1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Epidemiology and Virulence of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Steven Clegg1, Caitlin N. Murphy2
  • Editors: Matthew A. Mulvey3, Ann E. Stapleton4, David J. Klumpp5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52242; 2: Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52242; 3: University of Utah, Salt Lake City, UT; 4: University of Washington, Seattle, WA; 5: Northwestern University, Chicago, IL
  • Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.UTI-0005-2012
  • Received 20 July 2012 Accepted 23 July 2015 Published 05 February 2016
  • Steven Clegg, steven-clegg@uiowa.edu
image of Epidemiology and Virulence of <span class="jp-italic">Klebsiella pneumoniae</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Epidemiology and Virulence of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/1/UTI-0005-2012-1.gif /docserver/preview/fulltext/microbiolspec/4/1/UTI-0005-2012-2.gif
  • Abstract:

    Strains of are frequently opportunistic pathogens implicated in urinary tract and catheter-associated urinary-tract infections of hospitalized patients and compromised individuals. Infections are particularly difficult to treat since most clinical isolates exhibit resistance to several antibiotics leading to treatment failure and the possibility of systemic dissemination. Infections of medical devices such as urinary catheters is a major site of infections and has been suggested to involve the formation of biofilms on these surfaces. Over the last decade there has been an increase in research activity designed to investigate the pathogenesis of in the urinary tract. These investigations have begun to define the bacterial factors that contribute to growth and biofilm formation. Several virulence factors have been demonstrated to mediate infectivity and include, but are most likely not limited to, adherence factors, capsule production, lipopolysaccharide presence, and siderophore activity. The development of both and models of infection will lead to further elucidation of the molecular pathogenesis of . As for most opportunistic infections, the role of host factors as well as bacterial traits are crucial in determining the outcome of infections. In addition, multidrug-resistant strains of these bacteria have become a serious problem in the treatment of infections and novel strategies to prevent and inhibit bacterial growth need to be developed. Overall, the frequency, significance, and morbidity associated with urinary tract infections have increased over many years. The emergence of these bacteria as sources of antibiotic resistance and pathogens of the urinary tract present a challenging problem for the clinician in terms of management and treatment of individuals.

  • Citation: Clegg S, Murphy C. 2016. Epidemiology and Virulence of . Microbiol Spectrum 4(1):UTI-0005-2012. doi:10.1128/microbiolspec.UTI-0005-2012.

References

1. Ciobotaro P, Oved M, Nadir E, Bardenstein R, Zimhony O. 2011. An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute care setting: from theory to practice. Am J Infect Control 39:671–677. [PubMed][CrossRef]
2. da Silva RM, Traebert J, Galato D. 2012. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: A review of epidemiological and clinical aspects. Expert Opin Biol Ther 12:663–671. [PubMed][CrossRef]
3. Gijón D, Curiao T, Baquero F, Coque TM, Cantón R. 2012. Fecal carriage of carbapenemase-producing Enterobacteriaceae: A hidden reservoir in hospitalized and nonhospitalized patients. J Clin Microbiol 50:1558–1563. [PubMed][CrossRef]
4. Won SY, Munoz-Price LS, Lolans K, Hota B, Weinstein RA, Hayden MK, Centers for Disease Control and Prevention Epicenter Program. 2011. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 53:532–540. [PubMed][CrossRef]
5. Stamm WE. 1991. Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med 91:65S–71S. [PubMed][CrossRef]
6. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, Schlaeffer F, Sherf M. 2009. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol 30:972–976. [PubMed][CrossRef]
7. Centers for Disease Control and Prevention (CDC). 2011. Carbapenem-resistant Klebsiella pneumoniae associated with a long-term-care facility --- West Virginia, 2009–2011. MMWR Morb Mortal Wkly Rep 60:1418–1420. [PubMed]
8. Djeribi R, Bouchloukh W, Jouenne T, Menaa B. 2012. Characterization of bacterial biofilms formed on urinary catheters. Am J Infect Control 40:854–859. [PubMed][CrossRef]
9. Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC. 1982. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146:719–723. [PubMed][CrossRef]
10. Lazăr V, Chifiriuc MC. 2010. Medical significance and new therapeutical strategies for biofilm associated infections. Roum Arch Microbiol Immunol 69:125–138. [PubMed]
11. Monds RD, O’Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87. [PubMed][CrossRef]
12. Macleod SM, Stickler DJ. 2007. Species interactions in mixed-community crystalline biofilms on urinary catheters. J Med Microbiol 56:1549–1557. [PubMed][CrossRef]
13. Trautner BW, Darouiche RO. 2004. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–183. [PubMed][CrossRef]
14. Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. 2004. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199:697–705. [PubMed][CrossRef]
15. Fierer J, Walls L, Chu P. 2011. Recurring Klebsiella pneumoniae pyogenic liver abscesses in a resident of San Diego, California, due to a K1 strain carrying the virulence plasmid. J Clin Microbiol 49:4371–4373. [PubMed][CrossRef]
16. Fung CP, Chang FY, Lee SC, Hu BS, Kuo BI, Liu CY, Ho M, Siu LK. 2002. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50:420–424. [PubMed][CrossRef]
17. Podschun R, Sievers D, Fischer A, Ullmann U. 1993. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J Infect Dis 168:1415–1421. [PubMed][CrossRef]
18. Tarkkanen AM, Allen BL, Williams PH, Kauppi M, Haahtela K, Siitonen A, Orskov I, Orskov F, Clegg S, Korhonen TK. 1992. Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect Immun 60:1187–1192. [PubMed]
19. Sahly H, Keisari Y, Ofek I. 2009. Manno(rhamno)biose-containing capsular polysaccharides of Klebsiella pneumoniae enhance opsono-stimulation of human polymorphonuclear leukocytes. J Innate Immun 1:136–144. [PubMed][CrossRef]
20. Dutton GG, Paulin M. 1980. Structure of the capsular polysaccharide of Klebsiella serotype K53. Carbohydr Res 87:107–117. [PubMed][CrossRef]
21. Dutton GS, Paulin M. 1980. Structure of the capsular polysaccharide of Klebsiella serotype K74. Carbohydr Res 87:119–127. [PubMed][CrossRef]
22. Dutton GG, Di Fabio J. 1980. The capsular polysaccharide of Klebsiella serotype K60; a novel, structural pattern. Carbohydr Res 87:129–139. [PubMed][CrossRef]
23. Pan PC, Chen HW, Wu PK, Wu YY, Lin CH, Wu JH. 2011. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice. Exp Biol Med (Maywood) 236:219–226. [PubMed][CrossRef]
24. Fresno S, Jiménez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, Parrilli M, Naldi T, Regué M, Tomás JM. 2006. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology 152:1807–1818. [PubMed][CrossRef]
25. Fresno S, Jiménez N, Canals R, Merino S, Corsaro MM, Lanzetta R, Parrilli M, Pieretti G, Regué M, Tomás JM. 2007. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebsiella pneumoniae. J Bacteriol 189:1128–1137. [PubMed][CrossRef]
26. Ofek I, Kabha K, Athamna A, Frankel G, Wozniak DJ, Hasty DL, Ohman DE. 1993. Genetic exchange of determinants for capsular polysaccharide biosynthesis between Klebsiella pneumoniae strains expressing serotypes K2 and K21a. Infect Immun 61:4208–4216. [PubMed]
27. Laakso DH, Homonylo MK, Wilmot SJ, Whitfield C. 1988. Transfer and expression of the genetic determinants for O and K antigen synthesis in Escherichia coli O9:K(A)30 and Klebsiella sp. O1:K20, in Escherichia coli K12. Can J Microbiol 34:987–992. [PubMed][CrossRef]
28. Arakawa Y, Ohta M, Wacharotayankun R, Mori M, Kido N, Ito H, Komatsu T, Sugiyama T, Kato N. 1991. Biosynthesis of Klebsiella K2 capsular polysaccharide in Escherichia coli HB101 requires the functions of rmpA and the chromosomal cps gene cluster of the virulent strain Klebsiella pneumoniae Chedid (O1:K2). Infect Immun 59:2043–2050. [PubMed]
29. Wacharotayankun R, Arakawa Y, Ohta M, Hasegawa T, Mori M, Horii T, Kato N. 1992. Involvement of rcsB in Klebsiella K2 capsule synthesis in Escherichia coli K-12. J Bacteriol 174:1063–1067. [PubMed]
30. Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL. 2010. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 192:3144–3158. [PubMed][CrossRef]
31. Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT. 2011. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology 157:3446–3457. [PubMed][CrossRef]
32. Lai YC, Peng HL, Chang HY. 2003. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788–800. [PubMed][CrossRef]
33. Lin CT, Wu CC, Chen YS, Lai YC, Chi C, Lin JC, Chen Y, Peng HL. 2011. Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology 157:419–429. [PubMed][CrossRef]
34. Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL. 2010. The function of wzy_K1 (magA), the serotype K1 polymerase gene in Klebsiella pneumoniae cps gene cluster. J Infect Dis 201:1268–1269. [PubMed][CrossRef]
35. Cryz SJ Jr, Fürer E, Germanier R. 1984. Protection against fatal Klebsiella pneumoniae burn wound sepsis by passive transfer of anticapsular polysaccharide. Infect Immun 45:139–142. [PubMed]
36. Cryz SJ Jr, Fürer F, Germanier R. 1984. Experimental Klebsiella pneumoniae burn wound sepsis: role of capsular polysaccharide. Infect Immun 43:440–441. [PubMed]
37. Domenico P, Johanson WG Jr, Straus DC. 1982. Lobar pneumonia in rats produced by clinical isolates of Klebsiella pneumoniae. Infect Immun 37:327–335. [PubMed]
38. Simoons-Smit AM, Verweij-van Vught AM, MacLaren DM. 1986. The role of K antigens as virulence factors in Klebsiella. J Med Microbiol 21:133–137. [PubMed][CrossRef]
39. Williams P, Lambert PA, Haigh CG, Brown MR. 1986. The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. J Med Microbiol 21:125–132. [PubMed][CrossRef]
40. Athamna A, Ofek I, Keisari Y, Markowitz S, Dutton GG, Sharon N. 1991. Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect Immun 59:1673–1682. [PubMed]
41. Evrard B, Balestrino D, Dosgilbert A, Bouya-Gachancard JL, Charbonnel N, Forestier C, Tridon A. 2010. Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect Immun 78:210–219. [PubMed][CrossRef]
42. Struve C, Krogfelt KA. 2003. Role of capsule in Klebsiella pneumoniae virulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiol Lett 218:149–154. [PubMed][CrossRef]
43. Llobet E, Tomás JM, Bengoechea JA. 2008. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154:3877–3886. [PubMed][CrossRef]
44. Nassif X, Sansonetti PJ. 1986. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 54:603–608. [PubMed]
45. Neilands JB. 1995. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. [PubMed][CrossRef]
46. Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. [PubMed][CrossRef]
47. Hsieh PF, Lin TL, Lee CZ, Tsai SF, Wang JT. 2008. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 197:1717–1727. [PubMed][CrossRef]
48. Lawlor MS, O’connor C, Miller VL. 2007. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75:1463–1472. [PubMed][CrossRef]
49. Lin CT, Wu CC, Chen YS, Lai YC, Chi C, Lin JC, Chen Y, Peng HL. 2011. Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology 157:419–429. [PubMed][CrossRef]
50. Wu CC, Lin CT, Cheng WY, Huang CJ, Wang ZC, Peng HL. 2012. Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43. Microbiology 158:1045–1056. [PubMed][CrossRef]
51. Khimji PL, Miles AA. 1978. Microbial iron-chelators and their action on Klebsiella infections in the skin of guinea-pigs. Br J Exp Pathol 59:137–147. [PubMed]
52. Lee SJ, Lee DS, Choe HS, Shim BS, Kim CS, Kim ME, Cho YH. 2011. Antimicrobial resistance in community-acquired urinary tract infections: results from the Korean Antimicrobial Resistance Monitoring System. J Infect Chemother 17:440–446. [PubMed][CrossRef]
53. Russo TA, Shon AS, Beanan JM, Olson R, MacDonald U, Pomakov AO, Visitacion MP. 2011. Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than “classical” K. pneumoniae thereby enhancing its virulence. PLoS One 6:e26734. doi:10.1371/journal.pone.0026734 [PubMed][CrossRef]
54. Boer JL, Hausinger RP. 2012. Klebsiella aerogenes UreF: identification of the UreG binding site and role in enhancing the fidelity of urease activation. Biochemistry 51:2298–2308. [PubMed][CrossRef]
55. Miragliotta G, Di Pierro MN, Miragliotta L, Mosca A. 2008. Antimicrobial resistance among uropathogens responsible for community-acquired urinary tract infections in an Italian community. J Chemother 20:721–727. [PubMed][CrossRef]
56. Carter EL, Boer JL, Farrugia MA, Flugga N, Towns CL, Hausinger RP. 2011. Function of UreB in Klebsiella aerogenes urease. Biochemistry 50:9296–9308. [PubMed][CrossRef]
57. Boer JL, Quiroz-Valenzuela S, Anderson KL, Hausinger RP. 2010. Mutagenesis of Klebsiella aerogenes UreG to probe nickel binding and interactions with other urease-related proteins. Biochemistry 49:5859–5869. [PubMed][CrossRef]
58. Carter EL, Flugga N, Boer JL, Mulrooney SB, Hausinger RP. 2009. Interplay of metal ions and urease. Metallomics 1:207–221. [PubMed][CrossRef]
59. Carter EL, Hausinger RP. 2010. Characterization of the Klebsiella aerogenes urease accessory protein UreD in fusion with the maltose binding protein. J Bacteriol 192:2294–2304. [PubMed][CrossRef]
60. Carter EL, Tronrud DE, Taber SR, Karplus PA, Hausinger RP. 2011. Iron-containing urease in a pathogenic bacterium. Proc Natl Acad Sci U S A 108:13095–13099. [PubMed][CrossRef]
61. Hedelin H, Bratt CG, Eckerdal G, Lincoln K. 1991. Relationship between urease-producing bacteria, urinary pH and encrustation on indwelling urinary catheters. Br J Urol 67:527–531. [PubMed][CrossRef]
62. McLean RJ, Downey J, Clapham L, Wilson JW, Nickel JC. 1991. Pyrophosphate inhibition of Proteus mirabilis-induced struvite crystallization in vitro. Clin Chim Acta 200:107–117. [PubMed][CrossRef]
63. Broomfield RJ, Morgan SD, Khan A, Stickler DJ. 2009. Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: a simple method of control. J Med Microbiol 58:1367–1375. [PubMed][CrossRef]
64. Allen WJ, Phan G, Waksman G. 2012. Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens. Curr Opin Struct Biol 22:500–506. [PubMed][CrossRef]
65. Clegg S, Wilson J, Johnson J. 2011. More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol 193:2081–2088. [PubMed][CrossRef]
66. Morrissey B, Leney AC, Rêgo AT, Phan G, Allen WJ, Verger D, Waksman G, Ashcroft AE, Radford SE. 2012. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS. Mol Cell Proteomics 11:M111.015289. doi:10.1074/mcp.M111.015289 [PubMed][CrossRef]
67. Poole ST, McVeigh AL, Anantha RP, Lee LH, Akay YM, Pontzer EA, Scott DA, Bullitt E, Savarino SJ. 2007. Donor strand complementation governs intersubunit interaction of fimbriae of the alternate chaperone pathway. Mol Microbiol 63:1372–1384. [PubMed][CrossRef]
68. Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH Jr. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149:3051–3072. [PubMed][CrossRef]
69. Rodgers K, Arvidson CG, Melville S. 2011. Expression of a Clostridium perfringens type IV pilin by Neisseria gonorrhoeae mediates adherence to muscle cells. Infect Immun 79:3096–3105. [PubMed][CrossRef]
70. Dwyer BE, Newton KL, Kisiela D, Sokurenko EV, Clegg S. 2011. Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica. Microbiology 157:3162–3171. [PubMed][CrossRef]
71. Stahlhut SG, Chattopadhyay S, Struve C, Weissman SJ, Aprikian P, Libby SJ, Fang FC, Krogfelt KA, Sokurenko EV. 2009. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191:1941–1950. [PubMed][CrossRef]
72. Stahlhut SG, Tchesnokova V, Struve C, Weissman SJ, Chattopadhyay S, Yakovenko O, Aprikian P, Sokurenko EV, Krogfelt KA. 2009. Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. J Bacteriol 191:6592–6601. [PubMed][CrossRef]
73. Weissman SJ, Moseley SL, Dykhuizen DE, Sokurenko EV. 2003. Enterobacterial adhesins and the case for studying SNPs in bacteria. Trends Microbiol 11:115–117. [PubMed][CrossRef]
74. Wu CC, Huang YJ, Fung CP, Peng HL. 2010. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156:1983–1992. [PubMed][CrossRef]
75. Adegbola RA, Old DC. 1987. Antigenic relationships among type-1 fimbriae of Enterobacteriaceae revealed by immuno-electronmicroscopy. J Med Microbiol 24:21–28. [PubMed][CrossRef]
76. Clegg S, Hull S, Hull R, Pruckler J. 1985. Construction and comparison of recombinant plasmids encoding type 1 fimbriae of members of the family Enterobacteriaceae. Infect Immun 48:275–279. [PubMed]
77. Clegg S, Purcell BK, Pruckler J. 1987. Characterization of genes encoding type 1 fimbriae of Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens. Infect Immun 55:281–287. [PubMed]
78. Gerlach GF, Clegg S. 1988. Characterization of two genes encoding antigenically distinct type-1 fimbriae of Klebsiella pneumoniae. Gene 64:231–240. [PubMed][CrossRef]
79. Gerlach GF, Clegg S, Ness NJ, Swenson DL, Allen BL, Nichols WA. 1989. Expression of type 1 fimbriae and mannose-sensitive hemagglutinin by recombinant plasmids. Infect Immun 57:764–770. [PubMed]
80. Corcoran CP, Dorman CJ. 2009. DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol Microbiol 74:1071–1082. [PubMed][CrossRef]
81. McVicker G, Sun L, Sohanpal BK, Gashi K, Williamson RA, Plumbridge J, Blomfield IC. 2011. SlyA protein activates fimB gene expression and type 1 fimbriation in Escherichia coli K-12. J Biol Chem 286:32026–32035. [PubMed][CrossRef]
82. Rosen DA, Pinkner JS, Jones JM, Walker JN, Clegg S, Hultgren SJ. 2008. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun 76:3337–3345. [PubMed][CrossRef]
83. McDonough KA, Rodriguez A. 2011. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 10:27–38. [PubMed]
84. Sondermann H, Shikuma NJ, Yildiz FH. 2012. You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol 15:140–146. [PubMed][CrossRef]
85. Tamayo R, Pratt JT, Camilli A. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148. [PubMed][CrossRef]
86. Gerlach GF, Allen BL, Clegg S. 1988. Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae. J Bacteriol 170:3547–3553. [PubMed]
87. Gerlach GF, Clegg S, Allen BL. 1989. Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171:1262–1270. [PubMed]
88. Sebghati TA, Korhonen TK, Hornick DB, Clegg S. 1998. Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun 66:2887–2894. [PubMed]
89. Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. 2012. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. Langmuir 28:7428–7435. [PubMed][CrossRef]
90. Johnson JG, Clegg S. 2010. Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J Bacteriol 192:3944–3950. [PubMed][CrossRef]
91. Johnson JG, Murphy CN, Sippy J, Johnson TJ, Clegg S. 2011. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J Bacteriol 193:3453–3460. [PubMed][CrossRef]
92. Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA, Chuah ML, Liang ZX, Wijburg OL, Jenney AW, Lithgow T, Strugnell RA. 2011. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 7:e1002204. doi:10.1371/journal.ppat.1002204 [PubMed][CrossRef]
93. Wu CC, Lin CT, Cheng WY, Huang CJ, Wang ZC, Peng HL. 2012. Fur dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43. Microbiology 158:1045–1056. [PubMed][CrossRef]
94. Römling U, Simm R. 2009. Prevailing concepts of c-di-GMP signaling. Contrib Microbiol 16:161–181. [PubMed][CrossRef]
95. Wu CC, Huang YJ, Fung CP, Peng HL. 2010. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156:1983–1992. [PubMed][CrossRef]
96. Rosen DA, Pinkner JS, Walker JN, Elam JS, Jones JM, Hultgren SJ. 2008. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun 76:3346–3356. [PubMed][CrossRef]
97. Struve C, Bojer M, Krogfelt KA. 2008. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76:4055–4065. [PubMed][CrossRef]
98. Struve C, Bojer M, Krogfelt KA. 2009. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77:5016–5024. [PubMed][CrossRef]
99. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. 2007. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329. doi:10.1371/journal.pmed.0040329 [PubMed][CrossRef]
100. Schwartz DJ, Chen SL, Hultgren SJ, Seed PC. 2011. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun 79:4250–4259. [PubMed][CrossRef]
101. Jagnow J, Clegg S. 2003. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149:2397–2405. [PubMed][CrossRef]
102. Langstraat J, Bohse M, Clegg S. 2001. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69:5805–5812. [PubMed][CrossRef]
103. Ong CL, Ulett GC, Mabbett AN, Beatson SA, Webb RI, Monaghan W, Nimmo GR, Looke DF, McEwan AG, Schembri MA. 2008. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 190:1054–1063. [PubMed][CrossRef]
104. Schroll C, Barken KB, Krogfelt KA, Struve C. 2010. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 10:179. doi:10.1186/1471-2180-10-179 [PubMed][CrossRef]
105. Tarkkanen AM, Allen BL, Westerlund B, Holthöfer H, Kuusela P, Risteli L, Clegg S, Korhonen TK. 1990. Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4:1353–1361. [PubMed][CrossRef]
106. Tarkkanen AM, Virkola R, Clegg S, Korhonen TK. 1997. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65:1546–1549. [PubMed]
107. François P, Vaudaux P, Lew PD. 1998. Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann Vasc Surg 12:34–40. [PubMed][CrossRef]
108. Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A. 2003. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol 154:9–16. [PubMed][CrossRef]
109. Old DC, Adegbola RA. 1985. Antigenic relationships among type-3 fimbriae of Enterobacteriaceae revealed by immuno-electronmicroscopy. J Med Microbiol 20:113–121. [PubMed][CrossRef]
110. Ong CL, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. 2010. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol 10:183. doi:10.1186/1471-2180-10-183 [PubMed][CrossRef]
111. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187. doi:10.1371/journal.ppat.1001187 [PubMed][CrossRef]
112. Pearson MM, Yep A, Smith SN, Mobley HL. 2011. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79:2619–2631. [PubMed][CrossRef]
113. Crawford RW, Reeve KE, Gunn JS. 2010. Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 192:2981–2990. [PubMed][CrossRef]
114. Jackson G, Beyenal H, Rees WM, Lewandowski Z. 2001. Growing reproducible biofilms with respect to structure and viable cell counts. J Microbiol Methods 47:1–10. [PubMed][CrossRef]
115. Kania RE, Lamers GE, van de Laar N, Dijkhuizen M, Lagendijk E, Huy PT, Herman P, Hiemstra P, Grote JJ, Frijns J, Bloemberg GV. 2010. Biofilms on tracheoesophageal voice prostheses: A confocal laser scanning microscopy demonstration of mixed bacterial and yeast biofilms. Biofouling 26:519–526. [PubMed][CrossRef]
116. Anderl JN, Zahller J, Roe F, Stewart PS. 2003. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256. [PubMed][CrossRef]
117. Hennequin C, Aumeran C, Robin F, Traore O, Forestier C. 2012. Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15-producing Klebsiella pneumoniae isolate. J Antimicrob Chemother 67:2123–2130. [PubMed][CrossRef]
118. Lewis K. 2008. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131. [PubMed][CrossRef]
119. Long DY, Hu SP, Chen XC, Liu L, Chen YX. 2010. Persisters and their effects on microbial biofilm tolerance: A review. Ying Yong Sheng Tai Xue Bao 21:2707–2714. [PubMed]
120. Boddicker JD, Anderson RA, Jagnow J, Clegg S. 2006. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 74:4590–4597. [PubMed][CrossRef]
121. Hennequin C, Forestier C. 2009. oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 77:5449–5457. [PubMed][CrossRef]
122. Fuqua C, Winans SC, Greenberg EP. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751. [PubMed][CrossRef]
123. Balestrino D, Haagensen JA, Rich C, Forestier C. 2005. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol 187:2870–2880. [PubMed][CrossRef]
124. De Araujo C, Balestrino D, Roth L, Charbonnel N, Forestier C. 2010. Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae. Res Microbiol 161:595–603. [PubMed][CrossRef]
125. Jackson DW, Simecka JW, Romeo T. 2002. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410. [PubMed][CrossRef]
126. Kalivoda EJ, Stella NA, O’Dee DM, Nau GJ, Shanks RM. 2008. The cyclic AMP-dependent catabolite repression system of Serratia marcescens mediates biofilm formation through regulation of type 1 fimbriae. Appl Environ Microbiol 74:3461–3470. [PubMed][CrossRef]
127. Houot L, Watnick PI. 2008. A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J Bacteriol 190:311–320. [PubMed][CrossRef]
128. Bianconi I, Milani A, Cigana C, Paroni M, Levesque RC, Bertoni G, Bragonzi A. 2011. Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection. PLoS Pathog 7:e1001270. doi:10.1371/journal.ppat.1001270 [CrossRef]
129. Stahlhut SG, Schroll C, Harmsen M, Struve C, Krogfelt KA. 2010. Screening for genes involved in Klebsiella pneumoniae biofilm formation using a fosmid library. FEMS Immunol Med Microbiol 59:521–524. [PubMed][CrossRef]
130. Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT. 2011. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 6:e23500. doi:10.1371/journal.pone.0023500 [PubMed][CrossRef]
131. Dzul SP, Thornton MM, Hohne DN, Stewart EJ, Shah AA, Bortz DM, Solomon MJ, Younger JG. 2011. Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures. Appl Environ Microbiol 77:1777–1782. [PubMed][CrossRef]
132. Favre-Bonte S, Joly B, Forestier C. 1999. Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67:554–561. [PubMed]
133. Schembri MA, Blom J, Krogfelt KA, Klemm P. 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73:4626–4633. [PubMed][CrossRef]
134. Wu MC, Chen YC, Lin TL, Hsieh PF, Wang JT. 2012. Cellobiose-specific phosphotransferase system of Klebsiella pneumoniae and its importance in biofilm formation and virulence. Infect Immun 80:464–472. [PubMed][CrossRef]
135. Guiton PS, Hung CS, Hancock LE, Caparon MG, Hultgren SJ. 2010. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect Immun 78:4166–4175. [PubMed][CrossRef]
136. Bradford PA, Bratu S, Urban C, Visalli M, Mariano N, Landman D, Rahal JJ, Brooks S, Cebular S, Quale J. 2004. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 39:55–60. [PubMed][CrossRef]
137. Woodford N, Tierno PM Jr, Young K, Tysall L, Palepou MF, Ward E, Painter RE, Suber DF, Shungu D, Silver LL, Inglima K, Kornblum J, Livermore DM. 2004. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 48:4793–4799. [PubMed][CrossRef]
138. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161. [PubMed][CrossRef]
139. Landman D, Bratu S, Kochar S, Panwar M, Trehan M, Doymaz M, Quale J. 2007. Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J Antimicrob Chemother 60:78–82. [PubMed][CrossRef]
140. Goren MG, Carmeli Y, Schwaber MJ, Chmelnitsky I, Schechner V, Navon-Venezia S. 2010. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patient. Emerg Infect Dis 16:1014–1017. [PubMed][CrossRef]
141. Kumar V, Sun P, Vamathevan J, Li Y, Ingraham K, Palmer L, Huang J, Brown JR. 2011. Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother 55:4267–4276. [PubMed][CrossRef]
142. Coudeyras S, Nakusi L, Charbonnel N, Forestier C. 2008. A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect Immun 76:4633–4641. [PubMed][CrossRef]
143. Piddock LJ. 2006. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 4:629–636. [PubMed][CrossRef]
144. Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. 2012. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044. PLoS One 7:e33777. doi:10.1371/journal.pone.0033777 [PubMed][CrossRef]
145. Veleba M, Higgins PG, Gonzalez G, Seifert H, Schneiders T. 2012. Characterization of RarA, a novel AraC-family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob Agents Chemother 56:4450–4458. [PubMed][CrossRef]
146. Amdekar S, Singh V, Singh DD. 2011. Probiotic therapy: immunomodulating approach toward urinary tract infection. Curr Microbiol 63:484–490. [PubMed][CrossRef]
147. Hancock V, Vejborg RM, Klemm P. 2010. Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284:437–454. [PubMed][CrossRef]
148. Bunders CA, Richards JJ, Melander C. 2010. Identification of aryl 2-aminoimidazoles as biofilm inhibitors in Gram-negative bacteria. Bioorg Med Chem Lett 20:3797–3800. [PubMed][CrossRef]
149. Chai SC, Wang WL, Ding DR, Ye QZ. 2011. Growth inhibition of Escherichia coli and methicillin-resistant Staphylococcus aureus by targeting cellular methionine aminopeptidase. Eur J Med Chem 46:3537–3540. [PubMed][CrossRef]
150. Goller CC, Seed PC. 2010. High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents. PLoS One 5:e11642. doi:10.1371/journal.pone.0011642 [PubMed][CrossRef]
151. Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano CK, Hultgren SJ, Janetka JW. 2010. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53:4779–4792. [PubMed][CrossRef]
152. Kimura K, Iwatsuki M, Nagai T, Matsumoto A, Takahashi Y, Shiomi K, Omura S, Abe A. 2011. A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. J Antibiot (Tokyo) 64:197–203. [PubMed][CrossRef]
153. Segers K, Anné J. 2011. Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. Chem Biol 18:685–698. [PubMed][CrossRef]
154. Tang M, Odejinmi SI, Allette YM, Vankayalapati H, Lai K. 2011. Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria. Bioorg Med Chem 19:5886–5895. [PubMed][CrossRef]
155. Wang Z, Humphrey C, Frilot N, Wang G, Nie Z, Moniri NH, Daaka Y. 2011. Dynamin2- and endothelial nitric oxide synthase-regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. J Cell Biol 192:101–110. [PubMed][CrossRef]
156. Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347. [PubMed][CrossRef]
157. Laupland KB, Zygun DA, Davies HD, Church DL, Louie TJ, Doig CJ. 2002. Incidence and risk factors for acquiring nosocomial urinary tract infection in the critically ill. J Crit Care 17:50–57. [PubMed][CrossRef]
158. Milan PB, Ivan IM. 2009. Catheter-associated and nosocomial urinary tract infections: antibiotic resistance and influence on commonly used antimicrobial therapy. Int Urol Nephrol 41:461–464. [PubMed][CrossRef]
159. Bouza E, San Juan R, Muñoz P, Voss A, Kluytmans J, Co-operative Group of the European Study Group on Nosocomial Infections. 2001. A European perspective on nosocomial urinary tract infections II. Report on incidence, clinical characteristics and outcome (ESGNI-004 study). European Study Group on Nosocomial Infections. Clin Microbiol Infect 7:532–542. [PubMed][CrossRef]
160. Arpin C, Dubois V, Maugein J, Jullin J, Dutilh B, Brochet JP, Larribet G, Fischer I, Quentin C. 2005. Clinical and molecular analysis of extended-spectrum {beta}-lactamase-producing enterobacteria in the community setting. J Clin Microbiol 43:5048–5054. [PubMed][CrossRef]
161. Bahadin J, Teo SS, Mathew S. 2011. Aetiology of community-acquired urinary tract infection and antimicrobial susceptibility patterns of uropathogens isolated. Singapore Med J 52:415–420. [PubMed]
microbiolspec.UTI-0005-2012.citations
cm/4/1
content/journal/microbiolspec/10.1128/microbiolspec.UTI-0005-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.UTI-0005-2012
2016-02-05
2017-09-23

Abstract:

Strains of are frequently opportunistic pathogens implicated in urinary tract and catheter-associated urinary-tract infections of hospitalized patients and compromised individuals. Infections are particularly difficult to treat since most clinical isolates exhibit resistance to several antibiotics leading to treatment failure and the possibility of systemic dissemination. Infections of medical devices such as urinary catheters is a major site of infections and has been suggested to involve the formation of biofilms on these surfaces. Over the last decade there has been an increase in research activity designed to investigate the pathogenesis of in the urinary tract. These investigations have begun to define the bacterial factors that contribute to growth and biofilm formation. Several virulence factors have been demonstrated to mediate infectivity and include, but are most likely not limited to, adherence factors, capsule production, lipopolysaccharide presence, and siderophore activity. The development of both and models of infection will lead to further elucidation of the molecular pathogenesis of . As for most opportunistic infections, the role of host factors as well as bacterial traits are crucial in determining the outcome of infections. In addition, multidrug-resistant strains of these bacteria have become a serious problem in the treatment of infections and novel strategies to prevent and inhibit bacterial growth need to be developed. Overall, the frequency, significance, and morbidity associated with urinary tract infections have increased over many years. The emergence of these bacteria as sources of antibiotic resistance and pathogens of the urinary tract present a challenging problem for the clinician in terms of management and treatment of individuals.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Organization of the , , and fimbrial gene clusters in . The direction of transcription is indicated by the arrows and functions of the gene products are as follows:  , Structural subunit;  , regulatory proteins that directly or indirectly affect the expression of the gene encoding the major subunit;  , adhesin;  , periplasmic chaperone;  , outer membrane-scaffolding (usher) protein.

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.UTI-0005-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Incidence of UTIs caused by

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.UTI-0005-2012
Generic image for table
TABLE 2

Risk factors associated with UTI

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.UTI-0005-2012
Generic image for table
TABLE 3

Summary of virulence factors involved in pathogenesis

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.UTI-0005-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error