1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Valérie Poirier1, Yossef Av-Gay2
  • Editors: Indira T. Kudva3, John P. Bannantine4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6; 2: Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6; 3: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 4: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
  • Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0003-2014
  • Received 13 December 2014 Accepted 15 April 2015 Published 18 December 2015
  • Yossef Av-Gay, yossi@mail.ubc.ca
image of Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/6/VMBF-0003-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/6/VMBF-0003-2014-2.gif
  • Abstract:

    The ability of intracellular pathogens to subvert the host response, to facilitate invasion and subsequent infection, is the hallmark of microbial pathogenesis. Bacterial pathogens produce and secrete a variety of effector proteins, which are the primary means by which they exert control over the host cell. Secreted effectors work independently, yet in concert with each other, to facilitate microbial invasion, replication, and intracellular survival in host cells. In this review we focus on defined host cell processes targeted by bacterial pathogens. These include phagosome maturation and its subprocesses: phagosome-endosome and phagosome-lysosome fusion events, as well as phagosomal acidification, cytoskeleton remodeling, and lysis of the phagosomal membrane. We further describe the mode of action for selected effectors from six pathogens: the Gram-negative , , , and , the Gram-positive , and the acid-fast actinomycete .

  • Citation: Poirier V, Av-Gay Y. 2015. Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiol Spectrum 3(6):VMBF-0003-2014. doi:10.1128/microbiolspec.VMBF-0003-2014.

Key Concept Ranking

Bacterial Cellular Processes
0.9449813
Bacterial Proteins
0.8587708
Bacterial Pathogenesis
0.80602556
Bacterial Diseases
0.6888746
Class III Phosphatidylinositol 3-Kinase
0.47942075
0.9449813

References

1. World Health Organization. 2015. The Top 10 Causes of Death. Fact sheet No. 310. http://www.who.int/mediacentre/factsheets/fs310/en/.
2. Guerrant RL, Blackwood BL. 1999. Threats to global health and survival: the growing crises of tropical infectious diseases: our “unfinished agenda.” Clin Infect Dis 28:966–986. [PubMed][CrossRef]
3. Butler JC, Crengle S, Cheek JE, Leach AJ, Lennon D, O’Brien KL, Santosham M. 2001. Emerging infectious diseases among indigenous peoples. Emerg Infect Dis 7(Suppl 3):554–555. [PubMed][CrossRef]
4. Bliska JB, Copass MC, Falkow S. 1993. The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect Immun 61:3914–3921. [PubMed]
5. Cascales E, Christie PJ. 2003. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149. [PubMed][CrossRef]
6. Backert S, Meyer TF. 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217. [PubMed][CrossRef]
7. Saier MHJ. 2006. Protein secretion systems in Gram-negative bacteria. Microbe 1:414–419.
8. Yen M-R, Peabody CR, Partovi SM, Zhai Y, Tseng Y-H, Saier MHJ. 2002. Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 1562:6–31. [CrossRef]
9. Thanassi DG, Bliska JB, Christie PJ. 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36:1046–1082. [PubMed][CrossRef]
10. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W. 2007. Type VII secretion: mycobacteria show the way. Nat Rev Microbiol 5:883–891. [PubMed][CrossRef]
11. Lenz LL, Mohammadi S, Geissler A, Portnoy DA. 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100:12432–12437. [PubMed][CrossRef]
12. Stanier RY, Adelberg EA, Ingraham JL. 1976. The Microbial World, 4th ed. Prentice-Hall, Englewood Cliffs, NJ.
13. Coombes BK, Finlay BB. 2005. Insertion of the bacterial type III translocon: not your average needle stick. Trends Microbiol 13:92–95. [PubMed][CrossRef]
14. Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5:e1000507. doi:10.1371/journal.ppat.1000507. [PubMed][CrossRef]
15. Stanley SA, Raghavan S, Hwang WW, Cox JS. 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 100:13001–13006. [PubMed][CrossRef]
16. Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51:359–370. [PubMed][CrossRef]
17. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M, Eisenberg D, Musters RJ, Vandenbroucke-Grauls CM, Appelmelk BJ, Luirink J, Bitter W. 2006. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62:667–679. [PubMed][CrossRef]
18. Flannagan RS, Jaumouillé V, Grinstein S. 2012. The cell biology of phagocytosis. Annu Rev Pathol 7:61–98. [PubMed][CrossRef]
19. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681. [PubMed][CrossRef]
20. Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, Sharrar RG, Harris J, Mallison GF, Martin SM, McDade JE, Shepard CC, Brachman PS. 1977. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 297:1189–1197. [PubMed][CrossRef]
21. Baess I. 1979. Deoxyribonucleic acid relatedness among species of slowly-growing mycobacteria. Acta Pathol Microbiol Scand B 87:221–226. [PubMed][CrossRef]
22. Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525. [PubMed][CrossRef]
23. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M. 1999. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252. [PubMed][CrossRef]
24. Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V. 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154:631–644. [PubMed][CrossRef]
25. Lemmon MA. 2003. Phosphoinositide recognition domains. Traffic 4:201–213. [PubMed][CrossRef]
26. Ellson C, Davidson K, Anderson K, Stephens LR, Hawkins PT. 2006. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J 25:4468–4478. [PubMed][CrossRef]
27. Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S. 2004. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol Cell Biol 24:4593–4604. [PubMed][CrossRef]
28. McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M. 1999. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98:377–386. [PubMed][CrossRef]
29. Jahn R, Scheller RH. 2006. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643. [PubMed][CrossRef]
30. Chatterjee D, Khoo KH. 1998. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8:113–120. [PubMed][CrossRef]
31. Malik ZA, Denning GM, Kusner DJ. 2000. Inhibition of Ca2+ signalling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J Exp Med 191:287–302. [PubMed][CrossRef]
32. Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102:4033–4038. [PubMed][CrossRef]
33. Simonsen A, Gaullier JM, D’Arrigo A, Stenmark H. 1999. The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 274:28857–28860. [PubMed][CrossRef]
34. Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH. 2012. VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog 8:e1003082. doi:10.1371/journal.ppat.1003082.
35. Shohdy N, Efe JA, Emr SD, Shuman HA. 2005. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci USA 102:4866–4871. [PubMed][CrossRef]
36. Mallo GV, Espina M, Smith AC, Terebiznik MR, Alemán A, Finlay BB, Rameh LE, Grinstein S, Brumell JH. 2008. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 182:741–752. [PubMed][CrossRef]
37. Madan R, Krishnamurthy G, Mukhopadhyay A. 2008. SopE-mediated recruitment of host Rab5 on phagosomes inhibits Salmonella transport to lysosomes. Methods Mol Biol 445:417–437. [PubMed][CrossRef]
38. Mukherjee K, Parashuraman S, Raje M, Mukhopadhyay A. 2001. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 276:23607–23615. [PubMed][CrossRef]
39. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galán JE. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826. [PubMed][CrossRef]
40. Alpuche-Aranda CM, Racoosin EL, Swanson JA, Miller SI. 1994. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med 179:601–608. [PubMed][CrossRef]
41. Alvarez-Dominguez C, Barbieri AM, Berón W, Wandinger-Ness A, Stahl PD. 1996. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J Biol Chem 271:13834–13843. [PubMed][CrossRef]
42. Via LE, Deretic D, Ulmer RJ, Hibler NS, Huber LA, Deretic V. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by Rab5 and Rab7. J Biol Chem 272:13326–13331. [PubMed][CrossRef]
43. Darsow T, Reider SE, Emr SD. 1997. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517–529. [PubMed][CrossRef]
44. Price A, Wickner W, Ungermann C. 2000. Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 148:1223–1229. [PubMed][CrossRef]
45. Harrison RE, Brumell JH, Khandani A, Bucci C, Scott CC, Jiang X, Finlay BB, Grinstein S. 2004. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell 15:3146–3154. [PubMed][CrossRef]
46. Shotland Y, Krämer H, Groisman EA. 2003. The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Mol Microbiol 49:1565–1576. [PubMed][CrossRef]
47. Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657. [PubMed][CrossRef]
48. Marcus SL, Knodler LA, Finlay BB. 2002. Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells. Cell Microbiol 4:435–446. [PubMed][CrossRef]
49. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. 2008. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322. [PubMed][CrossRef]
50. Banta LM, Robinson JS, Klionsky DJ, Emr SD. 1988. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107:1369–1383. [PubMed][CrossRef]
51. Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. 2013. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog 9:e1003734. doi:10.1371/journal.ppat.1003734. [PubMed][CrossRef]
52. Katzmann DJ, Odorizzi G, Emr SD. 2002. Receptor downregulation and multivesicular-body sorting Nat Rev Mol Cell Biol 3:893–905. [PubMed][CrossRef]
53. Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao LY. 2007. A unique mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 66:3787–3800. [PubMed][CrossRef]
54. Hunter RL, Olsen MR, Jagannath C, Actor JK. 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36:371–386. [PubMed]
55. Hoekstra D, Düzgünes N, Wilschut J. 1985. Agglutination and fusion of globoside GL-4 containing phospholipid vesicles mediated by lectins and calcium ions. Biochemistry 24:565–572. [PubMed][CrossRef]
56. Spargo BJ, Crowe LM, Ioneda T, Beaman BL, Crowe JH. 1991. Cord factor (alpha,alpha-trehalose 6,6′-dimycolate) inhibits fusion between phospholipid vesicles. Proc Natl Acad Sci USA 88:737–740. [PubMed][CrossRef]
57. Rosqvist R, Bölin I, Wolf-Watz H. 1988. Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56:2139–2143. [PubMed]
58. Pujol C, Bliska JB. 2003. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 71:5892–5829. [PubMed][CrossRef]
59. Tsukano H, Kura F, Inoue S, Sato S, Izumiya H, Yasuda T, Watanabe H. 1999. Yersinia pseudotuberculosis blocks the phagosomal acidification of B10.A mouse macrophages through the inhibition of vacuolar H(+)-ATPase activity. Microb Pathog 27:253–263. [PubMed][CrossRef]
60. Tabrizi SN, Robins-Browne RM. 1992. Influence of a 70 kilobase virulence plasmid on the ability of Yersinia enterocolitica to survive phagocytosis in vitro. Microb Pathog 13:171–179. [PubMed][CrossRef]
61. Finlay BB, Falkow S. 1997. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136169. [PubMed]
62. Duclos S, Desjardins M. 2000. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2:365–377. [PubMed][CrossRef]
63. Straley SC, Harmon PA. 1984. Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages. Infect Immun 45:655–659. [PubMed]
64. Holden DW. 2002. Trafficking of the Salmonella vacuole in macrophages. Traffic 3:161–169. [PubMed][CrossRef]
65. Hackam DJ, Rotstein OD, Zhang WJ, Demaurex N, Woodside M, Tsai O, Grinstein S. 1997. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J Biol Chem 272:29810–29820. [PubMed][CrossRef]
66. Wong D, Bach H, Hmama Z, Av-Gay Y. 2011. Mycobacterium tuberculosis protein tyrosine phosphatase A disrupts phagosome acidification by exclusion of host vacuolar H+-ATPase. Proc Natl Acad Sci USA 108:19371–196. [PubMed][CrossRef]
67. Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo ZQ. 2010. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6:e1000822. doi:10.1371/journal.ppat.1000822. [PubMed][CrossRef]
68. Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, Miller SI. 2007. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26:165–174. [PubMed][CrossRef]
69. Nikolaus T, Deiwick J, Rappl C, Freeman JA, Schröder W, Miller SI, Hensel M. 2001. SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183:6036–6045. [PubMed][CrossRef]
70. Scott CC, Botelho RJ, Grinstein S. 2003. Phagosome maturation: a few bugs in the system. J Membr Biol 193:137–152. [PubMed][CrossRef]
71. Méresse S, Unsworth KE, Habermann A, Griffiths G, Fang F, Martínez-Lorenzo MJ, Waterman SR, Gorvel JP, Holden DW. 2001. Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell Microbiol 3:567–577. [PubMed][CrossRef]
72. Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI. 2003. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 48:401–415. [PubMed][CrossRef]
73. Hayward RD, Koronakis V. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18:4926–4934. [PubMed][CrossRef]
74. Brawn LC, Hayward RD, Koronakis V. 2007. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1:63–75. [PubMed][CrossRef]
75. Lesnick ML, Reiner NE, Fierer J, Guiney DG. 2001. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39:1464–1470. [PubMed][CrossRef]
76. Braun V, Wong A, Landekic M, Hong WJ, Grinstein S, Brumell JH. 2010. Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cell Microbiol 12:1352–1367. [PubMed][CrossRef]
77. Drecktrah D, Levine-Wilkinson S, Dam T, Winfree S, Knodler LA, Schroer TA, Steele-Mortimer O. 2008. Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic 9:2117–2129. [PubMed][CrossRef]
78. Rajashekar R, Liebl D, Seitz A, Hensel M. 2008. Dynamic remodeling of the endosomal system during formation of Salmonella-induced filaments by intracellular Salmonella enterica. Traffic 9:2100–2116. [PubMed][CrossRef]
79. Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F, Halaas O, Nilsen NJ, Stenmark H, Latz E, Lien E, Mollnes TE, Bakke O, Espevik T. 2010. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33:583–596. [PubMed][CrossRef]
80. Beuzón CR, Méresse S, Unsworth KE, Ruíz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW. 2000. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249. [PubMed][CrossRef]
81. Henry T, Couillault C, Rockenfeller P, Boucrot E, Dumont A, Schroeder N, Hermant A, Knodler LA, Lecine P, Steele-Mortimer O, Borg JP, Gorvel JP, Méresse S. 2006. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci USA 103:13497–13502. [PubMed][CrossRef]
82. Kuhle V, Hensel M. 2002. SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 4:813–824. [PubMed][CrossRef]
83. Vale RD, Reese TS, Sheetz MP. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50. [PubMed][CrossRef]
84. Boucrot E, Henry T, Borg JP, Gorvel JP, Méresse S. 2005. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308:1174–1178. [PubMed][CrossRef]
85. Ohlson MB, Huang Z, Alto NM, Blanc MP, Dixon JE, Chai J, Miller SI. 2008. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4:434–446. [PubMed][CrossRef]
86. Cai D, McEwen DP, Martens JR, Meyhofer E, Verhey KJ. 2009. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol 7:e1000216. doi:10.1371/journal.pbio.1000216.
87. Kuhle V, Jäckel D, Hensel M. 2004. Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic 5:356–370. [PubMed][CrossRef]
88. Kuhle V, Abrahams GL, Hensel M. 2006. Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner. Traffic 7:716–730. [PubMed][CrossRef]
89. Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8:e1002546. doi:10.1371/journal.ppat.1002546. [CrossRef]
90. Stamm LM, Morisaki JH, Gao LY, Jeng RL, McDonald KL, Roth R, Takeshita S, Heuser J, Welch MD, Brown EJ. 2003. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198:1361–1368. [PubMed][CrossRef]
91. Goldberg MB. 2001. Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65:595–626. [PubMed][CrossRef]
92. Moors MA, Levitt B, Youngman P, Portnoy DA. 1999. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67:131–139. [PubMed]
93. Goldberg MB, Theriot JA, Sansonetti PJ. 1994. Regulation of surface presentation of IcsA, a Shigella protein essential to intracellular movement and spread, is growth phase dependent. Infect Immun 62:5664–5668. [PubMed]
94. Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B. 2002. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078. [PubMed][CrossRef]
95. Ramel D, Lagarrigue F, Pons V, Mounier J, Dupuis-Coronas S, Chicanne G, Sansonetti PJ, Gaits-Iacovoni F, Tronchère H, Payrastre B. 2011. Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4:ra61. [PubMed][CrossRef]
96. Mellouk N, Weiner A, Aulner N, Schmitt C, Elbaum M, Shorte SL, Danckaert A, Enninga J. 2014. Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe 16:517–530. [PubMed][CrossRef]
97. Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V, Parsot C, Sansonetti P. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147:683–693. [PubMed][CrossRef]
98. High N, Mounier J, Prévost MC, Sansonetti PJ. 1992. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J 11:1991–1999. [PubMed]
99. Mounier J, Laurent V, Hall A, Fort P, Carlier MF, Sansonetti PJ, Egile C. 1999. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J Cell Sci 112:2069–2080. [PubMed]
100. Fernandez-Prada CM, Hoover DL, Tall BD, Hartman AB, Kopelowitz J, Venkatesan MM. 2000. Shigella flexneri IpaH(7.8) facilitates escape of virulent bacteria from the endocytic vacuoles of mouse and human macrophages. Infect Immun 68:3608–3619. [PubMed][CrossRef]
101. Portnoy DA, Jacks PS, Hinrichs DJ. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471. [PubMed][CrossRef]
102. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63:4231–4237. [PubMed]
103. Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR. 2001. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114:4637–4650. [PubMed]
104. Kagan JC, Roy CR. 2002. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954. [PubMed][CrossRef]
105. Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y. 2012. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci USA 109:13567–13572. [PubMed][CrossRef]
106. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H. 2006. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46. [PubMed][CrossRef]
107. Conover GM, Derré I, Vogel JP, Isberg RR. 2003. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48:305–321. [PubMed][CrossRef]
108. Machner MP, Isberg RR. 2006. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11:47–56. [PubMed][CrossRef]
109. Moyer BD, Allan BB, Balch WE. 2001. Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis–Golgi tethering. Traffic 2:268–276. [PubMed][CrossRef]
110. Kagan JC, Stein MP, Pypaert M, Roy CR. 2004. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–1211. [PubMed][CrossRef]
111. Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR. 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–977. [PubMed][CrossRef]
112. Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A. 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949. [PubMed][CrossRef]
113. Chen J, de Felipe KS, Clarke M, Lu H, Anderson OR, Segal G, Shuman HA. 2004. Legionella effectors that promote nonlytic release from protozoa. Science 303:1358–1361. [PubMed][CrossRef]
114. Ingmundson A, Delprato A, Lambright DG, Roy CR. 2007. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365–369. [PubMed][CrossRef]
115. Tan Y, Luo ZQ. 2011. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509. [PubMed][CrossRef]
116. Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR. 2011. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106. [PubMed][CrossRef]
117. Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR. 2008. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654. [PubMed][CrossRef]
118. Allaire PD, Marat AL, Dall’Armi C, Di Paolo G, McPherson PS, Ritter B. 2010. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell 37:370–382. [PubMed][CrossRef]
119. Tan Y, Arnold RJ, Luo ZQ. 2011. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA 108:21212–21217. [PubMed][CrossRef]
120. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682. [PubMed][CrossRef]
121. Robinson CG, Roy CR. 2006. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol 8:793–805. [PubMed][CrossRef]
122. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H. 2008. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433. [PubMed][CrossRef]
123. Liu Y, Luo ZQ. 2007. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 75:592–603. [PubMed][CrossRef]
124. Toulabi L, Wu X, Cheng Y, Mao Y. 2013. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem 288:24518–24527. [PubMed][CrossRef]
125. Jank T, Böhmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K. 2012. Domain organization of Legionella effector SetA. Cell Microbiol 14:852–868. [PubMed][CrossRef]
126. Heidtman M, Chen EJ, Moy MY, Isberg RR. 2009. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248. [PubMed][CrossRef]
microbiolspec.VMBF-0003-2014.citations
cm/3/6
content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0003-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0003-2014
2015-12-18
2017-09-20

Abstract:

The ability of intracellular pathogens to subvert the host response, to facilitate invasion and subsequent infection, is the hallmark of microbial pathogenesis. Bacterial pathogens produce and secrete a variety of effector proteins, which are the primary means by which they exert control over the host cell. Secreted effectors work independently, yet in concert with each other, to facilitate microbial invasion, replication, and intracellular survival in host cells. In this review we focus on defined host cell processes targeted by bacterial pathogens. These include phagosome maturation and its subprocesses: phagosome-endosome and phagosome-lysosome fusion events, as well as phagosomal acidification, cytoskeleton remodeling, and lysis of the phagosomal membrane. We further describe the mode of action for selected effectors from six pathogens: the Gram-negative , , , and , the Gram-positive , and the acid-fast actinomycete .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Stages of phagosome maturation. During phagocytosis, the phagosome undergoes a series of fusion and fission events with vesicles of the endocytic pathway, culminating in the formation of the phagolysosome. Maturation of the phagosome involves gradual decrease in pH and acquisition of antimicrobial properties, leading to the digestion of the invader and presentation of antigens on the surface of the phagocyte by MHC-II molecules.

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Microbial effectors interfering with intracellular trafficking and acidification events. Orange proteins represent virulence factors; pink, virulence factors; and blue, virulence factors.

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Cytoskeleton remodeling, vacuolar membrane lysis, and phagosomal membrane remodeling by microbial pathogens. Orange proteins represent virulence factors; red, virulence factors; blue, virulence factors; and green, virulence factors.

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Host physiological events and substrates targeted by effectors secreted by , , , , , and species

Source: microbiolspec December 2015 vol. 3 no. 6 doi:10.1128/microbiolspec.VMBF-0003-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error