1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Ines Ambite1, Karoly Nagy2, Gabriela Godaly3, Manoj Puthia4, Björn Wullt5, Catharina Svanborg6
  • Editors: Matthew A. Mulvey7, Ann E. Stapleton8, David J. Klumpp9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, S-223 62, Sweden; 2: Department of Urology, South-Pest Hospital, Budapest 1204, Hungary; 3: Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, S-223 62, Sweden; 4: Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, S-223 62, Sweden; 5: Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, S-223 62, Sweden; 6: Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, S-223 62, Sweden; 7: University of Utah, Salt Lake City, UT; 8: University of Washington, Seattle, WA; 9: Northwestern University, Chicago, IL
  • Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0019-2014
  • Received 19 February 2014 Accepted 02 July 2015 Published 10 June 2016
  • Catharina Svanborg, catharina.svanborg@med.lu.se
image of Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/UTI-0019-2014-1.gif /docserver/preview/fulltext/microbiolspec/4/3/UTI-0019-2014-2.gif
  • Abstract:

    A paradigm shift is needed to improve and personalize the diagnosis of infectious disease and to select appropriate therapies. For many years, only the most severe and complicated bacterial infections received more detailed diagnostic and therapeutic attention as the efficiency of antibiotic therapy has guaranteed efficient treatment of patients suffering from the most common infections. Indeed, treatability almost became a rationale not to analyze bacterial and host parameters in these larger patient groups. Due to the rapid spread of antibiotic resistance, common infections like respiratory tract- or urinary-tract infections (UTIs) now pose new and significant therapeutic challenges. It is fortunate and timely that infectious disease research can offer such a wealth of new molecular information that is ready to use for the identification of susceptible patients and design of new suitable therapies. Paradoxically, the threat of antibiotic resistance may become a window of opportunity, by encouraging the implementation of new diagnostic and therapeutic approaches. The frequency of antibiotic resistance is rising rapidly in uropathogenic organisms and the molecular and genetic understanding of UTI susceptibility is quite advanced. More bold translation of the new molecular diagnostic and therapeutic tools would not just be possible but of great potential benefit in this patient group. This chapter reviews the molecular basis for susceptibility to UTI, including recent advances in genetics, and discusses the consequences for diagnosis and therapy. By dissecting the increasingly well-defined molecular interactions between bacteria and host and the molecular features of excessive bacterial virulence or host-response malfunction, it is becoming possible to isolate the defensive from the damaging aspects of the host response. Distinguishing “good” from “bad” inflammation has been a long-term quest of biomedical science and in UTI, patients need the “good” aspects of the inflammatory response to resist infection while avoiding the “bad” aspects, causing chronicity and tissue damage.

  • Citation: Ambite I, Nagy K, Godaly G, Puthia M, Wullt B, Svanborg C. 2016. Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response. Microbiol Spectrum 4(3):UTI-0019-2014. doi:10.1128/microbiolspec.UTI-0019-2014.

Key Concept Ranking

Bacterial Vaccines
0.59460485
Type 1 Fimbriae
0.5881812
RNA Polymerase II
0.5212766
0.59460485

References

1. Kunin CM. 1997. Urinary Tract Infections. Detection, Prevention and Management, 5th ed. Williams & Wilkins, Baltimore, MD.
2. Nielubowicz GR, Mobley HL. 2010. Host-pathogen interactions in urinary tract infection. Nat Rev Urol 7:430–441. [PubMed][CrossRef]
3. Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. 2011. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 8:449–468. [PubMed][CrossRef]
4. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. 2012. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36:616–648. [PubMed][CrossRef]
5. Abraham SN, St John AL. 2010. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452. [PubMed][CrossRef]
6. Svanborg C, Edén CS, Hanson LA, Jodal U, Lindberg U, Akerlund AS. 1976. Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1:490–492. [CrossRef]
7. Leffler H, Edén C. 1980. Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes. FEMS Microbiol Lett 8:127–134. [CrossRef]
8. Hedlund M, Svensson M, Nilsson A, Duan RD, Svanborg C. 1996. Role of the ceramide-signaling pathway in cytokine responses to P-fimbriated Escherichia coli. J Exp Med 183:1037–1044. [PubMed][CrossRef]
9. Fischer H, Lutay N, Ragnarsdóttir B, Yadav M, Jönsson K, Urbano A, Al Hadad A, Rämisch S, Storm P, Dobrindt U, Salvador E, Karpman D, Jodal U, Svanborg C. 2010. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog 6:e1001109. doi:10.1371/journal.ppat.1001109 [CrossRef]
10. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T. 2008. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14:399–406. [PubMed][CrossRef]
11. Agace WW, Hedges SR, Ceska M, Svanborg C. 1993. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J Clin Invest 92:780–785. [PubMed][CrossRef]
12. Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. 2000. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med 192:881–890. [PubMed][CrossRef]
13. Lundstedt AC, McCarthy S, Gustafsson MC, Godaly G, Jodal U, Karpman D, Leijonhufvud I, Lindén C, Martinell J, Ragnarsdottir B, Samuelsson M, Truedsson L, Andersson B, Svanborg C. 2007. A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2:e825. doi:10.1371/journal.pone.0000825 [CrossRef]
14. Artifoni L, Negrisolo S, Montini G, Zucchetta P, Molinari PP, Cassar W, Destro R, Anglani F, Rigamonti W, Zacchello G, Murer L. 2007. Interleukin-8 and CXCR1 receptor functional polymorphisms and susceptibility to acute pyelonephritis. J Urol 177:1102–1106. [PubMed][CrossRef]
15. Ragnarsdóttir B, Jonsson K, Urbano A, Grönberg-Hernandez J, Lutay N, Tammi M, Gustafsson M, Lundstedt AC, Leijonhufvud I, Karpman D, Wullt B, Truedsson L, Jodal U, Andersson B, Svanborg C. 2010. Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS One 5:e10734. doi:10.1371/journal.pone.0010734 [CrossRef]
16. Hussein A, Askar E, Elsaeid M, Schaefer F. 2010. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant 25:779–785. [PubMed][CrossRef]
17. Centi S, Negrisolo S, Stefanic A, Benetti E, Cassar W, Da Dalt L, Rigamonti W, Zucchetta P, Montini G, Murer L, Artifoni L. 2010. Upper urinary tract infections are associated with RANTES promoter polymorphism. J Pediatr 157:1038–1040 e1.
18. Sundén F, Håkansson L, Ljunggren E, Wullt B. 2006. Bacterial interference—is deliberate colonization with Escherichia coli 83972 an alternative treatment for patients with recurrent urinary tract infection? Int J Antimicrob Agents 28:S26–29. [PubMed][CrossRef]
19. Zdziarski J, Svanborg C, Wullt B, Hacker J, Dobrindt U. 2008. Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect Immun 76:695–703. [PubMed][CrossRef]
20. Klemm P, Roos V, Ulett GC, Svanborg C, Schembri MA. 2006. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect Immun 74:781–785. [PubMed][CrossRef]
21. Zdziarski J, Brzuszkiewicz E, Wullt B, Liesegang H, Biran D, Voigt B, Grönberg-Hernandez J, Ragnarsdottir B, Hecker M, Ron EZ, Daniel R, Gottschalk G, Hacker J, Svanborg C, Dobrindt U. 2010. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients. PLoS Pathog 6:e1001078. doi:10.1371/journal.ppat.1001078 [CrossRef]
22. Lutay N, Ambite I, Grönberg-Hernandez JG, Rydström G, Ragnarsdóttir B, Puthia M, Nadeem A, Zhang J, Storm P, Dobrindt U, Wullt B, Svanborg C. 2013. Bacterial control of host gene expression through RNA polymerase II. J Clin Invest 123:2366–2379. [PubMed][CrossRef]
23. Ragnarsdóttir B, Samuelsson M, Gustafsson MC, Leijonhufvud I, Karpman D, Svanborg C. 2007. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis 196:475–484. [PubMed][CrossRef]
24. Backhed F, Meijer L, Normark S, Richter-Dahlfors A. 2002. TLR4-dependent recognition of lipopolysaccharide by epithelial cells requires sCD14. Cell Microbiol 4:493–501. [PubMed][CrossRef]
25. Samuelsson P, Hang L, Wullt B, Irjala H, Svanborg C. 2004. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun 72:3179–3186. [PubMed][CrossRef]
26. Hagberg L, Hull R, Hull S, McGhee JR, Michalek SM, Svanborg Eden C. 1984. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 46:839–844. [PubMed]
27. Hagberg L, Briles DE, Svanborg-Edén CS. 1985. Evidence for separate genetic defects in C3H/HeJ and C3HeB/FeJ mice, that affect susceptibility to gram-negative infections. J Immunol 134:4118–4122. [PubMed]
28. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088. [PubMed][CrossRef]
29. Shahin RD, Engberg I, Hagberg L, Svanborg Edén C. 1987. Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local gram-negative infection. J Immunol 138:3475–3480. [PubMed]
30. Hopkins WJ, Gendron-Fitzpatrick A, Balish E, Uehling DT. 1998. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect Immun 66:2798–2802. [PubMed]
31. Frendéus B, Wachtler C, Hedlund M, Fischer H, Samuelsson P, Svensson M, Svanborg C. 2001. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 40:37–51. [PubMed][CrossRef]
32. Hedlund M, Frendéus B, Wachtler C, Hang L, Fischer H, Svanborg C. 2001. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol Microbiol 39:542–552. [PubMed][CrossRef]
33. Schilling JD, Martin SM, Hung CS, Lorenz RG, Hultgren SJ. 2003. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 100:4203–4208. [PubMed][CrossRef]
34. Hang L, Frendeus B, Godaly G, Svanborg C. 2000. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis 182:1738–1748. [PubMed][CrossRef]
35. Svensson M, Irjala H, Alm P, Holmqvist B, Lundstedt AC, Svanborg C. 2005. Natural history of renal scarring in susceptible mIL-8Rh-/- mice. Kidney Int 67:103–110. [PubMed][CrossRef]
36. Fischer H, Yamamoto M, Akira S, Beutler B, Svanborg C. 2006. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol 36:267–277. [PubMed][CrossRef]
37. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. 2007. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124. [PubMed][CrossRef]
38. Kawai T, Akira S. 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337. [PubMed][CrossRef]
39. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. 2007. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–917. [PubMed][CrossRef]
40. Gay NJ, Gangloff M. 2008. Structure of toll-like receptors. Handb Exp Pharmacol 183:181–200. [PubMed][CrossRef]
41. Anderson KV, Jürgens G, Nusslein-Volhard C. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789. [CrossRef]
42. Dunne A, Ejdeback M, Ludidi PL, O’Neill LA, Gay NJ. 2003. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 278:41443–41451. [PubMed][CrossRef]
43. Sheedy FJ, O’Neill LA. 2007. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol 82:196–203. [PubMed][CrossRef]
44. Poltorak A, Smirnova I, He X, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EK, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B. 1998. Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355. [PubMed][CrossRef]
45. Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, Dower SK. 2000. Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem 275:4670–4678. [PubMed][CrossRef]
46. Ozinsky A, Smith KD, Hume D, Underhill DM. 2000. Co-operative induction of pro-inflammatory signaling by Toll-like receptors. J Endotoxin Res 6:393–396. [PubMed][CrossRef]
47. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S. 2002. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672. [PubMed][CrossRef]
48. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748. [PubMed][CrossRef]
49. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT. 2003. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055. [PubMed][CrossRef]
50. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA. 2000. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167. [PubMed][CrossRef]
51. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J. 1998. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273:12203–12209. [PubMed][CrossRef]
52. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122. [CrossRef]
53. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78–83. [PubMed][CrossRef]
54. Horng T, Barton GM, Medzhitov R. 2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2:835–841. [PubMed][CrossRef]
55. Kagan JC, Medzhitov R. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125:943–955. [PubMed][CrossRef]
56. Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O’Neill LA. 2006. MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 281:10489–10495. [PubMed][CrossRef]
57. Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. 2003. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett 548:103–107. [CrossRef]
58. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. [PubMed][CrossRef]
59. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101:1333–1338. [PubMed][CrossRef]
60. Wright KJ, Seed PC, Hultgren SJ. 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230–2241. [PubMed][CrossRef]
61. Yadav M, Zhang J, Fischer H, Huang W, Lutay N, Cirl C, Lum J, Miethke T, Svanborg C. 2010. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog 6:e1001120. doi:10.1371/journal.ppat.1001120 [CrossRef]
62. Leffler H, Svanborg-Edén C. 1981. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 34:920–929. [PubMed]
63. Plos K, Connell H, Jodal U, Marklund B, Mårild S, Wettergren B, Svanborg C. 1995. Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children. J Infect Dis 171:625–631. [PubMed][CrossRef]
64. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Möllby R, Winberg J, Normark S. 1994. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci U S A 91:11889–11893. [PubMed][CrossRef]
65. Lindberg F, Lund B, Johansson L, Normark S. 1987. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328:84–87. [PubMed][CrossRef]
66. Linder H, Engberg I, Hoschültzky H, Mattsby-Baltzer I, Svanborg C. 1991. Adhesion-dependent activation of mucosal interleukin-6 production. Infect Immun 59:4357–4362. [PubMed]
67. Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C. 2004. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189:1734–1742. [PubMed][CrossRef]
68. Ambite I, Lutay N, Godaly G, Svanborg C. 2015. Urinary tract infections and the mucosal immune system, p 2039–2058. In Mestecky J, Strober W, Russell MW, Cheroutre H, Lambrecht BN, Kelsall BL (ed), Mucosal Immunology, 4th ed. Academic Press, Boston. [CrossRef]
69. Hannun YA, Obeid LM. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150. [PubMed][CrossRef]
70. Hedlund M, Duan RD, Nilsson Å, Svanborg C. 1998. Sphingomyelin, glycosphingolipids and ceramide signalling in cells exposed to P fimbriated Escherichia coli. Mol Microbiol 29:1297–1306. [PubMed][CrossRef]
71. Fischer H, Ellström P, Ekström K, Gustafsson L, Gustafsson M, Svanborg C. 2007. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 9:1239–1251. [PubMed][CrossRef]
72. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150. [PubMed][CrossRef]
73. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310. [PubMed][CrossRef]
74. Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O’Neill LA, Fitzgerald KA, Golenbock DT. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci U S A 103:6299–6304. [PubMed][CrossRef]
75. McGettrick AF, Brint EK, Palsson-McDermott EM, Rowe DC, Golenbock DT, Gay NJ, Fitzgerald KA, O’Neill LA. 2006. Trif-related adapter molecule is phosphorylated by PKC{epsilon} during Toll-like receptor 4 signaling. Proc Natl Acad Sci U S A 103:9196–9201. [PubMed][CrossRef]
76. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208–211. [PubMed][CrossRef]
77. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5:1061–1068. [PubMed][CrossRef]
78. Agace W, Hedges S, Andersson U, Andersson J, Ceska M, Svanborg C. 1993. Selective cytokine production by epithelial cells following exposure to Escherichia coli. Infect Immun 61:602–609. [PubMed]
79. Svensson M, Irjala H, Svanborg C, Godaly G. 2008. Effects of epithelial and neutrophil CXCR2 on innate immunity and resistance to kidney infection. Kidney Int 74:81–90. [PubMed][CrossRef]
80. Wold AE, Mestecky J, Tomana M, Kobata A, Ohbayashi H, Endo T, Edén CS. 1990. Secretory immunoglobulin-A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 58:3073–3077. [PubMed]
81. Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE. 2006. Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281:14644–14653. [PubMed][CrossRef]
82. Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. 1999. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci U S A 96:8110–8115. [PubMed][CrossRef]
83. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. 2007. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3:e100. doi:10.1371/journal.ppat.0030100 [CrossRef]
84. Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930. [PubMed][CrossRef]
85. Baorto DM, Gao Z, Malaviya R, Dustin ML, van der Merwe A, Lublin DM, Abraham SN. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389:636–639. [PubMed][CrossRef]
86. Shin JS, Gao Z, Abraham SN. 1999. Bacteria-host cell interaction mediated by cellular cholesterol/glycolipid-enriched microdomains. Biosci Rep 19:421–432. [PubMed][CrossRef]
87. Shin JS, Gao Z, Abraham SN. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:785–788. [PubMed][CrossRef]
88. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. 2005. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 5:505–515. [PubMed][CrossRef]
89. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579. [PubMed][CrossRef]
90. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. 2007. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Mede 4:e329. doi:10.1371/journal.pmed.0040329 [CrossRef]
91. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497. [PubMed][CrossRef]
92. Klumpp DJ, Rycyk MT, Chen MC, Thumbikat P, Sengupta S, Schaeffer AJ. 2006. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect Immun 74:5106–5113. [PubMed][CrossRef]
93. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ. 2009. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415. doi:10.1371/journal.ppat.10000415
94. Bishop BL, Duncan MJ, Song J, Li G, Zaas D, Abraham SN. 2007. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med 13:625–630. [PubMed][CrossRef]
95. Thankavel K, Madison B, Ikeda T, Malaviya R, Shah AH, Arumugam PM, Abraham SN. 1997. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J Clin Invest 100:1123–1136. [PubMed][CrossRef]
96. Schilling JD, Mulvey MA, Vincent CD, Lorenz RG, Hultgren SJ. 2001. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166:1148–1155. [PubMed][CrossRef]
97. Song J, Bishop BL, Li G, Duncan MJ, Abraham SN. 2007. TLR4-initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1:287–298. [PubMed][CrossRef]
98. Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A, Abraham SN. 2007. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog 3:e60. doi:10.1371/journal.ppat.0030060
99. Bergsten G, Wullt B, Schembri MA, Leijonhufvud I, Svanborg C. 2007. Do type 1 fimbriae promote inflammation in the human urinary tract? Cell Microbiol 9:1766–1781. [PubMed][CrossRef]
100. Connell I, Agace W, Klemm P, Schembri M, Mărild S, Svanborg C. 1996. Type 1 fimbrial adhesion enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832. [PubMed][CrossRef]
101. Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669–16674. [PubMed][CrossRef]
102. Allsopp LP, Beloin C, Moriel DG, Totsika M, Ghigo JM, Schembri MA. 2012. Functional heterogeneity of the UpaH autotransporter protein from uropathogenic Escherichia coli. J Bacteriol 194:5769–5782. [PubMed][CrossRef]
103. Holden N, Totsika M, Dixon L, Catherwood K, Gally DL. 2007. Regulation of P-fimbrial phase variation frequencies in Escherichia coli CFT073. Infect Immun 75:3325–3334. [PubMed][CrossRef]
104. Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, De Voss JJ, Schembri MA. 2012. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun 80:333–344. [PubMed][CrossRef]
105. Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. 2012. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 8:731–736. [PubMed][CrossRef]
106. Kai-Larsen Y, Lüthje P, Chromek M, Peters V, Wang X, Holm A, Kádas L, Hedlund KO, Johansson J, Chapman MR, Jacobson SH, Römling U, Agerberth B, Brauner A. 2010. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6:e1001010. doi:10.1371/journal.ppat.1001010 [CrossRef]
107. Vigil PD, Wiles TJ, Engstrom MD, Prasov L, Mulvey MA, Mobley HL. 2012. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 80:493–505. [PubMed][CrossRef]
108. Alteri CJ, Smith SN, Mobley HL. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448. doi:10.1371/journal.ppat.1000448 [CrossRef]
109. Norton JP, Mulvey MA. 2012. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8:e1002954. doi:10.1371/journal.ppat.1002954
110. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103. [PubMed][CrossRef]
111. Andersen-Nissen E, Hawn TR, Smith KD, Nachman A, Lampano AE, Uematsu S, Akira S, Aderem A. 2007. Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J Immunol 178:4717–4720. [PubMed][CrossRef]
112. Tükel C, Nishimori JH, Wilson RP, Winter MG, Keestra AM, van Putten JP, Bäumler AJ. 2010. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 12:1495–1505. [PubMed][CrossRef]
113. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P. 1997. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733. [PubMed][CrossRef]
114. Guyer DM, Radulovic S, Jones FE, Mobley HL. 2002. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70:4539–4546. [PubMed][CrossRef]
115. de Man P, van Kooten C, Aarden L, Engberg I, Linder H, Svanborg Edén C. 1989. Interleukin-6 induced at mucosal surfaces by gram-negative bacterial infection. Infect Immun 57:3383–3388. [PubMed]
116. Hedges S, Svensson M, Svanborg C. 1992. Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro. Infect Immun 60:1295–1301. [PubMed]
117. Godaly G, Bergsten G, Hang L, Fischer H, Frendéus B, Lundstedt AC, Samuelsson M, Samuelsson P, Svanborg C. 2001. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 69:899–906. [PubMed]
118. Baggiolini M, Walz A, Kunkel SL. 1989. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84:1045–1049. [PubMed][CrossRef]
119. Godaly G, Proudfoot AE, Offord RE, Svanborg C, Agace WW. 1997. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect Immun 65:3451–3456. [PubMed]
120. Godaly G, Hang L, Frendéus B, Svanborg C. 2000. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol 165:5287–5294. [PubMed][CrossRef]
121. Olszyna DP, Prins JM, Dekkers PE, De Jonge E, Speelman P, Van Deventer SJ, Van Der Poll T. 1999. Sequential measurements of chemokines in urosepsis and experimental endotoxemia. J Clin Immunol 19:399–405. [PubMed][CrossRef]
122. Otto G, Burdick M, Strieter R, Godaly G. 2005. Chemokine response to febrile urinary tract infection. Kidney Int 68:62–70. [PubMed][CrossRef]
123. Godaly G, Svanborg C. 2007. Urinary tract infections revisited. Kidney Int 71:721–723. [PubMed][CrossRef]
124. Arana L, Ordoñez M, Ouro A, Rivera IG, Gangoiti P, Trueba M, Gomez-Muñoz A. 2013. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab 304:E1213–1226. [PubMed][CrossRef]
125. Chowdhury P, Sacks SH, Sheerin NS. 2004. Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney Int 66:1334–1344. [PubMed][CrossRef]
126. Weichhart T, Haidinger M, Hörl WH, Säemann MD. 2008. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 38(Suppl 2):29–38. [PubMed][CrossRef]
127. Hedges S, Linder H, de Man P, Svanborg Edén C. 1990. Ciclosporin-dependent, nu-independent, mucosal interleukin 6 response to gram-negative bacteria. Scand J Immunol 31:335–343. [PubMed][CrossRef]
128. Wullt B, Bergsten G, Connell H, Röllano P, Gebratsedik N, Hang L, Svanborg C. 2001. P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell Microbiol 3:255–264. [PubMed][CrossRef]
129. Godaly G, Frendéus B, Proudfoot A, Svensson M, Klemm P, Svanborg C. 1998. Role of fimbriae-mediated adherence for neutrophil migration across Escherichia coli -infected epithelial cell layers. Mol Microb 30:725–735. [CrossRef]
130. Murphy PM. 1997. Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin Hematol 34:311–318. [PubMed]
131. Ragnarsdóttir B, Fischer H, Godaly G, Grönberg-Hernandez J, Gustafsson M, Karpman D, Lundstedt AC, Lutay N, Rämisch S, Svensson ML, Wullt B, Yadav M, Svanborg C. 2008. TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur J Clin Invest 38(Suppl 2):12–20. [PubMed][CrossRef]
132. Bozic CR, Kolakowski LF Jr, Gerard NP, Garcia-Rodriguez C, von Uexkull-Guldenband C, Conklyn MJ, Breslow R, Showell HJ, Gerard C. 1995. Expression and biologic characterization of the murine chemokine KC. J Immunol 154:6048–6057. [PubMed]
133. Tekamp-Olson P, Gallegos C, Bauer D, McClain J, Sherry B, Fabre M, van Deventer S, Cerami A. 1990. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J Exp Med 172:911–919. [PubMed][CrossRef]
134. Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF Jr, Conklyn MJ, Breslow R, Showell HJ, Gerard C. 1994. The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem 269:29355–29358. [PubMed]
135. Lee J, Cacalano G, Camerato T, Toy K, Moore MW, Wood WI. 1995. Chemokine binding and activities mediated by the mouse IL-8 receptor. J Immunol 155:2158–2164. [PubMed]
136. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. 2001. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655. [PubMed][CrossRef]
137. Honda K, Taniguchi T. 2006. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6:644–658. [PubMed][CrossRef]
138. Schmid M, Prajczer S, Gruber LN, Bertocchi C, Gandini R, Pfaller W, Jennings P, Joannidis M. 2010. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell Physiol Biochem 26:311–318. [PubMed][CrossRef]
139. Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z, Maeda N, Hultgren SJ, Kumar S. 2004. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791–797. [PubMed][CrossRef]
140. Dou W, Thompson-Jaeger S, Laulederkind SJ, Becker JW, Montgomery J, Ruiz-Bustos E, Hasty DL, Ballou LR, Eastman PS, Srichai B, Breyer MD, Raghow R. 2005. Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. Amer J Physiol Renal Physiol 289:F49–60. [PubMed][CrossRef]
141. Saemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M, Stuhlmeier KM, Sobanov Y, Stulnig TM, Akira S, von Gabain A, von Ahsen U, Hörl WH, Zlabinger GJ. 2005. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 115:468–475. [PubMed][CrossRef]
142. Boman HG. 1991. Antibacterial peptides: key components needed in immunity. Cell 65:205–207. [CrossRef]
143. Zasloff M. 2013. The antibacterial shield of the human urinary tract. Kidney Int 83:548–550. [PubMed][CrossRef]
144. Chromek M, Slamová Z, Bergman P, Kovács L, Podracká L, Ehrén I, Hökfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A. 2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641. [PubMed][CrossRef]
145. Lomberg H, Hanson LA, Jacobsson B, Jodal U, Leffler H, Edén CS. 1983. Correlation of P blood group phenotype, vesicoureteral reflux and bacterial attachment in patients with recurrent pyelonephritis. N Engl J Med 308:1189–1192. [PubMed][CrossRef]
146. Lomberg H, Jodal U, Edén C, Leffler H, Samuelsson B. 1981. P1 blood group and urinary tract infection. Lancet 1:551–552. [CrossRef]
147. Fowler JE, Stamey TA. 1977. Studies of introital colonization in women with recurrent urinary infections. VII. The role of bacterial adherence. J Urol 117:472–476. [PubMed]
148. Lindstedt R, Larson G, Falk P, Jodal U, Leffler H, Svanborg C. 1991. The receptor repertoire defines the host range for attaching Escherichia coli strains that recognize globo-A. Infect Immun 59:1086–1092. [PubMed]
149. Stapleton A, Nudelman E, Clausen H, Hakomori S, Stamm WE. 1992. Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J Clin Invest 90:965–972. [PubMed][CrossRef]
150. Svensson M, Platt F, Frendeus B, Butters T, Dwek R, Svanborg C. 2001. Carbohydrate receptor depletion as an antimicrobial strategy for prevention of urinary tract infection. J Infect Dis 183(Suppl 1):S70–73. [PubMed][CrossRef]
151. Orskov I, Ferencz A, Orskov F. 1980. Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 1:887. [CrossRef]
152. Korhonen TK, Väisänen-Rhen V, Rhen M, Pere A, Parkkinen J, Finne J. 1984. Escherichia coli fimbriae recognizing sialyl galactosides. J Bacteriol 159:762–766. [PubMed]
153. Korhonen TK, Parkkinen J, Hacker J, Finne J, Pere A, Rhen M, Holthöfer H. 1986. Binding of Escherichia coli S fimbriae to human kidney epithelium. Infect Immun 54:322–327. [PubMed]
154. Hawn TR, Scholes D, Wang H, Li SS, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM. 2009. Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS One 4:e8300. doi:10.1371/journal.pone.0008300
155. Smithson A, Sarrias MR, Barcelo J, Suarez B, Horcajada JP, Soto SM, Soriano A, Vila J, Martinez JA, Vives J, Mensa J, Lozano F. 2005. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol 12:1358–1363. [CrossRef]
156. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM. 2009. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4:e5990. doi:10.1371/journal.pone.0005990 [CrossRef]
157. Yin X, Hou T, Liu Y, Chen J, Yao Z, Ma C, Yang L, Wei L. 2010. Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults. PLoS One 5:e14223. doi:10.1371/journal.pone.0014223 [CrossRef]
158. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD. 1999. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8:93–97. [PubMed][CrossRef]
159. Cotton SA, Gbadegesin RA, Williams S, Brenchley PE, Webb NJ. 2002. Role of TGF-beta1 in renal parenchymal scarring following childhood urinary tract infection. Kidney Intl 61:61–67. [PubMed][CrossRef]
160. Solari V, Owen D, Puri P. 2005. Association of transforming growth factor-beta1 gene polymorphism with reflux nephropathy. J Urol 174:1609–1611; discussion 1611. [PubMed][CrossRef]
161. Yim HE, Bae IS, Yoo KH, Hong YS, Lee JW. 2007. Genetic control of VEGF and TGF-beta1 gene polymorphisms in childhood urinary tract infection and vesicoureteral reflux. Pediatr Res 62:183–187. [PubMed][CrossRef]
162. Wullt B, Bergsten G, Connell H, Röllano P, Gebretsadik N, Hull R, Svanborg C. 2000. P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Mol Microbiol 38:456–464. [PubMed][CrossRef]
163. Sundén F, Håkansson L, Ljunggren E, Wullt B. 2010. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 184:179–185. [PubMed][CrossRef]
164. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O’Neill LA. 2003. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351. [PubMed][CrossRef]
165. Stack J, Haga IR, Schröder M, Bartlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, Bowie AG. 2005. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018. [PubMed][CrossRef]
166. Newman RM, Salunkhe P, Godzik A, Reed JC. 2006. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect Immun 74:594–601. [PubMed][CrossRef]
167. Foxman B. 2010. The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660. [PubMed][CrossRef]
168. Brumbaugh AR, Mobley HL. 2012. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev Vaccines 11:663–676. [PubMed][CrossRef]
169. Williams GJ, Craig JC, Carapetis JR. 2013. Preventing urinary tract infections in early childhood. Adv Exp Med Biol 764:211–218. [PubMed][CrossRef]
170. Wagenlehner FM, Vahlensieck W, Bauer HW, Weidner W, Piechota HJ, Naber KG. 2013. Prevention of recurrent urinary tract infections. Minerva Urol Nefrol 65:9–20. [PubMed]
171. Hagberg L, Bruce A, Reid G, Svanborg C, Lincoln K, Lidin-Janson G. 1989. Colonization of the urinary tract with live bacteria from the normal fecal and urethral flora in patients with recurrent symptomatic urinary tract infections, p 194–197. In Kass EH, Svanborg C (ed), Host-Parasite Interactions in Urinary Tract Infections. University of Chicago Press, Chicago, IL.
172. Andersson P, Engberg I, Lidin-Janson G, Lincoln K, Hull R, Hull S, Svanborg C. 1991. Persistence of Escherichia coli bacteriuria is not determined by bacterial adherence. Infect Immun 59:2915–2921. [PubMed]
173. Wullt B, Connell H, Rollano P, Månsson W, Colleen S, Svanborg C. 1998. Urodynamic factors influence the duration of Escherichia coli bacteriuria in deliberately colonized cases. J Urol 159:2057–2062. [CrossRef]
174. Hull R, Rudy D, Donovan W, Svanborg C, Wieser I, Stewart C, Darouiche R. 2000. Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J Urol 163:872–877. [CrossRef]
175. Lindberg U, Claesson I, Hanson LA, Jodal U. 1978. Asymptomatic bacteriuria in schoolgirls. VIII. Clinical course during a 3-year follow-up. J Pediatr 92:194–199. [CrossRef]
176. Hagberg L, Leffler H, Svanborg-Edén C. 1984. Non-antibiotic prevention of urinary tract infection. Infection 12:132–137. [PubMed][CrossRef]
177. Darouiche RO, Donovan WH, Del Terzo M, Thornby JI, Rudy DC, Hull RA. 2001. Pilot trial of bacterial interference for preventing urinary tract infection. Urology 58:339–344. [CrossRef]
178. Sharon N, Eshdat Y, Silverblatt FJ, Ofek I. 1981. Bacterial adherence to cell surface sugars. Ciba Found Symp 80:119–141. [CrossRef]
179. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, Hultgren SJ. 2011. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 3:109–115. [PubMed][CrossRef]
180. Edén CS, Freter R, Hagberg L, Hull R, Hull S, Leffler H, Schoolnik G. 1982. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue. Nature 298:560–562. [PubMed][CrossRef]
181. Svanborg Edén C, Andersson B, Hagberg L, Hanson LA, Leffler H, Magnusson G, Noori G, Dahmén J, Söderström T. 1983. Receptor analogues and anti-pili antibodies as inhibitors of bacterial attachment in vivo and in vitro. Ann N Y Acad Sci 409:580–592. [PubMed][CrossRef]
182. Kihlberg J, Hultgren SJ, Normark S, Magnusson G. 1989. Probing of the combining site of the PapG adhesin of uropathogenic Escherichia coli bacteria by synthetic analogs of galabiose. J Am Chem Soc 111:6364–6368. [CrossRef]
183. Leach JL, Garber SA, Marcon AA, Prieto PA. 2005. In vitro and in vivo effects of soluble, monovalent globotriose on bacterial attachment and colonization. Antimicrob Agents Chemother 49:3842–3846. [PubMed][CrossRef]
184. Chromek M, Brauner A. 2008. Antimicrobial mechanisms of the urinary tract. J Mol Med (Berl) 86:37–47. [PubMed][CrossRef]
185. Zhao J, Wang Z, Chen X, Wang J, Li J. 2011. Effects of intravesical liposome-mediated human beta-defensin-2 gene transfection in a mouse urinary tract infection model. Microbiol Immunol 55:217–223. [PubMed][CrossRef]
186. Svanborg Edén C, Briles D, Hagberg L, McGhee J, Michalec S. 1985. Genetic factors in host resistance to urinary tract infection. Infection 13(Suppl 2):S171–176. [PubMed][CrossRef]
187. Frendéus B, Godaly G, Hang L, Karpman D, Svanborg C. 2001. Interleukin-8 receptor deficiency confers susceptibility to acute pyelonephritis. J Infect Dis 183(Suppl 1):S56–60. [PubMed][CrossRef]
188. Thumbikat P, Waltenbaugh C, Schaeffer AJ, Klumpp DJ. 2006. Antigen-specific responses accelerate bacterial clearance in the bladder. J Immunol 176:3080–3086. [PubMed][CrossRef]
189. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611. [PubMed][CrossRef]
190. Langermann S, Möllby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Söderhäll M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778. [PubMed][CrossRef]
191. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187. doi:10.1371/journal.ppat.1001187 [CrossRef]
192. Hanson LA, Ahlstedt S, Fasth A, Jodal U, Kaijser B, Larsson P, Lindberg U, Olling S, Sohl-Akerlund A, Svanborg-Edén C. 1977. Antigens of Escherichia coli, human immune response, and the pathogenesis of urinary tract infections. J Infect Dis 136(Suppl):S144–149. [PubMed][CrossRef]
193. Kaijser B, Hanson LA, Jodal U, Lidin-Janson G, Robbins JB. 1977. Frequency of E. coli K antigens in urinary-tract infections in children. Lancet 1:663–666. [CrossRef]
194. Silverblatt FJ, Cohen LS. 1979. Antipili antibody affords protection against experimental ascending pyelonephritis. J Clin Invest 64:333–336. [PubMed][CrossRef]
195. Kaijser B, Larsson P, Olling S, Schneerson R. 1983. Protection against acute, ascending pyelonephritis caused by Escherichia coli in rats, using isolated capsular antigen conjugated to bovine serum albumin. Infect Immun 39:142–146. [PubMed]
196. Pecha B, Low D, O’Hanley P. 1989. Gal-Gal pili vaccines prevent pyelonephritis by piliated Escherichia coli in a murine model. Single-component Gal-Gal pili vaccines prevent pyelonephritis by homologous and heterologous piliated E. coli strains. J Clin Invest 83:2102–2108. [PubMed][CrossRef]
197. Uehling DT, Hopkins WJ, Dahmer LA, Balish E. 1994. Phase I clinical trial of vaginal mucosal immunization for recurrent urinary tract infection. J Urol 152:2308–2311. [PubMed]
198. Uehling DT, Hopkins WJ, Balish E, Xing Y, Heisey DM. 1997. Vaginal mucosal immunization for recurrent urinary tract infection: phase II clinical trial. J Urol 157:2049–2052. [CrossRef]
199. Hopkins WJ, Uehling DT, Wargowski DS. 1999. Evaluation of a familial predisposition to recurrent urinary tract infections in women. Am J Med Genet 83:422–424. [CrossRef]
200. Uehling DT, Hopkins WJ, Beierle LM, Kryger JV, Heisey DM. 2001. Vaginal mucosal immunization for recurrent urinary tract infection: extended phase II clinical trial. J Infect Dis 183(Suppl 1):S81–83. [PubMed][CrossRef]
201. Uehling DT, Hopkins WJ, Elkahwaji JE, Schmidt DM, Leverson GE. 2003. Phase 2 clinical trial of a vaginal mucosal vaccine for urinary tract infections. J Urol 170:867–869. [PubMed][CrossRef]
202. Hopkins WJ, Elkahwaji J, Beierle LM, Leverson GE, Uehling DT. 2007. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J Urol 177:1349–1353; quiz 1591. [PubMed][CrossRef]
203. Benson M, Jodal U, Agace W, Hellström M, Mårild S, Rosberg S, Sjöström M, Wettergren B, Jönsson S, Svanborg C. 1996. Interleukin (IL)-6 and IL-8 in children with febrile urinary tract infection and asymptomatic bacteriuria. J Infect Dis 174:1080–1084. [PubMed][CrossRef]
204. Renata Y, Jassar H, Katz R, Hochberg A, Nir RR, Klein-Kremer A. 2013. Urinary concentration of cytokines in children with acute pyelonephritis. Eur J Pediatr 172:769–774. [PubMed][CrossRef]
205. Rodríguez LM, Robles B, Marugán JM, Suárez A, Santos F. 2008. Urinary interleukin-6 is useful in distinguishing between upper and lower urinary tract infections. Pediatr Nephrol 23:429–433. [PubMed][CrossRef]
microbiolspec.UTI-0019-2014.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.UTI-0019-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.UTI-0019-2014
2016-06-10
2017-03-23

Abstract:

A paradigm shift is needed to improve and personalize the diagnosis of infectious disease and to select appropriate therapies. For many years, only the most severe and complicated bacterial infections received more detailed diagnostic and therapeutic attention as the efficiency of antibiotic therapy has guaranteed efficient treatment of patients suffering from the most common infections. Indeed, treatability almost became a rationale not to analyze bacterial and host parameters in these larger patient groups. Due to the rapid spread of antibiotic resistance, common infections like respiratory tract- or urinary-tract infections (UTIs) now pose new and significant therapeutic challenges. It is fortunate and timely that infectious disease research can offer such a wealth of new molecular information that is ready to use for the identification of susceptible patients and design of new suitable therapies. Paradoxically, the threat of antibiotic resistance may become a window of opportunity, by encouraging the implementation of new diagnostic and therapeutic approaches. The frequency of antibiotic resistance is rising rapidly in uropathogenic organisms and the molecular and genetic understanding of UTI susceptibility is quite advanced. More bold translation of the new molecular diagnostic and therapeutic tools would not just be possible but of great potential benefit in this patient group. This chapter reviews the molecular basis for susceptibility to UTI, including recent advances in genetics, and discusses the consequences for diagnosis and therapy. By dissecting the increasingly well-defined molecular interactions between bacteria and host and the molecular features of excessive bacterial virulence or host-response malfunction, it is becoming possible to isolate the defensive from the damaging aspects of the host response. Distinguishing “good” from “bad” inflammation has been a long-term quest of biomedical science and in UTI, patients need the “good” aspects of the inflammatory response to resist infection while avoiding the “bad” aspects, causing chronicity and tissue damage.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Initiation of the innate immune response by UPEC. P fimbriae-mediated adherence and TLR4 activation. Bacterial adherence to epithelial surface receptors activates TLR4 and initiates innate immune signaling. Pathogen-specific recognition by the PapG adhesin of Galα1-4-Galβ-receptor motifs in the globoseries of glycosphingolipids. Release of ceramide activates TLR4 signaling, mainly through the TRIF/TRAM adaptors. The MYD88/TIRAP/NF-κB-dependent arm of TLR4 signaling, in contrast, is activated by type 1-fimbriated strains and, to some extent, also by ABU strains (not shown ( 36 )). Genetic variants that affect the expression of receptors also influence the susceptibility to APN. Patients who express high levels of receptors are more susceptible to APN (blood group A P), illustrating the relevance of this mechanism ( 145 ). In ABU patients, TLR4 expression is low and -promoter polymorphisms that reduce TLR4 expression are predominately found in this patient group. Clinical genetic screens have not detected ABU-associated polymorphisms in or . In the murine UTI model, deletions abrogate the innate immune response, as do adaptor-gene deletions, to some extent. As a result, these mice develop ABU rather than symptomatic disease. Abbreviations: galactose (Gal), glucose (Glc), N-acetyl glucosamine (GlcNAc), Toll-like receptor (TLR), Toll/interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-β (TRIF), TRIF-related adaptor molecule (TRAM), phosphate group (P), acute pyelonephritis (APN), asymptomatic bacteriuria (ABU), single-nucleotide polymorphism (SNP), myeloid-differentiation primary-response protein 88 (MYD88), polymorphonuclear cells (PMN). Adapted from Ragnarsdóttir et al. ( 3 ), with permission.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0019-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1
FIGURE 1

Uroepithelial receptors for bacterial ligands. Uroepithelial cells express a number of specific receptors for microbial ligands including TLRs and receptors for adhesins, toxins, and flagella, among others. Importantly, uroepithelial cells do not express CD14 and the initial recognition of Gram-negative bacteria does not involve LPS, unless soluble CD14 is present. TLR5 interacts with bacterial flagellin; TLR11 recognizes uropathogens through yet undetermined bacterial ligands and TLR2 is activated by bacterial cell wall components. Type 1 fimbriae activate TLR4 signaling through the FimH adhesin, which binds to a variety of mannosylated glycoproteins. Binding to uroplakin particles (UP1a, 1b, 2, and 3a) promotes bacterial internalization. FimH also binds to β1 and α3 integrins, which modulate F-actin dynamics in the mammalian cell. TNFα responses to type 1-fimbriated bacteria are triggered by the glycosyl-phosphatidyl-inositol-anchored CD48 receptor on mast cells and macrophages. The receptor epitopes of UPs, CD48, and integrins, are N-linked high-mannose oligosaccharides. Abbreviations: lipopolysaccharide (LPS), soluble CD14 (sCD14), glycosphingolipids (GSLs), Toll-like receptor (TLR), mannosylated cell-surface glycoprotein (MGP), uroplakin (UP), not applicable (NA), acute pyelonephritis (APN), single-nucleotide polymorphism (SNP), asymptomatic bacteriuria (ABU), recurrent urinary tract infection (rUTI). Adapted from Ragnarsdóttir et al. ( 3 ), with permission.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0019-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transcriptional control of the innate immune response to UPEC. Signaling downstream of TLR4 activates the transcription of innate immune-effector molecules, such as chemokines, cytokines, and antibacterial peptides ( 3 , 87 ). Transcription factors are activated by phosphorylation and nuclear translocation, including IRF3 and IRF7, as well as AP-1, a heterodimer of FOS and JUN. In addition, NF-κB is critically involved, (not shown). In clinical studies, promoter polymorphisms that reduce the expression of IRF3 have been associated with susceptibility to acute pyelonephritis. In the murine UTI model, mice lacking develop severe acute infection with mortality, followed by renal damage in surviving mice. Downstream mediators have also been shown to play an essential role for UTI susceptibility, including type 1 IFNs. Relevance of IFNβ has been demonstrated in the murine UTI model, where mutant mice develop severe acute infection with tissue damage. Clinical studies associating IFNβ with UTI susceptibility have not been reported. Abbreviations: phosphate group (P), cyclic AMP-response element-binding (CREB), interferon-regulatory factor (IRF), activator-protein 1 (AP-1), interferon (IFN), interleukin (IL), single-nucleotide polymorphism (SNP), acute pyelonephritis (APN), CC-chemokine ligand 5 (CCL5), not applicable (NA). Adapted from Ragnarsdóttir et al. ( 3 ), with permission.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0019-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Neutrophil-dependent clearance of infection. Chronic infection and renal scarring in -deficient patients and -deficient mice. In UTI, neutrophils migrate to the mucosal epithelial barrier, which they cross into the lumen. As a result, infection causes pyuria, which often is used diagnostically, as the neutrophils first phagocytose and kill bacteria and then leave the tissue via this mechanism; tissue damage is prevented. Migration is directed by chemokines, first released by infected epithelial cells and subsequently amplified by neutrophils and other cells, such as mast cells, at the site of infection. In patients prone to APN, CXCR1 expression is reduced compared to age-matched controls and intronic and 3′UTR polymorphisms are more abundant than in controls without UTI. polymorphisms have also been associated with APN susceptibility. In mice lacking the chemokine receptor, neutrophil exit is prevented, however, and a backlog of neutrophils builds up in the tissues. The massive neutrophil infiltrate does not remove the bacteria, as neutrophils from mice lacking 2 have an activation deficiency. Persisting bacteria continue to stimulate chemokine production and neutrophils continue to be recruited, resulting in chronic infection and renal scarring ( 35 ). Abbreviations: CXC-chemokine receptor (CXCR), interleukin (IL), single-nucleotide polymorphism (SNP), not applicable (NA), acute pyelonephritis (APN), untranslated region (UTR).

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.UTI-0019-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error