1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Effects of Global Warming on Ecology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    97.94 Kb
  • XML
    82.37 Kb
  • PDF
    259.93 Kb
  • Authors: Luigi Vezzulli1, Elisabetta Pezzati2, Ingrid Brettar3, Manfred Höfle4, Carla Pruzzo5
  • Editor: Michael Sadowsky6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), University of Genoa, 16132 Genoa, Italy; 2: Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), University of Genoa, 16132 Genoa, Italy; 3: Department of Vaccinology and Applied Microbiology – Microbial Diagnostics, Helmholtz Centre for Infection Research, D 38124 Braunschweig, Germany; 4: Department of Vaccinology and Applied Microbiology – Microbial Diagnostics, Helmholtz Centre for Infection Research, D 38124 Braunschweig, Germany; 5: Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), University of Genoa, 16132 Genoa, Italy; 6: University of Minnesota, St. Paul, MN
  • Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0004-2014
  • Received 08 October 2014 Accepted 24 February 2015 Published 19 June 2015
  • Carla Pruzzo, carla.pruzzo@unige.it
image of Effects of Global Warming on <span class="jp-italic">Vibrio</span> Ecology
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Effects of Global Warming on Ecology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/3/VE-0004-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/3/VE-0004-2014-2.gif
  • Abstract:

    -related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1°C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  • Citation: Vezzulli L, Pezzati E, Brettar I, Höfle M, Pruzzo C. 2015. Effects of Global Warming on Ecology. Microbiol Spectrum 3(3):VE-0004-2014. doi:10.1128/microbiolspec.VE-0004-2014.

Key Concept Ranking

Vibrio parahaemolyticus
0.6829925
Vibrio vulnificus
0.6829925
Vibrio parahaemolyticus
0.6829925
Vibrio vulnificus
0.6829925
Vibrio parahaemolyticus
0.6829925
0.6829925

References

1. Grimes DJ, Johnson CN, Dillon KS, Flowers AR, Noriea NF 3rd, Berutti T. 2009. What genomic sequence information has revealed about Vibrio ecology in the ocean--a review. Microb Ecol 58:447–460. [PubMed][CrossRef]
2. de Magny GC, Colwell RR. 2009. Cholera and climate: a demonstrated relationship. Trans Amer Clin Climatol Ass 120:119–128. [PubMed]
3. Baross J, Liston J. 1970. Occurrence of Vibrio parahaemolyticus and related hemolytic vibrios in marine environments of Washington State. Appl Microbiol 20:179–186. [PubMed]
4. Kaneko T, Colwell RR. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol 113:24–32. [PubMed]
5. DePaola A, Hopkins LH, Peeler JT, Wentz B, McPhearson RM. 1990. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters. Appl Environ Microbiol 56:2299–2302. [PubMed]
6. Parveen S, Hettiarachchi KA, Bowers JC, Jones JL, Tamplin ML, McKay R, Beatty W, Brohawn K, Dasilva LV, Depaola A. 2008. Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. Int J Food Microbiol 128:354–361. [PubMed][CrossRef]
7. Lhafi SK, Kuhne M. 2007. Occurrence of Vibrio spp. in blue mussels (Mytilus edulis) from the German Wadden Sea. Int J Food Microbiol 116:297–300. [PubMed][CrossRef]
8. Paranjpye R, Hamel OS, Stojanovski A, Liermann M. 2012. Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl Environ Microbiol 78:8631–8638. [PubMed][CrossRef]
9. DePaola A, Nordstrom JL, Bowers JC, Wells JG, Cook DW. 2003. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl Environ Microbiol 69:1521–1526. [PubMed][CrossRef]
10. Centers for Disease Control and Prevention (CDC). 2009. Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food --- 10 States, 2008. MMWR Morb Mortal Wkly Rep 58:333–337. [PubMed]
11. Martinez-Urtaza J, Bowers JC, Trinanes J, DePaola A. 2010. Climate anomalies and the increasing risk of Vibrio parahaemolyticus and Vibrio vulnificus illnesses. Food Res Internat 43:1780–1790. [CrossRef]
12. Newton A, Kendall M, Vugia DJ, Henao OL, Mahon BE. 2012. Increasing rates of vibriosis in the United States, 1996–2010: review of surveillance data from 2 systems. Clin Infect Dis 54:391–395. [PubMed][CrossRef]
13. Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A, Martinez-Urtaza J. 2013. Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Clim Change 3:73–77. [CrossRef]
14. IPCC. 2007. Climate Change 2007: Synthesis Report. IPCC, Geneva, Switzerland.
15. NOAA. 2012. Extended Reconstructed Sea Surface Temperature (ERSST.v3b). National Climatic Data Center, Asheville, NC.
16. Vezzulli L, Colwell RR, Pruzzo C. 2013. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb Ecol 65:817–825. [PubMed][CrossRef]
17. Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Höfle MG, Pruzzo C. 2012. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6:21–30. [PubMed][CrossRef]
18. Lima FP, Wethey DS. 2012. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun 3:704. [PubMed][CrossRef]
19. Baker-Austin C, Stockley L, Rangdale R, Martinez-Urtza J. 2010. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ Microbiol Rep 2:7–18. [PubMed][CrossRef]
20. Frank C, Littman M, Alpers K, Hallauer J. 2006. Vibrio vulnificus wound infections after contact with the Baltic Sea, Germany. Euro Surveill 11:E060817.1. [PubMed]
21. Andersson Y, Ekdahl K. 2006. Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Euro Surveill 11:E060803.2. [PubMed]
22. Schets FM, Van den Berg HHJL, Demeulmeester AA, Van Dijk E, Rutjes SA, Van Hooijdonk HJP, de Roda Husman AM. 2006. Vibrio alginolyticus infections in the Netherlands after swimming in the North Sea. Euro Surveill 11:E061109.3. [PubMed]
23. Andersen PH. 2006. Infections with seawater bacteria. EPI-NEWS 1:26–32.
24. Lipp EK, Huq A, Colwell RR. 2002. Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770. [PubMed][CrossRef]
25. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, Colwell R. 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Nat Acad Sci USA 97:1438–1443. [PubMed][CrossRef]
26. Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris JG Jr, Khan MN, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR. 2005. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71:4645–4654. [PubMed][CrossRef]
27. Sedas VT. 2007. Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. J Infect Dev Ctries 1:224–41. [PubMed]
28. Marcogliese DJ. 2008. The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech Off Int Epiz 27:467–484. [PubMed]
29. Pascual M, Bouma MJ, Dobson AP. 2002. Cholera and climate: revisiting the quantitative evidence. Microbes Infect 4:237–245. [PubMed][CrossRef]
30. Kaper JB, Morris JG Jr, Levine MM. 1995. Cholera. Clin Microbiol Rev 8:48–86. [PubMed]
31. Paz S. 2009. Impact of temperature variability on cholera incidence in southeastern Africa, 1971–2006. Ecohealth 6:340–345. [PubMed][CrossRef]
32. de Magny GC, Murtugudde R, Sapiano MRP, Nizam A, Brown CW, Busalacchi AJ, Yunuse M, Nair GB, Gil AI, Lanata CF, Calkinsi J, Manna B, Rajendran K, Bhattacharya MK, Huq A, Sack RB, Colwell RR. 2008. Environmental signatures associated with cholera epidemics. Proc Nat Acad Sci USA 105:17676–17681. [PubMed][CrossRef]
33. Weis KE, Hammond RM, Hutchinson R, Blackmore CG. 2011. Vibrio illness in Florida, 1998–2007. Epidemiol Infect 139:591–598. [PubMed][CrossRef]
34. Shearman RK, Lentz SJ. 2012. Long-term sea surface temperature variability along the U.S. East Coast. J Phys Oceanogr 40:1004–1017. [CrossRef]
35. Harvell, CD, Kim K, Burkholder J M, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus DME, Overstreet RM, Porter JW, Smith GW, Vasta GR. 1999. Emerging marine diseases-climate links and anthropogenic factors. Science 285:1505–1510. [PubMed][CrossRef]
36. Baird H, Marshall PA. 1998. Mass bleaching of corals on the Great Barrier Reef. Coral Reefs 17:376. [CrossRef]
37. Rosenberg E, Falkovitz L. 2004. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu Rev Microbiol 58:143–159. [PubMed][CrossRef]
38. Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C. 2010. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12:2007–2019. [PubMed][CrossRef]
39. Fukui Y, Saitoh S-I, Sawabe T. 2010. Environmental determinants correlated to Vibrio harveyi-mediated death of marine gastropods. Environ Microbiol 12:124–133. [PubMed][CrossRef]
40. Rosenberg E, Ben-Haim Y. 2002. Microbial diseases of corals and global warming. Environ Microbiol 4:318–326. [PubMed][CrossRef]
41. Smolikova LM, Somova AG, Medinskiĭ GM, Pashentseva NF, Orekhova IM. 1977. Seasonal dynamics of the abundance of vibrios and related microorganisms in the Don River. Zh Mikrobiol Epidemiol Immunobiol 12:29–33. [PubMed]
42. Hsieh JL, Fries JS, Noble RT. 2008. Dynamics and predictive modelling of Vibrio spp. in the Neuse river estuary, North Carolina, USA. Environ Microbiol 10:57–64. [PubMed]
43. Randa MA, Polz MF, Lim E. 2004. Effects of Temperature and Salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Appl Environ Microbiol 70:5469–5476. [PubMed][CrossRef]
44. Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G. 2012. Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb Ecol 63:543–551. [PubMed][CrossRef]
45. Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF. 2004. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110. [PubMed][CrossRef]
46. Montanari MP, Pruzzo C, Pane L, Colwell RR. 1999. Vibrios associated with plankton in a coastal zone of the Adriatic Sea (Italy). FEMS Microbiol Ecol 29:241–247. [CrossRef]
47. Barbieri E, Falzano L, Fiorentini C, Pianitti A, Baffone W, Fabbri A, Matarrese P, Caisere A, Katouli M, Kühn I, Mölby F, Bruscolini F, Donelli G. 1999. Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and non O1 Vibrio cholerae from estuarine waters along the Italian Adriatic Coast. Appl Environ Microbiol 65:2748–2753. [PubMed]
48. Baffone W, Tarsi R, Pane L, Campana R, Repetto B, Mariottini GL, Pruzzo C. 2006. Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ Microbiol 28:1299–1305. [PubMed][CrossRef]
49. Covazzi Harriague A, Brino MD, Zampini M, Albertelli G, Pruzzo C, Misic C. 2008. Vibrios in association with sedimentary crustaceans in three beaches of the northern Adriatic Sea (Italy). Mar Pollut Bull 56:574–579. [PubMed][CrossRef]
50. Cockburn TA, Cassanos JG. 1960. Epidemiology of endemic cholera. Public Health Rep 75:791–803. [PubMed][CrossRef]
51. Kirschner AK, Schlesinger J, Farnleitner AH, Hornek R, Süss B, Golda B, Herzig A, Reitner B. 2008. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol 74:2004–2015. [PubMed][CrossRef]
52. McGovern VP, Oliver JD. 1995. Induction of cold-responsive proteins in Vibrio vulnificus. J Bacteriol 177:4131–4133. [PubMed]
53. Delaney MP. 2003. Effects of temperature and turbulence on the predator-prey interactions between a heterotrophic flagellate and a marine bacterium. Microb Ecol 45:218–225. [PubMed][CrossRef]
54. Coutard F, Crassous P, Droguet M, Gobin E, Colwell RR, Pommepuy M, Hervio-Heath D. 2007. Recovery in culture of viable but nonculturable Vibrio parahaemolyticus: regrowth or resuscitation? ISME J 1:111–120. [PubMed][CrossRef]
55. Colwell RR. 2000. Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125. [PubMed][CrossRef]
56. Oliver JD. 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. [PubMed]
57. Oliver JD. 2005. The viable but nonculturable state in bacteria. J Microbiol 43:93–100. [PubMed]
58. Huq A, Colwell RR, Rahman R, Ali A, Chowdhury MAR, Parveen S, Sack DA, Russek-Cohen E. 1990. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl Environ Microbiol 56:2370–2373. [PubMed]
59. Rivera ING, Lipp EK, Gil A, Choopun N, Huq A, Colwell Rr. 2003. Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic V. cholerae O1 and O139 from aquatic ecosystems. Environ Microbiol 5:599–606. [PubMed][CrossRef]
60. Kelly MT, Stroh EM. 1988. Occurrence of Vibrionaceae in natural and cultivated oyster populations in the Pacific Northwest. Diagn Microbiol Infect Dis 9:1–5. [PubMed][CrossRef]
61. Colwell RR, Huq A. 1994. Vibrios in the environment: viable but non-culturable Vibrio cholerae, p 117–133. In Wachsmuth IK, Blake PA, Olsvik O (ed), Vibrio cholerae and cholera: molecular to global perspectives. American Society for Microbiology, Washington, DC. [CrossRef]
62. Montilla R, Chowdhury MA, Huq A, Xu B, Colwell RR. 1996. Serogroup conversion of Vibrio cholerae non-O1 to Vibrio cholerae O1: effect of growth state of cells, temperature, and salinity. Can J Microbiol 42:87–93. [PubMed][CrossRef]
63. Blokesch M, Schoolnik GK. 2007. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 3:e81. [PubMed][CrossRef]
64. Kaspar CW, Tamplin ML. 1993. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol 59:2425–2429. [PubMed]
65. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323. [PubMed][CrossRef]
66. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, Kiss H, Munk AC, Tapia R, Green L, Detter C, Bruce DC, Brettin TS, Colwell RR, Morris PJ. 2012. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846. [PubMed][CrossRef]
67. Oh MH, Lee SM, Lee DH, Choi SH. 2009. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect Immun 77:1208–1215. [PubMed][CrossRef]
68. Vezzulli L, Pruzzo C, Huq A, Colwell RR. 2010. Environmental reservoirs of Vibrio cholerae and their role in cholera. Env Microbiol Rep 2:27–33. [PubMed][CrossRef]
69. Pruzzo C, Crippa A, Bertone S, Pane L, Carli A. 1996. Attachment of Vibrio alginolyticus to chitin mediated by chitin binding proteins. Microbiology 142:2181–2186. [PubMed][CrossRef]
70. Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F. 2005. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71:8531–8536. [PubMed][CrossRef]
71. Rypien KL, Ward JR, Azam F. 2010. Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39. [PubMed][CrossRef]
72. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationship between Vibrio cholerae and planktonic copepods. Appl Environ Microbiol 45:275–283. [PubMed]
73. Colwell RR. 1996. Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031. [PubMed][CrossRef]
74. Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A. 2009. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7:693–702 [PubMed][CrossRef]
75. Pruzzo C, Tarsi R, Lleò MM, Signoretto C, Zampini M, Pane L, Colwell RR, Canepari P. 2003. Persistence of adhesive properties in Vibrio cholerae after long term exposure to sea water. Environ Microbiol 5:850–858. [PubMed][CrossRef]
76. Huq A, West PA, Small EB, Huq MI, Colwell RR. 1984. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424. [PubMed]
77. Turner JW, Good B, Cole D, Lipp EK. 2009. Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092. [PubMed][CrossRef]
78. Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C. 2010. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Env Microbiol Rep 2:140–144. [PubMed][CrossRef]
79. Stauder M, Huq A, Pezzati E, Grim CJ, Ramoino P, Pane L, Colwell RR, Pruzzo C, Vezzulli L. 2012. Role of GbpA protein, an important virulence-related colonization factor, for Vibrio cholerae’s survival in the aquatic environment. Environ Microbiol Rep 4:439–445. [PubMed][CrossRef]
80. Colwell RR. 2002. A voyage of discovery: cholera, climate and complexity. Environ Microbiol 4:67–69. [PubMed][CrossRef]
81. Moran XAG, Lopez-Urrutia A, Calvo-Diaz A, Li WKW. 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob Chang Biol 16:1137–1144. [CrossRef]
82. Beaugrand G, Reid PC, Ibañez F, Alistair Lindley J, Edwards M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694. [PubMed][CrossRef]
83. Reid PC, Gorick G, Edwards M. 2011. Climate change and European Marine Ecosystem Research. Sir Alister Hardy Foundation for Ocean Science, Plymouth, UK.
84. Richardson AJ. 2008. In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. [CrossRef]
85. Martinez-Urtaza J, Huapaya B, Gavilan RG, Blanco-Abad V, Ansede-Bermejo J, Cadarso-Suarez C, Figueiras A, Trinanes J. 2008. Emergence of Asiatic Vibrio diseases in South America in phase with El Niño. Epidemiology 19:829–837. [PubMed][CrossRef]
86. Rawlings TK, Ruiz GM, Colwell RR. 2007. Association of Vibrio cholerae serogroups O1 El Tor and O139 Bengal with the copepods Acartia tonsa and Eurytemora affinis. Appl Environ Microbiol 73:7926–7933. [PubMed][CrossRef]
87. Reid PC, Colebrook JM, Matthews JBL, Aiken J. 2003. The continuous plankton recorder: concepts and history, from plankton indicator to undulating recorders. Prog Oceanogr 58:117–173. [CrossRef]
88. Anderson MJ. 2003. DISTLM forward: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model using forward selection. Department of Statistics, University of Auckland, Auckland, New Zealand.
89. Bowler C, Karl DM, Colwell RR. 2009. Microbial oceanography in a sea of opportunity. Nature 459:180–184. [PubMed][CrossRef]
microbiolspec.VE-0004-2014.citations
cm/3/3
content/journal/microbiolspec/10.1128/microbiolspec.VE-0004-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VE-0004-2014
2015-06-19
2017-11-21

Abstract:

-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1°C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/3/VE-0004-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.VE-0004-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Simplified scheme of the response of bacteria and zooplankton to ocean warming. Ocean warming deeply influences bacterial growth and biology (e.g., culturability, antigenicity, pathogenicity, and gene expression) and zooplankton development, phenology, size, structure, and poleward movements. An increasing SST also triggers algal blooms that in turn promote an increase in zooplankters feeding on algae. Consequences of all the above include a higher association of vibrios to zooplankters (also due to a temperature-dependent higher expression of specific ligands), introduction of new species/clones in new areas, and spread of associated human and animal diseases. doi:10.1128/microbiolspec.VE-0004-2014.f1

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.VE-0004-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error