1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Interactions of spp. with Zooplankton

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    132.74 Kb
  • HTML
    143.89 Kb
  • PDF
    510.71 Kb
  • Authors: Martina Erken1, Carla Lutz2, Diane McDougald3
  • Editor: Michael Sadowsky4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; 2: Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; 3: ithree Institute, University of Technology, Sydney, Australia; and Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore; and Center for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; 4: University of Minnesota, St. Paul, MN
  • Source: microbiolspec May 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0003-2014
  • Received 14 October 2014 Accepted 25 February 2015 Published 29 May 2015
  • Diane McDougald, d.mcdougald@unsw.edu.au
image of Interactions of <span class="jp-italic">Vibrio</span> spp. with Zooplankton
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Interactions of spp. with Zooplankton, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/3/VE-0003-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/3/VE-0003-2014-2.gif
  • Abstract:

    Members of the genus are known to interact with phyto- and zooplankton in aquatic environments. These interactions have been proven to protect the bacterium from various environmental stresses, serve as a nutrient source, facilitate exchange of DNA, and to serve as vectors of disease transmission. This review highlights the impact of -zooplankton interactions at the ecosystem scale and the importance of studies focusing on a wide range of -zooplankton interactions. The current knowledge on chitin utilization (i.e., chemotaxis, attachment, and degradation) and the role of these factors in attachment to nonchitinous zooplankton is also presented.

  • Citation: Erken M, Lutz C, McDougald D. 2015. Interactions of spp. with Zooplankton. Microbiol Spectrum 3(3):VE-0003-2014. doi:10.1128/microbiolspec.VE-0003-2014.

Key Concept Ranking

Vibrio coralliilyticus
0.4484519
Vibrio cholerae
0.4484519
Vibrio coralliilyticus
0.4484519
Vibrio cholerae
0.4484519
Vibrio coralliilyticus
0.4484519
Vibrio cholerae
0.4484519
0.4484519

References

1. Akselman R, Jurquiza V, Costagliola MC, Fraga SG, Pichel M, Hozbor C, Peressutti S, Binsztein N. 2011. Vibrio cholerae O1 found attached to the dinoflagellate Noctiluca scintillans in Argentine shelf waters. Mar Biodivers Rec 3:e120. [CrossRef]
2. Bassler B, Yu C, Lee Y, Roseman S. 1991. Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266:24276–24286. [PubMed]
3. Chowdhury MA, Huq A, Xu B, Madeira FJ, Colwell RR. 1997. Effect of alum on free-living and copepod-associated Vibrio cholerae O1 and O139. Appl Environ Microbiol 63:3323–3326. [PubMed]
4. Huq A, Xu B, Chowdhury MA, Islam MS, Montilla R, Colwell RR. 1996. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol 62:2508–2512. [PubMed]
5. Seitz P, Blokesch M. 2013. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 37:336–363. [PubMed][CrossRef]
6. Haldar S, Maharajan A, Chatterjee S, Hunter SA, Chowdhury N, Hinenoya A, Asakura M, Yamasaki S. 2010. Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparus aurata from research hatchery in Malta. Microbiol Res 165:639–648. [PubMed][CrossRef]
7. Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD. 2009. Microbial disease and the coral holobiont. Trends Microbiol 17:554–562. [PubMed][CrossRef]
8. Hoffmann M, Fischer M, Ottesen A, McCarthy PJ, Lopez JV, Brown EW, Monday SR. 2010. Population dynamics of Vibrio spp. associated with marine sponge microcosms. ISME J 4:1608–1612. [PubMed][CrossRef]
9. Stabili L, Gravili C, Piraino S, Boero F, Alifano P. 2006. Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608. [PubMed][CrossRef]
10. Wang W. 2011. Bacterial diseases of crabs: a review. J Invertebr Pathol 106:18–26. [PubMed][CrossRef]
11. Beaz-Hidalgo R, Balboa S, Romalde JL, Figueras MJ. 2010. Diversity and pathogenecity of Vibrio species in cultured bivalve molluscs. Environ Microbiol Rep 2:34–43. [PubMed][CrossRef]
12. Abd H, Weintraub A, Sandström G. 2005. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae. Environ Microbiol 7:1003–1008. [PubMed][CrossRef]
13. Vezzulli L, Pruzzo C, Huq A, Colwell RR. 2010. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ Microbiol Rep 2:27–33. [PubMed][CrossRef]
14. Broberg CA, Calder TJ, Orth K. 2011. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microb Infect 13:992–1001. [PubMed][CrossRef]
15. Linkous DA, Oliver JD. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174:207–214. [PubMed][CrossRef]
16. Sack DA, Sack RB, Nair GB, Siddique AK. 2004. Cholera. Lancet 363:223–233. [PubMed][CrossRef]
17. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E. 2003. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315. [PubMed][CrossRef]
18. Elston R, Hasegawa H, Humphrey K, Polyak I, Häse C. 2008. Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Dis Aquat Org 82:119–134. [PubMed][CrossRef]
19. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283. [PubMed]
20. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:2524–2529. [PubMed][CrossRef]
21. Amako K, Shimodori S, Imoto T, Miake S, Umeda A. 1987. Effects of chitin and its soluble derivatives on survival of Vibrio cholerae O1 at low temperature. Appl Environ Microbiol 53:603–605. [PubMed]
22. Suthers I, Rissik D. 2009. Plankton: A Guide to their Ecology and Monitoring For Water Quality. Csiro Publishing, Clayton, Australia.
23. Sherr EB, Sherr BF. 2009. Food webs, microbial, p 174–189. In Schaechter M (ed), Encyclopedia of Microbiology, 3rd ed. Academic Press, Oxford. [CrossRef]
24. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. [CrossRef]
25. Nalin D, Daya V, Reid A, Levine M, Cisneros L. 1979. Adsorption and growth of Vibrio cholerae on chitin. Infect Immun 25:768–770. [PubMed]
26. Jürgens K, Matz C. 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Ant Leeuw 81:413–434. [PubMed][CrossRef]
27. Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S. 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci USA 102:16819–16824. [PubMed][CrossRef]
28. Macek M, Carlos G, Memije P, Ramãrez P. 1997. Ciliate-Vibrio cholerae interactions within a microbial loop: an experimental study. Aquat Microb Ecol 13:257–266. [CrossRef]
29. Erken M, Weitere M, Kjelleberg S, McDougald D. 2011. In situ grazing resistance of Vibrio cholerae in the marine environment. FEMS Microbiol Ecol 76:504–512. [PubMed][CrossRef]
30. Worden AZ, Seidel M, Smriga S, Wick A, Malfatti F, Bartlett D, Azam F. 2006. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ Microbiol 8:21–29. [PubMed][CrossRef]
31. Rehnstam-Holm AS, Godhe A, Härnström K, Raghunath P, Saravanan V, Collin B, Karunasagar I. 2010. Association between phytoplankton and Vibrio spp. along the southwest coast of India: a mesocosm experiment. Aquat Microb Ecol 58:127–139. [CrossRef]
32. Wallace RL, Smith HA. 2009. Rotifera, p 689–703. In Gene EL (ed), Encyclopedia of Inland Waters. Academic Press, Oxford, UK. [CrossRef]
33. Constatin de Magny G, Mozumder PK, Grim CJ, Hasan NA, Naser MN, Alam M, Sack RB, Huq A, Colwell RR. 2011. Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl Environ Microbiol 77:6125–6132. [PubMed][CrossRef]
34. Armitage PD, Cranston PS, Pinder LCV. 1995. The Chironomidae: Biology and Ecology of Non-Biting Midges. Chapman and Hall, London, UK. [CrossRef]
35. Harris R. 2001. Copepods, p 512–523. In Steele JH, Turekian KK, Thorpe SA (ed), Encyclopedia of Ocean Sciences. Academic Press, Oxford, UK. [CrossRef]
36. Havel JE. 2009. Cladocera, p 611–622. In Gene EL (ed), Encyclopedia of Inland Waters. Academic Press, Oxford, UK. [CrossRef]
37. Grossart HP, Dziallas C, Tang KW. 2009. Bacterial diversity associated with freshwater zooplankton. Environ Microbiol Rep 1:50–55. [PubMed][CrossRef]
38. Tang KW. 2005. Copepods as microbial hotspots in the ocean: effects of host feeding activities on attached bacteria. Aquat Microb Ecol 38:31–40. [CrossRef]
39. Tang KW, Dziallas C, Grossart HP. 2011. Zooplankton and aggregates as refuge for aquatic bacteria: protection from UV, heat and ozone stresses used for water treatment. Environ Microbiol 13:378–390. [PubMed][CrossRef]
40. Grossart HP, Dziallas C, Leunert F, Tang KW. 2010. Bacteria dispersal by hitchhiking on zooplankton. Proc Natl Acad Sci USA 107:11959–11964. [PubMed][CrossRef]
41. Stich HB, Lampert W. 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293:396–398. [CrossRef]
42. Jiang SC, Louis V, Choopun N, Sharma A, Huq A, Colwell RR. 2000. Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol 66:140–147. [PubMed][CrossRef]
43. Heidelberg JF, Heidelberg KB, Colwell RR. 2002. Bacteria of the {gamma}-subclass proteobacteria associated with zooplankton in chesapeake bay. Appl Environ Microbiol 68:5498–5507. [PubMed][CrossRef]
44. Broza M, Gancz H, Halpern M, Kashi Y. 2005. Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7:576–585. [PubMed][CrossRef]
45. Halpern M, Broza Y, Mittler S, Arakawa E, Broza M. 2004. Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb Ecol 47:341–349. [PubMed][CrossRef]
46. Colwell RR. 1996. Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031. [PubMed][CrossRef]
47. Colwell RR, Huq A, Islam MS, Aziz KM, Yunus M, Khan NH, Mahmud A, Sack RB, Nair GB, Chakraborty J, Sack DA, Russek-Cohen E. 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci USA 100:1051–1055. [PubMed][CrossRef]
48. Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris JG Jr, Khan MN, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR. 2005. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71:4645–4654. [PubMed][CrossRef]
49. Huq A, Yunus M, Sohel SS, Bhuiya A, Emch M, Luby SP, Russek-Cohen E, Nair GB, Sack RB, Colwell RR. 2010. Simple sari cloth filtration of water is sustainable and continues to protect villagers from cholera in Matlab, Bangladesh. MBio 1:pii: e00034-10. [PubMed][CrossRef]
50. Nahar S, Sultana M, Naser MN, Nair GB, Watanabe H, Ohnishi M, Yamamoto S, Endtz H, Cravioto A, Sack RB, Hasan NA, Sadique A, Huq A, Colwell RR, Alam M. 2011. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Front Microbiol 2:260. [PubMed]
51. Huq A, Colwell RR, Rahman R, Ali A, Chowdhury MA, Parveen S, Sack DA, Russek-Cohen E. 1990. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl Environ Microbiol 56:2370–2373. [PubMed]
52. Turner JW, Good B, Cole D, Lipp EK. 2009. Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092. [PubMed][CrossRef]
53. Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea NF 3rd, Grimes DJ, Colwell RR. 2012. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol 78:7249–7257. [PubMed][CrossRef]
54. Johnson C, Flowers A, Noriea N, Zimmerman A, Bowers J, DePaola A, Grimes D. 2010. Relationships between environmental factors and pathogenic vibrios in the Northern Gulf of Mexico. Appl Environ Microbiol 76:7076–7084. [PubMed][CrossRef]
55. Nigro OD, Hou A, Vithanage G, Fujioka RS, Steward GF. 2011. Temporal and spatial variability in culturable pathogenic Vibrio spp. in Lake Pontchartrain, Louisiana, following hurricanes Katrina and Rita. Appl Environ Microbiol 77:5384–5393. [PubMed][CrossRef]
56. Eiler A, Gonzalez Rey C, Allen S, Bertilsson S. 2007. Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. FEMS Microbiol Ecol 60:411–418. [PubMed][CrossRef]
57. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, Colwell R. 2000. Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97:1438–1443. [PubMed][CrossRef]
58. Kaneko T, Colwell RR. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake bay. J Bacteriol 113:24–32. [PubMed]
59. Pruzzo C, Vezzulli L, Colwell RR. 2008. Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410. [PubMed][CrossRef]
60. Nalin DR. 1976. Cholera, copepods, and chitinase. Lancet 2:958. [PubMed][CrossRef]
61. Rawlings TK, Ruiz GM, Colwell RR. 2007. Association of Vibrio cholerae O1 El Tor and O139 Bengal with the Copepods Acartia tonsa and Eurytemora affinis. Appl Environ Microbiol 73:7926–7933. [PubMed][CrossRef]
62. Huq A, Colwell RR. 1996. Environmental factors associated with emergence of disease with special reference to cholera. East Mediterr Health J 2:37–45.
63. Tamplin M, Gauzens A, Huq A, Sack D, Colwell R. 1990. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980. [PubMed]
64. Kirschner AK, Schauer S, Steinberger B, Wilhartitz I, Grim CJ, Huq A, Colwell RR, Herzig A, Sommer R. 2011. Interaction of Vibrio cholerae non-O1/non-O139 with Copepods, Cladocerans and competing bacteria in the large alkaline lake Neusiedler See, Austria. Microb Ecol 61:496–506. [PubMed][CrossRef]
65. Lizarrága-Partida, Mendez-Gómez E, Rivas-Montaño AM, Vargas-Hernández E, Portillo-López A, González-Ramírez AR, Huq A, Colwell RR. 2009. Association of Vibrio cholerae with plankton in coastal areas of Mexico. Environ Microbiol 11:201–208. [PubMed][CrossRef]
66. Martinelli Filho JE, Lopes RM, Rivera ING, Colwell RR. 2011. Vibrio cholerae O1 detection in estuarine and coastal zooplankton. J Plankton Res 33:51–62. [CrossRef]
67. Kimmel DG, Roman MR. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Mar Ecol Prog Ser 267:71–83. [CrossRef]
68. Binsztein N, Costagliola MC, Pichel M, Jurquiza V, Ramírez FC, Akselman R, Vacchino M, Huq A, Colwell R. 2004. Viable but nonculturable Vibrio cholerae O1 in the aquatic environment of Argentina. Appl Environ Microbiol 70:7481–7486. [PubMed][CrossRef]
69. Colwell RR, Seidler RJ, Kaper J, Joseph SW, Garges S, Lockman H, Maneval D, Bradford H, Roberts N, Remmers E, Huq I, Huq A. 1981. Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries. Appl Environ Microbiol 41:555–8. [PubMed]
70. Gil AI, Louis VR, Rivera IN, Lipp E, Huq A, Lanata CF, Taylor DN, Russek-Cohen E, Choopun N, Sack RB, Colwell RR. 2004. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ Microbiol 6:699–706. [PubMed][CrossRef]
71. Louis VR, Russek-Cohen E, Choopun N, Rivera IN, Gangle B, Jiang SC, Rubin A, Patz JA, Huq A, Colwell RR. 2003. Predictability of Vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol 69:2773–2785. [PubMed][CrossRef]
72. Anderson AM, Varkey JB, Petti CA, Liddle RA, Frothingham R, Woods CW. 2004. Non-O1 Vibrio cholerae septicemia: Case report, discussion of literature, and relevance to bioterrorism. Diagn Microbiol Infect Dis 49:295–297. [PubMed][CrossRef]
73. Lukinmaa S, Mattila K, Lehtinen V, Hakkinen M, Koskela M, Siitonen A. 2006. Territorial waters of the Baltic Sea as a source of infections caused by Vibrio cholerae non-O1, non-O139: report of 3 hospitalized cases. Diagn Microbiol Infect Dis 54:1–6. [PubMed][CrossRef]
74. Kirschner AK, Schlesinger J, Farnleitner AH, Hornek R, Süss B, Golda B, Herzig A, Reitner B. 2008. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol 74:2004–2015. [PubMed][CrossRef]
75. Zo YG, Chokesajjawatee N, Grim C, Arakawa E, Watanabe H, Colwell RR. 2009. Diversity and seasonality of bioluminescent Vibrio cholerae populations in Chesapeake Bay. Appl Environ Microbiol 75:135–146. [PubMed][CrossRef]
76. Martinez-Urtaza J, Blanco-Abad V, Rodriguez-Castro A, Ansede-Bermejo J, Miranda A, Rodriguez-Alvarez MX. 2011. Ecological determinants of the occurrence and dynamics of Vibrio parahaemolyticus in offshore areas. ISME J 6:994–1006. [PubMed][CrossRef]
77. Wiltshire KH, Manly BF. 2004. The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273. [CrossRef]
78. Assmy P, Smetacek V. 2009. Algal blooms, p 27–41. In Schaechter M (ed), Encyclopedia of Microbiology, 3rd ed. Academic Press, Oxford, UK. [CrossRef]
79. Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Wild A, Weigert A, Jäger CG, Striebel M. 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150:643–654. [PubMed][CrossRef]
80. Constantin de Magny G, Murtugudde R, Sapiano MR, Nizam A, Brown CW, Busalacchi AJ, Yunus M, Nair GB, Gil AI, Lanata CF, Calkins J, Manna B, Rajendran K, Bhattacharya MK, Huq A, Sack RB, Colwell RR. 2008. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci USA 105:17676–17681. [PubMed][CrossRef]
81. Bompangue Nkoko D1, Giraudoux P, Plisnier PD, Tinda AM, Piarroux M, Sudre B, Horion S, Tamfum JJ, Ilunga BK, Piarroux R. 2011. Dynamics of cholera outbreaks in Great Lakes region of Africa, 1978–2008. Emerging Infect Dis 17:2026–2034. [PubMed][CrossRef]
82. Asplund ME, Rehnstam-Holm AS, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A. 2011. Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 13:2738–2751. [PubMed][CrossRef]
83. Oberbeckmann S, Wichels A, Wiltshire KH, Gerdts G. 2011. Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle. Ant Leeuw 100:291–307. [PubMed][CrossRef]
84. Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G. 2012. Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb Ecol 63:543–551. [PubMed][CrossRef]
85. Dawson MP, Humphrey BA, Marshall KC. 1981. Adhesion: a tactic in the survival strategy of a marine Vibrio during starvation. Curr Microbiol 6:195–199. [CrossRef]
86. Souza CP, Almeida BC, Colwell RR, Rivera ING. 2011. The importance of chitin in the marine environment. Mar Biotechnol 13:823–830. [PubMed][CrossRef]
87. Martínez JP, Falomir MP, Gozalbo D. 2009. Chitin: a structural biopolysaccharide, eLS. John Wiley and Sons, Ltd, Chichester, UK.
88. Rinaudo M. 2006. Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. [CrossRef]
89. Li X, Roseman S. 2004. The chitinolytic cascade in vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101:627–631. [PubMed][CrossRef]
90. Zobell CE, Rittenberg SC. 1938. The occurrence and characteristics of chitinoclastic bacteria in the sea. J Bacteriol 35:275–287. [PubMed]
91. Keyhani NO, Roseman S. 1999. Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122. [PubMed][CrossRef]
92. Hunt DE, Gevers D, Vahora NM, Polz MF. 2008. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51. [PubMed][CrossRef]
93. Porter SL, Wadhams GH, Armitage JP. 2011. Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9:153–165. [PubMed][CrossRef]
94. Bassler BL, Gibbons PJ, Yu C, Roseman S. 1991. Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266:24268–24275. [PubMed]
95. DeLoney-Marino CR, Wolfe AJ, Visick KL. 2003. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl Environ Microbiol 69:7527–7530. [PubMed][CrossRef]
96. Mandel MJ, Schaefer AL, Brennan CA, Heath-Heckman EA, Deloney-Marino CR, McFall-Ngai MJ, Ruby EG. 2012. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl Environ Microbiol 78:4620–4626. [PubMed][CrossRef]
97. Hirano T, Aoki M, Kadokura K, Kumaki Y, Hakamata W, Oku T, Nishio T. 2011. Heterodisaccharide N-acetyl-glucosaminyl)-glucosamine is an effective chemotactic attractant for Vibrio bacteria that produce chitin oligosaccharide deacetylase. Lett Appl Microbiol 53:161–166. [PubMed][CrossRef]
98. Vezzulli L, Pezzati E, Repetto B, Stauder M, Giusto G, Pruzzo C. 2008. A general role for surface membrane proteins in attachment to chitin particles and copepods of environmental and clinical vibrios. Lett Appl Microbiol 46:119–125. [PubMed]
99. Montgomery MT, Kirchman DL. 1993. Role of chitin-binding proteins in the specific attachment of the marine bacterium V. harveyi to chitin. Appl Environ Microbiol 59:373–379. [PubMed]
100. Yu C, Lee AM, Bassler BL, Roseman S. 1991. Chitin utilization by marine bacteria: a physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 266:24260–24267. [PubMed]
101. Pruzzo C, Crippa A, Bertone S, Pane L, Carli A. 1996. Attachment of Vibrio alginolyticus to chitin mediated by chitin-binding proteins. Microbiology 142:2181–2186. [PubMed][CrossRef]
102. Tarsi R, Pruzzo C. 1999. Role of surface proteins in Vibrio cholerae attachment to chitin. Appl Environ Microbiol 65:1348–1351. [PubMed]
103. Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866. [PubMed][CrossRef]
104. Stauder M, Huq A, Pezzati E, Grim CJ, Ramoino P, Pane L, Colwell RR, Pruzzo C, Vezzulli L. 2012. Role of GbpA protein, an important virulence-related colonization factor, for Vibrio cholerae’s survival in the aquatic environment. Environ Microbiol Rep 4:439–445. [PubMed][CrossRef]
105. Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ. 2013. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159:833–847. [PubMed][CrossRef]
106. Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS. 2008. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun 76:4968–4977. [PubMed][CrossRef]
107. Jude BA, Martinez RM, Skorupski K, Taylor RK. 2009. Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J Bacteriol 191:6911–6917. [PubMed][CrossRef]
108. Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AF, Svergun DI, Eijsink VG, Chatterjee NS, van Aalten DM. 2012. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8:e1002373. [PubMed][CrossRef]
109. Chiavelli DA, Marsh JW, Taylor RK. 2001. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67:3220–3225. [PubMed][CrossRef]
110. Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM. 2008. Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27:347–355. [PubMed][CrossRef]
111. Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T. 2006. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Letters 264:89–97. [PubMed][CrossRef]
112. Blokesch M. 2012. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 14:1898–1912. [PubMed][CrossRef]
113. Keyhani NO, Li XB, Roseman S. 2000. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification and molecular cloning of a chitoporin. J Biol Chem 275:33068–33076. [PubMed][CrossRef]
114. Keyhani NO, Roseman S. 1996. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: molecular cloning, isolation, and characterization of a periplasmic ß-N-acetylglucosaminidase. J Biol Chem 271:33425–33432. [CrossRef]
115. Keyhani N, Roseman S. 1966. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. J Biol Chem 271:33414–33424. [CrossRef]
116. Bouma CL, Roseman S. 1996. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. J Biol Chem 271:33457–33467. [PubMed][CrossRef]
117. Ghosh S, Rao KH, Sengupta M, Bhattacharya SK, Datta A. 2011. Two gene clusters co-ordinate for a functional N-acetylglucosamine catabolic pathway in Vibrio cholerae. Mol Microbiol 80:1549–1560. [PubMed][CrossRef]
118. Suginta W, Chumjan W, Mahendran KR, Janning P, Schulte A, Winterhalter M. 2013. Molecular uptake of chitooligosaccharides through chitoporin from the marine bacterium Vibrio harveyi. PLoS One 8:e55126. [PubMed][CrossRef]
119. Seitz P, Blokesch M. 2012. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 37:336–363. [PubMed][CrossRef]
120. Gulig PA, Tucker MS, Thiaville PC, Joseph JL, Brown RN. 2009. USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 75:4936–4949. [PubMed][CrossRef]
121. Chen Y, Jianli Dai J, Johnson J. 2010. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3: K6. BMC Microbiol 10:274. [PubMed][CrossRef]
122. Pollack-Berti A, Wollenberg MS, Ruby EG. 2010. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 12:2302–2311. [PubMed][CrossRef]
123. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon YS, Kim DW, Lee JH, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Munk AC, Chertkov O, Meincke L, Saunders E, Walters RA, Huq A, Nair GB, Colwell RR. 2009. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106:15442–7. [PubMed][CrossRef]
124. Blokesch M, Schoolnik GK. 2007. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 3:e81. [PubMed][CrossRef]
125. Udden SM, Zahid MS, Biswas K, Ahmad QS, Cravioto A, Nair GB, Mekalanos JJ, Faruque SM. 2008. Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA 105:11951–11956. [PubMed][CrossRef]
126. Neiman J, Guo Y, Rowe-Magnus DA. 2011. Chitin-induced carbotype conversion in Vibrio vulnificus. Infect Immun 79:3195–3203. [PubMed][CrossRef]
127. Yamamoto S, Morita M, Izumiya H, Watanabe H. 2010. Chitin disaccharide (GlcNAc)2 induces natural competence in Vibrio cholerae through transcriptional and translational activation of a positive regulatory gene tfoXVC. Gene 457:42–49. [PubMed][CrossRef]
128. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827. [PubMed][CrossRef]
129. Lo Scrudato M, Blokesch M. 2012. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 8:e1002778. [PubMed][CrossRef]
130. Blokesch M, Schoolnik GK. 2008. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J Bacteriol 190:7232. [PubMed][CrossRef]
131. Senderovich Y, Izhaki I, Halpern M. 2010. Fish as reservoirs and vectors of Vibrio cholerae. PLoS One 5:e8607. [PubMed][CrossRef]
microbiolspec.VE-0003-2014.citations
cm/3/3
content/journal/microbiolspec/10.1128/microbiolspec.VE-0003-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VE-0003-2014
2015-05-29
2017-11-21

Abstract:

Members of the genus are known to interact with phyto- and zooplankton in aquatic environments. These interactions have been proven to protect the bacterium from various environmental stresses, serve as a nutrient source, facilitate exchange of DNA, and to serve as vectors of disease transmission. This review highlights the impact of -zooplankton interactions at the ecosystem scale and the importance of studies focusing on a wide range of -zooplankton interactions. The current knowledge on chitin utilization (i.e., chemotaxis, attachment, and degradation) and the role of these factors in attachment to nonchitinous zooplankton is also presented.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/3/VE-0003-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.VE-0003-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Food web interactions of planktonic organisms. Bacteria take up dissolved and particular organic matter (DOM and POM, respectively). Heterotrophic protists ingest bacteria within the planktonic environment and are themselves preyed upon by larger predatory protists and metazoans. Carcasses and fecal matter of these organisms contribute to the DOM and POM bacteria utilize as nutrients. Black arrows indicate direct uptake for nutrients; gray arrows indicate contribution to the pool. doi:10.1128/microbiolspec.VE-0003-2014.f1

Source: microbiolspec May 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Common zooplankters with which spp. interact. spp. (especially ) colonize crustaceans, such as cladocerans (A), copepods (B), and ostracods (C). spp. have also been shown to interact with gelatinous and soft tissue zooplankters, and protozoa (D; i. ciliate, ii. flagellate, iii. amoeba), rotifers (E), chaetognaths (F), chironomids (G; i. adult, ii. egg masses), echinoderm pluteus larvae (H) , nauplius larvae (I), fish larvae (J i.), and fish eggs (J ii.) ( 12 , 19 , 33 , 45 , 64 , 66 , 76 , 131 ). Please note that the images are not to scale. doi:10.1128/microbiolspec.VE-0003-2014.f2

Source: microbiolspec May 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Utilization of chitin by spp. Chemotaxis towards chitin occurs when chitin oligosaccharides are detected by two independent receptors. Attachment to chitin occurs via GbpA, MshA pilus, or chitin-regulated pilus encoded by . Attachment to chitin leads to extracellular secretion of chitinases such as ChiA, which degrade chitin polymer to chitooligosaccharides. These enter the periplasm through specific porins such as ChiP and nonspecific porins. The chitooligosaccharides are hydrolyzed by various enzymes into GlcNAc and (GlcNAc) and are transported into the cytoplasm . The oligosaccharides are further phosphorylated into the final products acetate, NH, and fructose-6-P . doi:10.1128/microbiolspec.VE-0003-2014.f3

Source: microbiolspec May 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error