1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Integrated Pathophysiology of Pyelonephritis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Ferdinand X. Choong1, Haris Antypas2, Agneta Richter-Dahlfors3
  • Editors: Matthew A. Mulvey4, Ann E. Stapleton5, David J. Klumpp6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden; 2: Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden; 3: Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden; 4: University of Utah, Salt Lake City, UT; 5: University of Washington, Seattle, WA; 6: Northwestern University, Chicago, IL
  • Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
  • Received 06 September 2012 Accepted 16 April 2015 Published 18 September 2015
  • Agneta Richter-Dahlfors, agneta.richter.dahlfors@ki.se
image of Integrated Pathophysiology of Pyelonephritis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Integrated Pathophysiology of Pyelonephritis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/5/UTI-0014-2012-1.gif /docserver/preview/fulltext/microbiolspec/3/5/UTI-0014-2012-2.gif
  • Abstract:

    Pyelonephritis represents a subset of urinary tract infections that occur from bacteria ascending from the lower to the upper reaches of the genitourinary system, such as the kidney. The renal system contains a range of hydrodynamically and immunologically challenging, interconnected microenvironments where the invading pathogen may populate during the course of the infection. The situation at the infection foci changes dynamically, vacillating between bacterial colonization and clearance, to which the outcome is a summation of all host-pathogen elements in play. A selection of important determinants includes factors of microbial origin, effects of eukaryotic cell signaling, physiological facets of the infected organ, and signals from distal organs. Improved understanding of the multifactorial aspects of molecular pathogenesis of infection requires intravital, cross-disciplinary approaches with high spatio-temporal resolution. The advancement of such approaches promises to eventually provide a comprehensive understanding of the integrated pathophysiology of pyelonephritis.

  • Citation: Choong F, Antypas H, Richter-Dahlfors A. 2015. Integrated Pathophysiology of Pyelonephritis. Microbiol Spectrum 3(5):UTI-0014-2012. doi:10.1128/microbiolspec.UTI-0014-2012.

Key Concept Ranking

Urinary Tract Infections
0.5689467
Type 1 Fimbriae
0.5547085
Bacterial Virulence Factors
0.48170587
Tumor Necrosis Factor
0.48164803
0.5689467

References

1. Bostwick DG (ed). 1999. Uropathology. Urologic Clinics of North America, vol 26(4):677–828. WB Saunders Co, Philadelphia, PA.
2. Vercellone A, Stratta P. 1990. Tubulo-interstitial nephropathies, p 197–205. In Amerio A, Coratelli P, Massry S (ed), Proceedings of the 4th Bari Seminar in Nephrology. Kluwer Academic Publishers, Boston, MA.
3. Ronald AR, Nicolle LE. 2002. Infections of the upper urinary tract, p 845–869. In Schrier RW (ed). Diseases of the Kidney and Urinary Tract, 7th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
4. Ifergan J, Pommier R, Brion MC, Glas L, Rocher L, Bellin MF. 2012. Imaging in upper urinary tract infections. Diagn Interv Imaging 93:509–519. [PubMed][CrossRef]
5. Eaton DC, Pooler JD, Vander AJ. 2009. Vander’s Renal Physiology, 7th ed. McGraw-Hill Medical, New York, NY.
6. Lote CJ. 2000. Glomerular filtration, p 34–36. In Principles of Renal Physiology. Kluwer Academic Publishers, Boston, MA. [CrossRef]
7. Koeppen BM, Stanton BA. 2007. Structure and function of the kidneys, p 228. In Renal Physiology 7th ed. Mosby Elsevier, Philadelphia, PA.
8. Koeppen BM. 1987. Electrophysiology of ion transport in renal tubule epithelia. Semin Nephrol 7:37–47. [PubMed]
9. Jackson G, Grieble HG. 1957. Pathogenesis of renal infection. AMA Arch Intern Med 100:692–700. [PubMed][CrossRef]
10. Finer G, Landau D. 2004. Pathogenesis of urinary tract infections with normal female anatomy. Lancet Infect Dis 4:631–635. [PubMed][CrossRef]
11. Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. 2000. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med 192:881–890. [PubMed][CrossRef]
12. Ronald AR, Nicolle LE. 2007. Infections of the upper urinary tract. In Schrier RW (ed), Diseases of the Kidney and Urinary Tract, 8th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
13. Foxman B. 2010. The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660. [PubMed][CrossRef]
14. Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA, Molitoris BA, Richter-Dahlfors A. 2011. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7:e1001298. doi:10.1371/journal.ppat.1001298 [CrossRef]
15. Melican K, Boekel J, Ryden-Aulin M, Richter-Dahlfors A. 2010. Novel innate immune functions revealed by dynamic, real-time live imaging of bacterial infections. Crit Rev Immunol 30:107–117. [PubMed][CrossRef]
16. Månsson LE, Melican K, Boekel J, Sandoval RM, Hautefort I, Tanner GA, Molitoris BA, Richter-Dahlfors A. 2007. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9:413–424. [PubMed][CrossRef]
17. Melican K, Boekel J, Mnsson L, Sandoval R, Tanner G, Kllskog P, Molitoris, B, Richter-Dahlfors, A. 2008. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 10:1987–1987. [PubMed][CrossRef]
18. Mobley HL5, Jarvis KG, Elwood JP, Whittle DI, Lockatell CV, Russell RG, Johnson DE, Donnenberg MS, Warren JW. 1993. Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: The role of alpha Gal(1-4) beta Gal binding in virulence of a wild-type strain. Mol Microbiol 10:143–155. [CrossRef]
19. Essig M, Friedlander G. 2003. Tubular shear stress and phenotype of renal proximal tubular cells. J Am Soc Nephrol 14(Suppl 1):S33–S35. [PubMed][CrossRef]
20. Wright KJ, Hultgren SJ. 2006. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol 1:75–87. [PubMed][CrossRef]
21. Donnenberg MS, Welch RA. 1996. Virulence determinants of uropathogenic Escherichia coli. In Mobley HLT, Warren JW (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, DC.
22. Edén CS, Hanson LA, Jodal U, Lindberg U, Akerlund AS. 1976. Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1:490–492. [PubMed]
23. Johnson JR. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128. [PubMed]
24. Lane MC, Mobley HL. 2007. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 72:19–25. [PubMed][CrossRef]
25. Plos K, Carter T, Hull S, Hull R, Svanborg Edén C. 1990. Frequency and organization of pap homologous DNA in relation to clinical origin of uropathogenic Escherichia coli. J Infect Dis 161:518–524. [PubMed][CrossRef]
26. Hagberg L, Hull R, Hull S, Falkow S, Freter R, Svanborg Edén C. 1983. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect Immun 40:265–272. [PubMed]
27. Roberts J A, Marklund B I, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Möllby R, Winberg J, Normark S. 1994. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci U S A 91:11889–11893. [PubMed][CrossRef]
28. Pratt LA, Kolter, R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293. [PubMed][CrossRef]
29. Schembri MA, Sokurenko EV, Klemm P. 2000. Functional flexibility of the FimH adhesin: insights from a random mutant library. Infect Immun 68:2638–2646. [PubMed][CrossRef]
30. Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE. 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141:645–655. [PubMed][CrossRef]
31. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923. [CrossRef]
32. Ronald LS, Yakovenko O, Yazvenko N, Chattopadhyay S, Aprikian P, Thomas WE, Sokurenko EV. 2008. Adaptive mutations in the signal peptide of the type 1 fimbrial adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 105:10937–10942. [PubMed][CrossRef]
33. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC, Johnson DE, Welch RA, Mobley HL. 2005. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73:7588–7596. [PubMed][CrossRef]
34. Holden NJ, Gally DL. 2004. Switches, cross-talk and memory in Escherichia coli adherence. J Med Microbiol 53:585–593. [PubMed][CrossRef]
35. Holden NJ, Uhlin BE, Gally DL. 2001. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 42:319–330. [PubMed][CrossRef]
36. Simms AN, Mobley HL. 2008. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect Immun 76:4833–4841. [PubMed][CrossRef]
37. Laestadius A, Richter-Dahlfors A, Aperia A. 2002. Dual effects of Escherichia coli alpha-hemolysin on rat renal proximal tubule cells. Kidney Int 62:2035–2042. [PubMed][CrossRef]
38. Trifillis AL, Donnenberg MS, Cui X, Russell RG, Utsalo SJ, Mobley HL, Warren JW. 1994. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int 46:1083–1091. [PubMed][CrossRef]
39. Cavalieri SJ, Snyder IS. 1982. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte viability in vitro. Infect Immun 36:455–461. [PubMed]
40. Uhlén P, Laestadius A, Jahnukainen T, Söderblom T, Bäckhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A. 2000. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405:694–697. [PubMed][CrossRef]
41. Uematsu S, Akira S. 2006. Toll-like receptors and innate immunity. J Mol Med (Berl) 84:712–725. [PubMed][CrossRef]
42. Bäckhed F, Söderhäll M, Ekman P, Normark S, Richter-Dahlfors A. 2001. Induction of innate immune responses by Escherichia coli and purified lipopolysaccharide correlate with organ- and cell-specific expression of Toll-like receptors within the human urinary tract. Cell Microbiol 3:153–158. [PubMed][CrossRef]
43. Bäckhed F, Normack S, Schweda EK, Oscarson S, Richtor-Dahlfors A. 2003. Structural requirements for TLR4-mediated LPS signalling: A biological role for LPS modifications. Microbes Infect 5:1057–1063. [PubMed][CrossRef]
44. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088. [PubMed][CrossRef]
45. Samuelsson P, Hang L, Wullt B, Irjala H, Svanborg C. 2004. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 72:3179–3186. [PubMed][CrossRef]
46. El-Achkar TM, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC. 2006. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290:F1034–F1043. [PubMed][CrossRef]
47. Dagher PC, Basile DP. 2008. An expanding role of Toll-like receptors in sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 294:F1048–F1049. [PubMed][CrossRef]
48. Ragnarsdóttir B,Fischer H, Godaly G, Grönberg-Hernandez J, Gustafsson M, Karpman D, Lundstedt AC, Lutay N, Rämisch S, Svensson ML, Wullt B, Yadav M, Svanborg C. 2008. TLR-and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur J Clin Invest 38(Suppl 2):12–20. [PubMed][CrossRef]
49. Ragnarsdóttir B, Samuelsson M, Gustafsson MC, Leijonhufvud I, Karpman D, Svanborg C. 2007. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 196:475–484. [PubMed][CrossRef]
50. Karoly E, Fekete A, Banki NF, Szebeni B, Vannay A, Szabo AJ, Tulassay T, Reusz GS. 2007. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res 61:371–374. [PubMed][CrossRef]
51. Andersen-Nissen E, Hawn TR, Smith KD, Nachman A, Lampano AE, Uematsu S, Akira S, Aderem A. 2007. Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178:4717–4720. [PubMed][CrossRef]
52. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. 2004. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526. [PubMed][CrossRef]
53. Heinzelmann M, Mercer-Jones MA, Passmore JC. 1999. Neutrophils and renal failure. Am J Kidney Dis 34:384–399. [PubMed][CrossRef]
54. Lundstedt AC, McCarthy S, Gustafsson MC, Godaly G, Jodal U, Karpman D, Leijonhufvud I, Lindén C, Martinell J, Ragnarsdottir B, Samuelsson M, Truedsson L, Andersson B, Svanborg C. 2007. A genetic basis of susceptibility to acute pyelonephritis. PloS One 2:e825. doi:10.1371/journal.pone.0000825 [PubMed][CrossRef]
55. Williams TW, Lyons JM, Braude AI. 1977. In vitro lysis of target cells by rat polymorphonuclear leukocytes isolated from acute pyelonephritic exudates. J Immunol 119:671–674. [PubMed]
56. Glauser MP, Lyons JM, Braude AI. 1978. Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. J Clin Invest 61:403–407. [PubMed][CrossRef]
57. Sullivan M, Harvey R, Shimamura T. 1977. The effects of cobra venom factor, an inhibitor of the complement system, on the sequence of morphological events in the rat kidney in experimental pyelonephritis. Yale J Biol Med 50:267–273. [PubMed]
58. Orskov I, Ferencz A, Orskov F. 1980. Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 1:887. [PubMed][CrossRef]
59. Dulawa J, Jann K, Thomsen M, Rambausek M, Ritz E. 1988. Tamm Horsfall glycoprotein interferes with bacterial adherence to human kidney cells. Eur J Clin Invest 18:87–91. [PubMed][CrossRef]
60. Zasloff M. 2007. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J Am Soc Nephrol 18:2810–2816. [PubMed][CrossRef]
61. Selsted ME, Ouellette AJ. 2005. Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557. [PubMed][CrossRef]
62. Lehrer RI. 2007. Multispecific myeloid defensins. Curr Opin Hematol 14:16–21. [PubMed][CrossRef]
63. Weichhart T, Haidinger M, Hörl WH, Säemann MD. 2008. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 38(Suppl 2):29–38. [PubMed][CrossRef]
64. Chromek M, Slamová Z, Bergman P, Kovács L, Podracká L, Ehrén I, Hökfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A. 2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641. [PubMed][CrossRef]
65. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. 1998. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214. [PubMed]
66. Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R. 1996. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332. [PubMed][CrossRef]
67. Schwartz N, Hosford M, Sandoval RM, Wagner MC, Atkinson SJ, Bamburg J, Molitoris BA. 1999. Ischemia activates actin depolymerizing factor: role in proximal tubule microvillar actin alterations. Am J Physiol 276:F544–F551. [PubMed]
68. Ashworth SL, Sandoval RM, Hosford M, Bamburg JR, Molitoris BA. 2001. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. Am J Physiol Renal Physiol 280:F886–F894. [PubMed]
69. Molitoris BA. 1991. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol 260:F769–F778. [PubMed][CrossRef]
70. Molitoris BA, Marrs J. 1999. The role of cell adhesion molecules in ischemic acute renal failure. Am J Med 106:583–592. [PubMed][CrossRef]
71. Goligorsky MS, Lieberthal W, Racusen L, Simon EE. 1993. Integrin receptors in renal tubular epithelium: new insights into pathophysiology of acute renal failure. Am J Physiol 264:F1–F8. [PubMed]
72. Anderson GG., Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. [PubMed][CrossRef]
73. Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. 2003. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46:1153–1160. [PubMed][CrossRef]
74. Dixon B. 2004. The role of microvascular thrombosis in sepsis. Anaesth Intensive Care 32:619–629. [PubMed]
75. Rose BD (ed). 1987. Tubulointestinal diseases. In Pathophysiology of Renal Disease, 2nd ed. McGraw-Hill, New York, NY.
76. Tanner GA. 1982. Nephron obstruction and tubuloglomerular feedback. Kidney Int Suppl 12:S213–S218. [PubMed]
77. Tanner GA. 1979. Effects of kidney tubule obstruction on glomerular function in rats. Am J Physiol 237:F379–F385. [PubMed]
78. Tanner GA, Knopp LC. 1986. Glomerular blood flow after single nephron obstruction in the rat kidney. Am J Physiol 250:F77–F85. [PubMed]
79. Tanner GA. 1985. Tubuloglomerular feedback after nephron or ureteral obstruction. Am J Physiol 248:F688–F697. [PubMed]
80. Tanner GA, Evan AP. 1989. Glomerular and proximal tubular morphology after single nephron obstruction. Kidney Int 36:1050–1060. [PubMed][CrossRef]
81. Ortiz PA. 2009. Toll-like receptor 4 (TLR-4) regulates renal ion transport. Am J Physiol Renal Physiol 297:F864–F865. [PubMed][CrossRef]
82. Good DW, George T, Watts BA III. 2009. Lipopolysaccharide directly alters renal tubule transport through distinct TLR4-dependent pathways in basolateral and apical membranes. Am J Physiol Renal Physiol 297:F866–F874. [PubMed][CrossRef]
83. Ren Y, Garvin JL, Liu R, Carretero OA. 2009. Cross-talk between arterioles and tubules in the kidney. Pediatr Nephrol 24:31–35. [PubMed][CrossRef]
84. Briggs JP, Schnermann J. 1987. The tubuloglomerular feedback mechanism: functional and biochemical aspects. Annu Rev Physiol 49:251–273. [PubMed][CrossRef]
85. Li X, Hassoun HT, Santora R, Rabb H. 2009. Organ crosstalk: The role of the kidney. Curr Opin Crit Care 15:481–487. [PubMed][CrossRef]
86. Boekel J, Källskog O, Rydén-Aulin M, Rhen M, Richter-Dahlfors A. 2011. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection. BMC Genomics 12:123. doi:10.1186/1471-2164-12-123 [CrossRef]
87. Yap SC, Lee HT. 2012. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology 116:1139–1148. [PubMed][CrossRef]
88. El-Achkar TM, Hosein M, Dagher PC. 2008. Pathways of renal injury in systemic gram-negative sepsis. Eur J Clin Invest 38(Suppl 2):39–44. [PubMed][CrossRef]
89. Jacobs R, Honore PM, Joannes-Boyau O, Boer W, De Regt J, De Waele E, Collin V, Spapen HD. 2011. Septic acute kidney injury: The culprit is inflammatory apoptosis rather than ischemic necrosis. Blood Purif 32:262–265. [PubMed][CrossRef]
90. Nash K, Hafeez A, Hou S. 2002. Hospital-acquired renal insufficiency. Am J Kidney Dis 39:930–936. [PubMed][CrossRef]
91. Kaufman J, Dhakal M, Patel B, Hamburger R. 1991. Community-acquired acute renal failure. Am J Kidney Dis 17:191–198. [PubMed][CrossRef]
92. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren JW. 1990. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58:1281–1289. [PubMed]
93. Roberts JA. 1983. Pathogenesis of pyelonephritis. J Urol 129:1102–1106. [PubMed]
94. Roberts JA, Roth JK Jr, Domingue G, Lewis RW, Kaack B, Baskin G. 1982. Immunology of pyelonephritis in the primate model. V. Effect of superoxide dismutase. J Urol 128:1394–1400. [PubMed]
95. Meylan PR, Markert M, Bille J, Glauser MP. 1989. Relationship between neutrophil-mediated oxidative injury during acute experimental pyelonephritis and chronic renal scarring. Infect Immun 57:2196–2202. [PubMed]
96. Kaack MB, Dowling KJ, Patterson GM, Roberts JA. 1986. Immunology of pyelonephritis. VIII. E. coli causes granulocytic aggregation and renal ischemia. J Urol 136:1117–1122. [PubMed]
97. Dagher PC. 2004. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int 66:506–509. [PubMed][CrossRef]
98. Klein CL, Hoke TS, Fang WF, Altmann CJ, Douglas IS, Faubel S. 2008. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int 74:901–909. [PubMed][CrossRef]
99. Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. 1999. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol 277:R922–R929. [PubMed]
100. Kielar ML, John R, Bennett M, Richardson J A, Shelton JM, Chen L, Jeyarajah DR, Zhou XJ, Zhou H, Chiquett B, Nagami GT, Lu CY. 2005. Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol 16:3315–3325. [PubMed][CrossRef]
101. Park SW, Chen SWC, Kim M, Brown KM, Kolls JK, D’Agati VD, Lee HT. 2011. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab Invest 91:63–84. [PubMed][CrossRef]
102. Cario E. 2005. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54:1182–1193. [PubMed][CrossRef]
103. Pabst R. 1987. The anatomical basis for the immune function of the gut. Anat Embryol (Berl) 176:135–144. [PubMed][CrossRef]
104. Park SW, Kim M, Kim JY, Ham A, Brown KM, Mori-Akiyama Y, Ouellette AJ, D’Agati VD, Lee HT. 2012. Paneth cell-mediated multiorgan dysfunction after acute kidney injury. J Immunol 189:5421–5433. [PubMed][CrossRef]
105. Blake P, Hasegawa Y, Khosla M C, Fouad-Tarazi F, Sakura N, Paganini EP. 1996. Isolation of “myocardial depressant factor(s)” from the ultrafiltrate of heart failure patients with acute renal failure. ASAIO J 42:M911–M915. [PubMed][CrossRef]
106. Wagenlehner, F. M. E., Weidner, W., Perletti, G., and Naber, K. G. 2010. Emerging drugs for bacterial urinary tract infections. Expert Opin Emerg Drugs 15:375–397. [PubMed][CrossRef]
107. Wagenlehner FM, Naber KG. 2006. Treatment of bacterial urinary tract infections: presence and future. Eur Urol 49:235–244. [PubMed][CrossRef]
108. Foo LY, Lu Y, Howell AB, Vorsa N. 2000. A-Type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J Nat Prod 63:1225–1228. [PubMed][CrossRef]
109. Foo LY, Lu Y, Howell AB, Vorsa N. 2000. The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54:173–181. [PubMed][CrossRef]
110. Zafriri D, Ofek I, Adar R, Pocino M, Sharon N. 1989. Inhibitory activity of cranberry juice on adherence of type 1 and type P fimbriated Escherichia coli to eucaryotic cells. Antimicrob Agents Chemother 33:92–98. [PubMed][CrossRef]
111. Bonventre JV, Zuk A. 2004. Ischemic acute renal failure: An inflammatory disease? Kidney Int 66:480–485. [PubMed][CrossRef]
112. Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA. 2003. Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198. [PubMed][CrossRef]
113. Evan AP, Tanner GA. 1986. Proximal tubule morphology after single nephron obstruction in the rat kidney. Kidney Int 30:818–827. [CrossRef]
114. Misseri R, Rink RC, Meldrum DR, Meldrum KK. 2004. Inflammatory mediators and growth factors in obstructive renal injury. J Surg Res 119:149–159. [PubMed][CrossRef]
115. Richter-Dahlfors A, Rhen M, Udekwu K. 2012. Tissue microbiology provides a coherent picture of infection. Curr Opin Microbiol 15:15–22. [PubMed][CrossRef]
116. Choong FX, Regberg J, Udekwu KI, Richter-Dahlfors A. 2012. Intravital models of infection lay the foundation for tissue microbiology. Future Microbiol 7:519–533. [PubMed][CrossRef]
microbiolspec.UTI-0014-2012.citations
cm/3/5
content/journal/microbiolspec/10.1128/microbiolspec.UTI-0014-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.UTI-0014-2012
2015-09-18
2017-04-23

Abstract:

Pyelonephritis represents a subset of urinary tract infections that occur from bacteria ascending from the lower to the upper reaches of the genitourinary system, such as the kidney. The renal system contains a range of hydrodynamically and immunologically challenging, interconnected microenvironments where the invading pathogen may populate during the course of the infection. The situation at the infection foci changes dynamically, vacillating between bacterial colonization and clearance, to which the outcome is a summation of all host-pathogen elements in play. A selection of important determinants includes factors of microbial origin, effects of eukaryotic cell signaling, physiological facets of the infected organ, and signals from distal organs. Improved understanding of the multifactorial aspects of molecular pathogenesis of infection requires intravital, cross-disciplinary approaches with high spatio-temporal resolution. The advancement of such approaches promises to eventually provide a comprehensive understanding of the integrated pathophysiology of pyelonephritis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The nephron. The nephron is the basic filtration unit of the kidney, composed of tubular and vascular elements. Arrows denote the direction of fluid flow. doi:10.1128/microbiolspec.UTI-0014-2012.f1

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Real-time, 2-photon microscopy of UPEC strain CFT073: GFP (LT004) infecting the proximal tubule. Epithelium of the infected tubule (blue) and blood flow (red) are outlined by fluorophore-labeled dextran. Micro-infused bacteria are visualized by genetically encoded GFP (green). Foci of infection 1 h post-infusion of LT004. Arrow points at bacteria adhering to the epithelium. Foci of infection 5 h post infusion. Massive green fluorescence indicates bacterial multiplication. Foci of infection 22 h post infusion. Lack of green fluorescence indicates clearance of bacteria. Non-infected renal tissue adjacent to the infection site shown in C. Scale bar = 30 µm. histological analysis of the foci of infection shown in C by confocal microscopy. Nuclear stain Hoechst 33342 (blue) and leukocyte marker α-CD18-Cy3 (red) have been added. Fluorophore-labeled dextran outlining the infected tubule is pseudocolored (yellow). Scale bar = 50 µm. Magnification of image E. The arrow highlights a neutrophil phagocytosing bacteria. Scale bar = 10 µm (From Månsson LE, 2007. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Reprinted from ( 16 ), with permission.) doi:10.1128/microbiolspec.UTI-0014-2012.f2

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Epithelial-barrier disruption and impaired renal filtration due to UPEC infection. Real-time 2-photon imaging of the foci of infection 4 h post-infusion of UPEC strain LT004. Images obtained 7, 20, and 80 s after intravenous bolus infusion of fluorophore-labeled 10 kilodalton (kDa) dextran are shown (red). In the non-infected nephron (upper part of figure), efficient filtration is observed as the tubular appearance of the bright-red fluorescence arising from the labeled dextran (20 s) is followed by an obvious drop in intensity (80 s). This indicates renal clearance. Renal obstruction of the infected nephron (lower part of figure) is observed as only limited fluorescent dextran enters the tubule. Epithelial-barrier function is destroyed in the infected tubule, as dextran is observed to enter the epithelial layer (arrowhead, 7 s), suggestive of epithelial and endothelial dysfunction. In contrast, the healthy epithelia in the non-infected nephron exclude the dextran (arrowhead, 20 s). Vascular clotting can also be observed in the vasculature next to the infected nephron (arrow, 20 s). (From Melican K, 2011. Uropathogenic P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. Reprinted from ( 14 ), with permission.) doi:10.1128/microbiolspec.UTI-0014-2012.f3

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Clot formation in mucosal infections. Real-time 2-photon imaging of a UPEC strain LT004 (green)-infected nephron (blue) shows platelets (arrow) in the form of black silhouettes surrounded by blood (red) within the peri-tubular vasculature, 2.5 h post-infection. Black masses adhered to the vessel wall (arrow head) suggest the presence of platelet aggregates. The high-intensity-red fluorescence indicates stagnant blood flow and a lack of red blood cell movement. Scale bar = 30 µm. (From Melican K, 2008. Bacterial infection-mediated mucosal signaling induces local renal ischemia as a defence against sepsis. Reprinted from ( 17 ), with permission.) doi:10.1128/microbiolspec.UTI-0014-2012.f4

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Pathophysiogram of pyelonephritis illustrates how the microenvironment of infected tissue changes dynamically during infection (upper panel), and the associated changes relevant for bacterial growth (lower panel). Axis of each plot represents the degree of intensity and/or involvement (arbitrary units) of each defined trait during the time course of the infection. doi:10.1128/microbiolspec.UTI-0014-2012.f5

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic representation of classical research disciplines that coalesce to form ‘tissue microbiology’, a recently proposed concept that integrates a range of disciplines and expertise. At the base of the pyramid are microbiology, which represents the study of microbial pathogens, and cellular biology, which focuses on the study of host cell types. Cellular microbiology was a discipline formed where microbiology and cellular biology overlapped. Coined in 1996, the approach was aimed at studying host–pathogen interactions using another’s perspectives, tools, and competences. Histology and physiology remained individual and required separate analysis. As knowledge and technological advancements make for unprecedented tools for intravital studies, tissue microbiology can now be established, advancing infection biology with an all-inclusive approach to generate an integrated view of the pathophysiology of infection. doi:10.1128/microbiolspec.UTI-0014-2012.f6

Source: microbiolspec September 2015 vol. 3 no. 5 doi:10.1128/microbiolspec.UTI-0014-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error