1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Origin and Dissemination of Antimicrobial Resistance among Uropathogenic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Lisa K. Nolan1, Ganwu Li2, Catherine M. Logue3
  • Editors: Matthew A. Mulvey4, Ann E. Stapleton5, David J. Klumpp6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011; 2: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011; 3: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011; 4: University of Utah, Salt Lake City, UT; 5: University of Washington, Seattle, WA; 6: Northwestern University, Chicago, IL
  • Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0007-2012
  • Received 31 July 2012 Accepted 14 April 2014 Published 04 September 2015
  • Lisa K. Nolan, lknolan@iastate.edu
image of Origin and Dissemination of Antimicrobial Resistance among Uropathogenic <span class="jp-italic">Escherichia coli</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Origin and Dissemination of Antimicrobial Resistance among Uropathogenic , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/5/UTI-0007-2012-1.gif /docserver/preview/fulltext/microbiolspec/3/5/UTI-0007-2012-2.gif
  • Abstract:

    Antimicrobial agents of various types have important bearing on the outcomes of microbial infections. These agents may be bacteriostatic or –cidal, exert their impact via various means, originate from a living organism or a laboratory, and appropriately be used in or on living tissue or not. Though the primary focus of this chapter is on resistance to the antimicrobial agents used to treat uropathogenic (UPEC)-caused urinary tract infections (UTIs), some attention will be given to UPEC’s resistance to silver-containing antiseptics, which may be incorporated into catheters to prevent foreign body-associated UTIs.

  • Citation: Nolan L, Li G, Logue C. 2015. Origin and Dissemination of Antimicrobial Resistance among Uropathogenic . Microbiol Spectrum 3(5):UTI-0007-2012. doi:10.1128/microbiolspec.UTI-0007-2012.

Key Concept Ranking

Infection and Immunity
0.8539577
Bacterial Proteins
0.75391495
Mobile Genetic Elements
0.73924226
Antibacterial Agents
0.721901
Bacterial Cell Wall
0.56187844
0.8539577

References

1. Totsika M, Beatson SA, Sarkar S, Phan MD, Petty NK, Bachmann N, Szubert M, Sidjabat HE, Paterson DL, Upton M, Schembri MA. 2011. Insights into a multidrug resistant Escherichia coli pathogen of the globally disseminated ST131 lineage: genome analysis and virulence mechanism. PLoS One 6: e26578. doi:10.1371/journal.pone.0026578 [CrossRef]
2. Kresge N, Simoni RD, Hill RL. 2004. Selman Waksman: the Father of Antibiotics. J Biolog Chem 279:101–102.
3. Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. [PubMed][CrossRef]
4. Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34:S3–10. [PubMed][CrossRef]
5. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. [CrossRef]
6. Hooper DC. 2001. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 32:S9–15. [PubMed][CrossRef]
7. Hughes VM, Datta N. 1983. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726. [PubMed][CrossRef]
8. Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC, Kim SJ, Lee JH, Lee SH. 2005. Molecular characterization of TEM-type β-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea). J Microbiol 43:172–178. [PubMed]
9. D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011. Antibiotic resistance is ancient. Nature 477:457–461. [PubMed][CrossRef]
10. D'Costa VM, McGrann KM, Hughes DW, Wright GD. 2006. Sampling the antibiotic resistome. Science 311:374–377. [PubMed][CrossRef]
11. Davies JE. 1997. Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found Symp 207:15–27; discussion 27–35. [PubMed]
12. Martínez JL. 2008. Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367. [PubMed][CrossRef]
13. Tamae C, Liu A, Kim K, Sitz D, Hong J, Becket E, Bui A, Solaimani P, Tran KP, Yang H, Miller JH. 2008. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol 190:5981–5988. [PubMed][CrossRef]
14. Liu A, Tran L, Becket E, Lee K, Chinn L, Park E, Tran K, Miller JH. 2010. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 54:1393–1403. [PubMed][CrossRef]
15. Smets BF, Barkay T. 2005. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nature Rev Microbiol 3:675–678. [PubMed][CrossRef]
16. Johnson TJ, Wannemeuhler YM, Scaccianoce JA, Johnson SJ, Nolan LK. 2006. Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother 50:3929–3933. [PubMed][CrossRef]
17. Kariyawasam S, Nolan LK. 2011. papA gene of avian pathogenic Escherichia coli. Avian Dis 55:532–538. [PubMed][CrossRef]
18. Mazel D. 2006. Integrons: agents of bacterial evolution. Nature Rev Microbiol 4:608–620. [PubMed][CrossRef]
19. Chang LL, Chang TM, Chang CY. 2007. Variable gene cassette patterns of class 1 integron-associated drug-resistant Escherichia coli in Taiwan. Kaohsiung J Med Sci 23:273–280. [PubMed][CrossRef]
20. Blahna MT, Zalewski CA, Reuer J, Kahlmeter G, Foxman B, Marrs CF. 2006. The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother 57:666–672. [PubMed][CrossRef]
21. Farshad S, Japoni A, Hosseini M. 2008. Low distribution of integrons among multidrug resistant E. coli strains isolated from children with community-acquired urinary tract infections in Shiraz, Iran. Pol J Microbiol 57:193–198. [PubMed]
22. Rijavec M, Starcic Erjavec M, Ambrozic Avgustin J, Reissbrodt R, Fruth A, Krizan-Hergouth V, Zgur-Bertok D. 2006. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups. Curr Microbiol 53:158–162. [PubMed][CrossRef]
23. White PA, Rawlinson WD. 2001. Current status of the aada and dfr gene cassette families. J Antimicrob Chemother 47:495–496. [PubMed][CrossRef]
24. Kerrn MB, Klemmensen T, Frimodt-Møller N, Espersen F. 2002. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J Antimicrob Chemother 50:513–516. [PubMed][CrossRef]
25. Towner KJ, Brennan A, Zhang Y, Holtham CA, Brough JL, Carter GI. 1994. Genetic structures associated with spread of the type Ia trimethoprim-resistant dihydrofolate reductase gene amongst Escherichia coli strains isolated in the Nottingham area of the United Kingdom. J Antimicrob Chemother 33:25–32. [PubMed][CrossRef]
26. Heikkilä E, Sundström L, Skurnik M, Huovinen P. 1991. Analysis of genetic localization of the type I trimethoprim resistance gene from Escherichia coli isolated in Finland. Antimicrob Agents Chemother 35:1562–1569. [PubMed][CrossRef]
27. Yu HS, Lee JC, Kang HY, Jeong YS, Lee EY, Choi CH, Tae SH, Lee YC, Seol SY, Cho DT. 2004. Prevalence of dfr genes associated with integrons and dissemination of dfrA17 among urinary isolates of Escherichia coli in Korea. J Antimicrob Chemother 53:445–450. [PubMed][CrossRef]
28. Yu HS, Lee JC, Kang HY, Ro DW, Chung JY, Jeong YS, Tae SH, Choi CH, Lee EY, Seol SY, Lee YC, Cho DT. 2003. Changes in gene cassettes of class 1 integrons among Escherichia coli isolates from urine specimens collected in Korea during the last two decades. J Clin Microbiol 41:5429–5433. [CrossRef]
29. White PA, McIver CJ, Rawlinson WD. 2001. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45:2658–2661. [PubMed][CrossRef]
30. Peirano G, Agersø Y, Aarestrup FM, dos Prazeres Rodrigues D. 2005. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. J Antimicrob Chemother 55:301–305. [PubMed][CrossRef]
31. Grape M, Farra A, Kronvall G, Sundström L. 2005. Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Clin Microbiol Infect 11:185–192. [PubMed][CrossRef]
32. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF. 2002. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 46:2540–2545. [PubMed][CrossRef]
33. Solberg OD, Ajiboye RM, Riley LW. 2006. Origin of class 1 and 2 integrons and gene cassettes in a population-based sample of uropathogenic Escherichia coli. J Clin Microbiol 44:1347–1351. [PubMed][CrossRef]
34. Bennett PM. 1999. Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 43:1–4. [PubMed][CrossRef]
35. Márquez C, Labbate M, Ingold AJ, Roy Chowdhury P, Ramírez MS, Centrón D, Borthagaray G, Stokes HW. 2008. Recovery of a functional class 2 integron from an Escherichia coli strain mediating a urinary tract infection. Antimicrob Agents Chemother 52:4153–4154. [PubMed][CrossRef]
36. Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238. [PubMed][CrossRef]
37. Johnson TJ, Siek KE, Johnson SJ, Nolan LK. 2005. DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrob Agents Chemother 49:4681–4688. [PubMed][CrossRef]
38. Johnson TJ, Jordan D, Kariyawasam S, Stell AL, Bell NP, Wannemuehler YM, Alcarón CF, Li G, Tivendale KA, Logue CM, Nolan LK. 2010. Sequence analysis and characterization of a transferrable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 78:1931–1942. [PubMed][CrossRef]
39. Ojo KK, Kehrenberg C, Schwarz S, Odelola HA. 2002. Identification of a complete dfrA14 gene cassette integrated at a secondary site in a resistance plasmid of uropathogenic Escherichia coli from Nigeria. Antimicrob Agents Chemother 46:2054–2055. [PubMed][CrossRef]
40. Ojo KK, Kehrenberg C, Odelola HA, Schwarz S. 2003. Structural analysis of the tetracycline resistance gene region of a small multiresistance plasmid from uropathogenic Escherichia coli in Nigeria. J Antimicrob Chemother 52:1043–1044. [PubMed][CrossRef]
41. Adeniyi BA, Amajoyi CC, Smith SI. 2006. Plasmid profiles of multidrug resistant local uropathogenic Escherichia coli, Klebsiella spp., Proteus spp., and Pseudomonas spp. isolates. J Biol Sci 6:527–531. [CrossRef]
42. Lina TT, Rahman SR, Gomes DJ. 2007. Multiple-antibiotic resistance mediated by plasmids and integrons in uropathogenic Escherichia coli and Klebsiella pneumoniae. Bangladesh J Microbiol 24:19–23.
43. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, Baquero F, Cantón R, Nordmann P. 2008. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 14:195–200. [PubMed][CrossRef]
44. Deschamps C, Clermont O, Hipeaux MC, Arlet G, Denamur E, Branger C. 2009. Multiple acquisitions of CTX-M plasmids in the rare D2 genotype of Escherichia coli provide evidence for convergent evolution. Microbiology 155:1656–1668. [PubMed][CrossRef]
45. Zhao WH, Hu ZQ. 2012. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit Rev Microbiol 39:79–101. [PubMed][CrossRef]
46. Ho PL, Lo WU, Yeung MK, Li Z, Chan J, Chow KH, Yam WC, Tong AH, Bao JY, Lin CH, Lok S, Chiu SS. 2012. Dissemination of pHK01-like incompatibility group IncFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet Microbiol 158:172–179. [PubMed][CrossRef]
47. Baral P, Neupane S, Marasini BP, Ghimire KR, Lekhak B, Shrestha B. 2012. High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal. BMC Res Notes 5:38. [PubMed][CrossRef]
48. Johnson TJ, Siek KE, Johnson SJ, Nolan LK. 2006. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol 188:745–758. [PubMed][CrossRef]
49. Johnson TJ, Johnson SJ, Nolan LK. 2006. Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. J Bacteriol 188:5975–5983. [PubMed][CrossRef]
50. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK. 2005. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 151:2097–2110. [PubMed][CrossRef]
51. Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C, Johnson JR, Kim KS, Spanjaard L, Nolan LK. 2008. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 74:7043–7050. [PubMed][CrossRef]
52. Skyberg JA, Johnson TJ, Johnson JR, Clabots C, Logue CM, Nolan LK. 2006. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun 74:6287–6292. [PubMed][CrossRef]
53. Johnson TJ, Logue CM, Wannemuehler Y, Kariyawasam S, Doetkott C, DebRoy C, White DG, Nolan LK. 2009. Examination of the source and extended virulence genotypes of Escherichia coli contaminating retail poultry meat. Foodborne Pathog Dis 6:657–667. [PubMed][CrossRef]
54. Manges AR, Johnson JR. 2012. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55:712–719. [PubMed][CrossRef]
55. Suhartono. 2010. Examination of uropathogenic Escherichia coli strains conferring large plasmids. Biodiversitas 11:59–64. [CrossRef]
56. Frost LS, Ippen-Ihler K, Skurray RA. 1994. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58:162–210. [PubMed]
57. Rijavec M, Starcic Erjavec M, Ambrozic Avgustin J, Reissbrodt R, Fruth A, Krizan-Hergouth V, Zgur-Bertok D. 2006. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups. Curr Microbiol 53:158–162. [PubMed][CrossRef]
58. Couturier M, Bex F, Bergquist PL, Maas WK. 1988. Identification and Classification of bacterial plasmids. Microbiol Rev 52:375–395. [PubMed]
59. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228. [PubMed][CrossRef]
60. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK. 2007. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73:1976–1983. [PubMed][CrossRef]
61. Johnson TJ, Logue CM, Johnson JR, Kuskowski MA, Sherwood JS, Barnes HJ, DebRoy C, Wannemuehler YM, Obata-Yasuoka M, Spanjaard L, Nolan LK. 2012. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog Dis 9:37–46. [PubMed][CrossRef]
62. van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. 2011. Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203. [PubMed][CrossRef]
63. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Rev Microbiol 8:251–259. [PubMed][CrossRef]
64. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P, Nicolle LE, Infectious Diseases Society of America. 2010. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection inadults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50:625–663. [PubMed][CrossRef]
65. Gupta A, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Nicolle LE, Raz R, Schaeffer AJ, Soper DE. 2011. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e120. [PubMed][CrossRef]
66. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE. 1999. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29:745–758. [PubMed][CrossRef]
67. Anon. 2011. Urinary tract infections - medications. http://www.umm.edu/patiented/articles/how_antibiotics_used_treating_urinary_tract_infections_000036_8.htm. Accessed 04/01/2015.
68. Huovinen P, Sundström L, Swedberg G, Sköld O. 1995. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 39:279–289. [PubMed][CrossRef]
69. Sköld O. 2000. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3:155–160. [PubMed][CrossRef]
70. Huovinen P. 2001. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32:1608–1614. [PubMed][CrossRef]
71. Bushby SR, Hitchings GH. 1968. Trimethoprim, a sulphonamide potentiator. Br J Pharmacol Chemother 33:72–90. [PubMed][CrossRef]
72. Sköld O. 2001. Resistance to trimethoprim and sulfonamides. Vet Res 32:261–273. [PubMed][CrossRef]
73. Santo E, Savador MM, Marin JM. 2007. Multidrug-resistant urinary tract isolates of Escherichia coli from Ribeirão Preto, São Paulo, Brazil. Braz J Infect Dis 11:575-578. [PubMed][CrossRef]
74. Guidoni EB, Berezin EN, Nigro S, Santiago NA, Benimi V, Toporovski J. 2008. Antibiotic resistance patterns of pediatric community-acquired urinary infections. Braz J Infect Dis 12:321–323. [CrossRef]
75. Anatoliotaki M, Galanakis E, Schinaki A, Stefanaki S, Mavrokosta M, Tsilimigaki A. 2007. Antimicrobial resistance of urinary tract pathogens in children in Crete, Greece. Scand J Infect Dis 39:671–675. [PubMed][CrossRef]
76. Nicolle LE. 2003. Urinary tract infection: traditional pharmacologic therapies. Dis Mon 49:111–128. [PubMed][CrossRef]
77. Matute AJ, Hak E, Schurink CA, McArthur A, Alonso E, Paniagua M, Van Asbeck E, Roskett AM, Froeling F, Rozenberg-Arsaka M, Hopelman IM. 2004. Resistance of uropathogens in symptomatic urinary tract infections in León, Nicaragua. Int J Antimicrob Agents 23:506–509. [PubMed][CrossRef]
78. Guneysel O, Onur O, Erdede M, Denizbasi A. 2009. Trimethoprim/sulfamethoxazole resistance in urinary tract infections. J Emerg Med 36:338–341. [PubMed][CrossRef]
79. Kurtaran B, Candevir A, Tasova Y, Kibar F, Inal AS, Komur S, Aksu HS. 2010. Antibiotic resistance in community-acquired urinary tract infections: prevalence and risk factors. Med Sci Monit 16:CR246–251. [PubMed]
80. Sanchez GV, Master RN, Karlowsky JA, Bordon JM. 2012. In vitro antimicrobial resistance of urinary Escherichia coli isolates among U.S. outpatients from 2000 to 2010. Antimicrob Agents Chemother 56:2181–2183. [PubMed][CrossRef]
81. Hooper DC, Wolfson JS. 1991. Fluoroquinolone antimicrobial agents. New Engl J Med 324:384–394. [PubMed][CrossRef]
82. Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microb Mol Biol Rev 61:377–392. [PubMed]
83. Poirel L, Cattoir V, Nordmann P. 2012. Plasmid-mediated quinolone resistance; interactions between human, animal and environmental ecologies. Front Microbiol 3:24. [PubMed][CrossRef]
84. Luzzaro F. 2008. Fluoroquinolones and Gram-negative bacteria: antimicrobial activity and mechanisms of resistance. Infez Med 16(Suppl 2): 5–11. [PubMed]
85. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. 2009. Plasmid-mediated quinolone resistance: A multifaceted Threat. Clin Microbiol Rev 22:664–689. [PubMed][CrossRef]
86. Robicsek A, Jacoby GA, Hooper DC. 2006. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640. [PubMed][CrossRef]
87. Martínez-Martínez L, Pascual A, García I, Tran J, Jacoby GA. 2003. Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother 51:1037–1039. [PubMed][CrossRef]
88. Cattoir V, Nordmann P. 2009. Plasmid-mediated quinolone resistance in Gram-negative bacterial species: An update. Curr Med Chem 16:1028–1046. [PubMed][CrossRef]
89. Zhao J, Chen Z, Chen SL, Deng Y, Liu Y, Tian W, Huang X, Wu C, Sun Y, Sun Y, Zeng Z, Liu JH. 2010. Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrob Agents Chemother 54:4219–4224. [PubMed][CrossRef]
90. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. 2009. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 53:3582–3584. [PubMed][CrossRef]
91. Andrade JM, Cairrão F, Arraiano CM. 2006. RNase R affects gene expression in stationary phase: regulation of ompA. Mol Microbiol 60:219–228. [PubMed][CrossRef]
92. Karaca Y, Coplu N, Gozalan A, Oncul O, Citil BE, Esen B. 2005. Co-trimoxazole and quinolone resistance in Escherichia coli isolated from urinary tract infections over the last 10 years. Int J Antimicrob Agents 26:75–77. [PubMed][CrossRef]
93. Fadda G, Nicoletti G, Schito GC, Tempera G. 2005. Antimicrobial susceptibility patterns of contemporary pathogens from uncomplicated urinary tract infections isolated in a multicenter italian survey: possible impact on guidelines. J Chemother 17:251–257. [PubMed][CrossRef]
94. Arslan H, Azap OK, Ergönül O, Timurkaynak F; Urinary Tract Infection Study Group. 2005. Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J Antimicrob Chemother 56:914–918. [PubMed][CrossRef]
95. Sire JM, Nabeth P, Perrier-Gros-Claude JD, Bahsoun I, Siby T, Macondo EA, Gaye-Diallo A, Guyomard S, Seck A, Breurec S, Garin B. 2007. Antimicrobial resistance in outpatient Escherichia coli urinary isolates in Dakar, Senegal. J Infect Dev Ctries 1:263–268. [PubMed]
96. Grude N, Strand L, Mykland H, Nowrouzian FL, Nyhus J, Jenkins A, Kristiansen BE. 2008. Fluoroquinolone-resistant uropathogenic Escherichia coli in Norway: evidence of clonal spread. Clin Microbiol Infect 14:498–500. [PubMed][CrossRef]
97. Khawcharoenporn T, Vasoo S, Ward E, Singh K. 2012. High rates of quinolone resistance among urinary tract infections in the ED. Am J Emerg Med 30:68–74. [PubMed][CrossRef]
98. Poole K. 2004. Resistance to β-lactam antibiotics Cell Mol Life Sci 61:2200–2223. [PubMed][CrossRef]
99. Dougherty TJ, Kennedy K, Kessler RE, Pucci MJ. 1996. Direct quantitation of the number of individual penicillin-binding proteins per cell in Escherichcia coli. J Bacteriol 178:6110–6115. [PubMed]
100. Wilke MS, Lovering AL, Strynadka NC. 2005. β-lactam antibiotic resistance: A current structural perspective. Curr Opin Microbiol 8:525–533. [PubMed][CrossRef]
101. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233. [PubMed][CrossRef]
102. Bush K. 2010. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13:558–564. [PubMed][CrossRef]
103. Paterson DL, Bonomo RA. 2005. Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev 18:657–686. [PubMed][CrossRef]
104. Ambler RP, Coulson AF, Frére JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG. 1991. A standard numbering scheme for the class A β-lactamases. Biochem J 276:269–270. [PubMed][CrossRef]
105. Paterson DL. 2006. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am J Med 119:S20–S28. [PubMed][CrossRef]
106. Meier S, Weber R, Zbinden R, Ruef C, Hasse B. 2011. Extended-spectrum β-lactamase-producing Gram-negative pathogens in community-acquired urinary tract infections: An increasing challenge for antimicrobial therapy. Infection 39:333–340. [PubMed][CrossRef]
107. Shigemura K, Tanaka K, Adachi M, Yamashita M, Arakawa S, Fujisawa M. 2011. Chronological change of antibiotic use and antibiotic resistance in Escherichia coli causing urinary tract infections. J Infect Chemother 17:646–651. [PubMed][CrossRef]
108. Taneja N, Rao P, Arora J, Dogra A. 2008. Occurrence of ESBL & Amp-C-beta-lactamases & susceptibility to newer antimicrobial agents in complicated UTI. Indian J Med Res 127:85–88. [PubMed]
109. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054. [PubMed][CrossRef]
110. Nordmann P, Poirel L, Walsh TR, Livermore DM. 2011. The emerging NDM carbapenemases. Trends Microbiol 19:588–595. [PubMed][CrossRef]
111. Rimrang B, Chanawong A, Lulitanond A, Wilailuckana C, Charoensri N, Sribenjalux P, Phumsrikaew W, Wonglakorn L, Kerdsin A, Chetchotisakd P. 2012. Emergence of NDM-1 and IMP-14a-producing Enterobacteriaceae in Thailand. J Antimicrob Chemother 67:2626–2630. [PubMed][CrossRef]
112. Williamson DA, Sidjabat HE, Freeman JT, Roberts SA, Silvey A, Woodhouse R, Mowat E, Dyet K, Paterson DL, Blackmore T, Burns A, Heffernan H. 2012. Identification and molecular characterization of New Delhi metallo-β-lactamase-1 (NDM-1) and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int J Antimicrob Agents 39:529–533. [PubMed][CrossRef]
113. El-Herte RI, Araj GF, Matar GM, Baroud M, Kanafani ZA, Kanj SS. 2012. Detection of carbapanem-resistant Escherichia coli and Klebsiella pneumoniae producing NDM-1 in Lebanon. J Infect Dev Ctries 6:457–461. [PubMed][CrossRef]
114. Nielsen JB, Hansen F, Littauer P, Schønning K, Hammerum AM. 2012. An NDM-1-producing Escherichia coli obtained in Denmark has a genetic profile similar to an NDM-1-producing E. coli isolate from the UK. J Antimicrob Chemother 67:2049–2051. [PubMed][CrossRef]
115. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. 2010. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect Dis 10:43–50. [PubMed][CrossRef]
116. Garau J. 2008. Other antimicrobials of interest in the era of extended-spectrum beta-lactamases: fosfomycin, nitrofurantoin, and tigecycline. Clin Microbiol Infect 14:S198–202. [PubMed][CrossRef]
117. Hames L, Rice CE. 2007. Antimicrobial resistance of urinary tract isolates in acute uncomplicated cystitis among college-aged women: choosing a first-line therapy. J Am Coll Health 56:153–156. [PubMed][CrossRef]
118. Hof H. 1988. Antimicrobial therapy with nitroheterocyclic compounds, for example, metronidazole and nitrofurantoin. Immun Infekt 16:220–225. [PubMed]
119. Sandegren L, Lindqvist A, Kahlmeter G, Andersson DI. 2008. Nitrofurantion resistance mechanism and fitness cost in Escherichia coli. J Antimicrob Chemother 62:495–503. [PubMed][CrossRef]
120. Breeze AS, Obaseiki-Ebor EE. 1983. Nitrofuran reducatase activity in nitrofurantion-resistant strains of Escherichia coli K12: some with chromosomally determined resistance and others carrying R-plasmids. J Antimicrob Chemother 12:543–547. [PubMed][CrossRef]
121. Breeze AS, Obaseiki-Ebor EE. 1983. Transferable nitrofuran resistance conferred by R-plasmids in clinical isolates of Escherihcia coli. J Antimicrob Chemother 12:459– 467. [PubMed][CrossRef]
122. McCalla DR, Kaiser C, Green MH. 1978. Genetics of nitrofurazone resistance in Escherichia coli. J Bacteriol 133:10–16. [PubMed]
123. McOsker CC, Fitzpatrick PM. 1994. Nitrofurantoin: mechanism of action and implications for resistance development in common uropathogens. J Antimicrob Chemother 33:23–30. [PubMed][CrossRef]
124. Maraki S, Mantadakis E, Michailidis L, Samonis G. 2012. Changing antibiotic susceptibiliites of community-acquired uropathogens in Greece, 2005–2010. J Microbiol Immunol Infect 46:202–209. [PubMed][CrossRef]
125. Kiffer CR, Mendes C, Oplustil CP, Sampaio JL. 2007. Antibiotic resistance and trend of urinary pathogens in general outpatients from a major urban city. Inter Braz J Urol 33:42–49. [PubMed][CrossRef]
126. Kahlmeter G. 2000. The ECO.SENS Project: A prospective, multinational, multicentre epidemiological survey of the prevalence and antimicrobial susceptibility of urinary tract pathogens - interim report. J Antimicrob Chemother 46:S15–22. [CrossRef]
127. Shrestha NK, Tomford JW. 2001. Fosfomycin: A review. Infect Dis Clin Pract 10:255–260. [CrossRef]
128. Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller TW, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S. 1969. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166:122–123. [PubMed][CrossRef]
129. Kahan FM, Kahan JS, Cassidy PJ, Kropp H. 1974. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 235:364–386. [PubMed][CrossRef]
130. Arca P, Rico M, Braña AF, Villar CJ, Hardisson C, Suárez JE. 1988. Formation of an adduct between fosfomycin and glutathione: A new mechanism of antibiotic resistance in bacteria. Antimicrob Agents Chemother 32:1552–1556. [PubMed][CrossRef]
131. Liu HY, Lin HC, Lin YC, Yu SH, Wu WH, Lee YJ. 2011. Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichai coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J Microbiol Immunol Infect 44:364–368. [PubMed][CrossRef]
132. Schito GC. 2003. Why fosfomycin trometamol as a first line therapy for uncomplicated UTI? Int J Antimicrob Agents 22:S79–S83. [PubMed][CrossRef]
133. Noor N, Ajaz M, Rasool SA, Pirzada ZA. 2004. Urinary tract infections associated with multidrug resistant enteric bacilli: characterizaton and genetical studies. Pak J Pharm Sci 17:115–123. [PubMed]
134. Nelson ML, Levy SB. 2011. The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32. [PubMed][CrossRef]
135. Speer BS, Shoemaker NB, Salyers AA. 1992. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 5:387–399. [PubMed]
136. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. [PubMed][CrossRef]
137. Schnappinger D, Hillen W. 1996. Tetracyclines: antibiotic action, uptake and resistance mechanisms. Arch Microbiol 165:359–369. [PubMed][CrossRef]
138. Nix DE, Matthias KR. 2010. Should tigecycline be considered for urinary tract infections? A pharmacokinetic re-evaluation. J Antimicrob Chemother 65:1311–1312. [PubMed][CrossRef]
139. Yang W, Moore IF, Koteva KP, Bareich DC, Hiughes DW, Wright GD. 2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279:52346–52352. [PubMed][CrossRef]
140. Levy SB, McMurray LM, Barbosa TM, Burdett V, Courvalin P, Hillen W, Roberts MC, Rood JI, Taylor DE. 1999. Nomenclature for new tetracycline resistance determinants. Antimicrob Agents Chemother 43:1523–1524. [PubMed]
141. Levy SB, McMurray LM, Roberts MC. 2005. Tet protein hybrids. Antimicrob Agents Chemother 49:3099. [PubMed][CrossRef]
142. Stanton TB, Humphrey SB, Scott KP, Flint HJ. 2005. Hybrid tet genes and tet gene nomenclature: request for opinion. Antimicrob Agents Chemother 49:1265–1266. [PubMed][CrossRef]
143. van Hoek AH, Mayrohfer S, Domig KJ, Flórez AB, Ammor MS, Mayo B, Aarts HJM. 2008. Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilium and Lactobacillus johnsonii. Antimicrob Agents Chemother 52:248–252. [PubMed][CrossRef]
144. Aboderin OA, Abdu AR, Odetoyin BW, Lamikanra A. 2009. Antimicrobial resistance in Escherichia coli strains from urinary tract infections. J Natl Med Assoc 101:1268–1273. [PubMed]
145. Okesola AO, Aroundegbe TI. 2011. Antibiotic resistance pattern of uropathogenic Escherichia coli in South West Nigeria. Afr J Med Med Sci 40:235–238. [PubMed]
146. Jana S, Deb JK. 2006. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 70:140–150. [PubMed][CrossRef]
147. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. 1999. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43:727–737. [PubMed]
148. Bader MS, Hawboldt J, Brooks A. 2010. Management of complicated urinary tract infections in the era of antimicrobial resistance. Postgrad Med 122:7–15. [PubMed][CrossRef]
149. Shakil S, Khan R, Zarrilli R, Khan AU. 2008. Aminoglycosides versus bacteria - a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15:5–14. [PubMed][CrossRef]
150. Davies J, Wright GD. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240. [PubMed][CrossRef]
151. Galimand M, Courvalin P, Lambert T. 2003. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47:2565–2571. [PubMed][CrossRef]
152. Galimand M, Sabtcheva S, Courvalin P, Lambert T. 2005. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother 49:2949–2953. [PubMed][CrossRef]
153. Courvalin P. 2008. New plasmid mediated resistances to antimicrobial agents. Ach Microbiol 189:289–291. [PubMed][CrossRef]
154. Doi Y, Wachino JI, Arakawa Y. 2008. Nomenclature of plasmid-mediated 16S rRNA methylases responsible for panaminoglycoside resistance. Antimicrob Agents Chemother 52:2287–2288. [PubMed][CrossRef]
155. Poole K. 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51. [PubMed][CrossRef]
156. Mohammad-Jafari H, Saffar MJ, Nemate I, Saffar H, Khalilian AR. 2012. Increasing antibiotic resistance among uropathogens isolated during years 2006-2009: impact on the empirical management. Inter Braz J Urol 38:25–32. [CrossRef]
157. Thabet L, Messadi AA, Meddeb B, Mbarek M, Turki A, Ben Redjeb S. 2010. Bacteriological profile of urinary tract infections in women in Aziza Othmana Hospital: 495 cases. Tunis Med 88:898–901. [PubMed]
158. Gad GF, Mohamed HA, Ashour HM. 2011. Aminoglycoside resistance rates, phenotypes, and mechanisms of Gram-negative bacteria from infected patients in Upper Egypt. PLoS One 6:e17224. doi:10.1371/journal.pone.0017224 [CrossRef]
159. Gupta A, Phung LT, Taylor DE, Silver S. 2001. Diversity of silver resistance genes in IncH incompatability group plasmids. Microbiology 147:3393–3402. [PubMed][CrossRef]
160. Silver S. 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. [PubMed][CrossRef]
161. Beattie M, Taylor J. 2011. Silver alloy vs. uncoated urinary catheters: A systematic review of the literature. J Clin Nurs 20:2098–2108. [PubMed][CrossRef]
162. Johnson JR, Kuskowski MA, Wilt TJ. 2006. Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med 144:116–126. [PubMed][CrossRef]
163. Johnson JR, Johnson BD, Kuskowski MA, Pitout J. 2010. In vitro activity of available antimicrobial coated Foley catheters against Escherichia coli, including strains resistant to extended spectrum cephalosporins. J Urol 184:2572–2577. [PubMed][CrossRef]
164. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD. 2004. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32:445–450. [PubMed][CrossRef]
165. Ejrnæs K. 2011. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull 58:B4187. [PubMed]
166. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. 2007. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228–3236. [PubMed][CrossRef]
167. Jayaraman R. 2009. Antibiotic resistance: An overview of mechanisms and a paradigm shift. Curr Sci 96:1475–1484.
168. Kunin CM. 2001. Nosocomial urinary tract infections and the indwelling catheter: what is new and what is true? Chest 120:10–12. [PubMed][CrossRef]
169. Maki DG, Tambyah PA. 2001. Engineering out the risk for infection with urinary catheters. Emerg Infect Dis 7:342–347. [PubMed][CrossRef]
170. Gilbert P, McBain AJ. 2003. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16:189–208. [PubMed][CrossRef]
microbiolspec.UTI-0007-2012.citations
cm/3/5
content/journal/microbiolspec/10.1128/microbiolspec.UTI-0007-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.UTI-0007-2012
2015-09-04
2017-11-22

Abstract:

Antimicrobial agents of various types have important bearing on the outcomes of microbial infections. These agents may be bacteriostatic or –cidal, exert their impact via various means, originate from a living organism or a laboratory, and appropriately be used in or on living tissue or not. Though the primary focus of this chapter is on resistance to the antimicrobial agents used to treat uropathogenic (UPEC)-caused urinary tract infections (UTIs), some attention will be given to UPEC’s resistance to silver-containing antiseptics, which may be incorporated into catheters to prevent foreign body-associated UTIs.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Circular genetic map of pAPEC-O2-ColV, drawn to scale. Arrows indicate predicted genes and their directions of transcription. Yellow arrows indicate virulence-associated genes. Blue arrows indicate genes involved in plasmid transfer and maintenance. Red arrows indicate genes involved in plasmid replication. Gray arrows indicate genes of unknown function. Black arrows indicate mobile genetic elements. Orange slashes indicate gaps in contiguous sequence that were unable to be resolved due to IS elements. Reprinted from the ( 48 ) with permission of the publisher. doi:10.1128/microbiolspec.UTI-0007-2012.f1

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0007-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Circular genetic map of pAPEC-O2-R. Coding regions are indicated by arrows pointing in the direction of transcription. Yellow arrows indicate coding regions involved in antimicrobial resistance, blue arrows indicate coding regions involved in replication, red and pink arrows indicate coding regions involved in plasmid transfer, brown arrows indicate coding regions involved in plasmid maintenance, green arrows indicate mobile elements, blue-gray arrows indicate conserved hypothetical proteins, and gray arrows indicate unknown hypothetical proteins. Reprinted from ( 37 ) with permission of the publisher. doi:10.1128/microbiolspec.UTI-0007-2012.f2

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0007-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Circular map of pAPEC-O103-ColBM. The outer two circles show predicted coding regions in forward and reverse orientations, and different colors indicate different predicted functions. The next circle shows the G_C content in a 1,000-bp window with 10-bp steps. The next five circles show levels of nucleotide homology with other sequenced ColV-type plasmids. Blue indicates >90% homology with pAPEC-O103-ColBM, while black indicates ≤90% homology. The numbers on these circles indicate comparisons with pAPEC-O2-ColV (circle 1), pAPEC-O1-ColBM (circle 2), pVM01 (circle 3), pCVM29188_146 (circle 4), and pSMS-3-5_130 (circle 5). Reprinted from ( 38 ) with permission of the publisher. doi:10.1128/microbiolspec.UTI-0007-2012.f3

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0007-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Mechanisms of action of antibacterial agents

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0007-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error