1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Uropathogenic -Associated Exotoxins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Rodney A. Welch1
  • Editors: Matthew A. Mulvey2, Ann E. Stapleton3, David J. Klumpp4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; 2: University of Utah, Salt Lake City, UT; 3: University of Washington, Seattle, WA; 4: Northwestern University, Chicago, IL
  • Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0011-2012
  • Received 17 August 2012 Accepted 23 July 2015 Published 10 June 2016
  • Rodney A. Welch, rawelch@wisc.edu
image of Uropathogenic <span class="jp-italic">Escherichia coli</span>-Associated Exotoxins
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Uropathogenic -Associated Exotoxins, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/UTI-0011-2012-1.gif /docserver/preview/fulltext/microbiolspec/4/3/UTI-0011-2012-2.gif
  • Abstract:

    are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.

  • Citation: Welch R. 2016. Uropathogenic -Associated Exotoxins. Microbiol Spectrum 4(3):UTI-0011-2012. doi:10.1128/microbiolspec.UTI-0011-2012.

Key Concept Ranking

Type III Secretion System
0.4241738
0.4241738

References

1. Lyon MW. 1917. A case of cystitis caused by Bacillus coli-hemolyticus. JAMA 69:353–358. [CrossRef]
2. Brooks HJ, O’Grady F, McSherry MA, Cattell WR. 1980. Uropathogenic properties of Escherichia coli in recurrent urinary-tract infection. J Med Microbiol 13:57–68. [PubMed][CrossRef]
3. Arthur M, Johnson CE, Rubin RH, Arbeit RD, Campanelli C, Kim C, Steinbach S, Agarwal M, Wilkinson R, Goldstein R. 1989. Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli. Infect Immun 57:303–313. [PubMed]
4. O’Hanley P, Low D, Romero I, Lark D, Vosti K, Falkow S, Schoolnik G. 1985. Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 313:414–420. [PubMed][CrossRef]
5. Ulleryd P, Lincoln K, Scheutz F, Sandberg T. 1994. Virulence characteristics of Escherichia coli in relation to host response in men with symptomatic urinary tract infection. Clin Infect Dis 18:579–584. [PubMed][CrossRef]
6. Cavalieri SJ, Bohach GA, Snyder IS. 1984. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev 48:326–343. [PubMed]
7. Felmlee T, Pellett S, Welch RA. 1985. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163:94–105. [PubMed]
8. Welch RA, Pellett S. 1988. Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol 170:1622–1630. [PubMed]
9. Welch RA, Falkow S. 1984. Characterization of Escherichia coli hemolysins conferring quantitative differences in virulence. Infect Immun 43:156–160. [PubMed]
10. Welch RA, Dellinger EP, Minshew B, Falkow S. 1981. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294:665–667. [PubMed][CrossRef]
11. Falkow S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–276. [PubMed][CrossRef]
12. Keane WF, Welch R, Gekker G, Peterson PK. 1987. Mechanism of Escherichia coli alpha-hemolysin-induced injury to isolated renal tubular cells. Am J Pathol 126:350–357. [PubMed]
13. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren JW. 1990. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58:1281–1289. [PubMed]
14. O’Hanley P, Lalonde G, Ji G. 1991. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect Immun 59:1153–1161. [PubMed]
15. Nagy G, Altenhoefer A, Knapp O, Maier E, Dobrindt U, Blum-Oehler G, Benz R, Emody L, Hacker J. 2006. Both alpha-haemolysin determinants contribute to full virulence of uropathogenic Escherichia coli strain 536. Microbes Infect 8:2006–2012. [PubMed][CrossRef]
16. Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, Welch RA. 2007. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75:278–289. [PubMed][CrossRef]
17. Smith YC, Rasmussen SB, Grande KK, Conran RM, O’Brien AD. 2008. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect Immun 76:2978–2990. [PubMed][CrossRef]
18. Elliott TS, Reed L, Slack RC, Bishop MC. 1985. Bacteriology and ultrastructure of the bladder in patients with urinary tract infections. J Infect 11:191–199. [CrossRef]
19. Welch RA, Forestier C, Lobo A, Pellett S, Thomas W Jr, Rowe G. 1992. The synthesis and function of the Escherichia coli hemolysin and related RTX exotoxins. FEMS Microbiol Immunol 5:29–36. [PubMed][CrossRef]
20. Welch RA, Bauer ME, Kent AD, Leeds JA, Moayeri M, Regassa LB, Swenson DL. 1995. Battling against host phagocytes: The wherefore of the RTX family of toxins? Infect Agents Dis 4:254–272. [PubMed]
21. Welch RA. 2001. RTX toxin structure and function: A story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257:85–111. [CrossRef]
22. Felmlee T, Pellett S, Lee EY, Welch RA. 1985. Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide. J Bacteriol 163:88–93. [PubMed]
23. Wandersman C, Delepelaire P. 1990. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87:4776–4780. [PubMed][CrossRef]
24. Welch RA. 1991. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5:521–528. [PubMed][CrossRef]
25. Gray L, Baker K, Kenny B, Mackman N, Haigh R, Holland IB. 1989. A novel C-terminal signal sequence targets Escherichia coli haemolysin directly to the medium. J Cell Sci Suppl 11:45–57. [PubMed][CrossRef]
26. Koronakis V, Koronakis E, Hughes C. 1989. Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J 8:595–605. [PubMed]
27. Shanthalingam S, Srikumaran S. 2009. Intact signal peptide of CD18, the beta-subunit of beta2-integrins, renders ruminants susceptible to Mannheimia haemolytica leukotoxin. Proc Natl Acad Sci U S A 106:15448–15453. [PubMed][CrossRef]
28. Morova J, Osicka R, Masin J, Sebo P. 2008. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A 105:5355–5360. [PubMed][CrossRef]
29. Lally ET, Kieba IR, Sato A, Green CL, Rosenbloom J, Korostoff J, Wang JF, Shenker BJ, Ortlepp S, Robinson MK, Billings PC. 1997. RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem 272:30463–30469. [PubMed][CrossRef]
30. Skals M, Jensen UB, Ousingsawat J, Kunzelmann K, Leipziger J, Praetorius HA. 2010. Escherichia coli alpha-hemolysin triggers shrinkage of erythrocytes via K(Ca)3.1 and TMEM16A channels with subsequent phosphatidylserine exposure. J Biol Chem 285:15557–15565. [PubMed][CrossRef]
31. Jorgensen SE, Mulcahy PF, Wu GK, Louis CF. 1983. Calcium accumulation in human and sheep erythrocytes that is induced by Escherichia coli hemolysin. Toxicon 21:717–727. [CrossRef]
32. Bhakdi S, Mackman N, Nicaud JM, Holland IB. 1986. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun 52:63–69. [PubMed]
33. Moayeri M, Welch RA. 1994. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun 62:4124–4134. [PubMed]
34. Skals M, Jorgensen NR, Leipziger J, Praetorius HA. 2009. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A 106:4030–4035. [PubMed][CrossRef]
35. Grimminger F, Scholz C, Bhakdi S, Seeger W. 1991. Subhemolytic doses of Escherichia coli hemolysin evoke large quantities of lipoxygenase products in human neutrophils. J Biol Chem 266:14262–14269. [PubMed]
36. Valeva A, Walev I, Kemmer H, Weis S, Siegel I, Boukhallouk F, Wassenaar TM, Chavakis T, Bhakdi S. 2005. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem 280:36657–36663. [PubMed][CrossRef]
37. Grimminger F, Rose F, Sibelius U, Meinhardt M, Pötzsch B, Spriestersbach R, Bhakdi S, Suttorp N, Seeger W. 1997. Human endothelial cell activation and mediator release in response to the bacterial exotoxins Escherichia coli hemolysin and staphylococcal alpha-toxin. J Immunol 159:1909–1916. [PubMed]
38. Månsson LE, Kjäll P, Pellett S, Nagy G, Welch RA, Bäckhed F, Frisan T, Richter-Dahlfors A. 2007. Role of the lipopolysaccharide-CD14 complex for the activity of hemolysin from uropathogenic Escherichia coli. Infect Immun 75:997–1004. [PubMed][CrossRef]
39. Wandersman C, Lćtoffć S. 1993. Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol 7:141–150. [PubMed][CrossRef]
40. Bauer ME, Welch RA. 1997. Pleiotropic effects of a mutation in rfaC on Escherichia coli hemolysin. Infect Immun 65:2218–2224. [PubMed]
41. Wiles TJ, Dhakal BK, Eto DS, Mulvey MA. 2008. Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell 19:1427–1438. [PubMed][CrossRef]
42. Dhakal BK, Mulvey MA. 2012. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11:58–69. [PubMed][CrossRef]
43. Billips BK, Forrestal SG, Rycyk MT, Johnson JR, Klumpp DJ, Schaeffer AJ. 2007. Modulation of host innate immune response in the bladder by uropathogenic Escherichia coli. Infect Immun 75:5353–5360. [PubMed][CrossRef]
44. Hunstad DA, Justice SS, Hung CS, Lauer SR, Hultgren SJ. 2005. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun 73:3999–4006. [PubMed][CrossRef]
45. Loughman JA, Hunstad DA. 2011. Attenuation of human neutrophil migration and function by uropathogenic bacteria. Microbes Infect 13:555–565. [PubMed][CrossRef]
46. Leeds JA, Welch RA. 1997. Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 179:3519–3527. [PubMed]
47. Rahn A, Whitfield C. 2003. Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 47:1045–1060. [PubMed][CrossRef]
48. Nagy G, Dobrindt U, Kupfer M, Emody L, Karch H, Hacker J. 2001. Expression of hemin receptor molecule ChuA is influenced by RfaH in uropathogenic Escherichia coli strain 536. Infect Immun 69:1924–1928. [PubMed][CrossRef]
49. Wang L, Jensen S, Hallman R, Reeves PR. 1998. Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 165:201–206. [PubMed][CrossRef]
50. Marolda CL, Valvano MA. 1998. Promoter region of the Escherichia coli O7-specific lipopolysaccharide gene cluster: structural and functional characterization of an upstream untranslated mRNA sequence. J Bacteriol 180:3070–3079. [PubMed]
51. Nagy G, Dobrindt U, Schneider G, Khan AS, Hacker J, Emody L. 2002. Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. Infect Immun 70:4406–4413. [PubMed][CrossRef]
52. Beloin C, Michaelis K, Lindner K, Landini P, Hacker J, Ghigo JM, Dobrindt U. 2006. The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli. J Bacteriol 188:1316–1331. [PubMed][CrossRef]
53. Anderson GG, Goller CC, Justice S, Hultgren SJ, Seed PC. 2010. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun 78:963–975. [PubMed][CrossRef]
54. Wright KJ, Seed PC, Hultgren SJ. 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230–2241. [PubMed][CrossRef]
55. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024. [PubMed][CrossRef]
56. Parham NJ, Pollard SJ, Chaudhuri RR, Beatson SA, Desvaux M, Russell MA, Ruiz J, Fivian A, Vila J, Henderson IR. 2005. Prevalence of pathogenicity island IICFT073 genes among extraintestinal clinical isolates of Escherichia coli. J Clin Microbiol 43:2425–2434. [PubMed][CrossRef]
57. Vigil PD, Stapleton AE, Johnson JR, Hooton TM, Hodges AP, He Y, Mobley HL. 2011. Presence of putative repeat-in-toxin gene tosA in Escherichia coli predicts successful colonization of the urinary tract. MBio 2:e00066-11. doi:10.1128/mBio.00066-11 [CrossRef]
58. Vigil PD, Wiles TJ, Engstrom MD, Prasov L, Mulvey MA, Mobley HL. 2012. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 80:493–505. [PubMed][CrossRef]
59. Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C. 1983. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39:1300–1306. [PubMed]
60. Caprioli A, Falbo V, Ruggeri FM, Baldassarri L, Bisicchia R, Ippolito G, Romoli E, Donelli G. 1987. Cytotoxic necrotizing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections. J Clin Microbiol 25:146–149. [PubMed]
61. Andreu A, Stapleton AE, Fennell C, Lockman HA, Xercavins M, Fernandez F, Stamm WE. 1997. Urovirulence determinants in Escherichia coli strains causing prostatitis. J Infect Dis 176:464–469. [PubMed][CrossRef]
62. Landraud L, Gibert M, Popoff MR, Boquet P, Gauthier M. 2003. Expression of cnf1 by Escherichia coli J96 involves a large upstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Mol Microbiol 47:1653–1667. [PubMed][CrossRef]
63. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P. 1997. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733. [PubMed][CrossRef]
64. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. 1997. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729. [PubMed][CrossRef]
65. Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M. 1997. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 24:1061–1070. [PubMed][CrossRef]
66. Knust Z, Blumenthal B, Aktories K, Schmidt G. 2009. Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity. Infect Immun 77:1835–1841. [PubMed][CrossRef]
67. Kim KJ, Chung JW, Kim KS. 2005. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280:1360–1368. [PubMed][CrossRef]
68. McNichol BA, Rasmussen SB, Carvalho HM, Meysick KC, O’Brien AD. 2007. Two domains of cytotoxic necrotizing factor type 1 bind the cellular receptor, laminin receptor precursor protein. Infect Immun 75:5095–5104. [PubMed][CrossRef]
69. Pei S, Doye A, Boquet P. 2001. Mutation of specific acidic residues of the CNF1 T domain into lysine alters cell membrane translocation of the toxin. Mol Microbiol 41:1237–1247. [PubMed][CrossRef]
70. Munro P, Flatau G, Doye A, Boyer L, Oregioni O, Mege JL, Landraud L, Lemichez E. 2004. Activation and proteasomal degradation of rho GTPases by cytotoxic necrotizing factor-1 elicit a controlled inflammatory response. J Biol Chem 279:35849–35857. [PubMed][CrossRef]
71. Hofman P, Le Negrate G, Mograbi B, Hofman V, Brest P, Alliana-Schmid A, Flatau G, Boquet P, Rossi B. 2000. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol 68:522–528. [PubMed]
72. Davis JM, Rasmussen SB, O’Brien AD. 2005. Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect Immun 73:5301–5310. [PubMed][CrossRef]
73. Falzano L, Fiorentini C, Donelli G, Michel E, Kocks C, Cossart P, Cabanié L, Oswald E, Boquet P. 1993. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol Microbiol 9:1247–1254. [PubMed][CrossRef]
74. Visvikis O, Boyer L, Torrino S, Doye A, Lemonnier M, Lorès P, Rolando M, Flatau G, Mettouchi A, Bouvard D, Veiga E, Gacon G, Cossart P, Lemichez E. 2011. Escherichia coli producing CNF1 toxin hijacks Tollip to trigger Rac1-dependent cell invasion. Traffic 12:579–590. [PubMed][CrossRef]
75. Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E. 2002. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564. [CrossRef]
76. Johnson DE, Drachenberg C, Lockatell CV, Island MD, Warren JW, Donnenberg MS. 2000. The role of cytotoxic necrotizing factor-1 in colonization and tissue injury in a murine model of urinary tract infection. FEMS Immunol Med Microbiol 28:37–41. [PubMed][CrossRef]
77. Rippere-Lampe KE, O’Brien AD, Conran R, Lockman HA. 2001. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1)) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69:3954–3964. [PubMed][CrossRef]
78. Real JM, Munro P, Buisson-Touati C, Lemichez E, Boquet P, Landraud L. 2007. Specificity of immunomodulator secretion in urinary samples in response to infection by alpha-hemolysin and CNF1 bearing uropathogenic Escherichia coli. Cytokine 37:22–25. [PubMed][CrossRef]
79. Boyer L, Magoc L, Dejardin S, Cappillino M, Paquette N, Hinault C, Charriere GM, Ip WK, Fracchia S, Hennessy E, Erturk-Hasdemir D, Reichhart JM, Silverman N, Lacy-Hulbert A, Stuart LM. 2011. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35:536–549. [PubMed][CrossRef]
80. Fabbri A, Travaglione S, Fiorentini C. 2010. Escherichia coli cytotoxic necrotizing factor 1 (CNF1): toxin biology, in vivo applications and therapeutic potential. Toxins (Basel) 2:283–296. [CrossRef]
81. Parham NJ, Pollard SJ, Desvaux M, Scott-Tucker A, Liu C, Fivian A, Henderson IR. 2005. Distribution of the serine protease autotransporters of the Enterobacteriaceae among extraintestinal clinical isolates of Escherichia coli. J Clin Microbiol 43:4076–4082. [PubMed][CrossRef]
82. Allsopp LP, Beloin C, Ulett GC, Valle J, Totsika M, Sherlock O, Ghigo JM, Schembri MA. 2012. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073. Infect Immun 80:321–332. [PubMed][CrossRef]
83. Henderson IR, Navarro-Garcia F, Nataro JP. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378. [CrossRef]
84. Dutta PR, Cappello R, Navarro-Garcia F, Nataro JP. 2002. Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect Immun 70:7105–7113. [PubMed][CrossRef]
85. Maroncle NM, Sivick KE, Brady R, Stokes FE, Mobley HL. 2006. Protease activity, secretion, cell entry, cytotoxicity, and cellular targets of secreted autotransporter toxin of uropathogenic Escherichia coli. Infect Immun 74:6124–6134. [PubMed][CrossRef]
86. Guyer DM, Henderson IR, Nataro JP, Mobley HL. 2000. Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38:53–66. [PubMed][CrossRef]
87. Guyer DM, Radulovic S, Jones FE, Mobley HL. 2002. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70:4539–4546. [PubMed][CrossRef]
88. Liévin-Le Moal V, Comenge Y, Ruby V, Amsellem R, Nicolas V, Servin AL. 2011. Secreted autotransporter toxin (Sat) triggers autophagy in epithelial cells that relies on cell detachment. Cell Microbiol 13:992–1013. [PubMed][CrossRef]
89. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. 1999. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 67:5587–5596. [PubMed]
90. Parreira VR, Gyles CL. 2003. A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect Immun 71:5087–5096. [CrossRef]
91. Ruiz-Perez F, Wahid R, Faherty CS, Kolappaswamy K, Rodriguez L, Santiago A, Murphy E, Cross A, Sztein MB, Nataro JP. 2011. Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci U S A 108:12881–12886. [PubMed][CrossRef]
92. Lloyd AL, Henderson TA, Vigil PD, Mobley HL. 2009. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191:3469–3481. [PubMed][CrossRef]
93. Smith MA, Weingarten RA, Russo LM, Ventura CL, O'Brien AD. 2015. Antibodies against hemolysin and cytotoxic necrotizing factor type 1 (CNF1) reduce bladder inflammation in a mouse model of urinary tract infection with toxigenic uropathogenic Escherichia coli. Infect Immun 83:1661–1673. [PubMed][CrossRef]
microbiolspec.UTI-0011-2012.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.UTI-0011-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.UTI-0011-2012
2016-06-10
2017-05-27

Abstract:

are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Prominent protein toxins of uropathogenic

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0011-2012

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error