1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Role of Vibrios in Diseases of Corals

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Colin B. Munn1
  • Editor: Michael Sadowsky2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: School of Marine Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK; 2: University of Minnesota, St. Paul, MN
  • Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.VE-0006-2014
  • Received 16 October 2014 Accepted 02 March 2015 Published 07 August 2015
  • Colin B. Munn, cmunn@plymouth.ac.uk
image of The Role of Vibrios in Diseases of Corals
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Role of Vibrios in Diseases of Corals, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/4/VE-0006-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/4/VE-0006-2014-2.gif
  • Abstract:

    The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of in seasonal bleaching of and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other -associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most—possibly all—vibrios as “opportunistic” pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.

  • Citation: Munn C. 2015. The Role of Vibrios in Diseases of Corals. Microbiol Spectrum 3(4):VE-0006-2014. doi:10.1128/microbiolspec.VE-0006-2014.

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.42215025
Denaturing Gradient Gel Electrophoresis
0.42215025
Restriction Fragment Length Polymorphism
0.42215025
Denaturing Gradient Gel Electrophoresis
0.42215025
0.42215025

References

1. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB. 2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70. [PubMed][CrossRef]
2. Kleypas JA, Eakin CM. 2007. Scientists’ perceptions of threats to Coral Reefs: Results of a survey of Coral Reef researchers. Bull Marine Sci 80:419–436.
3. Rohwer F, Seguritan V, Azam F, Knowlton N. 2002. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10. [CrossRef]
4. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. 2013. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 280:20122328. [PubMed][CrossRef]
5. Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD. 2009. Microbial disease and the coral holobiont. Trends Microbiol 17:554–562. [PubMed][CrossRef]
6. Ritchie KB. 2011. Bacterial symbionts of corals and Symbiodinium, p 139–150. In Rosenberg E, Gophna U (ed), Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Germany.
7. Raina JB, Dinsdale EA, Willis BL, Bourne DG. 2010. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18:101–108. [PubMed][CrossRef]
8. Siboni N, Ben-Dov E, Sivan A, Kushmaro A. 2008. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990. [PubMed][CrossRef]
9. Raymundo, LJ, Couch SS, Harvell DH. 2008. Coral disease handbook: guidelines for assessment, monitoring and management. Coral Reef Targeted Research and Capacity Building for Management Program, Centre for Marine Studies, University of Queensland, Brisbane, Australia.
10. Sweet M, Jones R, Bythell J. 2011. Coral diseases in aquaria and in nature. J Mar Biol Assoc UK 92:791–801. [CrossRef]
11. Alves N Jr, Neto OSM, Silva BSO, De Moura RL, Francini-Filho RB, Barreira E Castro C, Paranhos R, Bitner-Mathé BC, Kruger RH, Vicente ACP, Thompson CC, Thompson FL. 2010. Diversity and pathogenic potential of vibrios isolated from Abrolhos Bank corals. Environ Microbiol Rep 2:90–95. [PubMed][CrossRef]
12. Arbodela MDM, Reichardt W. 2008. Vibrio sp. causing Porites ulecrative white spot disease. Dis Aquat Org 90:93–104. [PubMed]
13. Bally M, Garrabou J. 2007. Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Global Change Biol 13:2078–2088. [CrossRef]
14. Hall-Spencer JM, Pike J, Munn CB. 2007. Diseases affect cold-water corals too: Eunicella verrucosa (Cnidaria: Gorgonacea) necrosis in SW England. Dis Aquat Org 76:87–97. [PubMed][CrossRef]
15. Chimetto LA, Brocchi M, Gondo M, Thompson CC, Gomez-Gil B, Thompson FL. 2009. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). J Appl Microbiol 106:1818–1826. [PubMed][CrossRef]
16. Thompson FL, Thompson CC, Naser S, Hoste B, Vandemeulebroecke K, Munn C, Bourne D, Swings J. 2005. Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int J Syst Evol Microbiol 55:913–917. [PubMed][CrossRef]
17. Chen YH, Kuo J, Sung PJ, Chang YC, Lu MC, Wong TY, Liu JK, Weng CF, Twan WH, Kuo FW. 2012. Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World J Microbiol Biotechnol 28:3269–3279. [PubMed][CrossRef]
18. Haldar S, Mody KH, Jha B. 2011. Abundance, diversity and antibiotics resistance pattern of Vibrio spp. in coral ecosystem of Kurusadai Island. J Basic Microbiol 51:153–62. [PubMed][CrossRef]
19. Daniels C, Zeifman A, Heym K, Ritchie K, Watson C, Berzins I, Breitbart M. 2011. Spatial heterogeneity of bacterial communities in the mucus of Montastraea annularis. Marine Ecol Prog Ser 426:29–40. [CrossRef]
20. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin SA, Thurber RV, Willis BL, Azam F, Knowlton N, Rohwer F. 2008. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 3:e1584.
21. Bourne DG, Munn CB. 2005. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174. [PubMed][CrossRef]
22. De Castro AP, Araújo SD, Reis AMM, Moura RL, Francini-Filho RB, Pappas G, Rodrigues TB, Thompson FL, Krüger RH. 2010. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from eastern Brazil. Microb Ecol 59:658–667. [PubMed][CrossRef]
23. Koren O, Rosenberg E. 2006. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259. [PubMed][CrossRef]
24. Kvennefors ECE, Sampayo E, Ridgway T, Barnes AC, Hoegh-Guldberg O. 2010. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. PloS One 5:e10401. [PubMed][CrossRef]
25. Sweet M, Burn D, Croquer A, Leary P. 2013. Characterisation of the bacterial and fungal communities associated with different lesion sizes of dark spot syndrome occurring in the coral Stephanocoenia intersepta. PloS One 8:e62580. [PubMed][CrossRef]
26. Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O. 2007. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol 346:36–44. [CrossRef]
27. Olson ND, Ainsworth TD, Gates RD, Takabayashi M. 2009. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol 371:140–146. [CrossRef]
28. Chimetto LA, Brocchi M, Thompson CC, Martins RCR, Ramos HR, Thompson FL. 2008. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. System Appl Microbiol 31:312–319. [PubMed][CrossRef]
29. Ritchie K. 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14. [CrossRef]
30. Brown BE. 1997. Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138. [CrossRef]
31. Douglas AE. 2003. Coral bleaching--how and why? Mar Poll Bull 46:385–392. [PubMed][CrossRef]
32. Weis VM. 2008. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066. [PubMed][CrossRef]
33. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U. 1998. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230. [CrossRef]
34. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. [PubMed][CrossRef]
35. Rosenberg E, Falkovitz L. 2004. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Ann Rev Microbiol 58:143–159. [PubMed][CrossRef]
36. Kushmaro A, Loya Y, Fine M, Rosenberg E. 1996. Bacterial infection and coral bleaching. Nature 380:396. [CrossRef]
37. Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y. 1998. Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 64:1379–1384. [PubMed][CrossRef]
38. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E. 2001. Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51:1383–1388. [PubMed]
39. List Editor. 2001. Notification that new names and new combinations have appeared in volume 51, part 4, of the IJSEM. Int J Syst Evol Microbiol 51:1621–1623. [PubMed][CrossRef]
40. Thompson FL, Hoste B, Thompson CC, Huys G, Swings G. 2001. The coral bleaching Vibrio shiloi Kushmaro et al. 2001 is a later synonym of Vibrio mediterranei Pujalte and Garay 1986. Syst Appl Microbiol 24:516–519. [PubMed][CrossRef]
41. Tarazona E, Lucena T, Arahal DR, Macián MC, Ruvira MA, Pujalte MJ. 2014. Multilocus sequence analysis of putative Vibrio mediterranei strains and description of Vibrio thalassae sp. nov. Syst Appl Microbiol 37:320–328. [PubMed][CrossRef]
42. Toren A, Landau L, Kushmaro A, Loya Y, Rosenberg E. 1998. Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Appl Environ Microbiol 64:1379–1384. [PubMed]
43. Banin E, Israely T, Fine M, Loya Y, Rosenberg E. 2001. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol Lett 199:1379–1384. [CrossRef]
44. Ben-Haim Y, Banin E, Kushmaro A, Loya Y, Rosenberg E. 1999. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ Microbiol 1:223–229. [PubMed][CrossRef]
45. Koren O, Rosenberg E. 2006. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259. [PubMed][CrossRef]
46. Ainsworth TD, Fine M, Roff G, Hoegh-Guldberg O. 2008. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J 2:67–73. [PubMed][CrossRef]
47. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. 2006. The coral probiotic hypothesis. Environ Microbiol 8:2068–2073. [PubMed][CrossRef]
48. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 2007. The role of microorganisms in coral health, disease and evolution. Nature Rev Microbiol 5:355–362. [PubMed][CrossRef]
49. Nissimov J, Rosenberg E, Munn CB. 2009. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett 292:210–215. [PubMed][CrossRef]
50. Reshef L, Ron E, Rosenberg E. 2008. Genome analysis of the coral bleaching pathogen Vibrio shiloi. Arch Microbiol 190:185–194. [PubMed][CrossRef]
51. Banin E, Israely T, Kushmaro A, Loya Y, Orr E, Rosenberg E. 2000. Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Appl Environ Microbiol 190:185–195. [CrossRef]
52. Sussman M, Loya Y, Fine M, Rosenberg E. 2003. The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ Microbiol 5:250–255. [PubMed][CrossRef]
53. Oliver JD. 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. [PubMed][CrossRef]
54. Vattakaven T, Bond P, Bradley G, Munn CB. 2006. Differential effects of temperature and starvation on induction of the viable-but-nonculturable state in the coral pathogens Vibrio shiloi and Vibrio tasmaniensis. Appl Environ Microbiol 72:6513–6508. [PubMed][CrossRef]
55. Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Yossi L. 2009. The role of microorganisms in coral bleaching. ISME J 3:139–146. [PubMed][CrossRef]
56. Rubio-Portillo E, Yarza P, Penalver C, Ramos-Espla AA, Anton J. 2014. New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities. ISME J 8:1794–1807. [PubMed][CrossRef]
57. Ben-Haim Y, Rosenberg E, Ben Haim Y. 2002. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141:45–55.
58. Ben Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E. 2003. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315. [PubMed][CrossRef]
59. Ben-Haim Y, Zicherman-Keren M, Rosenberg E. 2003. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 17:301–324.
60. Sussman M, Willis BL, Victor S, Bourne DG. 2008. Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS One 3:e2393. [PubMed][CrossRef]
61. Pollock FJ, Wilson B, Johnson WR, Morris PJ, Willis BL, Bourne DG. 2010. Phylogeny of the coral pathogen Vibrio coralliilyticus. Environ Microbiol Rep 2:172–178. [PubMed][CrossRef]
62. Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE, Smith GW, Weil E, Moeller PDR, Morris PJ. 2010. Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Microb Ecol 59:646–657. [PubMed][CrossRef]
63. Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C. 2010. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12:2007–2019. [PubMed][CrossRef]
64. Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG. 2009. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS One 4:e4511. [PubMed][CrossRef]
65. Luna GM, Biavasco F, Danovaro R. 2010. Vibrio harveyi as a causative agent of the White Syndrome in tropical stony corals. Environ Microbiol Rep 2:120–127. [PubMed][CrossRef]
66. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, Kiss H, Munk AC, Tapia R, Green L, Detter C, Bruce DC, Brettin TS, Colwell RR, Morris PJ. 2012. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846. [PubMed][CrossRef]
67. Santos E de O, Alves N, Dias GM, Mazotto AM, Vermelho A, Vora GJ, Wilson B, Beltran VH, Bourne DG, Le Roux F, Thompson FL. 2011. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J 5:1471–1483. [PubMed][CrossRef]
68. Austin B, Austin D, Sutherland R, Thompson F, Swings J. 2005. Pathogenicity of vibrios to rainbow trout (Oncorhynchus mykiss, Walbaum) and Artemia nauplii. Environ Microbiol 7:1488–1495. [PubMed][CrossRef]
69. Boroujerdi AFB, Vizcaino MI, Meyers A, Pollock EC, Huynh SL, Schock TB, Morris PJ, Bearden DW. 2009. NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus. Environ Sci Technol 43:7658–7664. [PubMed][CrossRef]
70. Boroujerdi AFB, Jones SS, Bearden DW. 2012. NMR analysis of metabolic responses to extreme conditions of the temperature-dependent coral pathogen Vibrio coralliilyticus. Lett Appl Microbiol 54:209–216. [PubMed][CrossRef]
71. Larsen MH, Boesen HT. 2001. Role of flagellum and chemotactic motility of Vibrioanguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett 203:149–152. [PubMed][CrossRef]
72. McGee K, Horstedt P, Milton DL. 1996. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 176:5188–5198. [PubMed]
73. Graf J, Dunlap PV, Ruby EG. 1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol 176:6986–6991. [PubMed]
74. Gardel C, Mekalanos J. 1996. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64:2246–2255. [PubMed]
75. Yeung PSM, Hayes MC, DePaola A, Kaysner CA, Kornstein L, Boor KJ. 2002. Comparative phenotypic, molecular, and virulence characterization of Vibrio parahaemolyticus O3:K6 Isolates. Appl Environ Microbiol 68:2901–2909. [PubMed][CrossRef]
76. Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, Greenberg EP, Banin E. 2009. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus.Appl Environ Microbiol 74:5704–5707. [PubMed][CrossRef]
77. Winn KM, Bourne DG, Mitchell JG. 2013. Vibrio coralliilyticus search patterns across an oxygen gradient. PLoS One 8:e67975. [PubMed][CrossRef]
78. Stocker R. 2011. Reverse and flick: Hybrid locomotion in bacteria. Proc Natl Acad Sci USA 108:2635–2636. [PubMed][CrossRef]
79. Xie L, Altindal T, Chattopadhyay S, Wu XL. 2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc Natl Acad Sci USA 108:2246–2251. [PubMed][CrossRef]
80. Garren M, Son K, Raina JB, Rusconi R, Menolascina F, Shapiro OH, Tout J, Bourne DG, Stocker R. 2014. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007. [PubMed][CrossRef]
81. Weil E, Cróquer A, Urreiztieta I. 2009. Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia). Dis Aquat Org 87:45–55. [PubMed][CrossRef]
82. Bruckner AW, Bruckner RJ. 2006. Consequences of yellow band disease (YBD) on Montastraea annularis (species complex) populations on remote reefs off Mona Island, Puerto Rico. Dis Aquat Org 69:67–73. [PubMed][CrossRef]
83. Cervino JM, Hayes RL, Polson SW, Polson SC, Goreau TJ, Martinez RJ, Smith GW. Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean Corals. Appl Environ Microbiol 70:6855–6864. [PubMed][CrossRef]
84. Cervino JM, Thompson FL, Gomez-Gil B, Lorence EA, Goreau TJ, Hayes RL, Winiarski-Cervino KB, Smith GW, Hughen K, Bartels E. 2008. The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals. J Appl Microbiol 105:1658–1671. [PubMed][CrossRef]
85. Cróquer A, Bastidas C, Elliott A, Sweet M. 2013. Bacterial assemblages shifts from healthy to yellow band disease states in the dominant reef coral Montastraea faveolata. Environ Microbiol Reports 5:90–96. [PubMed][CrossRef]
86. Ritchie KB, Dennis JH, McGrath T, Smith GW. 1994. Bacteria associated with healthy and bleached areas of Montastrea annularis. In Kass L (ed), Proceedings of the Fifth Symposium on the Natural History of the Bahamas. Bahamian Field Station, San Salvador.
87. McGrath TA, Smith GW. 1999. Community shifts in the surface mucopolysaccharide layer microbiota of Agaricia sp. during the 1995/6 and 1998/9 bleaching events on patch reefs of San Salvador Island, Bahamas. In Cortés JN, Fonseca AC (ed), Proceedings of the 29th Meeting of the Association of Marine Laboratories of the Caribbean, 2000; Cumana, Venezuela. CIMAR, Universidad de Costa Rica: San José, Costa Rica.
88. Bourne D, Iida Y, Uthicke S, Smith-Keune C. 2007. Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363. [PubMed][CrossRef]
89. Littman R, Willis B, Bourne D. 2009. Bacterial communities of juvenile corals infected with different Symbiodinium (dinoflagellate) clades. Mar Ecol Prog Ser 389:45–59. [CrossRef]
90. Littman RA, Bourne DG, Willis BL. 2010. Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Molec Ecol 19:1978–1990. [PubMed][CrossRef]
91. Banin E, Vassilakos D, Orr E, Martinez RJ, Rosenberg E. 2003. Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46:418–422. [PubMed][CrossRef]
92. Israely T, Banin E, Rosenberg E. 2001. Growth, differentiation and death of Vibrio shiloi in coral tissue as a function of seawater temperature. Aquat Microb Ecol 24:1–8. [CrossRef]
93. Banin E, Vassilakos D, Orr E, Martinez RJ, Rosenberg E. 2003. Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46:418–422. [PubMed][CrossRef]
94. Murali MR, Raja SB, Devaraj SN. 2010. Neutralization of radical toxicity by temperature-dependent modulation of extracellular SOD activity in coral bleaching pathogen Vibrio shiloi and its role as a virulence factor. Arch Microbiol 192:619–623. [PubMed][CrossRef]
95. Munn CB, Marchant HK, Moody AJ. 2008. Defences against oxidative stress in vibrios associated with corals. FEMS Microbiol Lett 281:58–63. [PubMed][CrossRef]
96. Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199. [PubMed][CrossRef]
97. Milton DL. 2006. Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296:61–71. [PubMed][CrossRef]
98. Tait K, Hutchison Z, Thompson FL, Munn CB. 2010. Quorum sensing signal production and inhibition by coral-associated vibrios. Environ Microbiol Rep 2:145–150. [PubMed][CrossRef]
99. Henke JM, Bassler BL. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6914. [PubMed][CrossRef]
100. Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A. 2011. Characterization of quorum sensing signals in coral-associated bacteria. Microb Ecol 61:783–792. [PubMed][CrossRef]
101. Alker AP, Smith GW, Kim K. 2001. Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiol 460:105–111. [CrossRef]
102. Arotsker L, Siboni N, Ben-Dov E, Kramarsky-Winter E, Loya Y, Kushmaro A. 2009. Vibrio sp. as a potentially important member of the black band disease (BBD) consortium in Favia sp. corals. FEMS Microbiol Ecol 70:515–524. [PubMed][CrossRef]
103. Cooney RP, Pantos O, Le Tissier MDA, Barer MR, O’Donnell AG, Bythell JC. 2002. Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413. [PubMed][CrossRef]
104. Frias-Lopez J, Klaus JS, Bonheyo GT, Fouke BW. 2004. Bacterial community associated with black band disease in corals. Appl Environ Microbiol 70:5955–5962. [PubMed][CrossRef]
105. Ushijima B, Smith A, Aeby GS, Callahan SM. 2012. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS One 7:e46717. [PubMed][CrossRef]
106. Wilson B, Aeby GS, Work TM, Bourne DG. 2012. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa. FEMS Microbiol Ecol 80:509–520. [PubMed][CrossRef]
107. Luna GM, Biavasco F, Danovaro R. 2007. Bacteria associated with the rapid tissue necrosis of stony corals. Environ Microbiol 9:1851–1857. [PubMed][CrossRef]
108. Ritchie KB, Smith GW. 1998. Type II white-band disease. Rev Biol Trop 46(Supp. 5):199–203.
109. Thompson FL, Barash Y, Sawabe T, Sharon G, Swings J, Rosenberg E. 2006. Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 56:365–368. [PubMed][CrossRef]
110. Denner EBM, Smith GW, Busse HJ, Schumann P, Narzt T, Polson SW, Richardson LL. 2003. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 53:1115–1122. [PubMed][CrossRef]
111. Patterson KL, Porter JW, Ritchie KE, Polson SW, Mueller E, Peters EC, Santavy DL, Smith GW. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci USA 99:8725–8730. [PubMed][CrossRef]
microbiolspec.VE-0006-2014.citations
cm/3/4
content/journal/microbiolspec/10.1128/microbiolspec.VE-0006-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VE-0006-2014
2015-08-07
2017-05-27

Abstract:

The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of in seasonal bleaching of and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other -associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most—possibly all—vibrios as “opportunistic” pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagrammatic representation of the structure of (A) a coral polyp and (B) mucus and tissue compartments, providing different microhabitats for symbiotic and pathogenic microbes. The mucus secreted by epithelial cells is especially important as major habitat for bacteria, including vibrios. doi:10.1128/microbiolspec.VE-0006-2014.f1

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.VE-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2a
FIGURE 2a

Examples of tropical coral diseases associated with infection by spp. (A) White syndrome in sp. (images courtesy of Meir Sussman). (B) Yellow blotch/band diseases on sp. (image courtesy of James Cervino). Reproduced with permission from the US Geological Survey. doi:10.1128/microbiolspec.VE-0006-2014.f2a

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.VE-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2b
FIGURE 2b

Examples of tropical coral diseases associated with infection by spp. (A) White syndrome in sp. (images courtesy of Meir Sussman). (B) Yellow blotch/band diseases on sp. (image courtesy of James Cervino). Reproduced with permission from the US Geological Survey. doi:10.1128/microbiolspec.VE-0006-2014.f2b

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.VE-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Tissue necrosis associated with opportunistic infection of by spp. (A) early onset of coenchyme necrosis (arrow); (B) postnecrotic exposure of gorgonin skeleton (arrow) with fouling community of hydroids, barnacles, and bryozoans. Scale bars, 40 mm. Reproduced with permission of the publishers Inter-Research from reference 14 . doi:10.1128/microbiolspec.VE-0006-2014.f3

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.VE-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Principal disease of corals for which there is a strong association with fungal or bacterial infection

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.VE-0006-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error