1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Other Slow-Growing Nontuberculous Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Marvin J. Bittner1, Laurel C. Preheim3
  • Editor: David Schlossberg5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Infectious Diseases Section, VA Medical Center, Omaha, NE 68105; 2: Departments of Medicine and of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68131; 3: Infectious Diseases Section, VA Medical Center, Omaha, NE 68105; 4: Departments of Medicine and of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68131; 5: Philadelphia Health Department, Philadelphia, PA
  • Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TNMI7-0012-2016
  • Received 29 September 2016 Accepted 04 October 2016 Published 11 November 2016
  • Laurel C. Preheim, laurelpreheim@creighton.edu
image of Other Slow-Growing Nontuberculous Mycobacteria
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Other Slow-Growing Nontuberculous Mycobacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/6/TNMI7-0012-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/6/TNMI7-0012-2016-2.gif
  • Abstract:

    The list of clinically important slow-growing nontuberculous mycobacteria (NTM) continues to expand as new species are identified and older ones are found to be pathogenic. Based on pigment production, the strains may be classified as photochromogenic, scotochromogenic, or unpigmented. Some of these organisms are not newly discovered but have heretofore been considered virtually nonpathogenic. Previously, many were regarded as contaminants when isolated from clinical specimens. Ubiquitous in nature, many NTM have been isolated from groundwater or tap water, soil, house dust, domestic and wild animals, and birds. Most infections result from inhalation or direct inoculation from environmental sources. They are not spread from person to person. The infections may be localized or disseminated. In most cases, the optimal regimen or duration of therapy has not been firmly established. The results of susceptibility testing may be used to select a therapeutic regimen. Many experts recommend clarithromycin with companion drugs such as rifampin and ethambutol for most, but not all, slowly growing species. Aminoglycosides, clofazimine, fluoroquinolones, linezolid, pyrazinamide, or trimethoprim-sulfamethoxazole also may be effective against some strains. Immunocompetent patients with clinically significant infections with NTM usually should receive 18 to 24 months of therapy. Infected immunocompromised patients, particularly those with disseminated infection, probably should receive therapy as long as their immune systems remain impaired. Some of the species discussed include , , , , , , complex, , complex, , and .

  • Citation: Bittner M, Preheim L. 2016. Other Slow-Growing Nontuberculous Mycobacteria. Microbiol Spectrum 4(6):TNMI7-0012-2016. doi:10.1128/microbiolspec.TNMI7-0012-2016.

References

1. Falkinham JO, III. 2009. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367. [CrossRef]
2. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ, Jr, Winthrop K, ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America. 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416. [CrossRef]
3. Hale YM, Pfyffer GE, Salfinger M. 2001. Laboratory diagnosis of mycobacterial infections: new tools and lessons learned. Clin Infect Dis 33:834–846. [CrossRef]
4. Brown-Elliott BA, Nash KA, Wallace RJ, Jr. 2012. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 25:545–582. [CrossRef]
5. Tortoli E. 2014. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27:727–752. [CrossRef]
6. Richardson ET, Samson D, Banaei N. 2009. Rapid identification of Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex, real-time PCR. J Clin Microbiol 47:1497–1502. [CrossRef]
7. Shin J-H, Cho EJ, Lee J-Y, Yu J-Y, Kang Y-H. 2009. Novel diagnostic algorithm using tuf gene amplification and restriction fragment length polymorphism is promising tool for identification of nontuberculous mycobacteria. J Microbiol Biotechnol 19:323–330.
8. Primm TP, Lucero CA, Falkinham JO, III. 2004. Health impacts of environmental mycobacteria. Clin Microbiol Rev 17:98–106. [CrossRef]
9. Phillips MS, von Reyn CF. 2001. Nosocomial infections due to nontuberculous mycobacteria. Clin Infect Dis 33:1363–1374. [CrossRef]
10. Piersimoni C, Scarparo C. 2009. Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis 15:1351–1358; quiz, 1544. [CrossRef]
11. Snider DE, Jr, Hopewell PC, Mill J, Reichman LB. 1987. Mycobacterioses and the acquired immunodeficiency syndrome. Joint position paper of the American Thoracic Society and the Centers for Disease Control. Am Rev Respir Dis 136:492–496.
12. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann J-L, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS. 2016. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax 71:88–90. [CrossRef]
13. Henkle E, Winthrop KL. 2015. Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med 36:91–99. [CrossRef]
14. Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. 2009. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis 15:1556–1561. [CrossRef]
15. van Ingen J, Boeree MJ, Dekhuijzen PNR, van Soolingen D. 2008. Clinical relevance of Mycobacterium simiae in pulmonary samples. Eur Respir J 31:106–109. [CrossRef]
16. Glassroth J. 2008. Pulmonary disease due to nontuberculous mycobacteria. Chest 133:243–251. [CrossRef]
17. van Ingen J, van der Laan T, Dekhuijzen R, Boeree M, van Soolingen D. 2010. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents 35:169–173. [CrossRef]
18. Richter E, Tortoli E, Fischer A, Hendricks O, Engel R, Hillemann D, Schubert S, Kristiansen JE. 2007. Mycobacterium alsiense, a novel, slowly growing species isolated from two patients with pulmonary disease. J Clin Microbiol 45:3837–3839. [CrossRef]
19. Piersimoni C, Tortoli E, de Lalla F, Nista D, Donato D, Bornigia S, De Sio G. 1997. Isolation of Mycobacterium celatum from patients infected with human immunodeficiency virus. Clin Infect Dis 24:144–147. [CrossRef]
20. Tortoli E, Piersimoni C, Bacosi D, Bartoloni A, Betti F, Bono L, Burrini C, De Sio G, Lacchini C, Mantella A, Orsi PG, Penati V, Simonetti MT, Böttger AC. 1995. Isolation of the newly described species Mycobacterium celatum from AIDS patients. J Clin Microbiol 33:137–140.
21. Zurawski CA, Cage GD, Rimland D, Blumberg HM. 1997. Pneumonia and bacteremia due to Mycobacterium celatum masquerading as Mycobacterium xenopi in patients with AIDS: an underdiagnosed problem? Clin Infect Dis 24:140–143. [CrossRef]
22. Patsche CB, Svensson E, Wejse C. 2014. Disseminated Mycobacterium celatum disease with prolonged pulmonary involvement. Int J Infect Dis 26:88–90. [CrossRef]
23. Piersimoni C, Zitti PG, Nista D, Bornigia S. 2003. Mycobacterium celatum pulmonary infection in the immunocompetent: case report and review. Emerg Infect Dis 9:399–402. [CrossRef]
24. Piersimoni C, Tortoli E, de Lalla F, Nista D, Donato D, Bornigia S, De Sio G. 1997. Isolation of Mycobacterium celatum from patients infected with human immunodeficiency virus. Clin Infect Dis 24:144–147. [CrossRef]
25. Panwalker AP, Fuhse E. 1986. Nosocomial Mycobacterium gordonae pseudoinfection from contaminated ice machines. Infect Control 7:67–70. [CrossRef]
26. Steere AC, Corrales J, von Graevenitz A. 1979. A cluster of Mycobacterium gordonae isolates from bronchoscopy specimens. Am Rev Respir Dis 120:214–216.
27. Stine TM, Harris AA, Levin S, Rivera N, Kaplan RL. 1987. A pseudoepidemic due to atypical mycobacteria in a hospital water supply. JAMA 258:809–811. [CrossRef]
28. Weinberger M, Berg SL, Feuerstein IM, Pizzo PA, Witebsky FG. 1992. Disseminated infection with Mycobacterium gordonae: report of a case and critical review of the literature. Clin Infect Dis 14:1229–1239. [CrossRef]
29. Prabaker K, Muthiah C, Hayden MK, Weinstein RA, Cheerala J, Scorza ML, Segreti J, Lavin MA, Schmitt BA, Welbel SF, Beavis KG, Trenholme GM. 2015. Pseudo-outbreak of Mycobacterium gordonae following the opening of a newly constructed hospital at a Chicago medical center. Infect Control Hosp Epidemiol 36:198–203. [CrossRef]
30. Flor A, Capdevila JA, Martin N, Gavaldà J, Pahissa A. 1996. Nontuberculous mycobacterial meningitis: report of two cases and review. Clin Infect Dis 23:1266–1273. [CrossRef]
31. Barber TW, Craven DE, Farber HW. 1991. Mycobacterium gordonae: a possible opportunistic respiratory tract pathogen in patients with advanced human immunodeficiency virus, type 1 infection. Chest 100:716–720. [CrossRef]
32. Horsburgh CR, Jr, Selik RM. 1989. The epidemiology of disseminated nontuberculous mycobacterial infection in the acquired immunodeficiency syndrome (AIDS). Am Rev Respir Dis 139:4–7. [CrossRef]
33. Lessnau KD, Milanese S, Talavera W. 1993. Mycobacterium gordonae: a treatable disease in HIV-positive patients. Chest 104:1779–1785. [CrossRef]
34. Lindeboom JA, Bruijnesteijn van Coppenraet LES, van Soolingen D, Prins JM, Kuijper EJ. 2011. Clinical manifestations, diagnosis, and treatment of Mycobacterium haemophilum infections. Clin Microbiol Rev 24:701–717. [CrossRef]
35. Sompolinsky D, Lagziel A, Naveh D, Yankilevitz T. 1978. Mycobacterium haemophilum sp. nov., a new pathogen of humans. Int J Syst Bacteriol 28:67–75. [CrossRef]
36. Saubolle MA, Kiehn TE, White MH, Rudinsky MF, Armstrong D. 1996. Mycobacterium haemophilum: microbiology and expanding clinical and geographic spectra of disease in humans. Clin Microbiol Rev 9:435–447.
37. Straus WL, Ostroff SM, Jernigan DB, Kiehn TE, Sordillo EM, Armstrong D, Boone N, Schneider N, Kilburn JO, Silcox VA, LaBombardi V, Good RC. 1994. Clinical and epidemiologic characteristics of Mycobacterium haemophilum, an emerging pathogen in immunocompromised patients. Ann Intern Med 120:118–125. [CrossRef]
38. Rogers PL, Walker RE, Lane HC, Witebsky FG, Kovacs JA, Parrillo JE, Masur H. 1988. Disseminated Mycobacterium haemophilum infection in two patients with the acquired immunodeficiency syndrome. Am J Med 84:640–642. [CrossRef]
39. Cohen YH, Amir J, Ashkenazi S, Eidlitz-Markus T, Samra Z, Kaufmann L, Zeharia A. 2008. Mycobacterium haemophilum and lymphadenitis in immunocompetent children, Israel. Emerg Infect Dis 14:1437–1439. [CrossRef]
40. Ishii K, Ishii N, Nakanaga K, Nakano K, Saito I, Asahina A. 2015. Mycobacterium haemophilum infection with prominent facial manifestation mimicking leprosy. J Dermatol 42:992–995. [CrossRef]
41. Modi D, Pyatetsky D, Edward DP, Ulanski LJ, Pursell KJ, Tessler HH, Goldstein DA. 2007. Mycobacterium haemophilum: a rare cause of endophthalmitis. Retina 27:1148–1151. [CrossRef]
42. Plemmons RM, McAllister CK, Garces MC, Ward RL. 1997. Osteomyelitis due to Mycobacterium haemophilum in a cardiac transplant patient: case report and analysis of interactions among clarithromycin, rifampin, and cyclosporine. Clin Infect Dis 24:995–997. [CrossRef]
43. Straus WL, Ostroff SM, Jernigan DB, Kiehn TE, Sordillo EM, Armstrong D, Boone N, Schneider N, Kilburn JO, Silcox VA, LaBombardi V, Good RC. 1994. Clinical and epidemiologic characteristics of Mycobacterium haemophilum, an emerging pathogen in immunocompromised patients. Ann Intern Med 120:118–125. [CrossRef]
44. White MH, Papadopoulos EB, Small TN, Kiehn TE, Armstrong D. 1995. Mycobacterium haemophilum infections in bone marrow transplant recipients. Transplantation 60:957–960. [CrossRef]
45. Okazaki M, Ohkusu K, Hata H, Ohnishi H, Sugahara K, Kawamura C, Fujiwara N, Matsumoto S, Nishiuchi Y, Toyoda K, Saito H, Yonetani S, Fukugawa Y, Yamamoto M, Wada H, Sejimo A, Ebina A, Goto H, Ezaki T, Watanabe T. 2009. Mycobacterium kyorinense sp. nov., a novel, slow-growing species, related to Mycobacterium celatum, isolated from human clinical specimens. Int J Syst Evol Microbiol 59:1336–1341. [CrossRef]
46. Kobashi Y, Mouri K, Obase Y, Kato S, Oka M. 2012. Pulmonary Mycobacterium kyorinense disease showed clinical improvement following combined therapy with clarithromycin and levofloxacin. Intern Med 51:1923–1926. [CrossRef]
47. Campos CED, Caldas PC, Ohnishi H, Watanabe T, Ohtsuka K, Matsushima S, Ferreira NV, da Silva MV, Redner P, de Carvalho LD, Medeiros RF, Abbud Filho JA, Montes FCOF, Galvão TC, Ramos JP. 2012. First isolation of Mycobacterium kyorinense from clinical specimens in Brazil. J Clin Microbiol 50:2477–2478. [CrossRef]
48. Muruganandan S, Jayaram L, Wong J-SJ, Guy S. 2015. Pulmonary cavitary Mycobacterium kyorinense (M. kyorinense) infection in an Australian woman. IDCases 2:37–39. [CrossRef]
49. Hoefsloot W, van Ingen J, de Lange WCM, Dekhuijzen PNR, Boeree MJ, van Soolingen D. 2009. Clinical relevance of Mycobacterium malmoense isolation in The Netherlands. Eur Respir J 34:926–931. [CrossRef]
50. McGrath EE, Bardsley P. 2009. An association between Mycobacterium malmoense and coal workers’ pneumoconiosis. Lung 187:51–54. [CrossRef]
51. Henriques B, Hoffner SE, Petrini B, Juhlin I, Wåhlén P, Källenius G. 1994. Infection with Mycobacterium malmoense in Sweden: report of 221 cases. Clin Infect Dis 18:596–600. [CrossRef]
52. Zaugg M, Salfinger M, Opravil M, Lüthy R. 1993. Extrapulmonary and disseminated infections due to Mycobacterium malmoense: case report and review. Clin Infect Dis 16:540–549. [CrossRef]
53. Murray MP, Laurenson IF, Hill AT. 2008. Outcomes of a standardized triple-drug regimen for the treatment of nontuberculous mycobacterial pulmonary infection. Clin Infect Dis 47:222–224. [CrossRef]
54. McGrath EE, Bardsley P. 2009. An association between Mycobacterium malmoense and coal workers’ pneumoconiosis. Lung 187:51–54. [CrossRef]
55. Weiszfeiler JG, Karasseva V, Karczag E. 1981. Mycobacterium simiae and related mycobacteria. Rev Infect Dis 3:1040–1045. [CrossRef]
56. Portaels F, Larsson L, Smeets P. 1988. Isolation of mycobacteria from healthy persons’ stools. Int J Lepr Other Mycobact Dis 56:468–471.
57. Lavy A, Yoshpe-Purer Y. 1982. Isolation of Mycobacterium simiae from clinical specimens in Israel. Tubercle 63:279–285. [CrossRef]
58. Bell RC, Higuchi JH, Donovan WN, Krasnow I, Johanson WG, Jr. 1983. Mycobacterium simiae. Clinical features and follow-up of twenty-four patients. Am Rev Respir Dis 127:35–38. [CrossRef]
59. Krasnow I, Gross W. 1975. Mycobacterium simiae infection in the United States. A case report and discussion of the organism. Am Rev Respir Dis 111:357–360.
60. Lavy A, Yoshpe-Purer Y. 1982. Isolation of Mycobacterium simiae from clinical specimens in Israel. Tubercle 63:279–285. [CrossRef]
61. Sriyabhaya N, Wongwatana S. 1981. Pulmonary infection caused by atypical mycobacteria: a report of 24 cases in Thailand. Rev Infect Dis 3:1085–1089. [CrossRef]
62. Rose HD, Dorff GJ, Lauwasser M, Sheth NK. 1982. Pulmonary and disseminated Mycobacterium simiae infection in humans. Am Rev Respir Dis 126:1110–1113.
63. Tortoli E, Galli L, Andebirhan T, Baruzzo S, Chiappini E, de Martino M, Brown-Elliott BA. 2007. The first case of Mycobacterium sherrisii disseminated infection in a child with AIDS. AIDS 21:1496–1498. [CrossRef]
64. Huminer D, Dux S, Samra Z, Kaufman L, Lavy A, Block CS, Pitlik SD. 1993. Mycobacterium simiae infection in Israeli patients with AIDS. Clin Infect Dis 17:508–509. [CrossRef]
65. Maloney JM, Gregg CR, Stephens DS, Manian FA, Rimland D. 1987. Infections caused by Mycobacterium szulgai in humans. Rev Infect Dis 9:1120–1126. [CrossRef]
66. Gur H, Porat S, Haas H, Naparstek Y, Eliakim M. 1984. Disseminated mycobacterial disease caused by Mycobacterium szulgai. Arch Intern Med 144:1861–1863. [CrossRef]
67. Lin J-N, Lai C-H, Chen Y-H, Huang C-K, Lin H-F, Eng H-L, Lin H-H. 2009. Urinary Mycobacterium szulgai infection in an immunocompetent patient. South Med J 102:979–981. [CrossRef]
68. Stratton CW, Phelps DB, Reller LB. 1978. Tuberculoid tenosynovitis and carpal tunnel syndrome caused by Mycobacterium szulgai. Am J Med 65:349–351. [CrossRef]
69. Newshan G, Torres RA. 1994. Pulmonary infection due to multidrug-resistant Mycobacterium szulgai in a patient with AIDS. Clin Infect Dis 18:1022–1023. [CrossRef]
70. van Ingen J, Boeree MJ, de Lange WCM, de Haas PEW, Dekhuijzen PNR, van Soolingen D. 2008. Clinical relevance of Mycobacterium szulgai in The Netherlands. Clin Infect Dis 46:1200–1205. [CrossRef]
71. Tortoli E, Gitti Z, Klenk HP, Lauria S, Mannino R, Mantegani P, Mariottini A, Neonakis I. 2013. Survey of 150 strains belonging to the Mycobacterium terrae complex and description of Mycobacterium engbaekii sp. nov., Mycobacterium heraklionense sp. nov. and Mycobacterium longobardum sp. nov. Int J Syst Evol Microbiol 63:401–411. [CrossRef]
72. Lee H, Lee S-A, Lee I-K, Yu H-K, Park Y-G, Jeong J, Lee SH, Kim S-R, Hyun J-W, Kim K, Kook Y-H, Kim B-J. 2010. Mycobacterium paraterrae sp. nov. recovered from a clinical specimen: novel chromogenic slow growing mycobacteria related to Mycobacterium terrae complex. Microbiol Immunol 54:46–53. [CrossRef]
73. Peters EJ, Morice R. 1991. Miliary pulmonary infection caused by Mycobacterium terrae in an autologous bone marrow transplant patient. Chest 100:1449–1450. [CrossRef]
74. Spence TH, Ferris VM. 1996. Spontaneous resolution of a lung mass due to infection with Mycobacterium terrae. South Med J 89:414–416. [CrossRef]
75. Tonner JA, Hammond MD. 1989. Pulmonary disease caused by Mycobacterium terrae complex. South Med J 82:1279–1282. [CrossRef]
76. Tsukamura M, Kita N, Otsuka W, Shimoide H. 1983. A study of the taxonomy of the Mycobacterium nonchromogenicum complex and report of six cases of lung infection due to Mycobacterium nonchromogenicum. Microbiol Immunol 27:219–236. [CrossRef]
77. Neonakis IK, Spandidos DA, Gitti Z. 2015. Mycobacterium heraklionense sp. nov.: a case series. Exp Ther Med 10:1401–1403. [CrossRef]
78. Smith DS, Lindholm-Levy P, Huitt GA, Heifets LB, Cook JL. 2000. Mycobacterium terrae: case reports, literature review, and in vitro antibiotic susceptibility testing. Clin Infect Dis 30:444–453. [CrossRef]
79. Vasireddy R, Vasireddy S, Brown-Elliott BA, Wengenack NL, Eke UA, Benwill JL, Turenne C, Wallace RJ, Jr. 2016. Mycobacterium arupense, Mycobacterium heraklionense, and a newly proposed species “Mycobacterium virgiense” sp. nov., but not Mycobacterium nonchromogenicum, as species of the Mycobacterium terrae complex causing tenosynovitis and osteomyelitis. J Clin Microbiol 54:1340–1351. [CrossRef]
80. Beam E, Vasoo S, Simner PJ, Rizzo M, Mason EL, Walker RC, Deml SM, Brown-Elliott BA, Wallace RJ, Jr, Wengenack NL, Sia IG. 2014. Mycobacterium arupense flexor tenosynovitis: case report and review of antimicrobial susceptibility profiles for 40 clinical isolates. J Clin Microbiol 52:2706–2708. [CrossRef]
81. Hong SK, Sung JY, Lee HJ, Oh M-D, Park SS, Kim E-C. 2013. First case of Mycobacterium longobardum infection. Ann Lab Med 33:356–359. [CrossRef]
82. Ridderhof JC, Wallace RJ, Jr, Kilburn JO, Butler WR, Warren NG, Tsukamura M, Steele LC, Wong ES. 1991. Chronic tenosynovitis of the hand due to Mycobacterium nonchromogenicum: use of high-performance liquid chromatography for identification of isolates. Rev Infect Dis 13:857–864. [CrossRef]
83. Portaels F, Fonteyene PA, de Beenhouwer H, de Rijk P, Guédénon A, Hayman J, Meyers MW. 1996. Variability in 3′ end of 16S rRNA sequence of Mycobacterium ulcerans is related to geographic origin of isolates. J Clin Microbiol 34:962–965.
84. Hofer M, Hirschel B, Kirschner P, Beghetti M, Kaelin A, Siegrist CA, Suter S, Teske A, Böttger EC. 1993. Brief report: disseminated osteomyelitis from Mycobacterium ulcerans after a snakebite. N Engl J Med 328:1007–1009. [CrossRef]
85. Debacker M, Zinsou C, Aguiar J, Meyers WM, Portaels F. 2003. First case of Mycobacterium ulcerans disease (Buruli ulcer) following a human bite. Clin Infect Dis 36:e67–e68. [CrossRef]
86. Meyers WM, Tignokpa N, Priuli GB, Portaels F. 1996. Mycobacterium ulcerans infection (Buruli ulcer): first reported patients in Togo. Br J Dermatol 134:1116–1121. [CrossRef]
87. Sarfo FS, Phillips R, Wansbrough-Jones M, Simmonds RE. 2016. Recent advances: role of mycolactone in the pathogenesis and monitoring of Mycobacterium ulcerans infection/Buruli ulcer disease. Cell Microbiol 18:17–29. [CrossRef]
88. Phillips R, Sarfo FS, Guenin-Macé L, Decalf J, Wansbrough-Jones M, Albert ML, Demangel C. 2009. Immunosuppressive signature of cutaneous Mycobacterium ulcerans infection in the peripheral blood of patients with buruli ulcer disease. J Infect Dis 200:1675–1684. [CrossRef]
89. Bamberger D, Jantzer N, Leidner K, Arend J, Efferth T. 2011. Fighting mycobacterial infections by antibiotics, phytochemicals and vaccines. Microbes Infect 13:613–623. [CrossRef]
90. Delaporte E, Alfandari S, Piette F. 1994. Mycobacterium ulcerans associated with infection due to the human immunodeficiency virus. Clin Infect Dis 18:839. [CrossRef]
91. Nienhuis WA, Stienstra Y, Thompson WA, Awuah PC, Abass KM, Tuah W, Awua-Boateng NY, Ampadu EO, Siegmund V, Schouten JP, Adjei O, Bretzel G, van der Werf TS. 2010. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet 375:664–672. [CrossRef]
92. Phillips RO, Sarfo FS, Abass MK, Abotsi J, Wilson T, Forson M, Amoako YA, Thompson W, Asiedu K, Wansbrough-Jones M. 2014. Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 58:1161–1166. [CrossRef]
93. Marston BJ, Diallo MO, Horsburgh CR, Jr, Diomande I, Saki MZ, Kanga JM, Patrice G, Lipman HB, Ostroff SM, Good RC. 1995. Emergence of Buruli ulcer disease in the Daloa region of Cote d’Ivoire. Am J Trop Med Hyg 52:219–224.
94. Bennett SN, Peterson DE, Johnson DR, Hall WN, Robinson-Dunn B, Dietrich S. 1994. Bronchoscopy-associated Mycobacterium xenopi pseudoinfections. Am J Respir Crit Care Med 150:245–250. [CrossRef]
95. Jiva TM, Jacoby HM, Weymouth LA, Kaminski DA, Portmore AC. 1997. Mycobacterium xenopi: innocent bystander or emerging pathogen? Clin Infect Dis 24:226–232. [CrossRef]
96. Simor AE, Salit IE, Vellend H. 1984. The role of Mycobacterium xenopi in human disease. Am Rev Respir Dis 129:435–438.
97. van Ingen J, Boeree MJ, de Lange WCM, Hoefsloot W, Bendien SA, Magis-Escurra C, Dekhuijzen R, van Soolingen D. 2008. Mycobacterium xenopi clinical relevance and determinants, the Netherlands. Emerg Infect Dis 14:385–389. [CrossRef]
98. Miller WC, Perkins MD, Richardson WJ, Sexton DJ. 1994. Pott’s disease caused by Mycobacterium xenopi: case report and review. Clin Infect Dis 19:1024–1028. [CrossRef]
99. Coombes GM, Teh LS, Denton J, Johnson AS, Jones AK. 1996. Mycobacterium xenopi—an unusual presentation as tenosynovitis of the wrist in an immunocompetent patient. Br J Rheumatol 35:1008–1010. [CrossRef]
100. Salliot C, Desplaces N, Boisrenoult P, Koeger AC, Beaufils P, Vincent V, Mamoudy P, Ziza J-M. 2006. Arthritis due to Mycobacterium xenopi: a retrospective study of 7 cases in France. Clin Infect Dis 43:987–993. [CrossRef]
101. McDiarmid SV, Blumberg DA, Remotti H, Vargas J, Tipton JR, Ament ME, Busuttil RW. 1995. Mycobacterial infections after pediatric liver transplantation: a report of three cases and review of the literature. J Pediatr Gastroenterol Nutr 20:425–431. [CrossRef]
102. Weber J, Mettang T, Staerz E, Machleidt C, Kuhlmann U. 1989. Pulmonary disease due to Mycobacterium xenopi in a renal allograft recipient: report of a case and review. Rev Infect Dis 11:964–969. [CrossRef]
103. Jacoby HM, Jiva TM, Kaminski DA, Weymouth LA, Portmore AC. 1995. Mycobacterium xenopi infection masquerading as pulmonary tuberculosis in two patients infected with the human immunodeficiency virus. Clin Infect Dis 20:1399–1401. [CrossRef]
104. Rigsby MO, Curtis AM. 1994. Pulmonary disease from nontuberculous mycobacteria in patients with human immunodeficiency virus. Chest 106:913–919. [CrossRef]
105. Banks J, Hunter AM, Campbell IA, Jenkins PA, Smith AP. 1984. Pulmonary infection with Mycobacterium xenopi: review of treatment and response. Thorax 39:376–382. [CrossRef]
microbiolspec.TNMI7-0012-2016.citations
cm/4/6
content/journal/microbiolspec/10.1128/microbiolspec.TNMI7-0012-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.TNMI7-0012-2016
2016-11-11
2017-09-26

Abstract:

The list of clinically important slow-growing nontuberculous mycobacteria (NTM) continues to expand as new species are identified and older ones are found to be pathogenic. Based on pigment production, the strains may be classified as photochromogenic, scotochromogenic, or unpigmented. Some of these organisms are not newly discovered but have heretofore been considered virtually nonpathogenic. Previously, many were regarded as contaminants when isolated from clinical specimens. Ubiquitous in nature, many NTM have been isolated from groundwater or tap water, soil, house dust, domestic and wild animals, and birds. Most infections result from inhalation or direct inoculation from environmental sources. They are not spread from person to person. The infections may be localized or disseminated. In most cases, the optimal regimen or duration of therapy has not been firmly established. The results of susceptibility testing may be used to select a therapeutic regimen. Many experts recommend clarithromycin with companion drugs such as rifampin and ethambutol for most, but not all, slowly growing species. Aminoglycosides, clofazimine, fluoroquinolones, linezolid, pyrazinamide, or trimethoprim-sulfamethoxazole also may be effective against some strains. Immunocompetent patients with clinically significant infections with NTM usually should receive 18 to 24 months of therapy. Infected immunocompromised patients, particularly those with disseminated infection, probably should receive therapy as long as their immune systems remain impaired. Some of the species discussed include , , , , , , complex, , complex, , and .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Slow-growing nontuberculous mycobacterial infection sites and etiologic species

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.TNMI7-0012-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error