1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Annika Flint1, James Butcher2, Alain Stintzi3
  • Editors: Indira T. Kudva4, Qijing Zhang5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5; 2: Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5; 3: Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5; 4: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 5: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
  • Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0007-2015
  • Received 04 February 2015 Accepted 14 May 2015 Published 25 March 2016
  • Alain Stintzi, astintzi@uottawa.ca
image of Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0007-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0007-2015-2.gif
  • Abstract:

    Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as , , , , and virulent strains of have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.

  • Citation: Flint A, Butcher J, Stintzi A. 2016. Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiol Spectrum 4(2):VMBF-0007-2015. doi:10.1128/microbiolspec.VMBF-0007-2015.

References

1. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpaa KM. 1990. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7:756–761. [PubMed][CrossRef]
2. Rowbury RJ. 1995. An assessment of environmental factors influencing acid tolerance and sensitivity in Escherichia coli, Salmonella spp. and other enterobacteria. Lett Appl Microbiol 20:333–337. [PubMed][CrossRef]
3. Raja N, Goodson M, Smith DG, Rowbury RJ. 1991. Decreased DNA damage by acid and increased repair of acid-damaged DNA in acid-habituated Escherichia coli. J Appl Bacteriol 70:507–511. [PubMed][CrossRef]
4. Gahan CG, Hill C. 2014. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 4:9. [PubMed][CrossRef]
5. Alvarez-Ordonez A, Begley M, Prieto M, Messens W, Lopez M, Bernardo A, Hill C. 2011. Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology 157:3268–3281. [PubMed][CrossRef]
6. Fischer W, Prassl S, Haas R. 2009. Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pylori. Curr Top Microbiol Immunol 337:129–171. [PubMed][CrossRef]
7. Kusters JG, van Vliet AH, Kuipers EJ. 2006. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490. [PubMed][CrossRef]
8. Kieboom J, Abee T. 2006. Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium. J Bacteriol 188:5650–5653. [PubMed][CrossRef]
9. Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ. 1997. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci USA 94:934–939. [PubMed][CrossRef]
10. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118. [PubMed][CrossRef]
11. Chen J, Fang C, Zheng T, Zhu N, Bei Y, Fang W. 2012. Genomic presence of gadD1 glutamate decarboxylase correlates with the organization of ascB-dapE internalin cluster in Listeria monocytogenes. Foodborne Pathog Dis 9:175–178. [PubMed][CrossRef]
12. Archambaud C, Nahori MA, Soubigou G, Becavin C, Laval L, Lechat P, Smokvina T, Langella P, Lecuit M, Cossart P. 2012. Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci USA 109:16684–16689. [PubMed][CrossRef]
13. Ryan S, Hill C, Gahan CG. 2008. Acid stress responses in Listeria monocytogenes. Adv Appl Microbiol 65:67–91. [PubMed][CrossRef]
14. Ryan S, Begley M, Gahan CG, Hill C. 2009. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol 11:432–445. [PubMed][CrossRef]
15. Sachs G, Kraut JA, Wen Y, Feng J, Scott DR. 2006. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J Membr Biol 212:71–82. [PubMed][CrossRef]
16. Rektorschek M, Buhmann A, Weeks D, Schwan D, Bensch KW, Eskandari S, Scott D, Sachs G, Melchers K. 2000. Acid resistance of Helicobacter pylori depends on the UreI membrane protein and an inner membrane proton barrier. Mol Microbiol 36:141–152. [PubMed][CrossRef]
17. Hu LT, Mobley HL. 1990. Purification and N-terminal analysis of urease from Helicobacter pylori. Infect Immun 58:992–998. [PubMed]
18. Labigne A, Cussac V, Courcoux P. 1991. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol 173:1920–1931. [PubMed]
19. Cussac V, Ferrero RL, Labigne A. 1992. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J Bacteriol 174:2466–2473. [PubMed]
20. Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G. 1998. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114:58–70. [PubMed][CrossRef]
21. Marcus EA, Moshfegh AP, Sachs G, Scott DR. 2005. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol 187:729–738. [PubMed][CrossRef]
22. Skouloubris S, Thiberge JM, Labigne A, De Reuse H. 1998. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect Immun 66:4517–4521. [PubMed]
23. Tsuda M, Karita M, Morshed MG, Okita K, Nakazawa T. 1994. A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect Immun 62:3586–3589. [PubMed]
24. Cotter PD, Gahan CG, Hill C. 2000. Analysis of the role of the Listeria monocytogenes F0F1-AtPase operon in the acid tolerance response. Int J Food Microbiol 60:137–146. [PubMed][CrossRef]
25. Foster JW, Hall HK. 1991. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 173:5129–5135. [PubMed]
26. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668. [PubMed][CrossRef]
27. Siegel JA, Urbain JL, Adler LP, Charkes ND, Maurer AH, Krevsky B, Knight LC, Fisher RS, Malmud LS. 1988. Biphasic nature of gastric emptying. Gut 29:85–89. [PubMed][CrossRef]
28. Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. 1988. Experimental Campylobacter jejuni infection in humans. J Infect Dis 157:472–479. [PubMed][CrossRef]
29. Le MT, Porcelli I, Weight CM, Gaskin DJ, Carding SR, van Vliet AH. 2012. Acid-shock of Campylobacter jejuni induces flagellar gene expression and host cell invasion. Eur J Microbiol Immunol 2:12–19. [PubMed][CrossRef]
30. Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A. 2008. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 74:1583–1597. [PubMed][CrossRef]
31. Reid AN, Pandey R, Palyada K, Whitworth L, Doukhanine E, Stintzi A. 2008. Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl Environ Microbiol 74:1598–1612. [PubMed][CrossRef]
32. Yao R, Burr DH, Doig P, Trust TJ, Niu H, Guerry P. 1994. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14:883–893. [PubMed][CrossRef]
33. Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186:3296–3303. [PubMed][CrossRef]
34. Flint A, Sun YQ, Butcher J, Stahl M, Huang H, Stintzi A. 2014. Phenotypic screening of a targeted mutant library reveals Campylobacter jejuni defenses against oxidative stress. Infect Immun 82:2266–2275. [PubMed][CrossRef]
35. Wood JM. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262. [PubMed]
36. Bolen DW. 2001. Protein stabilization by naturally occurring osmolytes. Methods Mol Biol 168:17–36. [PubMed][CrossRef]
37. Corratge-Faillie C, Jabnoune M, Zimmermann S, Very AA, Fizames C, Sentenac H. 2010. Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532. [PubMed][CrossRef]
38. Rhoads DB, Epstein W. 1977. Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem 252:1394–1401. [PubMed]
39. Laimins LA, Rhoads DB, Epstein W. 1981. Osmotic control of kdp operon expression in Escherichia coli. Proc Natl Acad Sci USA 78:464–468. [PubMed][CrossRef]
40. Altendorf K, Voelkner P, Puppe W. 1994. The sensor kinase KdpD and the response regulator KdpE control expression of the kdpFABC operon in Escherichia coli. Res Microbiol 145:374–381. [PubMed][CrossRef]
41. Heermann R, Jung K. 2010. The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 304:97–106. [PubMed][CrossRef]
42. Voelkner P, Puppe W, Altendorf K. 1993. Characterization of the KdpD protein, the sensor kinase of the K(+)-translocating Kdp system of Escherichia coli. Eur J Biochem 217:1019–1026. [PubMed][CrossRef]
43. Liu Y, Ho KK, Su J, Gong H, Chang AC, Lu S. 2013. Potassium transport of Salmonella is important for type III secretion and pathogenesis. Microbiology 159:1705–1719. [PubMed][CrossRef]
44. Dinnbier U, Limpinsel E, Schmid R, Bakker EP. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357. [PubMed][CrossRef]
45. MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM. 1999. The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Biochim Biophys Acta 1420:30–44. [PubMed][CrossRef]
46. Culham DE, Henderson J, Crane RA, Wood JM. 2003. Osmosensor ProP of Escherichia coli responds to the concentration, chemistry, and molecular size of osmolytes in the proteoliposome lumen. Biochemistry 42:410–420. [PubMed][CrossRef]
47. Culham DE, Dalgado C, Gyles CL, Mamelak D, MacLellan S, Wood JM. 1998. Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology 144(Pt 1):91–102. [PubMed][CrossRef]
48. May G, Faatz E, Villarejo M, Bremer E. 1986. Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12. Mol Gen Genet 205:225–233. [PubMed][CrossRef]
49. Gul N, Poolman B. 2013. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli. Mol Membr Biol 30:138–148. [PubMed][CrossRef]
50. Haardt M, Bremer E. 1996. Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J Bacteriol 178:5370–5381. [PubMed]
51. Sleator RD, Wouters J, Gahan CG, Abee T, Hill C. 2001. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67:2692–2698. [PubMed][CrossRef]
52. Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Strom AR. 1991. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5:1049–1064. [PubMed][CrossRef]
53. Landfald B, Strom AR. 1986. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849–855. [PubMed]
54. Giaever HM, Styrvold OB, Kaasen I, Strom AR. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849. [PubMed]
55. Kaasen I, McDougall J, Strom AR. 1994. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15. [PubMed][CrossRef]
56. McLaggan D, Logan TM, Lynn DG, Epstein W. 1990. Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli. J Bacteriol 172:3631–3636. [PubMed]
57. Doyle MP, Roman DJ. 1982. Response of Campylobacter jejuni to sodium chloride. Appl Environ Microbiol 43:561–565. [PubMed]
58. Cameron A, Frirdich E, Huynh S, Parker CT, Gaynor EC. 2012. Hyperosmotic stress response of Campylobacter jejuni. J Bacteriol 194:6116–6130. [PubMed][CrossRef]
59. Fordtran JS, Locklear TW. 1966. Ionic constituents and osmolality of gastric and small-intestinal fluids after eating. Am J Dig Dis 11:503–521. [PubMed][CrossRef]
60. Klasing KC, Adler KL, Remus JC, Calvert CC. 2002. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J Nutr 132:2274–2282. [PubMed]
61. Haswell ES, Phillips R, Rees DC. 2011. Mechanosensitive channels: what can they do and how do they do it? Structure 19:1356–1369. [PubMed][CrossRef]
62. Kakuda T, Koide Y, Sakamoto A, Takai S. 2012. Characterization of two putative mechanosensitive channel proteins of Campylobacter jejuni involved in protection against osmotic downshock. Vet Microbiol 160:53–60. [PubMed][CrossRef]
63. Nothaft H, Liu X, McNally DJ, Li J, Szymanski CM. 2009. Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. Proc Natl Acad Sci USA 106:15019–15024. [PubMed][CrossRef]
64. Nothaft H, Liu X, Li J, Szymanski CM. 2010. Campylobacter jejuni free oligosaccharides: function and fate. Virulence 1:546–550. [PubMed][CrossRef]
65. Gaasbeek EJ, van der Wal FJ, van Putten JP, de Boer P, van der Graaf-van Bloois L, de Boer AG, Vermaning BJ, Wagenaar JA. 2009. Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni. J Bacteriol 191:3785–3793. [PubMed][CrossRef]
66. Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. [PubMed][CrossRef]
67. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. 2013. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93:185–198. [PubMed][CrossRef]
68. Annuk H, Shchepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M. 2003. Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412. [PubMed][CrossRef]
69. Purdy D, Park SF. 1994. Cloning, nucleotide sequence and characterization of a gene encoding superoxide dismutase from Campylobacter jejuni and Campylobacter coli. Microbiology 140(Pt 5):1203–1208. [PubMed][CrossRef]
70. Gort AS, Ferber DM, Imlay JA. 1999. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 32:179–191. [PubMed][CrossRef]
71. Carlioz A, Touati D. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630. [PubMed]
72. Compan I, Touati D. 1993. Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175:1687–1696. [PubMed]
73. Dubrac S, Touati D. 2000. Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 182:3802–3808. [PubMed][CrossRef]
74. Fang FC, DeGroote MA, Foster JW, Baumler AJ, Ochsner U, Testerman T, Bearson S, Giard JC, Xu Y, Campbell G, Laessig T. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci USA 96:7502–7507. [PubMed][CrossRef]
75. Ammendola S, Pasquali P, Pacello F, Rotilio G, Castor M, Libby SJ, Figueroa-Bossi N, Bossi L, Fang FC, Battistoni A. 2008. Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J Biol Chem 283:13688–13699. [PubMed][CrossRef]
76. Zamocky M, Gasselhuber B, Furtmuller PG, Obinger C. 2012. Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys 525:131–144. [PubMed][CrossRef]
77. Alfonso-Prieto M, Biarnes X, Vidossich P, Rovira C. 2009. The molecular mechanism of the catalase reaction. J Am Chem Soc 131:11751–11761. [PubMed][CrossRef]
78. Vlasits J, Jakopitsch C, Bernroitner M, Zamocky M, Furtmuller PG, Obinger C. 2010. Mechanisms of catalase activity of heme peroxidases. Arch Biochem Biophys 500:74–81. [PubMed][CrossRef]
79. Chelikani P, Fita I, Loewen PC. 2004. Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208. [PubMed][CrossRef]
80. Odenbreit S, Wieland B, Haas R. 1996. Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. J Bacteriol 178:6960–6967. [PubMed]
81. Harris AG, Hazell SL. 2003. Localisation of Helicobacter pylori catalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol Lett 229:283–289. [PubMed][CrossRef]
82. Mulvey MR, Switala J, Borys A, Loewen PC. 1990. Regulation of transcription of katE and katF in Escherichia coli. J Bacteriol 172:6713–6720. [PubMed]
83. Schellhorn HE, Hassan HM. 1988. Transcriptional regulation of katE in Escherichia coli K-12. J Bacteriol 170:4286–4292. [PubMed]
84. von Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC. 1991. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol 173:514–520. [PubMed]
85. Brunder W, Schmidt H, Karch H. 1996. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142(Pt 11):3305–3315. [PubMed][CrossRef]
86. Varnado CL, Hertwig KM, Thomas R, Roberts JK, Goodwin DC. 2004. Properties of a novel periplasmic catalase-peroxidase from Escherichia coli O157:H7. Arch Biochem Biophys 421:166–174. [PubMed][CrossRef]
87. Robbe-Saule V, Coynault C, Ibanez-Ruiz M, Hermant D, Norel F. 2001. Identification of a non-haem catalase in Salmonella and its regulation by RpoS (sigmaS). Mol Microbiol 39:1533–1545. [PubMed][CrossRef]
88. Flint A, Sun YQ, Stintzi A. 2012. Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni. J Bacteriol 194:334–345. [PubMed][CrossRef]
89. Harris AG, Wilson JE, Danon SJ, Dixon MF, Donegan K, Hazell SL. 2003. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 149:665–672. [PubMed][CrossRef]
90. Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454. [PubMed][CrossRef]
91. Seaver LC, Imlay JA. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181. [PubMed][CrossRef]
92. Olczak AA, Seyler RW, Jr, Olson JW, Maier RJ. 2003. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect Immun 71:580–583. [PubMed][CrossRef]
93. Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A. 2009. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 10:481. [PubMed][CrossRef]
94. Hebrard M, Viala JP, Meresse S, Barras F, Aussel L. 2009. Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 191:4605–4614. [PubMed][CrossRef]
95. Steele KH, Baumgartner JE, Valderas MW, Roop RM, 2nd. 2010. Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J Bacteriol 192:4912–4922. [PubMed][CrossRef]
96. Moskovitz J. 2005. Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival. Curr Pharm Des 11:1451–1457. [PubMed][CrossRef]
97. Denkel LA, Horst SA, Rouf SF, Kitowski V, Bohm OM, Rhen M, Jager T, Bange FC. 2011. Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. PloS One 6:e26974. doi:10.1371/journal.pone.0026974. [PubMed][CrossRef]
98. Denkel LA, Rhen M, Bange FC. 2013. Biotin sulfoxide reductase contributes to oxidative stress tolerance and virulence in Salmonella enterica serovar Typhimurium. Microbiology 159:1447–1458. [PubMed][CrossRef]
99. Streit WR, Entcheva P. 2003. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 61:21–31. [PubMed][CrossRef]
100. Osborne SE, Tuinema BR, Mok MC, Lau PS, Bui NK, Tomljenovic-Berube AM, Vollmer W, Zhang K, Junop M, Coombes BK. 2012. Characterization of DalS, an ATP-binding cassette transporter for D-alanine, and its role in pathogenesis in Salmonella enterica. J Biol Chem 287:15242–15250. [PubMed][CrossRef]
101. Tuinema BR, Reid-Yu SA, Coombes BK. 2014. Salmonella evades d-amino acid oxidase to promote infection in neutrophils. mBio 5(6):e01886-14. doi:10.1128/mBio.01886-14. [PubMed][CrossRef]
102. Sacchi S. 2013. D-Serine metabolism: new insights into the modulation of D-amino acid oxidase activity. Biochem Soc Trans 41:1551–1556. [PubMed][CrossRef]
103. Bowman LA, McLean S, Poole RK, Fukuto JM. 2011. The diversity of microbial responses to nitric oxide and agents of nitrosative stress: close cousins but not identical twins. Adv Microb Physiol 59:135–219. [PubMed][CrossRef]
104. Ford PC. 2010. Reactions of NO and nitrite with heme models and proteins. Inorg Chem 49:6226–6239. [PubMed][CrossRef]
105. Lundberg JO. 2008. Nitric oxide in the gastrointestinal tract: role of bacteria. Biosci Microflora 27:109–112. [CrossRef]
106. Lundberg JO, Weitzberg E, Cole JA, Benjamin N. 2004. Nitrate, bacteria and human health. Nat Rev Microbiol 2:593–602. [PubMed][CrossRef]
107. Ferrer-Sueta G, Radi R. 2009. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177. [PubMed][CrossRef]
108. Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437. [PubMed]
109. Pryor WA, Squadrito GL. 1995. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722. [PubMed]
110. Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR, Jr. 1998. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95:2175–2179. [PubMed][CrossRef]
111. Yukl ET, de Vries S, Moenne-Loccoz P. 2009. The millisecond intermediate in the reaction of nitric oxide with oxymyoglobin is an iron(III)–nitrato complex, not a peroxynitrite. J Am Chem Soc 131:7234–7235. [PubMed][CrossRef]
112. Bogdan C. 2001. Nitric oxide and the immune response. Nat Immunol 2:907–916. [PubMed][CrossRef]
113. Lowenstein CJ, Padalko E. 2004. iNOS (NOS2) at a glance. J Cell Sci 117:2865–2867. [PubMed][CrossRef]
114. Eriksson S, Chambers BJ, Rhen M. 2003. Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium.Scand J Immunol 58:493–502. [PubMed][CrossRef]
115. Doyle MP, Hoekstra JW. 1981. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14:351–358. [PubMed][CrossRef]
116. Spiegelhalder B, Eisenbrand G, Preussmann R. 1976. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol 14:545–548. [PubMed][CrossRef]
117. Govoni M, Jansson EA, Weitzberg E, Lundberg JO. 2008. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19:333–337. [PubMed][CrossRef]
118. McKnight GM, Smith LM, Drummond RS, Duncan CW, Golden M, Benjamin N. 1997. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut 40:211–214. [PubMed][CrossRef]
119. Dykhuizen RS, Frazer R, Duncan C, Smith CC, Golden M, Benjamin N, Leifert C. 1996. Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob Agents Chemother 40:1422–1425. [PubMed]
120. Sobko T, Huang L, Midtvedt T, Norin E, Gustafsson LE, Norman M, Jansson EÅ, Lundberg JO. 2006. Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radic Biol Med 41:985–991. [PubMed][CrossRef]
121. Gilberthorpe NJ, Poole RK. 2008. Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J Biol Chem 283:11146–11154. [PubMed][CrossRef]
122. Crane BR, Sudhamsu J, Patel BA. 2010. Bacterial nitric oxide synthases. Annu Rev Biochem 79:445–470. [PubMed][CrossRef]
123. Poole RK, Hughes MN. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783. [PubMed][CrossRef]
124. Frey AD, Shepherd M, Jokipii-Lukkari S, Haggman H, Kallio PT. 2011. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 58:81–139. [PubMed][CrossRef]
125. Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci USA 99:5902–5907. [PubMed][CrossRef]
126. Smith HK, Shepherd M, Monk C, Green J, Poole RK. 2011. The NO-responsive hemoglobins of Campylobacter jejuni: concerted responses of two globins to NO and evidence in vitro for globin regulation by the transcription factor NssR. Nitric Oxide 25:234–241. [PubMed][CrossRef]
127. Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E. 2008. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283:13140–13147. [PubMed][CrossRef]
128. Smagghe BJ, Trent JT, 3rd, Hargrove MS. 2008. NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo. PloS One 3:e2039. doi:10.1371/journal.pone.0002039. [CrossRef]
129. Giuffre A, Moschetti T, Vallone B, Brunori M. 2008. Neuroglobin: enzymatic reduction and oxygen affinity. Biochem Biophys Res Commun 367:893–898. [PubMed][CrossRef]
130. Gardner AM, Gardner PR. 2002. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem 277:8166–8171. [PubMed][CrossRef]
131. Gardner AM, Helmick RA, Gardner PR. 2002. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem 277:8172–8177. [PubMed][CrossRef]
132. Gomes CM, Giuffre A, Forte E, Vicente JB, Saraiva LM, Brunori M, Teixeira M. 2002. A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin. J Biol Chem 277:25273–25276. [PubMed][CrossRef]
133. Pittman MS, Elvers KT, Lee L, Jones MA, Poole RK, Park SF, Kelly DJ. 2007. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol Microbiol 63:575–590. [PubMed][CrossRef]
134. Mills PC, Richardson DJ, Hinton JC, Spiro S. 2005. Detoxification of nitric oxide by the flavorubredoxin of Salmonella enterica serovar Typhimurium. Biochem Soc Trans 33:198–199. [PubMed][CrossRef]
135. Poock SR, Leach ER, Moir JW, Cole JA, Richardson DJ. 2002. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J Biol Chem 277:23664–23669. [PubMed][CrossRef]
136. Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236. [PubMed][CrossRef]
137. Iovine NM, Pursnani S, Voldman A, Wasserman G, Blaser MJ, Weinrauch Y. 2008. Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect Immun 76:986–993. [PubMed][CrossRef]
138. Burton NA, Schurmann N, Casse O, Steeb AK, Claudi B, Zankl J, Schmidt A, Bumann D. 2014. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15:72–83. [PubMed][CrossRef]
139. White JK, Mastroeni P, Popoff JF, Evans CA, Blackwell JM. 2005. Slc11a1-mediated resistance to Salmonella enterica serovar Typhimurium and Leishmania donovani infections does not require functional inducible nitric oxide synthase or phagocyte oxidase activity. J Leukoc Biol 77:311–320. [PubMed][CrossRef]
140. Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–248. [PubMed][CrossRef]
141. Membrillo-Hernandez J, Coopamah MD, Anjum MF, Stevanin TM, Kelly A, Hughes MN, Poole RK. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J Biol Chem 274:748–754. [PubMed][CrossRef]
142. Poole RK, Anjum MF, Membrillo-Hernandez J, Kim SO, Hughes MN, Stewart V. 1996. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178:5487–5492. [PubMed]
143. Gardner PR, Gardner AM, Martin LA, Salzman AL. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95:10378–10383. [PubMed][CrossRef]
144. Stevanin TM, Read RC, Poole RK. 2007. The hmp gene encoding the NO-inducible flavohaemoglobin in Escherichia coli confers a protective advantage in resisting killing within macrophages, but not in vitro: links with swarming motility. Gene 398:62–68. [PubMed][CrossRef]
145. Hutchings MI, Mandhana N, Spiro S. 2002. The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol 184:4640–4643. [PubMed][CrossRef]
146. Mittal R, Gonzalez-Gomez I, Goth KA, Prasadarao NV. 2010. Inhibition of inducible nitric oxide controls pathogen load and brain damage by enhancing phagocytosis of Escherichia coli K1 in neonatal meningitis. Am J Pathol 176:1292–1305. [PubMed][CrossRef]
147. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, Popova IE, Parikh SJ, Adams LG, Tsolis RM, Stewart VJ, Baumler AJ. 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:708–711. [PubMed][CrossRef]
148. Spees AM, Wangdi T, Lopez CA, Kingsbury DD, Xavier MN, Winter SE, Tsolis RM, Baumler AJ. 2013. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. mBio 4(4):e00430-13. doi:10.1128/mBio.00430-13. [CrossRef]
149. Stevanin TM, Poole RK, Demoncheaux EA, Read RC. 2002. Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun 70:4399–4405. [PubMed][CrossRef]
150. Bang IS, Liu L, Vazquez-Torres A, Crouch ML, Stamler JS, Fang FC. 2006. Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp. J Biol Chem 281:28039–28047. [PubMed][CrossRef]
151. Mills PC, Rowley G, Spiro S, Hinton JC, Richardson DJ. 2008. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154:1218–1228. [PubMed][CrossRef]
152. Chakravortty D, Hansen-Wester I, Hensel M. 2002. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166. [PubMed][CrossRef]
153. Elvers KT, Wu G, Gilberthorpe NJ, Poole RK, Park SF. 2004. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J Bacteriol 186:5332–5341. [PubMed][CrossRef]
154. Pickford JL, Wainwright L, Wu G, Poole RK. 2008. Expression and purification of Cgb and Ctb, the NO-inducible globins of the foodborne bacterial pathogen C. jejuni. Methods Enzymol 436:289–302. [PubMed][CrossRef]
microbiolspec.VMBF-0007-2015.citations
cm/4/2
content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0007-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0007-2015
2016-03-25
2017-09-26

Abstract:

Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as , , , , and virulent strains of have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The immediate and long-term osmotic shock responses of bacterial pathogens protect against changes in osmolarity during host colonization. During initial exposure to hyperosmotic shock, pathogens transport K ions from the external environment into the cytoplasm to prevent cellular dehydration. K ion uptake can occur utilizing the low-affinity TrkAEH(G) or high-affinity KdpFABC acquisition systems. Following initial K uptake, uptake of glycine betaine and choline, and synthesis of trehalose are part of the long-term bacterial adaptations to osmotic stress. Uptake of glycine betaine is mediated by the ProP and ProVWX systems. Choline is transported by BetT into the cytoplasm and converted into betaine aldehyde and then glycine betaine by BetA. Alternatively, BetB can catalyze the conversion of betaine aldehyde into glycine betaine. Finally, trehalose can be synthesized from glucose by either BetA or BetB. Chol, choline; GB, glycine betaine; BA, betaine aldehyde.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0007-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The oxidant detoxification mechanisms of bacterial pathogens provide defense against the oxidative burst encountered within the host neutrophil. Invading pathogens are engulfed within the neutrophil phagolysosome and exposed reactive oxygen species and bactericidal compounds. Electrons supplied by NADPH oxidase reduce O into O , which is subsequently converted into HO and HOCl. The oxidative stress defenses present pathogens (such as Shiga-toxin-producing ) that contribute to bacterial survival against neutrophil oxidative burst. Uncharged O and HO freely diffuse across the bacterial membranes into the periplasmic and cytoplasmic spaces of the bacterial cell. O can undergo one electron reduction to produce O . O and HO can be detoxified within the periplasm by SodC and KatP, respectively. Within the cytoplasm, O and HO are detoxified by SodA and KatE/AhpC, respectively. SodA and KatE are both induced under conditions of oxidative stress and are under the control of the transcriptional regulators SoxSR and OxyR.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0007-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error