1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Urosepsis: Overview of the Diagnostic and Treatment Challenges

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Florian M. E. Wagenlehner1, Adrian Pilatz2, Wolfgang Weidner3, Kurt G. Naber4
  • Editors: Matthew A. Mulvey5, Ann E. Stapleton6, David J. Klumpp7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, D-35390 Gießen, Germany; 2: Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, D-35390 Gießen, Germany; 3: Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, D-35390 Gießen, Germany; 4: Technical University, 80333 Munich, Germany; 5: University of Utah, Salt Lake City, UT; 6: University of Washington, Seattle, WA; 7: Northwestern University, Chicago, IL
  • Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
  • Received 04 July 2012 Accepted 24 March 2015 Published 04 September 2015
  • Florian M.E. Wagenlehner, Wagenlehner@AOL.com
image of Urosepsis: Overview of the Diagnostic and Treatment Challenges
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Urosepsis: Overview of the Diagnostic and Treatment Challenges, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/5/UTI-0003-2012-1.gif /docserver/preview/fulltext/microbiolspec/3/5/UTI-0003-2012-2.gif
  • Abstract:

    Urosepsis is defined as sepsis caused by an infection in the urogenital tract. In approximately 30% of all septic patients the infectious focus is localized in the urogenital tract, mainly due to obstructions at various levels, such as ureteral stones. Urosepsis may also occur after operations in the urogenital tract. In urosepsis, complete bacteria and components of the bacterial cell wall from the urogenital tract trigger the host inflammatory event and act as exogenous pyrogens on eukaryotic target cells of patients. A burst of second messenger molecules leads to several different stages of the septic process, from hyperactivity to immunosuppression. As pyelonephritis is the most frequent cause for urosepsis, the kidney function is therefore most important in terms of cause and as a target organ for dysfunction in the course of the sepsis.

    Since effective antimicrobial therapy must be initiated early during sepsis, the empiric intravenous therapy should be initiated immediately after microbiological sampling. For the selection of appropriate antimicrobials, it is important to know risk factors for resistant organisms and whether the sepsis is primary or secondary and community or nosocomially acquired. In addition, the preceding antimicrobial therapies should be recorded as precisely as possible. Resistance surveillance should, in any case, be performed locally to adjust for the best suitable empiric treatment. Treatment challenges arise from the rapid increase of antibiotic resistance in Gram-negative bacteria, especially extended-spectrum β-lactamase (ESBL)-producing bacteria. Treatment of urosepsis comprises four basic strategies I) supportive therapy (stabilizing and maintaining blood pressure), II) antimicrobial therapy, III) control or elimination of the complicating factor, and IV) specific sepsis therapy.

  • Citation: Wagenlehner F, Pilatz A, Weidner W, Naber K. 2015. Urosepsis: Overview of the Diagnostic and Treatment Challenges. Microbiol Spectrum 3(5):UTI-0003-2012. doi:10.1128/microbiolspec.UTI-0003-2012.

Key Concept Ranking

Antibacterial Agents
0.5045922
Acute Respiratory Distress Syndrome
0.45239586
0.5045922

References

1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655. [PubMed][CrossRef]
2. Bone RC, Sprung CL, Sibbald WJ. 1992. Definitions for sepsis and organ failure. Crit Care Med 20:724–726. [PubMed][CrossRef]
3. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256. [PubMed][CrossRef]
4. Wagenlehner FM, Pilatz A, Naber KG, Weidner W. 2008. Therapeutic challenges of urosepsis. Eur J Clin Invest 38(Suppl 2):45–49. [PubMed][CrossRef]
5. Bjerklund Johansen TE, Cek M, Naber K, Stratchounski L, Svendsen MV, Tenke P; PEP and PEAP Study Investigators; European Society of Infections in Urology. 2007. Prevalence of hospital-acquired urinary tract infections in urology departments. Eur Urol 51:1100–1112. [PubMed][CrossRef]
6. Martin GS, Mannino DM, Eaton S, Moss M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554. [PubMed][CrossRef]
7. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310. [PubMed][CrossRef]
8. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. 2001. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377. [PubMed][CrossRef]
9. Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. 2012. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med 40:754–761. [PubMed][CrossRef]
10. Brun-Buisson C, Meshaka P, Pinton P, Vallet B; EPISEPSIS Study Group. 2004. EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30:580–588. [PubMed][CrossRef]
11. Hotchkiss RS, Karl IE. 2003. The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150. [PubMed][CrossRef]
12. Brunkhorst FM. 2006. Epidemiology, economy and practice – results of the German study on prevalence by the competence network sepsis (SepNet) (In German). Anasthesiol Intensivmed Notfallmed Schmerzther 41:43–44. [PubMed][CrossRef]
13. Rosser CJ, Bare RL, Meredith JW. 1999. Urinary tract infections in the critically ill patient with a urinary catheter. Am J Surg 177:287–290. [PubMed][CrossRef]
14. Hofmann W. 1990. Urosepsis and uroseptic shock. Z Urol Nephrol 83:317–324. [PubMed]
15. Wagenlehner FM, Pilatz A, Weidner W. 2011. Urosepsis–from the view of the urologist. Int J Antimicrob Agents 38(Suppl):51–57. [PubMed][CrossRef]
16. Astiz ME, Rackow EC. 1998. Septic shock. Lancet 351:1501–1505. [PubMed][CrossRef]
17. Dinarello CA. 1989. The endogenous pyrogens in host-defense interactions. Hosp Pract (Off Ed) 24:111–115, 118, 121 passim. [PubMed]
18. Matute-Bello G, Liles WC, Radella F II, Steinberg KP, Ruzinski JT, Jonas M, Chi EY, Hudson LD, Martin TR. 1997. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med 156:1969–1977. [PubMed][CrossRef]
19. Van Amersfoort ES, Van Berkel TJ, Kuiper J. 2003. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16:379–414. [PubMed][CrossRef]
20. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM; Surviving Sepsis Campaign Management Guidelines Committee. 2004. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873. [PubMed][CrossRef]
21. Gogos CA, Drosou E, Bassaris HP, Skoutelis A. 2000. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181:176–180. [PubMed][CrossRef]
22. Russell JA. 2006. Management of sepsis. N Engl J Med 355:1699–1713. [PubMed][CrossRef]
23. Weismüller K, Bauer M, Hofer S, Weigand MA. 2010. [The neuroendocrine axis and the pathophysiology of sepsis]. Anasthesiol Intensivmed Notfallmed Schmerzther 45:574–578; quiz 579. [PubMed][CrossRef]
24. Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL. 1990. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 145:1430–1434. [PubMed]
25. John CD, Buckingham JC. 2003. Cytokines: regulation of the hypothalamo-pituitary-adrenocortical axis. Curr Opin Pharmacol 3:78–84. [PubMed][CrossRef]
26. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462. [PubMed][CrossRef]
27. Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ. 2007. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35:2762–2768. [PubMed][CrossRef]
28. Wagenlehner FM, Weidner W, Naber KG. 2007. Pharmacokinetic characteristics of antimicrobials and optimal treatment of urosepsis. Clin Pharmacokinet 46:291–305. [PubMed][CrossRef]
29. Naber KG, Madsen PO. 1973. Renal function during acute total ureteral occlusion and the role of the lymphatics: an experimental study in dogs. J Urol 109:330–338. [PubMed]
30. Naber KM, Madsen PO, Bichler KH, Sauerwein D. 1973. Determination of renal tissue levels of antibiotics. Infection 1:208–213. [PubMed][CrossRef]
31. Jaenike JR. 1970. The renal response to ureteral obstruction: a model for the study of factors which influence glomerular filtration pressure. J Lab Clin Med 76:373–382. [PubMed]
32. Gulmi FA, Falsen FD, Vaughan ED. 2002. Pathophysiology of urinary tract obstruction, p 411–462. In Walsh PC, Retik RA, Vaughan ED, Wein AJ (ed), Campbell’s Urology, 8th ed, vol 1. W B Saunders Co, Philadelphia.
33. Naber KG, H. 1973. Renale Pharmakokinetik. Symposium Pyelonephritis:271–285.
34. Bricker NS, Morrin PA, Kime SW Jr. 1960. The pathologic physiology of chronic Bright’s disease. An exposition of the “intact nephron hypothesis”. Am J Med 28:77–98. [PubMed][CrossRef]
35. Paterson DL. 2003. Restrictive antibiotic policies are appropriate in intensive care units. Crit Care Med 31:S25–28. [PubMed][CrossRef]
36. Eggimann P, Pittet D. 2001. Infection control in the ICU. Chest 120:2059–2093. [PubMed][CrossRef]
37. Kreger BE, Craven DE, McCabe WR. 1980. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344–355. [PubMed][CrossRef]
38. Kreger BE, Craven DE, Carling PC, McCabe WR. 1980. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 68:332–343. [PubMed][CrossRef]
39. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. 2006. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596. [PubMed][CrossRef]
40. Elhanan G, Sarhat M, Raz R. 1997. Empiric antibiotic treatment and the misuse of culture results and antibiotic sensitivities in patients with community-acquired bacteraemia due to urinary tract infection. J Infect 35:283–288. [PubMed][CrossRef]
41. Kollef MH, Ward S. 1998. The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113:412–420. [PubMed][CrossRef]
42. Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, Jolly EC. 1997. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685. [PubMed][CrossRef]
43. Singh N, Yu VL. 2000. Rational empiric antibiotic prescription in the ICU. Chest 117:1496–1499. [PubMed][CrossRef]
44. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579. [PubMed][CrossRef]
45. Ivanyi B, Rumpelt HJ, Thoenes W. 1988. Acute human pyelonephritis: leukocytic infiltration of tubules and localization of bacteria. Virchows Arch A Pathol Anat Histopathol 414:29–37. [PubMed][CrossRef]
46. Deguchi T, Kuriyama M, Maeda S, Sakai S, Ban Y, Kawada Y, Nishiura T. 1990. Electron microscopic study of acute retrograde pyelonephritis in mice. Urology 35:423–427. [PubMed][CrossRef]
47. Chippendale GR, Warren JW, Trifillis AL, Mobley HL. 1994. Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun 62:3115–3121. [PubMed]
48. Roberts JA, Lipman J. 2006. Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 45:755–773. [PubMed][CrossRef]
49. Pea F, Viale P, Furlanut M. 2005. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 44:1009–1034. [PubMed][CrossRef]
50. Pea F, Furlanut M. 2001. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 40:833–868. [PubMed][CrossRef]
51. Pea F, Pavan F, Di Qual E, Brollo L, Nascimben E, Baldassarre M, Furlanut M. 2003. Urinary pharmacokinetics and theoretical pharmacodynamics of intravenous levofloxacin in intensive care unit patients treated with 500 mg b.i.d. for ventilator-associated pneumonia. J Chemother 15:563–567. [PubMed][CrossRef]
52. Frimodt-Møller N. 2002. Correlation between pharmacokinetic/pharmacodynamic parameters and efficacy for antibiotics in the treatment of urinary tract infection. Int J Antimicrob Agents 19:546–553. [CrossRef]
53. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. 1993. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081. [PubMed][CrossRef]
54. Frimodt-Møller N. 2002. How predictive is PK/PD for antibacterial agents? Int J Antimicrob Agents 19:333–339. [PubMed][CrossRef]
55. Hvidberg H, Struve C, Krogfelt KA, Christensen N, Rasmussen SN, Frimodt-Møller N. 2000. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob Agents Chemother 44:156–163. [PubMed][CrossRef]
56. Naber KG. 2001. Which fluoroquinolones are suitable for the treatment of urinary tract infections? Int J Antimicrob Agents 17:331–341. [PubMed][CrossRef]
57. Deguchi T, Nakane K, Yasuda M, Shimizu T, Monden K, Arakawa S, Matsumoto T. 2010. Microbiological outcome of complicated urinary tract infections treated with levofloxacin: a pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents 35:573–577. [PubMed][CrossRef]
58. Naber KG. 1997. Antibacterial activity of antibacterial agents in urine: an overview of applied methods., p 74–83. In Bergan T (ed), Urinary Tract Infections, vol 1. Karger Publishers, Basel, Switzerland. [CrossRef]
59. Wagenlehner FM, Wagenlehner C, Redman R, Weidner W, Naber KG. 2009. Urinary bactericidal activity of doripenem versus that of levofloxacin in patients with complicated urinary tract infections or pyelonephritis. Antimicrob Agents Chemother 53:1567–1573. [PubMed][CrossRef]
60. Anderson GG, Martin SM, Hultgren SJ. 2004. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 6:1094–1101. [PubMed][CrossRef]
61. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101:1333–1338. [PubMed][CrossRef]
62. Kumon H. 2000. Management of biofilm infections in the urinary tract. World J Surg 24:1193–1196. [PubMed][CrossRef]
63. Nickel JC, Olson ME, Costerton JW. 1991. Rat model of experimental bacterial prostatitis. Infection 19(Suppl 3):S126–130. [PubMed][CrossRef]
64. Zogaj X, Bokranz W, Nimtz M, Römling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158. [PubMed][CrossRef]
65. Sabbuba NA, Mahenthiralingam E, Stickler DJ. 2003. Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. J Clin Microbiol 41:4961–4965. [PubMed][CrossRef]
66. Jansen AM, Lockatell V, Johnson DE, Mobley HL. 2004. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun 72:7294–7305. [PubMed][CrossRef]
67. Wagenlehner FM, van Oostrum E, Tenke P, Tandogdu Z, Çek M, Grabe M, Wuult B, Pickard R, Naber KG, Pilatz A, Weidner W, Bjerklund-Johansen TE; GPIU. 2013. Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol 63:521–527. [PubMed][CrossRef]
68. Debbia EA, Dolcino M, Marchese A, Piazzi A, Berio A. 2004. Enhanced biofilm-production in pathogens isolated from patients with rare metabolic disorders. New Microbiol 27:361–367. [PubMed]
69. Seno Y, Kariyama R, Mitsuhata R, Monden K, Kumon H. 2005. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta Med Okayama 59:79–87. [PubMed]
70. Bokranz W, Wang X, Tschäpe H, Römling U. 2005. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54:1171–1182. [PubMed][CrossRef]
71. Rijavec M, Müller-Premru M, Zakotnik B, Zqur-Bertok D. 2008. Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. J Med Microbiol 57:1329–1334. [PubMed][CrossRef]
72. Goto T, Nakame Y, Nishida M, Ohi Y. 1999. In vitro bactericidal activities of beta-lactamases, amikacin, and fluoroquinolones against Pseudomonas aeruginosa biofilm in artificial urine. Urology 53:1058–1062. [PubMed][CrossRef]
73. Goto T, Nakame Y, Nishida M, Ohi Y. 1999. Bacterial biofilms and catheters in experimental urinary tract infection. Int J Antimicrob Agents 11:227–231; discussion 237–239. [PubMed][CrossRef]
74. Foz A. 1976. Sepsis of urological origin: microbiological aspects. Antibiot Chemother 21:69–72. [PubMed][CrossRef]
75. Rosenthal EJ. 2002. Epidemiology of septicaemia pathogens. Dtsch Med Wochenschr 127:2435–2440. [PubMed][CrossRef]
76. Rosenthal EJ. 1986. Septicemia causative organisms 1983–1985. The results of a multicenter study. Dtsch Med Wochenschr 111:1874–1880. [PubMed][CrossRef]
77. Rosenthal EJ. 1993. The epidemiology of septicemia causative agents. A blood culture study of the Paul Ehrlich Society for Chemotherapy e. V. Dtsch Med Wochenschr 118:1269–1275. [PubMed][CrossRef]
78. Rosenthal EJ. 1995. Antibiotika-Empfindlichkeit von Septikämieerregern 1991 bis 1992. Blutkulturstudie der Paul-Ehrlich-Gesellschaft für Chemotherapie. Chemotherapie Journal 4:67–71.
79. Kresken M, Hafner D, Schmitz FJ, Wichelhaus TA; für die Studiengruppe. 2009. Resistenzsituation bei klinisch wichtigen Infektionserregern gegenüber Antibiotika in Deutschland und immitteleuropäischen Raum. Bericht über die Ergebnisse einer multizentrischen Studie der ArbeitsgemeinschaftEmpfi ndlichkeitsprüfungen & Resistenz der Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. aus dem Jahre 2007. Antiinfectives Intelligence, Rheinbach, Germany.
80. Group IE-NS. 2012. EARS-Net Report 2011, on Health Services Executive (HSE) –Health Protection Surveillance Centre (HPSC). Accessed 17 May 2012.
81. Luchi M, Morrison DC, Opal S, Yoneda K, Slotman G, Chambers H, Wiesenfeld H, Lemke J, Ryan JL, Horn D. 2000. A comparative trial of imipenem versus ceftazidime in the release of endotoxin and cytokine generation in patients with gram-negative urosepsis. Urosepsis Study Group. J Endotoxin Res 6:25–31. [PubMed][CrossRef]
82. Dellinger RP, Carlet JM, Gerlach H, Ramsey G, Levy M. 2004. The surviving sepsis guidelines: not another "groundhog day". Crit Care Med 32:1601–1602. [PubMed][CrossRef]
83. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. 2004. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 30:536–555. [PubMed][CrossRef]
84. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. 2008. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327. [PubMed][CrossRef]
85. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. 2013. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228. [PubMed][CrossRef]
86. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637. [PubMed][CrossRef]
87. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC. 2014. A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693. [PubMed][CrossRef]
88. AriseInvestigators, ANZICS Clinical Trials Group ACT, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P. 2014. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–1506. [PubMed][CrossRef]
89. Grabe M, Bjerklund-Johansen TE, Botto H., Wullt B, Çek M, Naber KG, Pickard RS, Tenke P, Wagenlehner FM. 2012. Guidelines on urological infections. European Association of Urology(EAU) Guidelines. Arnhem, The Netherlands.
90. Glück T, Opal SM. 2004. Advances in sepsis therapy. Drugs 64:837–859. [PubMed][CrossRef]
91. Grabe M, Bishop MC, Bjerklund-Johansen TE, Botto H, Çek M, Lobel B, Naber KG, Palou J, Tenke P, Wagenlehner F. 2009. Guidelines on urological infections. European Association of Urology (EAU) Guidelines. Arnhem, The Netherlands.
92. Melican K, Boekel J, Månsson LE, Sandoval RM, Tanner GA, Källskog O, Palm F, Molitoris BA, Richter-Dahlfors A. 2008. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 10:1987–1998. [PubMed][CrossRef]
93. Koneman EW, Allen, S.D., Janda, W.M., Schreckenberger, P.C., Winn, W.C. 1997. Enterobacteriaceae: Carbohydrate utilization, p 172–176. In Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC Jr, (ed), Color Atlas and Textbook of Diagnostic Microbiology, 5th ed. Lippincott, Philadelphia.
94. Elkin M. 1975. Renal cystic disease–an overview. Semin Roentgenol 10:99–102. [PubMed][CrossRef]
95. Sheinfeld J, Erturk E, Spataro RF, Cockett AT. 1987. Perinephric abscess: current concepts. J Urol 137:191–194. [PubMed]
96. Naber KG, Wagenlehner FM, Weidner W. 2008. Acute bacterial prostatitis, p 17–30. In Shoskes DA (ed), Current Clinical Urology Series, Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Humana Press, Totowa, NJ. [CrossRef]
97. Loeb S, Carter HB, Berndt SI, Ricker W, Schaeffer EM. 2011. Complications after prostate biopsy: data from SEER-Medicare. J Urol 186:1830–1834. [PubMed][CrossRef]
98. Loeb S, van den Heuvel S, Zhu X, Bangma CH, Schröder FH, Roobol MJ. 2012. Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur Urol 61:1110–1114. [PubMed][CrossRef]
99. Nam RK, Saskin R, Lee Y, Liu Y, Law C, Klotz LH, Loblaw DA, Trachtenberg J, Stanimirovic A, Simor AE, Seth A, Urbach DR, Narod SA. 2010. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol 183:963–968. [PubMed][CrossRef]
100. Steensels D, Slabbaert K, De Wever L, Vermeersch P, Van Poppel H, Verhaegen J. 2011. Fluoroquinolone-resistant E. coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy-should we reassess our practices for antibiotic prophylaxis? Clin Microbiol Infect 18:575–581. [PubMed][CrossRef]
101. Sorensen MD, Krieger JN, Rivara FP, Klein MB, Wessells H. 2009. Fournier’s gangrene: management and mortality predictors in a population based study. J Urol 182:2742–2747. [PubMed][CrossRef]
102. Sorensen MD, Krieger JN, Rivara FP, Broghammer JA, Klein MB, Mack CD, Wessells H. 2009. Fournier’s gangrene: population based epidemiology and outcomes. J Urol 181:2120–2126. [PubMed][CrossRef]
103. Laor E, Palmer LS, Tolia BM, Reid RE, Winter HI. 1995. Outcome prediction in patients with Fournier’s gangrene. J Urol 154:89–92. [PubMed][CrossRef]
104. Persky L, Liesen D, Yangco B. 1992. Reduced urosepsis in a veterans’ hospital. Urology 39:443–445. [PubMed][CrossRef]
105. Schilling A, Marx FJ, Hofstetter A, Jesch F. 1977. Septic shock in the urologic patient. IV. monitoring and therapy (author’s transl). Urologe A 16:351–355. [PubMed]
microbiolspec.UTI-0003-2012.citations
cm/3/5
content/journal/microbiolspec/10.1128/microbiolspec.UTI-0003-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.UTI-0003-2012
2015-09-04
2017-03-29

Abstract:

Urosepsis is defined as sepsis caused by an infection in the urogenital tract. In approximately 30% of all septic patients the infectious focus is localized in the urogenital tract, mainly due to obstructions at various levels, such as ureteral stones. Urosepsis may also occur after operations in the urogenital tract. In urosepsis, complete bacteria and components of the bacterial cell wall from the urogenital tract trigger the host inflammatory event and act as exogenous pyrogens on eukaryotic target cells of patients. A burst of second messenger molecules leads to several different stages of the septic process, from hyperactivity to immunosuppression. As pyelonephritis is the most frequent cause for urosepsis, the kidney function is therefore most important in terms of cause and as a target organ for dysfunction in the course of the sepsis.

Since effective antimicrobial therapy must be initiated early during sepsis, the empiric intravenous therapy should be initiated immediately after microbiological sampling. For the selection of appropriate antimicrobials, it is important to know risk factors for resistant organisms and whether the sepsis is primary or secondary and community or nosocomially acquired. In addition, the preceding antimicrobial therapies should be recorded as precisely as possible. Resistance surveillance should, in any case, be performed locally to adjust for the best suitable empiric treatment. Treatment challenges arise from the rapid increase of antibiotic resistance in Gram-negative bacteria, especially extended-spectrum β-lactamase (ESBL)-producing bacteria. Treatment of urosepsis comprises four basic strategies I) supportive therapy (stabilizing and maintaining blood pressure), II) antimicrobial therapy, III) control or elimination of the complicating factor, and IV) specific sepsis therapy.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Bacterial spectrum of pathogens detected in patients with septicaemia (n = 6,128). doi:10.1128/microbiolspec.UTI-0003-2012.f1

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ciprofloxacin resistance from the German blood culture studies 1983–1985, 1991–1992, 2000–2001, 2006–2007, and the Paul-Ehrlich resistance surveillance study 2007. doi:10.1128/microbiolspec.UTI-0003-2012.f2

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Cefotaxime resistance from the German blood culture studies 1983–1985, 1991–1992, 2000–2001, 2006–2007, and the Paul-Ehrlich resistance surveillance study 2007. doi:10.1128/microbiolspec.UTI-0003-2012.f3

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Algorithm for management of urosepsis. doi:10.1128/microbiolspec.UTI-0003-2012.f4

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Definitions

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Generic image for table
TABLE 2

Clinical diagnostic criteria of sepsis and septic shock

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Generic image for table
TABLE 3

Antibiotics recommended for the treatment of urinary tract infections

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Generic image for table
TABLE 4

Antibiotics recommended for the treatment of urosepsis

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012
Generic image for table
TABLE 5

Target parameters of early goal-directed therapy ( 8 )

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0003-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error