem Lett 15:3086–3090. http://dx.doi.org/10.1016/j.bmcl.2005.04.020
247. Powers JC, Asgian JL, Ekici OD, James KE. 2002. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750. http://dx.doi.org/10.1021/cr010182v
248. Paetzel M, Dalbey RE, Strynadka NC. 1998. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186–190. http://dx.doi.org/10.1038/25403
249. Baranowski C, Rubin EJ. 2016. Could killing bacterial subpopulations hit tuberculosis out of the park? J Med Chem 59:6025–6026. http://dx.doi.org/10.1021/acs.jmedchem.6b00875 [PubMed]
250. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. http://dx.doi.org/10.1126/science.284.5418.1318 [PubMed]
251. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. http://dx.doi.org/10.1038/nrmicro821
252. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174. http://dx.doi.org/10.1111/j.1365-2958.2008.06274.x [PubMed]
253. Purkayastha A, McCue LA, McDonough KA. 2002. Identification of a Mycobacterium tuberculosis putative classical nitroreductase gene whose expression is coregulated with that of the acr aene within macrophages, in standing versus shaking cultures, and under low oxygen conditions. Infect Immun 70:1518–1529. http://dx.doi.org/10.1128/IAI.70.3.1518-1529.2002
254. Williams EM, Little RF, Mowday AM, Rich MH, Chan-Hyams JV, Copp JN, Smaill JB, Patterson AV, Ackerley DF. 2015. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 471:131–153. http://dx.doi.org/10.1042/BJ20150650
255. Viodé C, Bettache N, Cenas N, Krauth-Siegel RL, Chauvière G, Bakalara N, Périé J. 1999. Enzymatic reduction studies of nitroheterocycles. Biochem Pharmacol 57:549–557. http://dx.doi.org/10.1016/S0006-2952(98)00324-4
256. McOsker CC, Fitzpatrick PM. 1994. Nitrofurantoin: mechanism of action and implications for resistance development in common uropathogens. J Antimicrob Chemother. 33(Suppl A):23–30. PMID: 7928834. [PubMed]
257. Murugasu-Oei B, Dick T. 2000. Bactericidal activity of nitrofurans against growing and dormant Mycobacterium bovis BCG. J Antimicrob Chemother 46:917–919. http://dx.doi.org/10.1093/jac/46.6.917
258. de Carvalho LP, Darby CM, Rhee KY, Nathan C. 2011. Nitazoxanide disrupts membrane potential and intrabacterial pH homeostasis of Mycobacterium tuberculosis. ACS Med Chem Lett 2:849–854. http://dx.doi.org/10.1021/ml200157f
259. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M. 2006. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466. http://dx.doi.org/10.1371/journal.pmed.0030466
260. Upton AM, Cho S, Yang TJ, Kim Y, Wang Y, Lu Y, Wang B, Xu J, Mdluli K, Ma Z, Franzblau SG. 2015. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:136–144. http://dx.doi.org/10.1128/AAC.03823-14
261. Upton AM, McKinney JD. 2007. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Microbiology 153(Pt 12):3973–3982. doi:153/12/3973 [pii] 10.1099/mic.0.2007/011726-0. PMID: 18048912. [PubMed]
262. Rakesh, Bruhn DF, Scherman MS, Woolhiser LK, Madhura DB, Maddox MM, et al. 2014. Pentacyclic nitrofurans with in vivo efficacy and activity against nonreplicating Mycobacterium tuberculosis. PLoS One 9(2):e87909. doi:10.1371/journal.pone.0087909. PMID: 24505329; Central PMCID: PMC3914891. [PubMed]
263. Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C. 1991. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J Med Chem 34:786–797. http://dx.doi.org/10.1021/jm00106a046
264. Feng X, Zhu W, Schurig-Briccio LA, Lindert S, Shoen C, Hitchings R, Li J, Wang Y, Baig N, Zhou T, Kim BK, Crick DC, Cynamon M, McCammon JA, Gennis RB, Oldfield E. 2015. Antiinfectives targeting enzymes and the proton motive force. Proc Natl Acad Sci USA 112:E7073–E7082 10.1073/pnas.1521988112.
265. Lee IY, Gruber TD, Samuels A, Yun M, Nam B, Kang M, Crowley K, Winterroth B, Boshoff HI, Barry CE III. 2013. Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorg Med Chem 21:114–126. http://dx.doi.org/10.1016/j.bmc.2012.10.056
266. Terada H. 1990. Uncouplers of oxidative phosphorylation. Environ Health Perspect 87:213–218. http://dx.doi.org/10.1289/ehp.9087213
267. Williamson RL, Metcalf RL. 1967. Salicylanilides: a new group of active uncouplers of oxidative phosphorylation. Science 158:1694–1695. http://dx.doi.org/10.1126/science.158.3809.1694
268. Moreira W, Aziz DB, Dick T. 2016. Boromycin kills mycobacterial persisters without detectable resistance. Front Microbiol 7:199. http://dx/doi.org/10.3389/fmicb.2016.00199
269. Mukherjee D, Zou H, Liu S, Beuerman R, Dick T. 2016. Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol 11:643–650. http://dx.doi.org/10.2217/fmb-2015-0015 [PubMed]
270. Tyagi S, Ammerman NC, Li SY, Adamson J, Converse PJ, Swanson RV, Almeida DV, Grosset JH. 2015. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci USA 112:869–874. http://dx.doi.org/10.1073/pnas.1416951112 [PubMed]
271. Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H. 2011. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286:10276–10287. http://dx.doi.org/10.1074/jbc.M110.200501
272. Lechartier B, Cole ST. 2015. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:4457–4463. http://dx.doi.org/10.1128/AAC.00395-15 [PubMed]
273. Advani MJ, Siddiqui I, Sharma P, Reddy H. 2012. Activity of trifluoperazine against replicating, non-replicating and drug resistant M. tuberculosis. PLoS One 7:e44245. http://dx.doi.org/10.1371/journal.pone.0044245
274. Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP, Dick JD, Townsend CA. 2000. A new class of antituberculosis agents. J Med Chem 43:3304–3314. http://dx.doi.org/10.1021/jm000149l
275. Parrish NM, Houston T, Jones PB, Townsend C, Dick JD. 2001. In vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob Agents Chemother 45:1143–1150. doi:10.1128/AAC.45.4.1143-1150.2001. PMID: 11257028; Central PMCID: PMC90437. [PubMed]
276. Parrish NM, Ko CG, Dick JD. 2009. Activity of DSA against anaerobically adapted Mycobacterium bovis BCG in vitro. Tuberculosis (Edinb) 89:325–327. http://dx.doi.org/10.1016/j.tube.2009.05.002
277. Parrish NM, Ko CG, Hughes MA, Townsend CA, Dick JD. 2004. Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J Antimicrob Chemother 54:722–729. http://dx.doi.org/10.1093/jac/dkh408
278. Pethe K, et al. 2013. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160. http://dx.doi.org/10.1038/nm.3262 [PubMed]
279. Wallace KB, Starkov AA. 2000. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–388. http://dx.doi.org/10.1146/annurev.pharmtox.40.1.353 [PubMed]
280. Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. 2016. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1. doi:10.1038/nmicrobiol.2016.51. PMID: 27398229; Central PMCID: PMC4932909. [PubMed]
281. Harbut MB, Vilchèze C, Luo X, Hensler ME, Guo H, Yang B, Chatterjee AK, Nizet V, Jacobs WR Jr, Schultz PG, Wang F. 2015. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci USA 112:4453–4458. http://dx.doi.org/10.1073/pnas.1504022112 [PubMed]
282. Lin K, O’Brien KM, Trujillo C, Wang R, Wallach JB, Schnappinger D, Ehrt S. 2016. Mycobacterium tuberculosis thioredoxin reductase is essential for thiol redox homeostasis but plays a minor role in antioxidant defense. PLoS Pathog 12:e1005675. http://dx.doi.org/10.1371/journal.ppat.1005675
283. Malhotra V, Sharma D, Ramanathan VD, Shakila H, Saini DK, Chakravorty S, Das TK, Li Q, Silver RF, Narayanan PR, Tyagi JS. 2004. Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett 231:237–245. http://dx.doi.org/10.1016/S0378-1097(04)00002-3
284. Gupta RK, Thakur TS, Desiraju GR, Tyagi JS. 2009. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J Med Chem 52:6324–6334. http://dx.doi.org/10.1021/jm900358q [PubMed]
285. Salina E, Ryabova O, Kaprelyants A, Makarov V. 2014. New 2-thiopyridines as potential candidates for killing both actively growing and dormant Mycobacterium tuberculosis cells. Antimicrob Agents Chemother 58:55–60. http://dx.doi.org/10.1128/AAC.01308-13
286. Moraski GC, Chang M, Villegas-Estrada A, Franzblau SG, Möllmann U, Miller MJ. 2010. Structure-activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur J Med Chem 45:1703–1716. http://dx.doi.org/10.1016/j.ejmech.2009.12.074
287. Villar R, Vicente E, Solano B, Pérez-Silanes S, Aldana I, Maddry JA, Lenaerts AJ, Franzblau SG, Cho SH, Monge A, Goldman RC. 2008. In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J Antimicrob Chemother 62:547–554. http://dx.doi.org/10.1093/jac/dkn214
288. Friedmann HC. 2004. From “butyribacterium” to “E. coli”: an essay on unity in biochemistry. Perspect Biol Med 47:47–66. http://dx.doi.org/10.1353/pbm.2004.0007
289. Schnappinger D. 2015. Genetic approaches to facilitate antibacterial drug development. Cold Spring Harb Perspect Med 5:a021139. http://dx.doi.org/10.1101/cshperspect.a021139
290. Kim JH, O’Brien KM, Sharma R, Boshoff HI, Rehren G, Chakraborty S, Wallach JB, Monteleone M, Wilson DJ, Aldrich CC, Barry CE III, Rhee KY, Ehrt S, Schnappinger D. 2013. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci USA 110:19095–19100. http://dx.doi.org/10.1073/pnas.1315860110 [PubMed]
291. Russell DG, Barry CE III, Flynn JL. 2010. Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856. http://dx.doi.org/10.1126/science.1184784 [PubMed]
292. Heifets L, Higgins M, Simon B. 2000. Pyrazinamide is not active against Mycobacterium tuberculosis residing in cultured human monocyte-derived macrophages. Int J Tuberc Lung Dis 4:491–495.
293. Rastogi N, Potar MC, David HL. 1988. Pyrazinamide is not effective against intracellularly growing Mycobacterium tuberculosis. Antimicrob Agents Chemother 32:287. http://dx.doi.org/10.1128/AAC.32.2.287
294. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J. 2006. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8:218–232. http://dx.doi.org/10.1111/j.1462-5822.2005.00612.x
295. Dhillon J, Allen BW, Hu YM, Coates AR, Mitchison DA. 1998. Metronidazole has no antibacterial effect in Cornell model murine tuberculosis. Int J Tuberc Lung Dis 2:736–742. [PubMed]
296. Lanoix JP, Lenaerts AJ, Nuermberger EL. 2015. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8:603–610. http://dx.doi.org/10.1242/dmm.019513 [PubMed]
297. Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, Bishai WR, Pomper MG, Nuermberger EL, Jain SK. 2012. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 205:595–602. http://dx.doi.org/10.1093/infdis/jir786
298. Desai CR, Heera S, Patel A, Babrekar AB, Mahashur AA, Kamat SR. 1989. Role of metronidazole in improving response and specific drug sensitivity in advanced pulmonary tuberculosis. J Assoc Physicians India 37:694–697. [PubMed]
299. Lardner A. 2001. The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530. [PubMed]
300. Eoh H, Rhee KY. 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 111:4976–4981. http://dx.doi.org/10.1073/pnas.1400390111 [PubMed]
301. Dartois V, Barry CE III. 2013. A medicinal chemists’ guide to the unique difficulties of lead optimization for tuberculosis. Bioorg Med Chem Lett 23:4741–4750. http://dx.doi.org/10.1016/j.bmcl.2013.07.006
302. Dannenberg AM Jr. 1993. Immunopathogenesis of pulmonary tuberculosis. Hosp Pract (Off Ed) 28:51–58. http://dx.doi.org/10.1080/21548331.1993.11442738
303. Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, Bange FC, Ehlers S. 2006. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210:298–305. http://dx.doi.org/10.1002/path.2055 [PubMed]
304. Schön T, Elmberger G, Negesse Y, Pando RH, Sundqvist T, Britton S. 2004. Local production of nitric oxide in patients with tuberculosis. Int J Tuberc Lung Dis 8:1134–1137. [PubMed]
305. Nicholson S, Bonecini-Almeida MG, Lapa e Silva JR, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183:2293–2302. http://dx.doi.org/10.1084/jem.183.5.2293
306. Facchetti F, Vermi W, Fiorentini S, Chilosi M, Caruso A, Duse M, Notarangelo LD, Badolato R. 1999. Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol 154:145–152. http://dx.doi.org/10.1016/S0002-9440(10)65261-3 [PubMed]
307. Choi HS, Rai PR, Chu HW, Cool C, Chan ED. 2002. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 166:178–186. http://dx.doi.org/10.1164/rccm.2201023 [PubMed]
308. Nathan C. 2002. Inducible nitric oxide synthase in the tuberculous human lung. Am J Respir Crit Care Med 166:130–131. http://dx.doi.org/10.1164/rccm.2205016 [PubMed]
309. Nathan C, Cunningham-Bussel A. 2013. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. http://dx.doi.org/10.1038/nri3423
310. Nathan C, Shiloh MU. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848. PMID: 10922044; Central PMCID: PMC34021. [PubMed]
311. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810. http://dx.doi.org/10.1016/j.cell.2007.06.049 [PubMed]
312. Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD. 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52:1291–1302. http://dx.doi.org/10.1111/j.1365-2958.2004.04078.x [CrossRef]
313. Skaar EP. 2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949. http://dx.doi.org/10.1371/journal.ppat.1000949
314. Goodsmith N, Guo XV, Vandal OH, Vaubourgeix J, Wang R, Botella H, Song S, Bhatt K, Liba A, Salgame P, Schnappinger D, Ehrt S. 2015. Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice. PLoS Pathog 11:e1004645. http://dx.doi.org/10.1371/journal.ppat.1004645
315. Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M. 2010. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108:1621–1626. doi:1009261108 [pii] 10.1073/pnas.1009261108. PMID: 21205886. [PubMed]
316. Rowland JL, Niederweis M. 2013. A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 195:3724–3733. http://dx.doi.org/10.1128/JB.00546-13
317. Rowland JL, Niederweis M. 2012. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb) 92:202–210. http://dx.doi.org/10.1016/j.tube.2011.12.006
318. Darwin KH. 2015. Mycobacterium tuberculosis and copper: a newly appreciated defense against an old foe? J Biol Chem 290:18962–18966. http://dx.doi.org/10.1074/jbc.R115.640193
319. White C, Lee J, Kambe T, Fritsche K, Petris MJ. 2009. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–33956. http://dx.doi.org/10.1074/jbc.M109.070201
320. Tan S, Sukumar N, Abramovitch RB, Parish T, Russell DG. 2013. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog 9:e1003282. http://dx.doi.org/10.1371/journal.ppat.1003282
321. Larrouy-Maumus G, Marino LB, Madduri AV, Ragan TJ, Hunt DM, Bassano L, Gutierrez MG, Moody DB, Pavan FR, de Carvalho LP. 2016. Cell-envelope remodeling as a determinant of phenotypic antibacterial tolerance in Mycobacterium tuberculosis. ACS Infect Dis 2:352–360. http://dx.doi.org/10.1021/acsinfecdis.5b00148 [PubMed]
322. Scott CC, Gruenberg J. 2011. Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. BioEssays 33:103–110. http://dx.doi.org/10.1002/bies.201000108
323. Jiang L, Salao K, Li H, Rybicka JM, Yates RM, Luo XW, Shi XX, Kuffner T, Tsai VW, Husaini Y, Wu L, Brown DA, Grewal T, Brown LJ, Curmi PM, Breit SN. 2012. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification.J Cell Sci 125:5479–5488. http://dx.doi.org/10.1242/jcs.110072 [PubMed]
324. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738. http://dx.doi.org/10.1038/35021074
325. Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD. 2006. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1122. doi:MMI5155 [pii] 10.1111/j.1365-2958.2006.05155.x. PMID: 16689789. [PubMed]
326. Beste DJ, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, Beale MH, Wiechert W, McFadden J. 2013. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1012–1021. http://dx.doi.org/10.1016/j.chembiol.2013.06.012 [PubMed]
327. Pandey AK, Sassetti CM. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380. http://dx.doi.org/10.1073/pnas.0711159105
328. Baek SH, Li AH, Sassetti CM. 2011. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9:e1001065. http://dx.doi.org/10.1371/journal.pbio.1001065
329. Shi L, Sohaskey CD, Pheiffer C, Datta P, Parks M, McFadden J, North RJ, Gennaro ML. 2010. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 78:1199–1215. http://dx.doi.org/10.1111/j.1365-2958.2010.07399.x [CrossRef]
330. Larsen MH, Biermann K, Chen B, Hsu T, Sambandamurthy VK, Lackner AA, Aye PP, Didier P, Huang D, Shao L, Wei H, Letvin NL, Frothingham R, Haynes BF, Chen ZW, Jacobs WR Jr. 2009. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine 27:4709–4717. http://dx.doi.org/10.1016/j.vaccine.2009.05.050
331. Sambandamurthy VK, Derrick SC, Jalapathy KV, Chen B, Russell RG, Morris SL, Jacobs WR Jr. 2005. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 73:1196–1203. http://dx.doi.org/10.1128/IAI.73.2.1196-1203.2005
332. Gouzy A, Poquet Y, Neyrolles O. 2014. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol 12:729–737. http://dx.doi.org/10.1038/nrmicro3349 [PubMed]
333. Cunningham-Bussel A, Bange FC, Nathan CF. 2013. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. MicrobiologyOpen 2:901–911. http://dx.doi.org/10.1002/mbo3.126 [PubMed]
microbiolspec.TBTB2-0031-2016.citations
cm/5/1
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0031-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0031-2016
2017-02-24
2017-11-21

Abstract:

While the immune system is credited with averting tuberculosis in billions of individuals exposed to , the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of . The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating . With this goal, we review methods of high-throughput screening to target nonreplicating and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating revealed a rich diversity in pharmacophores.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Strategies to evaluate the viability of nonreplicating mycobacteria for high-throughput screening. The arrow color indicates the quality of each readout strategy (considering robustness, ease of use, dynamic range, etc.) as excellent (green arrows), average to poor (black arrows), or infeasible (red line). Compound carryover may result from compound transfer from the nonreplicating assay to replicating assay bacteriologic growth medium or by compound adherence to the bacterial cell wall.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Selecting and designing nonreplicating (NR) models. Nonexhaustive list of models of class I and class II nonreplication. Variables to consider when designing models. Potential activity profiles of nonreplicating actives. The success of compounds targeting nonreplicating mycobacteria is dependent on the interactions among models, variables, and activity profiles. The term “DD Mtb” (ifferentially etectable ) is used interchangeably with “viable-but-nonculturable” (VBNC) .

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Compound transformation during screening assays. () Predicted, and experimentally validated, points of compound modification that may occur during phenotypic screening. In cell-free, nonreplicating conditions imposed by the multistress model, oxyphenbutazone (left) rapidly transforms in acidic and nitrosative conditions to the intermediate, 4-hydroxy-oxyphenbutazone (center), which further transforms to 4-hydroxy-oxyphenbutazone quinoneimine (right). The electrophilic quinoneimine (red) can react at carbon atoms (green) with intrabacterial nucleophiles such as -acetyl cysteine (NAC) and/or mycothiol (MSH).

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Proof-of-concept molecules. Molecules with nonreplicating activity that serve as proof of concept include those that selectively kill nonreplicating mycobacteria; have dual activity, kill mycobacteria in the majority of nonreplicating models, and are effective at treating tuberculosis in animal models; and have selective activity against slowly replicating or nonreplicating mycobacteria and are efficacious in tuberculosis models. n.t., not tested; *, pyrazinamide has activity against slowly replicating mycobacteria; #, experimental data indicate that pyrazinamide is inactive against intracellular mycobacteria ( 292 , 293 ). However, pyrazinamide’s dependency on an acidic environment for activity, and potent activity, suggests that it kills intracellular mycobacteria during animal and human tuberculosis.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Canonical and noncanonical targets of dual-active molecules. Dual-active molecules, which have bacteriostatic or bactericidal activity against replicating and bactericidal activity against nonreplicating , are often presumed to engage the same target under both conditions. Dual-active molecules may exert activity against nonreplicating mycobacteria via novel targets or nonspecific mechanisms. The list of dual-active molecules is not exhaustive.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6a
FIGURE 6a

Replicating and nonreplicating mycobacteria may share common targets. Examples of compounds that engage standard antibiotic target pathways under replicating conditions, and also kill nonreplicating mycobacteria, include inhibitors of the biosynthesis of lipids, DNA, RNA, protein, and peptidoglycan.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6b
FIGURE 6b

Replicating and nonreplicating mycobacteria may share common targets. Examples of compounds that engage standard antibiotic target pathways under replicating conditions, and also kill nonreplicating mycobacteria, include inhibitors of the biosynthesis of lipids, DNA, RNA, protein, and peptidoglycan.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Quinolines.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Quinolones.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Compounds targeting the proteostasis and proteolysis pathways.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Representative compounds identified by whole-cell high-throughput screening (HTS) against mycobacteria rendered nonreplicating by carbon starvation ( 54 ); hypoxia ( 29 ); multiple stresses, including low pH, nitric oxide and reactive nitrogen intermediates, hypoxia, and a fatty acid carbon source ( 28 , 53 , 145 ); acidic pH ( 119 ); and culture as a biofilm ( 102 ).

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Nitro-containing compounds.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Compounds that depolarize the mycobacterial membrane.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

Salicylanilides are protonophores. The commonly drawn structure of niclosamide (left). Compound S-13, which was used for experimental logP calculations ( 266 ), is shown for reference (right). As illustrated by niclosamide, salicylanilides capture protons by forming a stable pseudo-6-membered ring via hydrogen bonding. Once inside the bacterial cell and releasing their proton, they maintain a stable anionic form from electron delocalization. Adapted from Terada ( 266 ).

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14
FIGURE 14

Additional compounds that kill nonreplicating mycobacteria.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Evaluating the relationship between hypoxia and metronidazole activity and

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Generic image for table
TABLE 2

Conditions encountered by that may contribute to suboptimal replication rates or complete growth stasis

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Generic image for table
TABLE 3

Postscreening assays for molecules active on replicating and/or nonreplicating

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016
Generic image for table
TABLE 4

Postscreening assays specific for nonreplicating active or candidate dual-active molecules (active on both replicating and nonreplicating bacilli)

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0031-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error