1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    497.09 Kb
  • HTML
    140.68 Kb
  • XML
    113.40 Kb
  • Author: Karla J. F. Satchell1
  • Editor: Michael Sadowsky2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; 2: University of Minnesota, St. Paul, MN
  • Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0002-2014
  • Received 10 October 2014 Accepted 24 February 2015 Published 12 June 2015
  • Karla J. F. Satchell, k-satchell@northwestern.edu
image of Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of <span class="jp-italic">Vibrios</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/3/VE-0002-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/3/VE-0002-2014-2.gif
  • Abstract:

    Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.

  • Citation: Satchell K. 2015. Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of . Microbiol Spectrum 3(3):VE-0002-2014. doi:10.1128/microbiolspec.VE-0002-2014.

Key Concept Ranking

Infection and Immunity
0.5504547
Single Nucleotide Polymorphism
0.40998572
0.5504547

References

1. Satchell KJ. 2011. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol 65:71–90. [PubMed][CrossRef]
2. Thanassi DG, Bliska JB, Christie PJ. 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36:1046–1082. [PubMed][CrossRef]
3. Egerer M, Satchell KJ. 2010. Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins. PLoS Pathog 6:e1000942. [CrossRef]
4. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749. [PubMed][CrossRef]
5. Thompson CC, Vicente AC, Souza RC, Vasconcelos AT, Vesth T, Alves N Jr, Ussery DW, Iida T, Thompson FL. 2009. Genomic taxonomy of vibrios. BMC Evol Biol 9:258. [CrossRef]
6. Park KS, Ono T, Rokuda M, Jang MH, Okada K, Iida T, Honda T. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72:6659–6665. [CrossRef]
7. Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. 2011. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 79:2889–2900. [PubMed][CrossRef]
8. Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA 96:1071–1076. [PubMed][CrossRef]
9. Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, Prochazkova K, Adkins I, Hejnova-Holubova J, Sadilkova L, Morova J, Sebo P. 2010. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34:1076–1112. [PubMed][CrossRef]
10. Baumann U, Wu S, Flaherty KM, McKay DB. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12:3357–3364. [PubMed]
11. Dolores J, Satchell KJ. 2013. Analysis of Vibrio cholerae genome sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent altered El Tor isolates. mBio 4:e00624-12. [CrossRef]
12. Boardman BK, Satchell KJ. 2004. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J Bacteriol 186:8137–8143. [PubMed][CrossRef]
13. Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH. 2008. Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76:1509–1517. [PubMed][CrossRef]
14. Bina JE, Mekalanos JJ. 2001. Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69:4681–4685. [PubMed][CrossRef]
15. Lee KE, Bang JS, Baek CH, Park DK, Hwang W, Choi SH, Kim KS. 2007. IVET-based identification of virulence factors in Vibrio vulnificus MO6-24/O. J Microbiol Biotechnol 17:234–243. [PubMed]
16. Fullner KJ, Mekalanos JJ. 2000. In vivo covalent crosslinking of actin by the RTX toxin of Vibrio cholerae. EMBO J 19:5315–5323. [PubMed][CrossRef]
17. Shen A, Lupardus PJ, Albrow VE, Guzzetta A, Powers JC, Garcia KC, Bogyo M. 2009. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat Chem Biol 5:469–478. [CrossRef]
18. Kim YR, Lee SE, Kang IC, Nam KI, Choy HE, Rhee JH. 2013. A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. J Infect Dis 207:1406–1415. [PubMed][CrossRef]
19. Li L, Rock JL, Nelson DR. 2008. Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun 76:2620–2632. [CrossRef]
20. Kim YR, Kim BU, Kim SY, Kim CM, Na HS, Koh JT, Choy HE, Rhee JH, Lee SE. 2010. Outer membrane vesicles of Vibrio vulnificus deliver cytolysin-hemolysin VvhA into epithelial cells to induce cytotoxicity. Biochem Biophys Res Commun 399:607–612; erratum in 403:491–492. [CrossRef]
21. Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS, Choi SH. 2007. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45:146–152. [PubMed]
22. Liu M, Alice AF, Naka H, Crosa JH. 2007. The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infect Immun 75:3282–3289. [PubMed][CrossRef]
23. Lee CT, Pajuelo D, Llorens A, Chen YH, Leiro JM, Padros F, Hor LI, Amaro C. 2013. MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environ Microbiol 15:419–432. [PubMed][CrossRef]
24. Kim YR, Lee SE, Kook H, Yeom JA, Na HS, Kim SY, Chung SS, Choy HE, Rhee JH. 2008. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10:848–862. [PubMed][CrossRef]
25. Chen YC, Chung YT. 2011. A conserved GTPase YchF of Vibrio vulnificus is involved in macrophage cytotoxicity, iron acquisition, and mouse virulence. Int J Med Microbiol 301:469–474. [PubMed][CrossRef]
26. Dolores JS, Agarwal S, Egerer M, Satchell KJ. 2015. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 95:590–604. [PubMed][CrossRef]
27. Lo HR, Lin JH, Chen YH, Chen CL, Shao CP, Lai YC, Hor LI. 2011. RTX Toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203:1866–1874. [PubMed][CrossRef]
28. Kim BS, Gavin HE, Satchell KJ. 2015. Distinct Roles of the Repeat-Containing Regions and Effector Domains of the Vibrio vulnificus Multifunctional-Autoprocessing Repeats-in-Toxin (MARTX) Toxin. mBio 6:e00324-15. [PubMed][CrossRef]
29. Satchell KJ. 2007. MARTX: multifunctional-autoprocessing RTX toxins. Infect Immun 75:5079–5084. [PubMed][CrossRef]
30. Kudryashova E, Heisler D, Zywiec A, Kudryashov DS. 2014. Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane. Mol Microbiol 92:1056–1071. [PubMed][CrossRef]
31. Sheahan KL, Cordero CL, Satchell KJ. 2007. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 26:2552–2561. [PubMed][CrossRef]
32. Prochazkova K, Satchell KJ. 2008. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J Biol Chem 283:23656–23664. [PubMed][CrossRef]
33. Prochazkova K, Shuvalova LA, Minasov G, Voburka Z, Anderson WF, Satchell KJ. 2009. Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites. J Biol Chem 284:26557–26568. [PubMed][CrossRef]
34. Roig FJ, Gonzalez-Candelas F, Amaro C. 2011. Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol 77:657–668. [PubMed][CrossRef]
35. Kwak JS, Jeong HG, Satchell KJ. 2011. Vibrio vulnificus rtxA1 gene recombination generates toxin variants with altered potency during intestinal infection. Proc Natl Acad Sci USA 108:1645–1650. [PubMed][CrossRef]
36. Sack DA, Sack RB, Nair GB, Siddique AK. 2004. Cholera. Lancet 363:223–233. [PubMed][CrossRef]
37. Hasan NA, Choi SY, Eppinger M, Clark PW, Chen A, Alam M, Haley BJ, Taviani E, Hine E, Su Q, Tallon LJ, Prosper JB, Furth K, Hoq MM, Li H, Fraser-Liggett CM, Cravioto A, Huq A, Ravel J, Cebula TA, Colwell RR. 2012. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci USA 109:E2010–E2017. [CrossRef]
38. Kudryashov DS, Durer ZA, Ytterberg AJ, Sawaya MR, Pashkov I, Prochazkova K, Yeates TO, Loo RR, Loo JA, Satchell KJ, Reisler E. 2008. Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc Natl Acad Sci USA 105:18537–18542. [PubMed][CrossRef]
39. Geissler B, Bonebrake A, Sheahan KL, Walker ME, Satchell KJ. 2009. Genetic determination of essential residues of the Vibrio cholerae actin cross-linking domain reveals functional similarity with glutamine synthetases. Mol Microbiol 73:858–868. [CrossRef]
40. Cordero CL, Kudryashov DS, Reisler E, Satchell KJ. 2006. The actin cross-linking domain of the Vibrio cholerae RTX toxin directly catalyzes the covalent cross-linking of actin. J Biol Chem 281:32366–32374. [CrossRef]
41. Kudryashov DS, Cordero CL, Reisler E, Satchell KJ. 2008. Characterization of the enzymatic activity of the actin cross-linking domain from the Vibrio cholerae MARTXVc toxin. J Biol Chem 283:445–452. [PubMed][CrossRef]
42. Kudryashova E, Kalda C, Kudryashov DS. 2012. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD) toxin. PLoS One 7:e45721. [CrossRef]
43. Pei J, Grishin NV. 2009. The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins 77:413–419. [PubMed][CrossRef]
44. Ahrens S, Geissler B, Satchell KJ. 2013. Identification of a His-Asp-Cys catalytic triad essential for function of the Rho inactivation domain (RID) of Vibrio cholerae MARTX toxin. J Biol Chem 288:1397–1408. [PubMed][CrossRef]
45. Geissler B, Tungekar R, Satchell KJ. 2010. Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proc Natl Acad Sci USA 107:5581–5586. [PubMed][CrossRef]
46. Geissler B, Ahrens S, Satchell KJ. 2012. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cell Microbiol 14:286–298. [CrossRef]
47. Sheahan KL, Satchell KJ. 2007. Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae. Cell Microbiol 9:1324–1335. [PubMed][CrossRef]
48. Ollis DL, Cygler CE, Dijkstra B, Frolow F, Franken SM, Remington HM, Silman I, Schrag J. 1992. The alpha/beta hydrolase fold. Protein Eng 5:197–211. [PubMed][CrossRef]
49. Nardini M, Dijkstra BW. 1999. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737. [PubMed][CrossRef]
50. Fullner KJ, Lencer WI, Mekalanos JJ. 2001. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells dependent of production of cholera toxin and the RTX toxin. Infect Immun 69:6310–6317. [PubMed][CrossRef]
51. Mathan MM, Chandy G, Mathan VI. 1995. Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology 109:422–430. [PubMed][CrossRef]
52. Olivier V, Haines GK 3rd, Tan Y, Satchell KJ. 2007. Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 75:5035–5042. [PubMed][CrossRef]
53. Olivier V, Queen J, Satchell KJ. 2009. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One 4:e7352. [PubMed][CrossRef]
54. Queen J, Satchell KJ. 2012. Neutrophils Are essential for containment of Vibrio cholerae to the intestine during the proinflammatory phase of infection. Infect Immun 80:2905–2913. [PubMed][CrossRef]
55. Safa A, Nair GB, Kong RY. 2010. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18:46–54. [PubMed][CrossRef]
56. Satchell KJF. 2003. Activation and suppression of the proinflammatory immune response by Vibrio cholerae toxins. Microbes Infect 5:1241–1247. [PubMed][CrossRef]
57. Lee YL, Hung PP, Tsai CA, Lin YH, Liu CE, Shi ZY. 2007. Clinical characteristics of non-O1/non-O139 Vibrio cholerae isolates and polymerase chain reaction analysis of their virulence factors. J Microbiol Immunol Infect 40:474–480. [PubMed]
58. Chandrasekhar MR, Krishna BV, Patil AB. 2008. Changing characteristics of Vibrio cholerae: emergence of multidrug resistance and non-O1, non-O139 serogroups. Southeast Asian J Trop Med Public Health 39:1092–1097. [PubMed]
59. Thomas A, Straif-Bourgeois S, Sokol TM, Ratard RC. 2007. Vibrio infections in Louisiana: twenty-five years of surveillance 1980–2005. J La State Med Soc 159:205–208, 210–201. [PubMed]
60. Dalsgaard A, Forslund A, Bodhidatta L, Serichantalergs O, Pitarangsi C, Pang L, Shimada T, Echeverria P. 1999. A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes. Epidemiol Infect 122:217–226. [PubMed][CrossRef]
61. Altekruse SF, Bishop RD, Baldy LM, Thompson SG, Wilson SA, Ray BJ, Griffin PM. 2000. Vibrio gastroenteritis in the US Gulf of Mexico region: the role of raw oysters. Epidemiol Infect 124:489–495. [PubMed][CrossRef]
62. Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW. 1998. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci USA 95:13899–13904. [PubMed][CrossRef]
63. Ziolo KJ, Jeong HG, Kwak JS, Yang S, Lavker RM, Satchell KJ. 2014. Vibrio vulnificus Biotype 3 MARTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 82:2148–2157. [CrossRef]
64. Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, Ffrench-Constant RH. 2009. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10:302. [PubMed][CrossRef]
65. Kumar S, Lindquist IE, Sundararajan A, Rajanna C, Floyd JT, Smith KP, Andersen JL, He G, Ayers RM, Johnson JA, Werdann JJ, Sandoval AA, Mojica NM, Schilkey FD, Mudge J, Varela MF. 2013. Genome sequence of non-O1 Vibrio cholerae PS15. Genome Announc 1:e00227-12. [PubMed][CrossRef]
66. Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, Bode HB, Brachmann AO, Cowles CE, Cowles KN, Darby C, de Léon L, Drace K, Du Z, Givaudan A, Herbert Tran EE, Jewell KA, Knack JJ, Krasomil-Osterfeld KC, Kukor R, Lanois A, Latreille P, Leimgruber NK, Lipke CM, Liu R, Lu X, Martens EC, Marri PR, Médigue C, Menard ML, Miller NM, Morales-Soto N, Norton S, Ogier JC, Orchard SS, Park D, Park Y, Qurollo BA, Sugar DR, Richards GR, Rouy Z, Slominski B, Slominski K, Snyder H, Tjaden BC, van der Hoeven R, Welch RD, Wheeler C, Xiang B, Barbazuk B, Gaudriault S, Goodner B, Slater SC, Forst S, Goldman BS, Goodrich-Blair H. 2011. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One 6:e27909. [PubMed][CrossRef]
67. Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E. 1986. Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392. [PubMed][CrossRef]
68. Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK. 2010. A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:155–168. [PubMed][CrossRef]
69. Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA. 1999. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936. [PubMed][CrossRef]
70. Gulig PA, Bourdage KL, Starks AM. 2005. Molecular Pathogenesis of Vibrio vulnificus. J Microbiol 43:118–131. [PubMed]
71. Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. 2011. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol 7:460. [PubMed][CrossRef]
72. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen AB, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13:2577–2587. [PubMed][CrossRef]
73. Morrison SS, Williams T, Cain A, Froelich B, Taylor C, Baker-Austin C, Verner-Jeffreys D, Hartnell R, Oliver JD, Gibas CJ. 2012. Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLoS One 7:e37553. [PubMed][CrossRef]
74. Waterfield NR, Daborn PJ, Dowling AJ, Yang G, Hares M, Ffrench-Constant RH. 2003. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiol Lett 229:265–270. [CrossRef]
75. Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH, Ffrench-Constant RH. 2004. The insecticidal toxin Makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 6:345–353. [PubMed][CrossRef]
76. Agarwal S, Agarwal S, Biancucci M, Satchell KJ. 23 April 2015. Induced autoprocessing of the cytopathic Makes Caterpillars Floppy-like effector domain of the Vibrio vulnificus MARTX toxin. Cell Microbiol doi:10.1111/cmi.12451. [CrossRef]
77. Antic I, Biancucci M, Satchell KJ. 2014. Cytotoxicity of the Vibrio vulnificus MARTX toxin Effector DUF5 is linked to the C2A Subdomain. Proteins 82:2643–2656. [PubMed][CrossRef]
78. Park JH, Cho YJ, Chun J, Seok YJ, Lee JK, Kim KS, Lee KH, Park SJ, Choi SH. 2011. Complete genome sequence of Vibrio vulnificus MO6-24/O. J Bacteriol 193:2062–2063. [CrossRef]
79. Li Z, Chen H, Chen X, Zhou T, Zhao L, Zhang C, Jin W. 2012. Genome sequence of the human-pathogenic bacterium Vibrio vulnificus type strain ATCC 27562. J Bacteriol 194:6954–6955. [PubMed][CrossRef]
80. Wang ZG, Wu Z, Xu SL, Zha J. 2012. Genome sequence of the human-pathogenetic bacterium Vibrio vulnificus B2. J Bacteriol 194:7019. [PubMed][CrossRef]
81. Jeong HG, Satchell KJ. 2012. Additive function of Vibrio vulnificus MARTXVv and VvhA cytolysins promotes rapid growth and epithelial tissue necrosis during intestinal infection. PLoS Pathog 8:e1002581. [PubMed][CrossRef]
82. Lee TH, Kim MH, Lee CS, Lee JH, Rhee JH, Chung KM. 2014. Protection against Vibrio vulnificus infection by active and passive immunization with the C-terminal region of the RtxA1/MARTXVv protein. Vaccine 32:271–276. [PubMed][CrossRef]
83. Lee BC, Choi SH, Kim TS. 2008. Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect 10:1504–1513. [PubMed][CrossRef]
84. Dhakal BK, Lee W, Kim YR, Choy HE, Ahnn J, Rhee JH. 2006. Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem Biophys Res Commun 346:751–757. [PubMed][CrossRef]
85. Chung KJ, Cho EJ, Kim MK, Kim YR, Kim SH, Yang HY, Chung KC, Lee SE, Rhee JH, Choy HE, Lee TH. 2010. RtxA1-induced expression of the small GTPase Rac2 plays a key role in the pathogenicity of Vibrio vulnificus. J Infect Dis 201:97–105. [PubMed][CrossRef]
86. Toma C, Higa N, Koizumi Y, Nakasone N, Ogura Y, McCoy AJ, Franchi L, Uematsu S, Sagara J, Taniguchi S, Tsutsui H, Akira S, Tschopp J, Núñez G, Suzuki T. 2010. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-κB signaling. J Immunol 184:5287–5297. [PubMed][CrossRef]
87. Amaro C, Biosca EG. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62:1454–1457.
88. Fouz B, Llorens A, Valiente E, Amaro C. 2010. A comparative epizootiologic study of the two fish-pathogenic serovars of Vibrio vulnificus biotype 2. J Fish Dis 33:383–390. [PubMed][CrossRef]
89. Fouz B, Roig FJ, Amaro C. 2007. Phenotypic and genotypic characterization of a new fish-virulent Vibrio vulnificus serovar that lacks potential to infect humans. Microbiology 153:1926–1934. [PubMed][CrossRef]
90. Roig FJ, Amaro C. 2009. Plasmid diversity in Vibrio vulnificus biotypes. Microbiology 155:489–497. [PubMed][CrossRef]
91. Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, Chang CH, Hor LI. 2008. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 190:1638–1648. [CrossRef]
92. Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH. 2002. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci USA 99:10742–10747. [CrossRef]
93. Bisharat N, Cohen DI, Harding RM, Falush D, Crook DW, Peto T, Maiden MC. 2005. Hybrid Vibrio vulnificus. Emerg Infect Dis 11:30–35. [CrossRef]
94. Efimov V, Danin-Poleg Y, Raz N, Elgavish S, Linetsky A, Kashi Y. 2013. Insight into the evolution of Vibrio vulnificus biotype 3’s genome. Front Microbiol 4:393. [PubMed][CrossRef]
95. Bisharat N1, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, Soboh S, Colodner R, Cameron DN, Wykstra DL, Swerdlow DL, Farmer JJ 3rd. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354:1421–1424. [CrossRef]
96. Zaidenstein R, Sadik C, Lerner L, Valinsky L, Kopelowitz J, Yishai R, Agmon V, Parsons M, Bopp C, Weinberger M. 2008. Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerg Infect Dis 14:1875–1882. [PubMed][CrossRef]
97. Danin-Poleg Y, Elgavish S, Raz N, Efimov V, Kashi Y. 2013. Genome Sequence of the Pathogenic Bacterium Vibrio vulnificus Biotype 3. Genome Announc 1:e0013613. [PubMed][CrossRef]
98. Phillips KE, Schipma MJ, Satchell KJ. 2014. Draft genome sequence of Israeli outbreak-associated Vibrio vulnificus biotype 3 clinical isolate BAA87. Genome Announc 2:e00031-00014. [PubMed][CrossRef]
99. Actis LA, Tolmasky ME, Crosa JH. 2010. Vibriosis, p 570–605. In Woo PTK, Bruno BW (ed), Fish Diseases and Disorders: Viral, Bacterial, and Fungal Infections, 2nd ed, vol. 3. CABI International, Oxfordshire, UK.
100. Thompson FL, Thompson CC, Dias GM, Naka H, Dubay C, Crosa JH. 2011. The genus Listonella MacDonell and Colwell 1986 is a later heterotypic synonym of the genus Vibrio Pacini 1854 (Approved Lists 1980)--a taxonomic opinion. Int J Syst Evol Microbiol 61:3023–3027. [CrossRef]
101. Denkin SM, Nelson DR. 1999. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl Environ Microbiol 65:3555–3560. [PubMed]
102. Lemos ML, Salinas P, Toranzo AE, Barja JL, Crosa JH. 1988. Chromosome-mediated iron uptake system in pathogenic strains of Vibrio anguillarum. J Bacteriol 170:1920–1925. [PubMed]
103. Crosa JH, Schiewe MH, Falkow S. 1977. Evidence for plasmid contribution to the virulence of fish pathogen Vibrio anguillarum. Infect Immun 18:509–513.
104. Milton DL, Norqvist A, Wolf-Watz H. 1992. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol 174:7235–7244.
105. Toranzo AE, Barja JL, Potter SA, Colwell RR, Hetrick FM, Crosa JH. 1983. Molecular factors associated with virulence of marine vibrios isolated from striped bass in Chesapeake Bay. Infect Immun 39:1220–1227. [PubMed]
106. Schiewe M, Crosa JH. 1981. Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr Microbiol 6:343–348. [CrossRef]
107. Le Roux F, Labreuche Y, Davis BM, Iqbal N, Mangenot S, Goarant C, Mazel D, Waldor MK. 2011. Virulence of an emerging pathogenic lineage of Vibrio nigripulchritudo is dependent on two plasmids. Environ Microbiol 13:296–306. [PubMed][CrossRef]
108. Thompson JR1, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF. 2005. Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313. [PubMed][CrossRef]
109. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ. 2012. Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51. [CrossRef]
110. French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. 2009. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11:1735–1749. [PubMed][CrossRef]
111. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF. 2012. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231. [PubMed][CrossRef]
112. Hoffmann M, Monday SR, Allard MW, Strain EA, Whittaker P, Naum M, McCarthy PJ, Lopez JV, Fischer M, Brown EW. 2012. Vibrio caribbeanicus sp. nov., isolated from the marine sponge Scleritoderma cyanea. Int J Syst Evol Microbiol 62:1736–1743. [PubMed][CrossRef]
113. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–1190. [PubMed][CrossRef]
microbiolspec.VE-0002-2014.citations
cm/3/3
content/journal/microbiolspec/10.1128/microbiolspec.VE-0002-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VE-0002-2014
2015-06-12
2017-05-27

Abstract:

Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/3/VE-0002-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.VE-0002-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

The multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a form of effector delivery similar in concept to contact-dependent type III secretion and type IV secretion. The major difference is that the toxin is secreted from the bacterium by type I secretion and then the large single polypeptide toxin delivers effectors directly across the plasma membrane with delivery occurring by polypeptide autoprocessing. Similar to type III and type IV secretion, the effector themselves confer cytopathic and cytotoxic activities that then alter host-cell biology to the benefit of the bacterium. doi:10.1128/microbiolspec.VE-0002-2014.f1

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0002-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

(A) The general structure of a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin showing the number and position of various repeat sequences, autoprocessing cysteine protease domain (CPD), and variable region containing the effector domains. The secretion signal () is shown at the extreme C-terminus. (B) Graphical representation of the different repeat sequences generated by Weblogo 2.8.2 [( 113 ); weblogo.berkeley.edu]. The sequences used were repeat sequences from CMCP6 identified based on the alignment of sequence to the repeat annotation of ( 1 ). The portion of the C-repeat that aligns to the calcium-binding beta roll nonapeptide repeat of other RTX family proteins is indicated. Note conservation of a G-7x-G-4x-N repeat in all of the repeats. doi:10.1128/microbiolspec.VE-0002-2014.f2

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0002-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Schematic representation of all multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins described in text. Toxins are identified by species at left with representative strain isolate designation at the right. BT2 and BT3 refer to biotype 2 and 3, respectively, and Vnig_pA refers to the large pA1066 plasmid of . Legend for different domains is at the bottom. All amino acid sequences are from published papers referenced in the text and the sequences were downloaded from the NCBI website (www.ncbi.nlm.nih.gov). All effector domain arrangements are as annotated previously ( 1 , 11 , 29 , 34 , 35 , 63 ) except for new sequences done specifically for this article, including JY1701, 775 and 96F, 33509, and 5S-101. doi:10.1128/microbiolspec.VE-0002-2014.f3

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0002-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error