1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Structure and Function of Type III Secretion Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Ryan Q. Notti1, C. Erec Stebbins3
  • Editor: Indira T. Kudva4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10065; 2: Tri-Institutional Medical Scientist Training Program, Weill Cornell Medical College, New York, NY, 10021; 3: Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10065; 4: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA.
  • Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.VMBF-0004-2015
  • Received 12 January 2015 Accepted 15 April 2015 Published 12 February 2016
  • C. Erec Stebbins, stebbins@rockefeller.edu
image of The Structure and Function of Type III Secretion Systems
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Structure and Function of Type III Secretion Systems, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/1/VMBF-0004-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/1/VMBF-0004-2015-2.gif
  • Abstract:

    Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts—the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe “injectisomes,” which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.

  • Citation: Notti R, Stebbins C. 2016. The Structure and Function of Type III Secretion Systems. Microbiol Spectrum 4(1):VMBF-0004-2015. doi:10.1128/microbiolspec.VMBF-0004-2015.

References

1. Galan JE, Collmer A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328. [PubMed][CrossRef]
2. Gauthier A, Thomas NA, Finlay BB. 2003. Bacterial injection machines. J Biol Chem 278:25273–25276. [PubMed][CrossRef]
3. Galan JE, Curtiss R, 3rd. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86:6383–6387. [PubMed][CrossRef]
4. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. 1990. Secretion of Yop proteins by Yersiniae. Infect Immun 58:2840–2849. [PubMed]
5. Michiels T, Vanooteghem JC, Lambert de Rouvroit C, China B, Gustin A, Boudry P, Cornelis GR. 1991. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol 173:4994–5009. [PubMed]
6. Galan JE, Wolf-Watz H. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573. [PubMed][CrossRef]
7. Cornelis GR. 2002. Yersinia type III secretion: send in the effectors. J Cell Biol 158:401–408. [PubMed][CrossRef]
8. Francis MS, Wolf-Watz H, Forsberg A. 2002. Regulation of type III secretion systems. Curr Opin Microbiol 5:166–172. [PubMed][CrossRef]
9. Waterman SR, Holden DW. 2003. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5:501–511. [CrossRef]
10. Stebbins CE. 2004. Structural insights into bacterial modulation of the host cytoskeleton. Curr Opin Struct Biol 14:731–740. [PubMed][CrossRef]
11. Yahr TL, Wolfgang MC. 2006. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 62:631–640. [PubMed][CrossRef]
12. Bhavsar AP, Guttman JA, Finlay BB. 2007. Manipulation of host-cell pathways by bacterial pathogens. Nature 449:827–834. [PubMed][CrossRef]
13. Ellermeier JR, Slauch JM. 2007. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29. [PubMed][CrossRef]
14. Galan JE. 2007. SnapShot: effector proteins of type III secretion systems. Cell 130:192. [PubMed][CrossRef]
15. Buttner D. 2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76:262–310. [PubMed][CrossRef]
16. Burkinshaw BJ, Strynadka NC. 2014. Assembly and structure of the T3SS. Biochim Biophys Acta 1843:1649–1663. [PubMed][CrossRef]
17. Hueck CJ. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433. [PubMed]
18. Abrusci P, McDowell MA, Lea SM, Johnson S. 2014. Building a secreting nanomachine: a structural overview of the T3SS. Curr Opin Struct Biol 25:111–117. [PubMed][CrossRef]
19. Galan JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438. [PubMed][CrossRef]
20. Macnab RM. 2003. How bacteria assemble flagella. Annu Rev Microbiol 57:77–100. [PubMed][CrossRef]
21. Gophna U, Ron EZ, Graur D. 2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151–163. [PubMed][CrossRef]
22. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa SI. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605. [PubMed][CrossRef]
23. Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A. 2001. Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol 39:652–663. [PubMed][CrossRef]
24. Schlumberger MC, Muller AJ, Ehrbar K, Winnen B, Duss I, Stecher B, Hardt WD. 2005. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci USA 102:12548–12553. [PubMed][CrossRef]
25. Van Engelenburg SB, Palmer AE. 2010. Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Methods 7:325–330. [PubMed][CrossRef]
26. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM. 2004. Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–1042. [PubMed][CrossRef]
27. Schraidt O, Marlovits TC. 2011. Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science 331:1192–1195. [PubMed][CrossRef]
28. Hodgkinson JL, Horsley A, Stabat D, Simon M, Johnson S, da Fonseca PC, Morris EP, Wall JS, Lea SM, Blocker AJ. 2009. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 16:477–485. [PubMed][CrossRef]
29. Kudryashev M, Stenta M, Schmelz S, Amstutz M, Wiesand U, Castano-Diez D, Degiacomi MT, Munnich S, Bleck CK, Kowal J, Diepold A, Heinz DW, Dal Peraro M, Cornelis GR, Stahlberg H. 2013. In situ structural analysis of the Yersinia enterocolitica injectisome. Elife 2:e00792. doi:10.7554/eLife.00792. [PubMed][CrossRef]
30. Kowal J, Chami M, Ringler P, Muller SA, Kudryashev M, Castano-Diez D, Amstutz M, Cornelis GR, Stahlberg H, Engel A. 2013. Structure of the dodecameric Yersinia enterocolitica secretin YscC and its trypsin-resistant core. Structure 21:2152–2161. [PubMed][CrossRef]
31. Kaniga K, Bossio JC, Galan JE. 1994. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol 13:555–568. [PubMed][CrossRef]
32. Crago AM, Koronakis V. 1998. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol 30:47–56. [PubMed][CrossRef]
33. Daefler S, Russel M. 1998. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol Microbiol 28:1367–1380. [PubMed][CrossRef]
34. Burghout P, Beckers F, de Wit E, van Boxtel R, Cornelis GR, Tommassen J, Koster M. 2004. Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J Bacteriol 186:5366–5375. [PubMed][CrossRef]
35. Spreter T, Yip CK, Sanowar S, Andre I, Kimbrough TG, Vuckovic M, Pfuetzner RA, Deng W, Yu AC, Finlay BB, Baker D, Miller SI, Strynadka NC. 2009. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 16:468–476. [PubMed][CrossRef]
36. Sanowar S, Singh P, Pfuetzner RA, Andre I, Zheng H, Spreter T, Strynadka NC, Gonen T, Baker D, Goodlett DR, Miller SI. 2010. Interactions of the transmembrane polymeric rings of the Salmonella enterica serovar Typhimurium type III secretion system. MBio 1:e00158-10. doi:10.1128/mBio.00158-10. [PubMed][CrossRef]
37. Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A, Radics J, Mechtler K, Galan JE, Marlovits TC. 2010. Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog 6:e1000824. doi:10.1371/journal.ppat.1000824. [CrossRef]
38. Yip CK, Kimbrough TG, Felise HB, Vuckovic M, Thomas NA, Pfuetzner RA, Frey EA, Finlay BB, Miller SI, Strynadka NC. 2005. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435:702–707. [PubMed][CrossRef]
39. Marlovits TC, Stebbins CE. 2010. Type III secretion systems shape up as they ship out. Curr Opin Microbiol 13:47–52. [PubMed][CrossRef]
40. Bergeron JR, Worrall LJ, De S, Sgourakis NG, Cheung AH, Lameignere E, Okon M, Wasney GA, Baker D, McIntosh LP, Strynadka NC. 2015. The modular structure of the inner-membrane ring component PrgK facilitates assembly of the type III secretion system basal body. Structure 23:161–172. [PubMed][CrossRef]
41. McDowell MA, Johnson S, Deane JE, Cheung M, Roehrich AD, Blocker AJ, McDonnell JM, Lea SM. 2011. Structural and functional studies on the N-terminal domain of the Shigella type III secretion protein MxiG. J Biol Chem 286:30606–30614. [PubMed][CrossRef]
42. Barison N, Lambers J, Hurwitz R, Kolbe M. 2012. Interaction of MxiG with the cytosolic complex of the type III secretion system controls Shigella virulence. FASEB J 26:1717–1726. [PubMed][CrossRef]
43. Gamez A, Mukerjea R, Alayyoubi M, Ghassemian M, Ghosh P. 2012. Structure and interactions of the cytoplasmic domain of the Yersinia type III secretion protein YscD. J Bacteriol 194:5949–5958. [PubMed][CrossRef]
44. Lountos GT, Tropea JE, Waugh DS. 2012. Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system. Acta Crystallogr D Biol Crystallogr 68:201–209. [PubMed][CrossRef]
45. Zhong D, Lefebre M, Kaur K, McDowell MA, Gdowski C, Jo S, Wang Y, Benedict SH, Lea SM, Galan JE, De Guzman RN. 2012. The Salmonella type III secretion system inner rod protein PrgJ is partially folded. J Biol Chem 287:25303–25311. [PubMed][CrossRef]
46. Bergeron JR, Worrall LJ, Sgourakis NG, DiMaio F, Pfuetzner RA, Felise HB, Vuckovic M, Yu AC, Miller SI, Baker D, Strynadka NC. 2013. A refined model of the prototypical Salmonella SPI-1 T3SS basal body reveals the molecular basis for its assembly. PLoS Pathog 9:e1003307. doi:10.1371/journal.ppat.1003307. [PubMed][CrossRef]
47. Lilic M, Quezada CM, Stebbins CE. 2010. A conserved domain in type III secretion links the cytoplasmic domain of InvA to elements of the basal body. Acta Crystallogr D Biol Crystallogr 66:709–713. [PubMed][CrossRef]
48. Worrall LJ, Vuckovic M, Strynadka NC. 2010. Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA. Protein Sci 19:1091–1096. [PubMed][CrossRef]
49. Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, Friede ME, Deane JE, Jensen GJ, Tang CM, Lea SM. 2013. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 20:99–104. [PubMed][CrossRef]
50. Zarivach R, Deng W, Vuckovic M, Felise HB, Nguyen HV, Miller SI, Finlay BB, Strynadka NC. 2008. Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature 453:124–127. [PubMed][CrossRef]
51. Wagner S, Konigsmaier L, Lara-Tejero M, Lefebre M, Marlovits TC, Galan JE. 2010. Organization and coordinated assembly of the type III secretion export apparatus. Proc Natl Acad Sci USA 107:17745–17750. [PubMed][CrossRef]
52. Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galan JE. 2006. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640. [PubMed][CrossRef]
53. Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A. 2012. Atomic model of the type III secretion system needle. Nature 486:276–279. [PubMed][CrossRef]
54. Edgren T, Forsberg A, Rosqvist R, Wolf-Watz H. 2012. Type III secretion in Yersinia: injectisome or not? PLoS Pathog 8:e1002669. doi:10.1371/journal.ppat.1002669. [CrossRef]
55. Radics J, Konigsmaier L, Marlovits TC. 2014. Structure of a pathogenic type 3 secretion system in action. Nat Struct Mol Biol 21:82–87. [PubMed][CrossRef]
56. Dohlich K, Zumsteg AB, Goosmann C, Kolbe M. 2014. A substrate-fusion protein is trapped inside the type III secretion system channel in Shigella flexneri. PLoS Pathog 10:e1003881. doi:10.1371/journal.ppat.1003881. [PubMed][CrossRef]
57. Deane JE, Roversi P, Cordes FS, Johnson S, Kenjale R, Daniell S, Booy F, Picking WD, Picking WL, Blocker AJ, Lea SM. 2006. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci USA 103:12529–12533. [PubMed][CrossRef]
58. Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH, Blocker A, Lea SM. 2003. Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem 278:17103–17107. [PubMed][CrossRef]
59. Poyraz O, Schmidt H, Seidel K, Delissen F, Ader C, Tenenboim H, Goosmann C, Laube B, Thunemann AF, Zychlinsky A, Baldus M, Lange A, Griesinger C, Kolbe M. 2010. Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 17:788–792. [PubMed][CrossRef]
60. Demers JP, Habenstein B, Loquet A, Kumar Vasa S, Giller K, Becker S, Baker D, Lange A, Sgourakis NG. 2014. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5:4976. doi:10.1038/ncomms5976. [PubMed][CrossRef]
61. Fujii T, Cheung M, Blanco A, Kato T, Blocker AJ, Namba K. 2012. Structure of a type III secretion needle at 7-A resolution provides insights into its assembly and signaling mechanisms. Proc Natl Acad Sci USA 109:4461–4466. [PubMed][CrossRef]
62. Mota LJ, Journet L, Sorg I, Agrain C, Cornelis GR. 2005. Bacterial injectisomes: needle length does matter. Science 307:1278. [PubMed][CrossRef]
63. Kubori T, Sukhan A, Aizawa SI, Galan JE. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA 97:10225–10230. [PubMed][CrossRef]
64. Tamano K, Katayama E, Toyotome T, Sasakawa C. 2002. Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J Bacteriol 184:1244–1252. [PubMed][CrossRef]
65. Journet L, Agrain C, Broz P, Cornelis GR. 2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–1760. [PubMed][CrossRef]
66. Lefebre MD, Galan JE. 2014. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system. Proc Natl Acad Sci USA 111:817–822. [PubMed][CrossRef]
67. Mueller CA, Broz P, Muller SA, Ringler P, Erne-Brand F, Sorg I, Kuhn M, Engel A, Cornelis GR. 2005. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676. [PubMed][CrossRef]
68. Epler CR, Dickenson NE, Bullitt E, Picking WL. 2012. Ultrastructural analysis of IpaD at the tip of the nascent MxiH type III secretion apparatus of Shigella flexneri. J Mol Biol 420:29–39. [PubMed][CrossRef]
69. Goure J, Broz P, Attree O, Cornelis GR, Attree I. 2005. Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J Infect Dis 192:218–225. [PubMed][CrossRef]
70. Mueller CA, Broz P, Cornelis GR. 2008. The type III secretion system tip complex and translocon. Mol Microbiol 68:1085–1095. [PubMed][CrossRef]
71. Lawton WD, Surgalla MJ. 1963. Immunization against plague by a specific fraction of Pasteurella pseudotuberculosis. J Infect Dis 113:39–42. [PubMed][CrossRef]
72. DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, Bonnell J, Fleming R, Bezabeh B, Dimasi N, Sellman BR, Hilliard J, Guenther CM, Datta V, Zhao W, Gao C, Yu XQ, Suzich JA, Stover CK. 2014. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med 6:262ra155. [PubMed][CrossRef]
73. Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS. 2004. The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 12:301–306. [PubMed]
74. Johnson S, Roversi P, Espina M, Olive A, Deane JE, Birket S, Field T, Picking WD, Blocker AJ, Galyov EE, Picking WL, Lea SM. 2007. Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J Biol Chem 282:4035–4044. [PubMed][CrossRef]
75. Lunelli M, Hurwitz R, Lambers J, Kolbe M. 2011. Crystal structure of PrgI-SipD: insight into a secretion competent state of the type three secretion system needle tip and its interaction with host ligands. PLoS Pathog 7:e1002163. doi:10.1371/journal.ppat.1002163. [PubMed][CrossRef]
76. Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. 2015. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 95:31–50. [PubMed][CrossRef]
77. Rathinavelan T, Lara-Tejero M, Lefebre M, Chatterjee S, McShan AC, Guo DC, Tang C, Galan JE, De Guzman RN. 2014. NMR model of PrgI-SipD interaction and its implications in the needle-tip assembly of the Salmonella type III secretion system. J Mol Biol 426:2958–2969. [PubMed][CrossRef]
78. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176. [PubMed][CrossRef]
79. Daniell SJ, Kocsis E, Morris E, Knutton S, Booy FP, Frankel G. 2003. 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol Microbiol 49:301–308. [PubMed][CrossRef]
80. Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, Picking WD. 2005. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 73:1432–1440. [PubMed][CrossRef]
81. Barta ML, Dickenson NE, Patil M, Keightley A, Wyckoff GJ, Picking WD, Picking WL, Geisbrecht BV. 2012. The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. J Mol Biol 417:395–405. [PubMed][CrossRef]
82. Mizusaki H, Takaya A, Yamamoto T, Aizawa S. 2008. Signal pathway in salt-activated expression of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J Bacteriol 190:4624–4631. [PubMed][CrossRef]
83. Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T. 2009. Sequence-based prediction of type III secreted proteins. PLoS Pathog 5:e1000376. doi:10.1371/journal.ppat.1000376. [PubMed][CrossRef]
84. Samudrala R, Heffron F, McDermott JE. 2009. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5:e1000375. doi:10.1371/journal.ppat.1000375. [PubMed][CrossRef]
85. McDermott JE, Corrigan A, Peterson E, Oehmen C, Niemann G, Cambronne ED, Sharp D, Adkins JN, Samudrala R, Heffron F. 2011. Computational prediction of type III and IV secreted effectors in Gram-negative bacteria. Infect Immun 79:23–32. [PubMed][CrossRef]
86. Lloyd SA, Norman M, Rosqvist R, Wolf-Watz H. 2001. Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 39:520–531. [PubMed][CrossRef]
87. Lee SH, Galan JE. 2004. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51:483–495. [PubMed][CrossRef]
88. Stebbins CE, Galan JE. 2001. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:77–81. [PubMed][CrossRef]
89. Stebbins CE, Galan JE. 2003. Priming virulence factors for delivery into the host. Nat Rev Mol Cell Biol 4:738–743. [PubMed][CrossRef]
90. Izore T, Job V, Dessen A. 2011. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19:603–612. [PubMed][CrossRef]
91. DeBord KL, Lee VT, Schneewind O. 2001. Roles of LcrG and LcrV during type III targeting of effector Yops by Yersinia enterocolitica. J Bacteriol 183:4588–4598. [PubMed][CrossRef]
92. Lilic M, Vujanac M, Stebbins CE. 2006. A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol Cell 21:653–664. [PubMed][CrossRef]
93. Janjusevic R, Quezada CM, Small J, Stebbins CE. 2013. Structure of the HopA1(21-102)-ShcA chaperone-effector complex of Pseudomonas syringae reveals conservation of a virulence factor binding motif from animal to plant pathogens. J Bacteriol 195:658–664. [PubMed][CrossRef]
94. Costa SC, Schmitz AM, Jahufar FF, Boyd JD, Cho MY, Glicksman MA, Lesser CF. 2012. A new means to identify type 3 secreted effectors: functionally interchangeable class IB chaperones recognize a conserved sequence. MBio 3:e00243-11. doi:10.1128/mBio.00243-11. [PubMed][CrossRef]
95. Michiels T, Cornelis GR. 1991. Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 173:1677–1685. [PubMed]
96. Chen LM, Briones G, Donis RO, Galan JE. 2006. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infect Immun 74:5826–5833. [PubMed][CrossRef]
97. Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA. 2009. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5:309. [PubMed][CrossRef]
98. Akeda Y, Galan JE. 2004. Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. J Bacteriol 186:2402–2412. [PubMed][CrossRef]
99. Zarivach R, Vuckovic M, Deng W, Finlay BB, Strynadka NC. 2007. Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol 14:131–137. [PubMed][CrossRef]
100. Claret L, Calder SR, Higgins M, Hughes C. 2003. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol Microbiol 48:1349–1355. [PubMed][CrossRef]
101. Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. 2011. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 18:277–282. [PubMed][CrossRef]
102. Pozidis C, Chalkiadaki A, Gomez-Serrano A, Stahlberg H, Brown I, Tampakaki AP, Lustig A, Sianidis G, Politou AS, Engel A, Panopoulos NJ, Mansfield J, Pugsley AP, Karamanou S, Economou A. 2003. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J Biol Chem 278:25816–25824. [PubMed][CrossRef]
103. Akeda Y, Galan JE. 2005. Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915. [PubMed][CrossRef]
104. Minamino T, Namba K. 2008. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488. [PubMed][CrossRef]
105. Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT. 2008. Energy source of flagellar type III secretion. Nature 451:489–492. [PubMed][CrossRef]
106. Erhardt M, Mertens ME, Fabiani FD, Hughes KT. 2014. ATPase-independent type-III protein secretion in Salmonella enterica. PLoS Genet 10:e1004800. doi:10.1371/journal.pgen.1004800. [PubMed][CrossRef]
107. Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K. 2014. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci Rep 4:7579. doi:10.1038/srep07579. [PubMed][CrossRef]
108. Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Muller A, Dobro MJ, Jensen GJ. 2011. Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981. [PubMed][CrossRef]
109. Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, Namba K. 2013. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci Rep 3:3369. doi:10.1038/srep03369. [PubMed][CrossRef]
110. Lorenzini E, Singer A, Singh B, Lam R, Skarina T, Chirgadze NY, Savchenko A, Gupta RS. 2010. Structure and protein-protein interaction studies on Chlamydia trachomatis protein CT670 (YscO Homolog). J Bacteriol 192:2746–2756. [PubMed][CrossRef]
111. Wilharm G, Lehmann V, Krauss K, Lehnert B, Richter S, Ruckdeschel K, Heesemann J, Trulzsch K. 2004. Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72:4004–4009. [PubMed][CrossRef]
112. Galan JE. 2008. Energizing type III secretion machines: what is the fuel? Nat Struct Mol Biol 15:127–128. [PubMed][CrossRef]
113. Allison SE, Tuinema BR, Everson ES, Sugiman-Marangos S, Zhang K, Junop MS, Coombes BK. 2014. Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo. J Biol Chem 289:23734–23744. [PubMed][CrossRef]
114. Roblin P, Dewitte F, Villeret V, Biondi EG, Bompard C. 2015. A Salmonella type three secretion effector/chaperone complex adopts a hexameric ring-like structure. J Bacteriol 197:688–698. [PubMed][CrossRef]
115. Tsai CL, Burkinshaw BJ, Strynadka NC, Tainer JA. 2015. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes. J Bacteriol 197:672–675. [PubMed][CrossRef]
116. Chen L, Balabanidou V, Remeta DP, Minetti CA, Portaliou AG, Economou A, Kalodimos CG. 2011. Structural instability tuning as a regulatory mechanism in protein-protein interactions. Mol Cell 44:734–744. [PubMed][CrossRef]
117. Chen L, Ai X, Portaliou AG, Minetti CA, Remeta DP, Economou A, Kalodimos CG. 2013. Substrate-activated conformational switch on chaperones encodes a targeting signal in type III secretion. Cell Rep 3:709–715. [PubMed][CrossRef]
118. Ohgita T, Hayashi N, Hama S, Tsuchiya H, Gotoh N, Kogure K. 2013. A novel effector secretion mechanism based on proton-motive force-dependent type III secretion apparatus rotation. FASEB J 27:2862–2872. [PubMed][CrossRef]
119. Morita-Ishihara T, Ogawa M, Sagara H, Yoshida M, Katayama E, Sasakawa C. 2006. Shigella Spa33 is an essential C-ring component of type III secretion machinery. J Biol Chem 281:599–607. [PubMed][CrossRef]
120. Hu B, Morado DR, Margolin W, Rohde JR, Arizmendi O, Picking WL, Picking WD, Liu J. 2015. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc Natl Acad Sci USA 112:1047–1052. [PubMed][CrossRef]
121. Lara-Tejero M, Kato J, Wagner S, Liu X, Galan JE. 2011. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–1191. [PubMed][CrossRef]
122. Gonzalez-Pedrajo B, Fraser GM, Minamino T, Macnab RM. 2002. Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol 45:967–982. [PubMed][CrossRef]
123. Minamino T, MacNab RM. 2000. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol 37:1494–1503. [PubMed][CrossRef]
124. Lane MC, O’Toole PW, Moore SA. 2006. Molecular basis of the interaction between the flagellar export proteins FliI and FliH from Helicobacter pylori. J Biol Chem 281:508–517. [PubMed][CrossRef]
125. Minamino T, Yoshimura SD, Morimoto YV, Gonzalez-Pedrajo B, Kami-Ike N, Namba K. 2009. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus. Mol Microbiol 74:1471–1483. [PubMed][CrossRef]
126. McMurry JL, Murphy JW, Gonzalez-Pedrajo B. 2006. The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex. Biochemistry 45:11790–11798. [PubMed][CrossRef]
127. Minamino T, Gonzalez-Pedrajo B, Kihara M, Namba K, Macnab RM. 2003. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol 185:3983–3988. [PubMed][CrossRef]
128. Bai F, Morimoto YV, Yoshimura SD, Hara N, Kami-Ike N, Namba K, Minamino T. 2014. Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci Rep 4:6528. doi:10.1038/srep06528. [PubMed][CrossRef]
129. Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP. 2015. Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13:e1002039. doi:10.1371/journal.pbio.1002039. [PubMed][CrossRef]
130. Fadouloglou VE, Tampakaki AP, Glykos NM, Bastaki MN, Hadden JM, Phillips SE, Panopoulos NJ, Kokkinidis M. 2004. Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems. Proc Natl Acad Sci USA 101:70–75. [PubMed][CrossRef]
131. Brown PN, Mathews MA, Joss LA, Hill CP, Blair DF. 2005. Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J Bacteriol 187:2890–2902. [PubMed][CrossRef]
132. Bzymek KP, Hamaoka BY, Ghosh P. 2012. Two translation products of Yersinia yscQ assemble to form a complex essential to type III secretion. Biochemistry 51:1669–1677. [PubMed][CrossRef]
133. Paul K, Blair DF. 2006. Organization of FliN subunits in the flagellar motor of Escherichia coli. J Bacteriol 188:2502–2511. [PubMed][CrossRef]
134. Paul K, Harmon JG, Blair DF. 2006. Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching. J Bacteriol 188:5240–5248. [PubMed][CrossRef]
135. Fadouloglou VE, Bastaki MN, Ashcroft AE, Phillips SE, Panopoulos NJ, Glykos NM, Kokkinidis M. 2009. On the quaternary association of the type III secretion system HrcQB-C protein: experimental evidence differentiates among the various oligomerization models. J Struct Biol 166:214–225. [PubMed][CrossRef]
136. Lee SY, Cho HS, Pelton JG, Yan D, Henderson RK, King DS, Huang L, Kustu S, Berry EA, Wemmer DE. 2001. Crystal structure of an activated response regulator bound to its target. Nat Struct Biol 8:52–56. [PubMed][CrossRef]
137. Vartanian AS, Paz A, Fortgang EA, Abramson J, Dahlquist FW. 2012. Structure of flagellar motor proteins in complex allows for insights into motor structure and switching. J Biol Chem 287:35779–35783. [PubMed][CrossRef]
138. Kubori T, Galan JE. 2002. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol 184:4699–4708. [PubMed][CrossRef]
139. Deane JE, Abrusci P, Johnson S, Lea SM. 2010. Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075. [PubMed][CrossRef]
140. Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, Allaoui A. 2002. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J Bacteriol 184:3433–3441. [PubMed][CrossRef]
141. Agrain C, Callebaut I, Journet L, Sorg I, Paroz C, Mota LJ, Cornelis GR. 2005. Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol Microbiol 56:54–67. [PubMed][CrossRef]
142. Mizuno S, Amida H, Kobayashi N, Aizawa S, Tate S. 2011. The NMR structure of FliK, the trigger for the switch of substrate specificity in the flagellar type III secretion apparatus. J Mol Biol 409:558–573. [PubMed][CrossRef]
143. Mukerjea R, Ghosh P. 2013. Functionally essential interaction between Yersinia YscO and the T3S4 domain of YscP. J Bacteriol 195:4631–4638. [PubMed][CrossRef]
144. Botteaux A, Sani M, Kayath CA, Boekema EJ, Allaoui A. 2008. Spa32 interaction with the inner-membrane Spa40 component of the type III secretion system of Shigella flexneri is required for the control of the needle length by a molecular tape measure mechanism. Mol Microbiol 70:1515–1528. [PubMed][CrossRef]
145. Wood SE, Jin J, Lloyd SA. 2008. YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol 190:4252–4262. [PubMed][CrossRef]
146. Botteaux A, Kayath CA, Page AL, Jouihri N, Sani M, Boekema E, Biskri L, Parsot C, Allaoui A. 2010. The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri. Microbiology 156:2807–2817. [PubMed][CrossRef]
147. Cherradi Y, Schiavolin L, Moussa S, Meghraoui A, Meksem A, Biskri L, Azarkan M, Allaoui A, Botteaux A. 2013. Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol Microbiol 87:1183–1199. [PubMed][CrossRef]
148. Sorg I, Wagner S, Amstutz M, Muller SA, Broz P, Lussi Y, Engel A, Cornelis GR. 2007. YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 26:3015–3024. [PubMed][CrossRef]
149. Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A. 2009. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 71:449–460. [PubMed][CrossRef]
150. Cheng LW, Kay O, Schneewind O. 2001. Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol 183:5293–5301. [PubMed][CrossRef]
151. Rimpilainen M, Forsberg A, Wolf-Watz H. 1992. A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol 174:3355–3363. [PubMed]
152. Skryzpek E, Straley SC. 1993. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol 175:3520–3528. [PubMed]
153. Schubot FD, Jackson MW, Penrose KJ, Cherry S, Tropea JE, Plano GV, Waugh DS. 2005. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol 346:1147–1161. [PubMed][CrossRef]
154. Deane JE, Roversi P, King C, Johnson S, Lea SM. 2008. Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol 377:985–992. [PubMed][CrossRef]
155. Weise CF, Login FH, Ho O, Grobner G, Wolf-Watz H, Wolf-Watz M. 2014. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein. Biophys J 107:1950–1961. [PubMed][CrossRef]
156. Stensrud KF, Adam PR, La Mar CD, Olive AJ, Lushington GH, Sudharsan R, Shelton NL, Givens RS, Picking WL, Picking WD. 2008. Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment of IpaB to the type III secretion apparatus needle tip. J Biol Chem 283:18646–18654. [PubMed][CrossRef]
157. Prouty AM, Gunn JS. 2000. Salmonella enterica serovar Typhimurium invasion is repressed in the presence of bile. Infect Immun 68:6763–6769. [CrossRef]
158. Barta ML, Guragain M, Adam P, Dickenson NE, Patil M, Geisbrecht BV, Picking WL, Picking WD. 2012. Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure. Proteins 80:935–945. [PubMed][CrossRef]
159. Chatterjee S, Zhong D, Nordhues BA, Battaile KP, Lovell S, De Guzman RN. 2011. The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate. Protein Sci 20:75–86. [PubMed][CrossRef]
160. Menard R, Sansonetti P, Parsot C. 1994. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J 13:5293–5302. [PubMed]
161. Rosqvist R, Magnusson KE, Wolf-Watz H. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972. [PubMed]
162. Zierler MK, Galan JE. 1995. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect Immun 63:4024–4028. [PubMed]
163. Lara-Tejero M, Galan JE. 2009. Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642. [PubMed][CrossRef]
164. Epler CR, Dickenson NE, Olive AJ, Picking WL, Picking WD. 2009. Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction. Infect Immun 77:2754–2761. [PubMed][CrossRef]
165. Blocker AJ, Deane JE, Veenendaal AK, Roversi P, Hodgkinson JL, Johnson S, Lea SM. 2008. What’s the point of the type III secretion system needle? Proc Natl Acad Sci USA 105:6507–6513. [PubMed][CrossRef]
166. Cordes FS, Daniell S, Kenjale R, Saurya S, Picking WL, Picking WD, Booy F, Lea SM, Blocker A. 2005. Helical packing of needles from functionally altered Shigella type III secretion systems. J Mol Biol 354:206–211. [PubMed][CrossRef]
167. Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW. 2010. pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043. [PubMed][CrossRef]
168. Figueira R, Holden DW. 2012. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158:1147–1161. [PubMed][CrossRef]
169. Torruellas J, Jackson MW, Pennock JW, Plano GV. 2005. The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 57:1719–1733. [PubMed][CrossRef]
170. Birtalan SC, Phillips RM, Ghosh P. 2002. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol Cell 9:971–980. [PubMed][CrossRef]
171. Phan J, Tropea JE, Waugh DS. 2004. Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2. Acta Crystallogr D Biol Crystallogr 60:1591–1599. [PubMed][CrossRef]
172. Schreiner M, Niemann HH. 2012. Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycD in complex with a peptide of the minor translocator YopD. BMC Struct Biol 12:13. [PubMed][CrossRef]
microbiolspec.VMBF-0004-2015.citations
cm/4/1
content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0004-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0004-2015
2016-02-12
2017-09-24

Abstract:

Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts—the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe “injectisomes,” which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Gross architecture of the T3SS. Cryo-EM reconstruction of the serovar Typhimurium injectisome basal body at subnanometer resolution reveals its overall architecture. Surface representation of the highest resolution cryo-EM map (EMD 1875, contour level 0.0233) published by Schraidt and Marlovits ( 27 ). Dashed lines indicate the positions of bacterial membranes . Abbreviations: OR, outer ring; IR, inner ring; OM, outer membrane; IM, inner membrane. An axial section through the map in . Transverse sections through the map in at the level of the neck (top) and IR1 (bottom).

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.VMBF-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Hybrid models of basal body structure. Computational modeling of the neck (SctC, PDB 3J1V), IR1 (SctD, PDB 3J1X), and IR2 (SctD, PDB 3J1W) annuli of the serovar Typhimurium basal body. No high-resolution structural information is available for the basal body above the neck. In this model, complementary electrostatic surfaces support ring building, as shown for the SctD periplasmic domains. Note the modular domain architecture (enumerated 1, 2, 3) for SctD.

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.VMBF-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Chaperone-substrate interactions. Structural distinctions between effector-chaperone and translocator-chaperone complexes. The structure of the effector SipA chaperone-binding domain (CBD, red and yellow) in complex with the class IB chaperone InvB (dark gray, light gray). PDB 2FM8 ( 47 ). The structurally conserved β-motif is highlighted in yellow. The SipA β-motif is bound by a hydrophobic (gray) patch on the InvB surface (blue/gray). Superposition of the CBDs from effectors from multiple species shows a common binding mode marked by the structurally conserved β-motif. The prototypical class I chaperone SicP is shown in place of the various chaperones. PDB codes: YopN, 1XKP ( 153 ); YopE, 1L2W ( 170 ); YscM2, 1TTW ( 171 ); SptP-SicP, 1JYO ( 88 ); SipA, 2FM8 ( 47 ); HopA1, 4G6T ( 93 ). The translocator YopD CBD (red) lacks secondary structure and is bound by the concave cleft of the class II chaperone SycD (gray). Protein Data bank ID number 4AM9 (PDB 4AM9) ( 172 ).

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.VMBF-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

A unified nomenclature for the homologous core components of the T3SS

Source: microbiolspec February 2016 vol. 4 no. 1 doi:10.1128/microbiolspec.VMBF-0004-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error