1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Wendy Susan Stevens1, Lesley Scott2, Lara Noble3, Natasha Gous4, Keertan Dheda5
  • Editors: William R. Jacobs Jr.6, Helen McShane7, Valerie Mizrahi8, Ian M. Orme9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, and National Health Laboratory Service and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa; 2: Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa; 3: Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa; 4: Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, and National Health Laboratory Service and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa; 5: Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa; 6: Howard Hughes Medical Institute, Albert Einstein School of Medicine, Bronx, NY 10461; 7: University of Oxford, Oxford OX3 7DQ, United Kingdom; 8: University of Cape Town, Rondebosch 7701, South Africa; 9: Colorado State University, Fort Collins, CO 80523
  • Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
  • Received 29 July 2016 Accepted 02 August 2016 Published 03 February 2017
  • Wendy Stevens, wendy.stevens@nhls.ac.za
image of Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/TBTB2-0040-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/TBTB2-0040-2016-2.gif
  • Abstract:

    Molecular technology revolutionized the diagnosis of tuberculosis (TB) with a paradigm shift to faster, more sensitive, clinically relevant patient care. The most recent molecular leader is the GeneXpert MTB/RIF assay (Xpert) (Cepheid, Sunnyvale, CA), which was endorsed by the World Health Organization with unprecedented speed in December 2010 as the initial diagnostic for detection of HIV-associated TB and for where high rates of drug resistance are suspected. South Africa elected to take an aggressive smear replacement approach to facilitate earlier diagnosis and treatment through the decision to implement the Xpert assay nationally in March 2011, against the backdrop of approximately 6.3 million HIV-infected individuals, one of highest global TB and HIV coinfection rates, no available implementation models, uncertainties around field performance and program costs, and lack of guidance on how to operationalize the assay into existing complex clinical algorithms. South Africa’s national implementation was conducted as a phased, forecasted, and managed approach (March 2011 to September 2013), through political will and both treasury-funded and donor-funded support. Today there are 314 GeneXperts across 207 microscopy centers; over 8 million assays have been conducted, and South Africa accounts for over half the global test cartridge usage. As with any implementation of new technology, challenges were encountered, both predicted and unexpected. This chapter discusses the challenges and consequences of such large-scale implementation efforts, the opportunities for new innovations, and the need to strengthen health systems, as well as the impact of the Xpert assay on rifampin-sensitive and multidrug-resistant TB patient care that translated into global TB control as we move toward the sustainable development goals.

  • Citation: Stevens W, Scott L, Noble L, Gous N, Dheda K. 2017. Impact of the GeneXpert MTB/RIF Technology on Tuberculosis Control. Microbiol Spectrum 5(1):TBTB2-0040-2016. doi:10.1128/microbiolspec.TBTB2-0040-2016.

Key Concept Ranking

Cobas TaqMan MTB Test
0.46180737
0.46180737

References

1. World Health Organization. 2015. Global Tuberculosis Report. World Health Organization, Geneva, Switzerland.
2. World Health Organization. 2013. Global Tuberculosis Report. World Health Organization, Geneva, Switzerland.
3. World Health Organization. 2014. WHO End TB Strategy. World Health Organization, Geneva, Switzerland.
4. Abubakar I, Lipman M, McHugh TD, Fletcher H. 2016. Uniting to end the TB epidemic: advances in disease control from prevention to better diagnosis and treatment. BMC Med 14:47 http://dx.doi.org/10.1186/s12916-016-0599-1. [PubMed]
5. Kranzer K, Houben RM, Glynn JR, Bekker LG, Wood R, Lawn SD. 2010. Yield of HIV-associated tuberculosis during intensified case finding in resource-limited settings: a systematic review and meta-analysis. Lancet Infect Dis 10:93–102 http://dx.doi.org/10.1016/S1473-3099(09)70326-3.
6. Apers L, Mutsvangwa J, Magwenzi J, Chigara N, Butterworth A, Mason P, Van der Stuyft P. 2003. A comparison of direct microscopy, the concentration method and the Mycobacteria Growth Indicator Tube for the examination of sputum for acid-fast bacilli. Int J Tuberc Lung Dis 7:376–381. [PubMed]
7. Cattamanchi A, Dowdy DW, Davis JL, Worodria W, Yoo S, Joloba M, Matovu J, Hopewell PC, Huang L. 2009. Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected patients suspected of having pulmonary tuberculosis. BMC Infect Dis 9:53 http://dx.doi.org/10.1186/1471-2334-9-53.
8. Crampin AC, Floyd S, Mwaungulu F, Black G, Ndhlovu R, Mwaiyeghele E, Glynn JR, Warndorff DK, Fine PE. 2001. Comparison of two versus three smears in identifying culture-positive tuberculosis patients in a rural African setting with high HIV prevalence. Int J Tuberc Lung Dis 5:994–999. [PubMed]
9. Scott CP, Dos Anjos Filho L, De Queiroz Mello FC, Thornton CG, Bishai WR, Fonseca LS, Kritski AL, Chaisson RE, Manabe YC. 2002. Comparison of C(18)-carboxypropylbetaine and standard N-acetyl-l-cysteine-NaOH processing of respiratory specimens for increasing tuberculosis smear sensitivity in Brazil. J Clin Microbiol 40:3219–3222 http://dx.doi.org/10.1128/JCM.40.9.3219-3222.2002.
10. Selvakumar N, Rahman F, Garg R, Rajasekaran S, Mohan NS, Thyagarajan K, Sundaram V, Santha T, Frieden TR, Narayanan PR. 2002. Evaluation of the phenol ammonium sulfate sedimentation smear microscopy method for diagnosis of pulmonary tuberculosis. J Clin Microbiol 40:3017–3020 http://dx.doi.org/10.1128/JCM.40.8.3017-3020.2002.
11. Swai HF, Mugusi FM, Mbwambo JK. 2011. Sputum smear negative pulmonary tuberculosis: sensitivity and specificity of diagnostic algorithm. BMC Res Notes 4:475 http://dx.doi.org/10.1186/1756-0500-4-475.
12. World Health Organization. 2010. Policy Framework for Implementing New Tuberculosis Diagnostics. World Health Organization, Geneva, Switzerland.
13. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, Crampin AC, Dockrell HM, French N, Hamilton MS, Hibberd ML, Kern F, Langford PR, Ling L, Mlotha R, Ottenhoff TH, Pienaar S, Pillay V, Scott JA, Twahir H, Wilkinson RJ, Coin LJ, Heyderman RS, Levin M, Eley B, ILULU Consortium, KIDS TB Study Group. 2014. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 370:1712–1723 http://dx.doi.org/10.1056/NEJMoa1303657.
14. Black A. 2013. A new algorithm for the diagnosis of all forms of tuberculosis is required for South Africa. S Afr Med J 103:355–356 http://dx.doi.org/10.7196/samj.6896.
15. Jönsson B, Lönnermark E, Ridell M. 2015. Evaluation of the Cobas TaqMan MTB test for detection of Mycobacterium tuberculosis complex. Infect Dis (Lond) 47:231–236 http://dx.doi.org/10.3109/00365548.2014.987162. [PubMed]
16. Lee MR, Chung KP, Wang HC, Lin CB, Yu CJ, Lee JJ, Hsueh PR. 2013. Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J Med Microbiol 62:1160–1164 http://dx.doi.org/10.1099/jmm.0.052043-0. [PubMed]
17. Dalovisio JR, Montenegro-James S, Kemmerly SA, Genre CF, Chambers R, Greer D, Pankey GA, Failla DM, Haydel KG, Hutchinson L, Lindley MF, Nunez BM, Praba A, Eisenach KD, Cooper ES. 1996. Comparison of the amplified Mycobacterium tuberculosis (MTB) direct test, Amplicor MTB PCR, and IS6110-PCR for detection of MTB in respiratory specimens. Clin Infect Dis 23:1099–1106, discussion 1107–1108 http://dx.doi.org/10.1093/clinids/23.5.1099.
18. Wang JY, Lee LN, Chou CS, Huang CY, Wang SK, Lai HC, Hsueh PR, Luh KT. 2004. Performance assessment of a nested-PCR assay (the RAPID BAP-MTB) and the BD ProbeTec ET system for detection of Mycobacterium tuberculosis in clinical specimens. J Clin Microbiol 42:4599–4603 http://dx.doi.org/10.1128/JCM.42.10.4599-4603.2004.
19. Scott LE, McCarthy K, Gous N, Nduna M, Van Rie A, Sanne I, Venter WF, Duse A, Stevens W. 2011. Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: a prospective study. PLoS Med 8:e1001061 http://dx.doi.org/10.1371/journal.pmed.1001061.
20. World Health Organization. 2008. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). World Health Organization, Geneva, Switzerland.
21. World Health Organization. 2010. WHO endorses new rapid tuberculosis test. A major milestone for global TB diagnosis and care. http://www.who.int/mediacentre/news/releases/2010/tb_test_20101208/en/.
22. Barnard M, Gey van Pittius NC, van Helden PD, Bosman M, Coetzee G, Warren RM. 2012. The diagnostic performance of the GenoType MTBDRplus version 2 line probe assay is equivalent to that of the Xpert MTB/RIF assay. J Clin Microbiol 50:3712–3716 http://dx.doi.org/10.1128/JCM.01958-12.
23. Crudu V, Stratan E, Romancenco E, Allerheiligen V, Hillemann A, Moraru N. 2012. First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J Clin Microbiol 50:1264–1269 http://dx.doi.org/10.1128/JCM.05903-11.
24. Matabane MM, Ismail F, Strydom KA, Onwuegbuna O, Omar SV, Ismail N. 2015. Performance evaluation of three commercial molecular assays for the detection of Mycobacterium tuberculosis from clinical specimens in a high TB-HIV-burden setting. BMC Infect Dis 15:508 http://dx.doi.org/10.1186/s12879-015-1229-9.
25. Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R, Steingart KR, Dheda K. 2014. The diagnostic accuracy of the GenoType(®) MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev (10):CD010705 10.1002/14651858.CD010705.pub2:CD010705.
26. Brossier F, Guindo D, Pham A, Reibel F, Sougakoff W, Veziris N, Aubry A. 2016. Performance of the new version (v2.0) of the GenoType MTBDRsl test for detection of resistance to second-line drugs in multidrug-resistant Mycobacterium tuberculosis complex strains. J Clin Microbiol 54:1573–1580 http://dx.doi.org/10.1128/JCM.00051-16.
27. Tagliani E, Cabibbe AM, Miotto P, Borroni E, Toro JC, Mansjö M, Hoffner S, Hillemann D, Zalutskaya A, Skrahina A, Cirillo DM. 2015. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol 53:2961–2969 http://dx.doi.org/10.1128/JCM.01257-15.
28. World Health Organization. 2016. The Use of Molecular Line Probe Assays for the Detection of Resistance to Second-Line Anti-Tuberculosis Drugs. World Health Organization, Geneva, Switzerland.
29. UNITAID. 2015. Tuberculosis Diagnostics Technology and Market Landscape. World Health Organization, Geneva, Switzerland.
30. World Health Organization. 2011. Policy Statement: Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF System. World Health Organization, Geneva, Switzerland.
31. Lawn SD, Nicol MP. 2011. Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 6:1067–1082 http://dx.doi.org/10.2217/fmb.11.84.
32. O’Grady J, Bates M, Chilukutu L, Mzyece J, Cheelo B, Chilufya M, Mukonda L, Mumba M, Tembo J, Chomba M, Kapata N, Maeurer M, Rachow A, Clowes P, Hoelscher M, Mwaba P, Zumla A. 2012. Evaluation of the Xpert MTB/RIF assay at a tertiary care referral hospital in a setting where tuberculosis and HIV infection are highly endemic. Clin Infect Dis 55:1171–1178 http://dx.doi.org/10.1093/cid/cis631.
33. Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC, Pai M, Dendukuri N. 2013. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev (1):CD009593 10.1002/14651858.CD009593.pub2:CD009593.
34. Theron G, Peter J, van Zyl-Smit R, Mishra H, Streicher E, Murray S, Dawson R, Whitelaw A, Hoelscher M, Sharma S, Pai M, Warren R, Dheda K. 2011. Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med 184:132–140 http://dx.doi.org/10.1164/rccm.201101-0056OC. [PubMed]
35. Vassall A, van Kampen S, Sohn H, Michael JS, John KR, den Boon S, Davis JL, Whitelaw A, Nicol MP, Gler MT, Khaliqov A, Zamudio C, Perkins MD, Boehme CC, Cobelens F. 2011. Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med 8:e1001120 http://dx.doi.org/10.1371/journal.pmed.1001120. [PubMed]
36. Yoon C, Cattamanchi A, Davis JL, Worodria W, den Boon S, Kalema N, Katagira W, Kaswabuli S, Miller C, Andama A, Albert H, Nabeta P, Gray C, Ayakaka I, Huang L. 2012. Impact of Xpert MTB/RIF testing on tuberculosis management and outcomes in hospitalized patients in Uganda. PLoS One 7:e48599 http://dx.doi.org/10.1371/journal.pone.0048599.
37. Stevens WS, Cunningham B, Cassim N, Gous N, Scott L. 2016. Cloud-based surveillance, connectivity, and distribution of the GeneXpert analyzers for diagnosis of tuberculosis (TB) and multiple-drug-resistant TB in South Africa. In Persing DH (ed), Molecular Microbiology: Diagnostic Principles and Practice, 3rd ed. ASM Press, Washington DC.
38. World Health Organization. 2013. Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children. Policy update. World Health Organization, Geneva, Switzerland.
39. South African National Department of Health. 2014. National Department of Health Annual Performance Plan 2014/15-2016/17. http://www.hst.org.za/publications/national-department-health-annual-performance-plan-201415-201617.
40. Directorate Drug-Resistant TB TB and HIV. 2011. Management of Drug-Resistant Tuberculosis: Policy Guidelines. http://www.hst.org.za/publications/management-drug-resistant-tuberculosis-policy-guidelines.
41. Nhu NT, Ha DT, Anh ND, Thu DD, Duong TN, Quang ND, Lan NT, Quyet TV, Tuyen NT, Ha VT, Giang DC, Dung NH, Wolbers M, Farrar J, Caws M. 2013. Evaluation of Xpert MTB/RIF and MODS assay for the diagnosis of pediatric tuberculosis. BMC Infect Dis 13:31 http://dx.doi.org/10.1186/1471-2334-13-31. [PubMed]
42. Stevens WS, Marshall TM. 2010. Challenges in implementing HIV load testing in South Africa. J Infect Dis 201(Suppl 1):S78–S84 http://dx.doi.org/10.1086/650383.
43. Qin ZZ, Pai M, Van Gemert W, Sahu S, Ghiasi M, Creswell J. 2015. How is Xpert MTB/RIF being implemented in 22 high tuberculosis burden countries? Eur Respir J 45:549–554 http://dx.doi.org/10.1183/09031936.00147714. [PubMed]
44. UNAIDS. 2013. South Africa: HIV and AIDS estimates 2013. http://www.unaids.org/en/regionscountries/countries/southafrica.
45. Nicol MP. 2013. Xpert MTB/RIF: monitoring response to tuberculosis treatment. Lancet Respir Med 1:427–428 http://dx.doi.org/10.1016/S2213-2600(13)70133-4.
46. Schnippel K, Meyer-Rath G, Long L, Stevens WS, Sanne I, Rosen S. 2013. Diagnosing Xpert MTB/RIF negative TB: impact and cost of alternative algorithms for South Africa. S Afr Med J 103:101–106. [PubMed]
47. South African National AIDS Council. 2016. South African HIV and TB Investment Case Phase 1 Reference Report. Department of Health, South Africa.
48. National Health Laboratory Service. 2014. GeneXpert MTB/RIF progress report to the National Department of Health. http://www.nhls.ac.za/assets/files/GeneXpert%20Progress%20Report%20July%202014_Final.pdf.
49. Churchyard GJ, Stevens WS, Mametja LD, McCarthy KM, Chihota V, Nicol MP, Erasmus LK, Ndjeka NO, Mvusi L, Vassall A, Sinanovic E, Cox HS, Dye C, Grant AD, Fielding KL. 2015. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. Lancet Glob Health 3:e450–e457 http://dx.doi.org/10.1016/S2214-109X(15)00100-X. doi:10.1016/S2214-109X(15)00100-X.
50. Houben RM, Lalli M, Sumner T, Hamilton M, Pedrazzoli D, Bonsu F, Hippner P, Pillay Y, Kimerling M, Ahmedov S, Pretorius C, White RG. 2016. TIME Impact: a new user-friendly tuberculosis (TB) model to inform TB policy decisions. BMC Med 14:56 http://dx.doi.org/10.1186/s12916-016-0608-4. doi:10.1186/s12916-016-0608-4.
51. Basu S, Andrews JR, Poolman EM, Gandhi NR, Shah NS, Moll A, Moodley P, Galvani AP, Friedland GH. 2007. Prevention of nosocomial transmission of extensively drug-resistant tuberculosis in rural South African district hospitals: an epidemiological modelling study. Lancet 370:1500–1507 http://dx.doi.org/10.1016/S0140-6736(07)61636-5.
52. Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. 2012. Population health impact and cost-effectiveness of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic simulation and economic evaluation. PLoS Med 9:e1001347 http://dx.doi.org/10.1371/journal.pmed.1001347.
53. Uplekar M. 2015. Implementing the End TB Strategy: well begun will be half done. Indian J Tuberc 62:61–63 http://dx.doi.org/10.1016/j.ijtb.2015.03.001.
54. Rufai SB, Kumar P, Singh A, Prajapati S, Balooni V, Singh S. 2014. Comparison of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis. J Clin Microbiol 52:1846–1852 http://dx.doi.org/10.1128/JCM.03005-13.
55. Sanchez-Padilla E, Merker M, Beckert P, Jochims F, Dlamini T, Kahn P, Bonnet M, Niemann S. 2015. Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med 372:1181–1182 http://dx.doi.org/10.1056/NEJMc1413930.
56. Theron G, Jenkins HE, Cobelens F, Abubakar I, Khan AJ, Cohen T, Dowdy DW. 2015. Data for action: collection and use of local data to end tuberculosis. Lancet 386:2324–2333 http://dx.doi.org/10.1016/S0140-6736(15)00321-9.
57. Scott L, Albert H, Gilpin C, Alexander H, DeGruy K, Stevens W. 2014. Multicenter feasibility study to assess external quality assessment panels for Xpert MTB/RIF assay in South Africa. J Clin Microbiol 52:2493–2499 http://dx.doi.org/10.1128/JCM.03533-13.
58. Scott LE, Gous N, Cunningham BE, Kana BD, Perovic O, Erasmus L, Coetzee GJ, Koornhof H, Stevens W. 2011. Dried culture spots for Xpert MTB/RIF external quality assessment: results of a phase 1 pilot study in South Africa. J Clin Microbiol 49:4356–4360 http://dx.doi.org/10.1128/JCM.05167-11.
59. Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N. 2011. Mathematical models in the evaluation of health programmes. Lancet 378:515–525 http://dx.doi.org/10.1016/S0140-6736(10)61505-X.
60. Knight GM, Dharan NJ, Fox GJ, Stennis N, Zwerling A, Khurana R, Dowdy DW. 2016. Bridging the gap between evidence and policy for infectious diseases: how models can aid public health decision-making. Int J Infect Dis 42:17–23 http://dx.doi.org/10.1016/j.ijid.2015.10.024.
61. Langley I, Lin HH, Egwaga S, Doulla B, Ku CC, Murray M, Cohen T, Squire SB. 2014. Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: an integrated modelling approach. Lancet Glob Health 2:e581–e591 http://dx.doi.org/10.1016/S2214-109X(14)70291-8.
62. Dheda K, Theron G, Welte A. 2014. Cost-effectiveness of Xpert MTB/RIF and investing in health care in Africa. Lancet Glob Health 2:e554–e556 http://dx.doi.org/10.1016/S2214-109X(14)70305-5.
63. Dowdy DW, Houben R, Cohen T, Pai M, Cobelens F, Vassall A, Menzies NA, Gomez GB, Langley I, Squire SB, White R, TB MAC meeting participants. 2014. Impact and cost-effectiveness of current and future tuberculosis diagnostics: the contribution of modelling. Int J Tuberc Lung Dis 18:1012–1018 http://dx.doi.org/10.5588/ijtld.13.0851.
64. World Health Organization. 2014. WHO Monitoring of Xpert MTB/RIF Rollout. World Health Organization, Geneva, Switzerland.
65. Moore DA. 2016. What can we offer to 3 million MDRTB household contacts in 2016? BMC Med 14:64 http://dx.doi.org/10.1186/s12916-016-0610-x.
66. Witney AA, Cosgrove CA, Arnold A, Hinds J, Stoker NG, Butcher PD. 2016. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Med 14:46 http://dx.doi.org/10.1186/s12916-016-0598-2.
67. Scott L, Schnippel K, Ncayiyana J, Berrie L, Berhanu R, Van Rie A. 2015. The use of national Xpert MTB/RIF’s cycle threshold (Ct) as an audit indicator for program and laboratory performance. 46th Union World Conference on Lung Health. Cape Town, South Africa. 2–6 December 2015.
68. Bratton DJ, Nunn AJ. 2011. Alternative approaches to tuberculosis treatment evaluation: the role of pragmatic trials. Int J Tuberc Lung Dis 15:440–446 http://dx.doi.org/10.5588/ijtld.10.0732.
69. Luoto J, Maglione MA, Johnsen B, Chang C, Higgs ES, Perry T, Shekelle PG. 2013. A comparison of frameworks evaluating evidence for global health interventions. PLoS Med 10:e1001469 http://dx.doi.org/10.1371/journal.pmed.1001469.
70. Theron G, Peter J, Dowdy D, Langley I, Squire SB, Dheda K. 2014. Do high rates of empirical treatment undermine the potential effect of new diagnostic tests for tuberculosis in high-burden settings? Lancet Infect Dis 14:527–532 http://dx.doi.org/10.1016/S1473-3099(13)70360-8.
71. Dheda K, Barry CE III, Maartens G. 2016. Tuberculosis. Lancet 387:1211–1226 http://dx.doi.org/10.1016/S0140-6736(15)00151-8.
72. Luca Di Tanna G, Theron G, McCarthy K, Cox H, Mupfumil L, Sohn A, Weyer K, Zijenah L, Mason P, Hoelscher M, Clowes P, Mangu C, Chanda D, Pym A, Mwaba P, Khaki AR, Cobelens F, Nicol K, Dheda K, Churchyard G, Fielding K, Metcalfe J. 2015. The effect of nucleic acid amplification assays on patient important outcomes in routine care settings: meta-analysis of individual participant data. 46th Union World Conference on Lung Health. Cape Town, South Africa. 2–6 December 2015.
73. Cox H, McDermid C. 2008. XDR tuberculosis can be cured with aggressive treatment. Lancet 372:1363–1365 http://dx.doi.org/10.1016/S0140-6736(08)61205-2.
74. Mupfumi L, Makamure B, Chirehwa M, Sagonda T, Zinyowera S, Mason P, Metcalfe JZ, Mutetwa R. 2014. Impact of Xpert MTB/RIF on antiretroviral therapy-associated tuberculosis and mortality: a pragmatic randomized controlled trial. Open Forum Infect Dis 1:ofu038 http://dx.doi.org/10.1093/ofid/ofu038.
75. Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, Bara W, Mungofa S, Pai M, Hoelscher M, Dowdy D, Pym A, Mwaba P, Mason P, Peter J, Dheda K. 2013. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383:424–435 10.1016/S0140-6736(13)62073-5.
76. World Health Organization. 2014. Global Tuberculosis Report. World Health Organization, Geneva, Switzerland.
77. Stagg HR, White PJ, Riekstiņa V, Cīrule A, Šķenders Ģ, Leimane V, Kuksa L, Dravniece G, Brown J, Jackson C. 2016. Decreased time to treatment initiation for multidrug-resistant tuberculosis patients after use of Xpert MTB/RIF test, Latvia. Emerg Infect Dis 22:482–490 http://dx.doi.org/10.3201/eid2203.151227.
78. van Kampen SC, Susanto NH, Simon S, Astiti SD, Chandra R, Burhan E, Farid MN, Chittenden K, Mustikawati DE, Alisjahbana B. 2015. Effects of introducing Xpert MTB/RIF on diagnosis and treatment of drug-resistant tuberculosis patients in Indonesia: a pre-post intervention study. PLoS One 10:e0123536 http://dx.doi.org/10.1371/journal.pone.0123536.
79. Cox HS, Daniels JF, Muller O, Nicol MP, Cox V, van Cutsem G, Moyo S, De Azevedo V, Hughes J. 2015. Impact of decentralized care and the Xpert MTB/RIF test on rifampicin-resistant tuberculosis treatment initiation in Khayelitsha, South Africa. Open Forum Infect Dis 2:ofv014 http://dx.doi.org/10.1093/ofid/ofv014.
80. Sachdeva KS, Raizada N, Gupta RS, Nair SA, Denkinger C, Paramasivan CN, Kulsange S, Thakur R, Dewan P, Boehme C, Arinaminpathy N. 2015. The potential impact of up-front drug sensitivity testing on India’s epidemic of multi-drug resistant tuberculosis. PLoS One 10:e0131438 http://dx.doi.org/10.1371/journal.pone.0131438.
81. Salje H, Andrews JR, Deo S, Satyanarayana S, Sun AY, Pai M, Dowdy DW. 2014. The importance of implementation strategy in scaling up Xpert MTB/RIF for diagnosis of tuberculosis in the Indian health-care system: a transmission model. PLoS Med 11:e1001674 http://dx.doi.org/10.1371/journal.pmed.1001674.
82. Singla N, Singla R, Fernandes S, Behera D. 2009. Post treatment sequelae of multi-drug resistant tuberculosis patients. Indian J Tuberc 56:206–212. [PubMed]
83. Dlamini-Mvelase NR, Werner L, Phili R, Cele LP, Mlisana KP. 2014. Effects of introducing Xpert MTB/RIF test on multi-drug resistant tuberculosis diagnosis in KwaZulu-Natal South Africa. BMC Infect Dis 14:442 http://dx.doi.org/10.1186/1471-2334-14-442.
84. UNITAID. 2014. Tuberculosis diagnostic technology landscape. World Health Organization, Geneva, Switzerland. http://unitaid.org/images/marketdynamics/publications/UNITAID_TB_Diagnostics_Landscape_3rd-edition.pdf.
85. World Health Organization. 2016. WHO Treatment Guidelines for Drug-Resistant Tuberculosis: 2016 Update. World Health Organization, Geneva, Switzerland.
86. Hanrahan CF, Haguma P, Ochom E, Kinera I, Cobelens F, Cattamanchi A, Davis L, Katamba A, Dowdy D. 2016. Implementation of Xpert MTB/RIF in Uganda: missed opportunities to improve diagnosis of tuberculosis. Open Forum Infect Dis 3:ofw068 http://dx.doi.org/10.1093/ofid/ofw068.
87. Opota O, Senn L, Prod’hom G, Mazza-Stalder J, Tissot F, Greub G, Jaton K. 2016. Added value of molecular assay Xpert MTB/RIF compared to sputum smear microscopy to assess the risk of tuberculosis transmission in a low-prevalence country. Clin Microbiol Infect 22:613–619 10.1016/j.cmi.2016.04.010. [PubMed]
88. Mbonze NB, Tabala M, Wenzi LK, Bakoko B, Brouwer M, Creswell J, Van Rie A, Behets F, Yotebieng M. 2016. Xpert® MTB/RIF for smear-negative presumptive TB: impact on case notification in DR Congo. Int J Tuberc Lung Dis 20:240–246 http://dx.doi.org/10.5588/ijtld.15.0177.
89. Lorent N, Kong C, Kim T, Sam S, Thai S, Colebunders R, Rigouts L, Lynen L. 2015. Systematic screening for drug-resistant tuberculosis with Xpert® MTB/RIF in a referral hospital in Cambodia. Int J Tuberc Lung Dis 19:1528–1535 http://dx.doi.org/10.5588/ijtld.14.0956.
90. Schumacher SG, Thangakunam B, Denkinger CM, Oliver AA, Shakti KB, Qin ZZ, Michael JS, Luo R, Pai M, Christopher DJ. 2015. Impact of point-of-care implementation of Xpert® MTB/RIF: product vs. process innovation. Int J Tuberc Lung Dis 19:1084–1090 http://dx.doi.org/10.5588/ijtld.15.0120.
91. van Kampen SC, Tursynbayeva A, Koptleuova A, Murzabekova Z, Bigalieva L, Aubakirova M, Pak S, van den Hof S. 2015. Effect of introducing Xpert MTB/RIF to test and treat individuals at risk of multidrug-resistant tuberculosis in Kazakhstan: a prospective cohort study. PLoS One 10:e0132514 http://dx.doi.org/10.1371/journal.pone.0132514. [Erratum,10:e0136368. doi:10.1371/journal.pone.0136368.]
92. Hanrahan CF, Clouse K, Bassett J, Mutunga L, Selibas K, Stevens W, Scott L, Sanne I, Van Rie A. 2015. The patient impact of point-of-care vs. laboratory placement of Xpert® MTB/RIF. Int J Tuberc Lung Dis 19:811–816 http://dx.doi.org/10.5588/ijtld.15.0013.
93. Manabe YC, Zawedde-Muyanja S, Burnett SM, Mugabe F, Naikoba S, Coutinho A. 2015. Rapid improvement in passive tuberculosis case detection and tuberculosis treatment outcomes after implementation of a bundled laboratory diagnostic and on-site training intervention targeting mid-level providers. Open Forum Infect Dis 2:ofv030 http://dx.doi.org/10.1093/ofid/ofv030.
94. Sachdeva KS, Raizada N, Sreenivas A, Van’t Hoog AH, van den Hof S, Dewan PK, Thakur R, Gupta RS, Kulsange S, Vadera B, Babre A, Gray C, Parmar M, Ghedia M, Ramachandran R, Alavadi U, Arinaminpathy N, Denkinger C, Boehme C, Paramasivan CN. 2015. Use of Xpert MTB/RIF in decentralized public health settings and its effect on pulmonary TB and DR-TB case finding in India. PLoS One 10:e0126065 http://dx.doi.org/10.1371/journal.pone.0126065.
95. Trajman A, Durovni B, Saraceni V, Menezes A, Cordeiro-Santos M, Cobelens F, Van den Hof S. 2015. Impact on patients’ treatment outcomes of XpertMTB/RIF implementation for the diagnosis of tuberculosis: follow-up of a stepped-wedge randomized clinical trial. PLoS One 10:e0123252 http://dx.doi.org/10.1371/journal.pone.0123252. [Erratum, 11:e0156471. doi:10.1371/journal.pone.0156471.]
96. Creswell J, Rai B, Wali R, Sudrungrot S, Adhikari LM, Pant R, Pyakurel S, Uranw D, Codlin AJ. 2015. Introducing new tuberculosis diagnostics: the impact of Xpert® MTB/RIF testing on case notifications in Nepal. Int J Tuberc Lung Dis 19:545–551 http://dx.doi.org/10.5588/ijtld.14.0775.
97. Van Den Handel T, Hampton KH, Sanne I, Stevens W, Crous R, Van Rie A. 2015. The impact of Xpert® MTB/RIF in sparsely populated rural settings. Int J Tuberc Lung Dis 19:392–398 http://dx.doi.org/10.5588/ijtld.14.0653.
98. Alvarez GG, Van Dyk DD, Desjardins M, Yasseen AS III, Aaron SD, Cameron DW, Obed N, Baikie M, Pakhale S, Denkinger CM, Sohn H, Pai M. 2015. The feasibility, accuracy, and impact of Xpert MTB/RIF testing in a remote aboriginal community in Canada. Chest 148:767–773 http://dx.doi.org/10.1378/chest.14-2948.
99. Moyenga I, Roggi A, Sulis G, Diande S, Tamboura D, Tagliani E, Castelli F, Matteelli A. 2015. The impact of Xpert® MTB/RIF depends on service coordination: experience in Burkina Faso. Int J Tuberc Lung Dis 19:285–287 http://dx.doi.org/10.5588/ijtld.14.0629.
100. Durovni B, Saraceni V, van den Hof S, Trajman A, Cordeiro-Santos M, Cavalcante S, Menezes A, Cobelens F. 2014. Impact of replacing smear microscopy with Xpert MTB/RIF for diagnosing tuberculosis in Brazil: a stepped-wedge cluster-randomized trial. PLoS Med 11:e1001766 http://dx.doi.org/10.1371/journal.pmed.1001766. [Erratum, 12:e1001928. doi:10.1371/journal.pmed.1001928.]
101. Cox HS, Mbhele S, Mohess N, Whitelaw A, Muller O, Zemanay W, Little F, Azevedo V, Simpson J, Boehme CC, Nicol MP. 2014. Impact of Xpert MTB/RIF for TB diagnosis in a primary care clinic with high TB and HIV prevalence in South Africa: a pragmatic randomised trial. PLoS Med 11:e1001760 http://dx.doi.org/10.1371/journal.pmed.1001760.
102. Chaisson LH, Roemer M, Cantu D, Haller B, Millman AJ, Cattamanchi A, Davis JL. 2014. Impact of GeneXpert MTB/RIF assay on triage of respiratory isolation rooms for inpatients with presumed tuberculosis: a hypothetical trial. Clin Infect Dis 59:1353–1360 http://dx.doi.org/10.1093/cid/ciu620.
103. Davis JL, Kawamura LM, Chaisson LH, Grinsdale J, Benhammou J, Ho C, Babst A, Banouvong H, Metcalfe JZ, Pandori M, Hopewell PC, Cattamanchi A. 2014. Impact of GeneXpert MTB/RIF on patients and tuberculosis programs in a low-burden setting: a hypothetical trial. Am J Respir Crit Care Med 189:1551–1559 http://dx.doi.org/10.1164/rccm.201311-1974OC.
104. Ramirez HL, García-Clemente MM, Alvarez-Álvarez C, Palacio-Gutierrez JJ, Pando-Sandoval A, Gagatek S, Arias-Guillén M, Quezada-Loaiza CA, Casan-Clará P. 2014. Impact of the Xpert® MTB/RIF molecular test on the late diagnosis of pulmonary tuberculosis. Int J Tuberc Lung Dis 18:435–437 http://dx.doi.org/10.5588/ijtld.13.0747.
105. Balcha TT, Sturegård E, Winqvist N, Skogmar S, Reepalu A, Jemal ZH, Tibesso G, Schön T, Björkman P. 2014. Intensified tuberculosis case-finding in HIV-positive adults managed at Ethiopian health centers: diagnostic yield of Xpert MTB/RIF compared with smear microscopy and liquid culture. PLoS One 9:e85478 http://dx.doi.org/10.1371/journal.pone.0085478.
106. Omrani AS, Al-Otaibi MF, Al-Ateah SM, Al-Onazi FM, Baig K, El-Khizzi NA, Albarrak AM. 2014. GeneXpert MTB/RIF testing in the management of patients with active tuberculosis: a real life experience from Saudi Arabia. Infect Chemother 46:30–34 http://dx.doi.org/10.3947/ic.2014.46.1.30.
107. Sohn H, Aero AD, Menzies D, Behr M, Schwartzman K, Alvarez GG, Dan A, McIntosh F, Pai M, Denkinger CM. 2014. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clin Infect Dis 58:970–976 http://dx.doi.org/10.1093/cid/ciu022.
108. Al-Darraji HA, Abd Razak H, Ng KP, Altice FL, Kamarulzaman A. 2013. The diagnostic performance of a single GeneXpert MTB/RIF assay in an intensified tuberculosis case finding survey among HIV-infected prisoners in Malaysia. PLoS One 8:e73717 http://dx.doi.org/10.1371/journal.pone.0073717.
109. Theron G, Peter J, Meldau R, Khalfey H, Gina P, Matinyena B, Lenders L, Calligaro G, Allwood B, Symons G, Govender U, Setshedi M, Dheda K. 2013. Accuracy and impact of Xpert MTB/RIF for the diagnosis of smear-negative or sputum-scarce tuberculosis using bronchoalveolar lavage fluid. Thorax 68:1043–1051 http://dx.doi.org/10.1136/thoraxjnl-2013-203485.
110. Hanrahan CF, Selibas K, Deery CB, Dansey H, Clouse K, Bassett J, Scott L, Stevens W, Sanne I, Van Rie A. 2013. Time to treatment and patient outcomes among TB suspects screened by a single point-of-care Xpert MTB/RIF at a primary care clinic in Johannesburg, South Africa. PLoS One 8:e65421 http://dx.doi.org/10.1371/journal.pone.0065421.
111. Calligaro GL, Zijenah LS, Peter JG, Theron G, Buser V, McNerney R, Bara W, Bandason T, Govender U, Tomasicchio M, Smith L, Mayosi BM, Dheda K. 2017. Effect of new tuberculosis diagnostic technologies on community-based intensified case finding: a multicentre randomised controlled trial. Lancet Infect Dis (epub ahead of print) doi:10.1016/S1473-3099(16)30384-X.
microbiolspec.TBTB2-0040-2016.citations
cm/5/1
content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0040-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TBTB2-0040-2016
2017-02-03
2017-08-19

Abstract:

Molecular technology revolutionized the diagnosis of tuberculosis (TB) with a paradigm shift to faster, more sensitive, clinically relevant patient care. The most recent molecular leader is the GeneXpert MTB/RIF assay (Xpert) (Cepheid, Sunnyvale, CA), which was endorsed by the World Health Organization with unprecedented speed in December 2010 as the initial diagnostic for detection of HIV-associated TB and for where high rates of drug resistance are suspected. South Africa elected to take an aggressive smear replacement approach to facilitate earlier diagnosis and treatment through the decision to implement the Xpert assay nationally in March 2011, against the backdrop of approximately 6.3 million HIV-infected individuals, one of highest global TB and HIV coinfection rates, no available implementation models, uncertainties around field performance and program costs, and lack of guidance on how to operationalize the assay into existing complex clinical algorithms. South Africa’s national implementation was conducted as a phased, forecasted, and managed approach (March 2011 to September 2013), through political will and both treasury-funded and donor-funded support. Today there are 314 GeneXperts across 207 microscopy centers; over 8 million assays have been conducted, and South Africa accounts for over half the global test cartridge usage. As with any implementation of new technology, challenges were encountered, both predicted and unexpected. This chapter discusses the challenges and consequences of such large-scale implementation efforts, the opportunities for new innovations, and the need to strengthen health systems, as well as the impact of the Xpert assay on rifampin-sensitive and multidrug-resistant TB patient care that translated into global TB control as we move toward the sustainable development goals.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagram showing the phased implementation starting in high-burden districts.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

GeneXpert placement in 207 microscopy centers in South Africa.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Innovations that accompanied the GeneXpert implementation in South Africa.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Cumulative risk curves based on Cox models using individual patient data for the key randomized control trials evaluating mortality associated with GeneXpert compared to smear microscopy.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

NAAT-based TB technologies in the pipeline

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
Generic image for table
TABLE 2

Challenges experienced with large-scale implementation of GeneXpert technology and mitigation strategies

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016
Generic image for table
TABLE 3

GeneXpert impact on treatment outcomes: review of studies

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.TBTB2-0040-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error