1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Microbial Endocrinology in the Pathogenesis of Infectious Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Mark Lyte1
  • Editors: Indira T. Kudva2, Paul J. Plummer3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011; 2: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 3: Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
  • Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0021-2015
  • Received 08 June 2015 Accepted 18 September 2015 Published 25 March 2016
  • Mark Lyte, mlyte@iastate.edu
image of Microbial Endocrinology in the Pathogenesis of Infectious Disease
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Microbial Endocrinology in the Pathogenesis of Infectious Disease, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0021-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/2/VMBF-0021-2015-2.gif
  • Abstract:

    Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology–based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.

  • Citation: Lyte M. 2016. Microbial Endocrinology in the Pathogenesis of Infectious Disease. Microbiol Spectrum 4(2):VMBF-0021-2015. doi:10.1128/microbiolspec.VMBF-0021-2015.

References

1. Lyte M. 1993. The role of microbial endocrinology in infectious disease. J Endocrinol 137:343–345. [PubMed][CrossRef]
2. Lyte M. 2010. Microbial endocrinology: a personal journey, p 1–16. In Lyte M, Freestone PPE (ed), Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Springer, New York. [CrossRef]
3. Lyte M. 1992. The role of catecholamines in Gram-negative sepsis. Med Hypotheses 37:255–258. [PubMed][CrossRef]
4. Lyte M, Ernst S. 1992. Catecholamine induced growth of Gram negative bacteria. Life Sci 50:203–212. [PubMed][CrossRef]
5. Lyte M. 2004. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12:14–20. [PubMed][CrossRef]
6. Renaud M, Miget A. 1930. Role favorisant des perturbations locales causees par l’adrenaline sur le developpement des infections microbiennes. C R Seances Soc Biol Fil 103:1052–1054.
7. Lyte M. 2010. The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74:634–638. [PubMed][CrossRef]
8. Sandrini S, Aldriwesh M, Alruways M, Freestone P. 2015. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol 225:R21–R34. [PubMed][CrossRef]
9. Karavolos MH, Williams P, Khan CM. 2011. Interkingdom crosstalk: host neuroendocrine stress hormones drive the hemolytic behavior of Salmonella typhi. Virulence 2:371–374. [PubMed][CrossRef]
10. Lyte M. 2013. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9:e1003726. doi:10.1371/journal.ppat.1003726. [PubMed][CrossRef]
11. Lyte M, Cryan JF. 2014. Microbial Endocrinology: the Microbiota-Gut-Brain Axis in Health and Disease. Springer, New York, NY.
12. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. 2014. Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 817:221–239. [PubMed][CrossRef]
13. Fink G, Pfaff DW, Levine JE. 2012. Handbook of Neuroendocrinology, 1st ed. Academic Press, Boston, MA.
14. Teo WS, Balasubramaniam P. 1983. Gas gangrene after intramuscular injection of adrenaline. Clin Orthop Relat Res 174:206–207. [CrossRef]
15. Harvey PW, Purnell GV. 1968. Fatal case of gas gangrene associated with intramuscular injections. Br Med J 1:744–746. [PubMed][CrossRef]
16. Yamashima T. 2003. Jokichi Takamine (1854–1922), the samurai chemist, and his work on adrenalin. J Med Biogr 11:95–102. [PubMed]
17. Bested AC, Logan AC, Selhub EM. 2013. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances. Part I. Autointoxication revisited. Gut Pathog 5:5. [PubMed][CrossRef]
18. Evans DG, Miles AA, Niven JS. 1948. The enhancement of bacterial infections by adrenaline. Br J Exp Pathol 29:20–39. [PubMed]
19. Traub WH, Bauer D, Wolf U. 1991. Virulence of clinical and fecal isolates of Clostridium perfringens type A for outbred NMRI mice. Chemotherapy 37:426–435. [PubMed][CrossRef]
20. Kulma A, Szopa J. 2007. Catecholamines are active compounds in plants. Plant Sci 172:433–440. [CrossRef]
21. Pitman RM. 1971. Transmitter substances in insects: a review. Comp Gen Pharmacol 2:347–371. [CrossRef]
22. Guerrero HY, Caceres G, Paiva CL, Marcano D. 1990. Hypothalamic and telencephalic catecholamine content in the brain of the teleost fish, Pygocentrus notatus, during the annual reproductive cycle. Gen Comp Endocrinol 80:257–263. [PubMed][CrossRef]
23. Roth J, LeRoith D, Shiloach J, Rosenzweig JL, Lesniak MA, Havrankova J. 1982. The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers: implications for mammalian biology. N Engl J Med 306:523–527. [PubMed][CrossRef]
24. Dohler KD. 1986. Development of hormone receptors: conclusion. Experientia 42:788–794. [PubMed][CrossRef]
25. Mayer EA, Baldi JP. 1991. Can regulatory peptides be regarded as words of a biological language. Am J Physiol 261:G171–G184. [PubMed]
26. Lenard J. 1992. Mammalian hormones in microbial cells. Trends Biochem Sci 17:147–150. [PubMed][CrossRef]
27. Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M. 2007. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80:2206–2209. [PubMed][CrossRef]
28. Stephenson M, Rowatt E. 1947. The production of acetylcholine by a strain of Lactobacillus plantarum. J Gen Microbiol 1:279–298. [PubMed][CrossRef]
29. Devalia JL, Harmanyeri Y, Cundell DR, Davies RJ, Grady D, Tabaqchali S. 1988. Variation in histamine synthesis by Gram-negative and Gram-positive respiratory tract bacteria and the effect of cefaclor. Royal Society of Medicine Services Ltd International Congress and Symposium Series 128:49–55. [PubMed]
30. Masson F, Talon R, Montel MC. 1996. Histamine and tyramine production by bacteria from meat products. Int J Food Microbiol 32:199–207. [PubMed][CrossRef]
31. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. 2012. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 7:e31951. doi:10.1371/journal.pone.0031951. [PubMed][CrossRef]
32. Hurley R, Leask BG, Ruthven CR, Sandler M, Southgate J. 1971. Investigation of 5-hydroxytryptamine production by Candida albicans in vitro and in vivo. Microbios 4:133–143. [PubMed]
33. Ozogul F. 2011. Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogens. Int J Food Sci Technol 46:478–484. [CrossRef]
34. Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV. 2009. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikl Biokhim Mikrobiol 45:550–554. [In Russion.] [CrossRef]
35. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295. [PubMed][CrossRef]
36. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV. 2000. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372:115–117. [PubMed]
37. Raasch W, Regunathan S, Li G, Reis DJ. 1995. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci 56:2319–2330. [PubMed][CrossRef]
38. Arena ME, Manca de Nadra MC. 2001. Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162. [PubMed][CrossRef]
39. LeRoith D, Shiloach J, Heffron R, Rubinovitz C, Tanenbaum R, Roth J. 1985. Insulin-related material in microbes: similarities and differences from mammalian insulins. Can J Biochem Cell Biol 63:839–849. [PubMed][CrossRef]
40. Leroith D, Liotta AS, Roth J, Shiloach J, Lewis ME, Pert CB, Krieger DT. 1982. Corticotropin and beta-endorphin-like materials are native to unicellular organisms. Proc Natl Acad Sci USA 79:2086–2090. [PubMed][CrossRef]
41. LeRoith D, Pickens W, Vinik AI, Shiloach J. 1985. Bacillus subtilis contains multiple forms of somatostatin-like material. Biochem Biophys Res Commun 127:713–719. [PubMed][CrossRef]
42. Schar G, Stover EP, Clemons KV, Feldman D, Stevens DA. 1986. Progesterone binding and inhibition of growth in Trichophyton mentagrophytes. Infect Immun 52:763–767. [PubMed]
43. Roshchina VV. 2010. Evolutionary considerations of neurotransmitters in microbial, plant and animal cells, p 17–52. In Lyte M, Freestone PP (ed), Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Springer, New York, NY. [CrossRef]
44. LeRoith D, Roberts CJ, Lesniak MA, Roth J. 1986. Receptors for intercellular messenger molecules in microbes: similarities to vertebrate receptors and possible implications for diseases in man. Experientia 42:782–788. [PubMed][CrossRef]
45. Shapiro JA, Hsu C. 1989. Escherichia coli K-12 cell-cell interactions seen by time-lapse video. J Bacteriol 171:5963–5974. [PubMed]
46. Budrene EO, Berg HC. 1995. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376:49–53. [PubMed][CrossRef]
47. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. 2004. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20:292–299. [PubMed][CrossRef]
48. Roshchina VV. 2001. Neurotransmitters in Plant Life. Science Publishers, Enfield, NH.
49. Von Roepenack-Lahaye E, Newman MA, Schornack S, Hammond-Kosack KE, Lahaye T, Jones JD, Daniels MJ, Dow JM. 2003. p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem 278:43373–43383. [PubMed][CrossRef]
50. Zacares L, Lopez-Gresa MP, Fayos J, Primo J, Belles JM, Conejero V. 2007. Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol Plant Microbe Interact 20:1439–1448. [PubMed][CrossRef]
51. Kang S, Back K. 2006. Enriched production of N-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers. Scientia Horticulturae 108:337–341. [CrossRef]
52. Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM. 2001. Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris, a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms. Mol Plant Microbe Interact 14:785–792. [PubMed][CrossRef]
53. Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM. 2002. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J 29:487–495. [PubMed][CrossRef]
54. King RR, Calhoun LA. 2005. Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions. Phytochemistry 66:2468–2473. [PubMed][CrossRef]
55. Mittelstrass K, Treutter D, Plessl M, Heller W, Elstner EF, Heiser I. 2006. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biol (Stuttg) 8:653–661. [PubMed][CrossRef]
56. Morant M, Schoch GA, Ullmann P, Ertunc T, Little D, Olsen CE, Petersen M, Negrel J, Werck-Reichhart D. 2007. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol 63:1–19. [PubMed][CrossRef]
57. Lyte M, Freestone PPE. 2010. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Springer, New York, NY. [CrossRef]
58. Everest P. 2007. Stress and bacteria: microbial endocrinology. Gut 56:1037–1038. [PubMed][CrossRef]
59. Lyte M. 2011. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33:574–581. [PubMed][CrossRef]
60. Cryan JF, Dinan TG. 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. [PubMed][CrossRef]
61. Lyte M. 2013. Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to-brain communication. PharmaNutrition 1:35–39. [CrossRef]
62. Norris V, Molina F, Gewirtz AT. 2013. Hypothesis: bacteria control host appetites. J Bacteriol 195:411–416. [PubMed][CrossRef]
63. Alcock J, Maley CC, Aktipis CA. 2014. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 36:940–949. [PubMed][CrossRef]
64. Strandwitz P, Kim K-H, Stewart E, Clardy J, Lewis K. 2014. GABA modulating bacteria in the human gut microbiome, abstr 417, RISE:2014: Research, Innovation, and Scholarship Expo, Northeastern University, Boston, MA.
65. Wojtarowicz A, Podlasz P, Czaja K. 2003. Adrenergic and cholinergic innervation of pulmonary tissue in the pig. Folia Morphol (Warsz) 62:215–218. [PubMed]
66. Belvisi MG. 2002. Overview of the innervation of the lung. Curr Opin Pharmacol 2:211–215. [PubMed][CrossRef]
67. Hofford JM, Milakofsky L, Pell S, Vogel W. 1996. A profile of amino acid and catecholamine levels during endotoxin-induced acute lung injury in sheep: searching for potential markers of the acute respiratory distress syndrome. J Lab Clin Med 128:545–551. [PubMed][CrossRef]
68. Anderson MT, Armstrong SK. 2008. Norepinephrine mediates acquisition of transferrin-iron in Bordetella bronchiseptica. J Bacteriol 190:3940–3947. [PubMed][CrossRef]
69. Oneal MJ, Schafer ER, Madsen ML, Minion FC. 2008. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology 154:2581–2588. [PubMed][CrossRef]
70. Furness JB, Callaghan BP, Rivera LR, Cho HJ. 2014. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71. [PubMed][CrossRef]
71. Lomax AE, Sharkey KA, Furness JB. 2010. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil 22:7–18. [PubMed]
72. Breer H, Eberle J, Frick C, Haid D, Widmayer P. 2012. Gastrointestinal chemosensation: chemosensory cells in the alimentary tract. Histochem Cell Biol 138:13–24. [PubMed][CrossRef]
73. Foster JA, McVey Neufeld KA. 2013. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312. [PubMed][CrossRef]
74. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fandriks L, Lonroth H, Hunyady B, Mezey E. 1997. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871. [PubMed][CrossRef]
75. Eisenhofer G, Aneman A, Hooper D, Holmes C, Goldstein DS, Friberg P. 1995. Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine. Am J Physiol 268:G641–G649. [PubMed]
76. Chen C, Lyte M, Stevens MP, Vulchanova L, Brown DR. 2006. Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon. Eur J Pharmacol 539:116–124. [PubMed][CrossRef]
77. Green BT, Lyte M, Chen C, Xie Y, Casey MA, Kulkarni-Narla A, Vulchanova L, Brown DR. 2004. Adrenergic modulation of Escherichia coli O157:H7 adherence to the colonic mucosa. Am J Physiol Gastrointest Liver Physiol 287:G1238–G1246. [PubMed][CrossRef]
78. Brosnahan AJ, Vulchanova L, Witta SR, Dai Y, Jones BJ, Brown DR. 2013. Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells. J Neuroimmunol 259:8–16. [PubMed][CrossRef]
79. Lyte M, Vulchanova L, Brown DR. 2011. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343:23–32. [PubMed][CrossRef]
80. Pullar CE, Zhao M, Song B, Pu J, Reid B, Ghoghawala S, McCaig C, Isseroff RR. 2007. Beta-adrenergic receptor agonists delay while antagonists accelerate epithelial wound healing: evidence of an endogenous adrenergic network within the corneal epithelium. J Cell Physiol 211:261–272. [PubMed][CrossRef]
81. Hsu SC, Johansson KR, Donahue MJ. 1986. The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production. J Parasitol 72:545–549. [PubMed][CrossRef]
82. Shahkolahi AM, Donahue MJ. 1993. Bacterial flora, a possible source of serotonin in the intestine of adult female Ascaris suum. J Parasitol 79:17–22. [PubMed][CrossRef]
83. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703. [PubMed][CrossRef]
84. Sridharan GV, Choi K, Klemashevich C, Wu C, Prabakaran D, Pan LB, Steinmeyer S, Mueller C, Yousofshahi M, Alaniz RC, Lee K, Jayaraman A. 2014. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat Commun 5:5492. [PubMed][CrossRef]
85. Goldstein DS. 2010. Catecholamines 101. Clin Auton Res 20:331–352. [PubMed][CrossRef]
86. Furness JB. 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294. [PubMed][CrossRef]
87. Bertrand PP, Bertrand RL. 2010. Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 153:47–57. [PubMed][CrossRef]
88. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407. [PubMed][CrossRef]
89. Galley JD, Yu Z, Kumar P, Dowd SE, Lyte M, Bailey MT. 2014. The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes 5:748–760. [PubMed][CrossRef]
90. Bangsgaard Bendtsen KM, Krych L, Sorensen DB, Pang W, Nielsen DS, Josefsen K, Hansen LH, Sorensen SJ, Hansen AK. 2012. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One 7:e46231. doi:10.1371/journal.pone.0046231. [PubMed][CrossRef]
91. Aguilera M, Vergara P, Martinez V. 2013. Stress and antibiotics alter luminal and wall-adhered microbiota and enhance the local expression of visceral sensory-related systems in mice. Neurogastroenterol Motil 25:e515–e529. [PubMed][CrossRef]
92. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–529. [PubMed][CrossRef]
93. Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, Lyte M, Bailey MT. 2014. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol 14:189. [PubMed][CrossRef]
94. Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB. 2014. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J 8:1566–1576. [PubMed][CrossRef]
95. Lyte M, Bailey MT. 1997. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res 70:195–201. [PubMed][CrossRef]
96. Woolf PD, McDonald JV, Feliciano DV, Kelly MM, Nichols D, Cox C. 1992. The catecholamine response to multisystem trauma. Arch Surg 127:899–903. [PubMed][CrossRef]
97. Zetterström BEM, Palmerio, C, Fine J. 1964. Changes in tissue content of catechol amines in traumatic shock. Acta Chir Scand 128:13–11.
98. Alverdy JC, Aoys E, Moss GS. 1988. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104:185–190. [PubMed]
99. Hendrickson BA, Guo J, Laughlin R, Chen Y, Alverdy JC. 1999. Increased type 1 fimbrial expression among commensal Escherichia coli isolates in the murine cecum following catabolic stress. Infect Immun 67:745–753. [PubMed]
100. Deitch EA. 1990. Bacterial translocation of gut flora. J Trauma 30:S184–S189. [PubMed][CrossRef]
101. Freestone PP, Williams PH, Haigh RD, Maggs AF, Neal CP, Lyte M. 2002. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18:465–470. [PubMed][CrossRef]
102. Heggers JP, Robson MC. 1991. Quantitative Bacteriology: Its Role in the Armamentarium of the Surgeon. CRC Press, Boca Raton, FL.
103. Magee C, Rodeheaver GT, Edgerton MT, Golden GT, Haury B, Edlich RF. 1977. Studies of the mechanisms by which epinephrine damages tissue defenses. J Surg Res 23:126–131. [PubMed][CrossRef]
104. Tran DT, Miller SH, Buck D, Imatani J, Demuth RJ, Miller MA. 1985. Potentiation of infection by epinephrine. Plast Reconstr Surg 76:933–934. [PubMed][CrossRef]
105. Miles AA, Miles EM, Burke J. 1957. The value and duration of defence reactions of the skin to the primary lodgement of bacteria. Br J Exp Pathol 38:79–96. [PubMed]
106. Morken JJ, Warren KU, Xie Y, Rodriguez JL, Lyte M. 2002. Epinephrine as a mediator of pulmonary neutrophil sequestration. Shock 18:46–50. [PubMed][CrossRef]
107. Haigh RD. 2010. Experimental design considerations for in vitro microbial endocrinology investigations, p 291–308. In Lyte M, Freestone PE (ed), Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Springer, New York, NY. [CrossRef]
108. O’Donnell PM, Aviles H, Lyte M, Sonnenfeld G. 2006. Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol 72:5097–5099. [PubMed][CrossRef]
109. Tarr PI, Neill MA. 2001. Escherichia coli O157:H7. Gastroenterol Clin North Am 30:735–751. [PubMed][CrossRef]
110. Lyte M, Frank CD, Green BT. 1996. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol Lett 139:155–159. [PubMed][CrossRef]
111. Lyte M, Erickson AK, Arulanandam BP, Frank CD, Crawford MA, Francis DH. 1997. Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 232:682–686. [PubMed][CrossRef]
112. Lyte M, Nguyen KT. 1997. Alteration of Escherichia coli O157:H7 growth and molecular fingerprint by the neuroendocrine hormone noradrenaline. Microbios 89:197–213. [PubMed]
113. Freestone PP, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098. [PubMed][CrossRef]
114. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, Williams PH. 2003. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135. [PubMed][CrossRef]
115. Rasko D, Moreira C, Li de R, Reading N, Ritchie J, Waldor M, Williams N, Taussig R, Wei S, Roth M, Hughes D, Huntley J, Fina M, Falck J, Sperandio V. 2008. Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080. [PubMed][CrossRef]
116. Karavolos M, Spencer H, Bulmer D, Thompson A, Winzer K, Williams P, Hinton J, Khan C. 2008. Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics 9:458. [PubMed][CrossRef]
117. Kinney KS, Austin CE, Morton DS, Sonnenfeld G. 1999. Catecholamine enhancement of Aeromonas hydrophila growth. Microb Pathog 26:85–91. [PubMed][CrossRef]
118. Peterson G, Kumar A, Gart E, Narayanan S. 2011. Catecholamines increase conjugative gene transfer between enteric bacteria. Microb Pathog 51:1–8. [PubMed][CrossRef]
119. Furness JB. 2006. The Enteric Nervous System, 2nd ed. Blackwell, Malden, MA.
120. Okamura H, Murooka Y, Harada T. 1976. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. J Bacteriol 127:24–31. [PubMed]
121. Xu F, Wu C, Guo F, Cui G, Zeng X, Yang B, Lin J. 2015. Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine. Front Microbiol 6:452. [PubMed][CrossRef]
122. Li L, Xu Z, Zhou Y, Sun L, Liu Z, Chen H, Zhou R. 2012. Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression. PLoS One 7:e31121. doi:10.1371/journal.pone.0031121. [PubMed][CrossRef]
123. Freestone PP, Haigh RD, Williams PH, Lyte M. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60. [PubMed][CrossRef]
124. Reissbrodt R, Rienaecker I, Romanova JM, Freestone PP, Haigh RD, Lyte M, Tschape H, Williams PH. 2002. Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl Environ Microbiol 68:4788–4794. [PubMed][CrossRef]
125. Reissbrodt R, Rassbach A, Burghardt B, Rienacker I, Mietke H, Schleif J, Tschape H, Lyte M, Williams PH. 2004. Assessment of a new selective chromogenic Bacillus cereus group plating medium and use of enterobacterial autoinducer of growth for cultural identification of Bacillus species. J Clin Microbiol 42:3795–3798. [PubMed][CrossRef]
126. Burton CL, Chhabra SR, Swift S, Baldwin TJ, Withers H, Hill SJ, Williams P. 2002. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 70:5913–5923. [PubMed][CrossRef]
127. Iwata H, Kariya K, Fujimoto S. 1969. Effect of compounds affecting the adrenergic mechanism on cell growth and division of Tetrahymena pyriformis W. Jpn J Pharmacol 19:275–281. [PubMed][CrossRef]
128. de Castro SL, Oliveira MM. 1987. Radioligand binding characterization of beta-adrenergic receptors in the protozoa Trypanosoma cruzi. Comp Biochem Physiol C 87:5–8. [PubMed][CrossRef]
129. Lyte M, Ernst S. 1993. Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of Gram-negative bacteria. Biochem Biophys Res Commun 190:447–452. [PubMed][CrossRef]
130. Reading NC, Rasko DA, Torres AG, Sperandio V. 2009. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci USA 106:5889–5894. [PubMed][CrossRef]
131. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425. [PubMed][CrossRef]
132. Freestone PP, Haigh RD, Lyte M. 2007. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 7:8. [PubMed][CrossRef]
133. Rello J, Ricart M, Mirelis B, Quintana E, Gurgui M, Net A, Prats G. 1994. Nosocomial bacteremia in a medical-surgical intensive care unit: epidemiologic characteristics and factors influencing mortality in 111 episodes. Intensive Care Med 20:94–98. [PubMed][CrossRef]
134. Rupp ME, Archer GL. 1994. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231–243. [PubMed][CrossRef]
135. Gabriel L, Beriot-Mathiot A. 2014. Hospitalization stay and costs attributable to Clostridium difficile infection: a critical review. J Hosp Infect 88:12–21. [PubMed][CrossRef]
136. Drekonja DM. 2014. Clostridium difficile infection: current, forgotten and emerging treatment options. J Comp Eff Res 3:547–557. [PubMed][CrossRef]
137. Becker K, Heilmann C, Peters G. 2014. Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926. [PubMed][CrossRef]
138. Helton WS, Rockwell M, Garcia RM, Maier RV, Heitkemper M. 1995. TPN-induced sympathetic activation is related to diet, bacterial translocation, and an intravenous line. Arch Surg 130:209–214. [PubMed][CrossRef]
139. Mutlu GM, Mutlu EA, Factor P. 2001. GI complications in patients receiving mechanical ventilation. Chest 119:1222–1241. [PubMed][CrossRef]
140. Crump JA, Collignon PJ. 2000. Intravascular catheter-associated infections. Eur J Clin Microbiol Infect Dis 19:1–8. [PubMed][CrossRef]
141. Pittet D, Tarara D, Wenzel RP. 1994. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271:1598–1601. [PubMed][CrossRef]
142. Cho SH, Naber K, Hacker J, Ziebuhr W. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int J Antimicrob Agents 19:570–575. [PubMed][CrossRef]
143. Ganderton L, Chawla J, Winters C, Wimpenny J, Stickler D. 1992. Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11:789–796. [PubMed][CrossRef]
144. Mermel LA, Farr BM, Sherertz RJ, Raad, II, O’Grady N, Harris JS, Craven DE. 2001. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32:1249–1272. [PubMed][CrossRef]
145. Molina J, Penuela I, Lepe JA, Gutierrez-Pizarraya A, Gomez MJ, Garcia-Cabrera E, Cordero E, Aznar J, Pachon J. 2013. Mortality and hospital stay related to coagulase-negative Staphylococci bacteremia in non-critical patients. J Infect 66:155–162. [PubMed][CrossRef]
146. Inman RD, Gallegos KV, Brause BD, Redecha PB, Christian CL. 1984. Clinical and microbial features of prosthetic joint infection. Am J Med 77:47–53. [PubMed][CrossRef]
147. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. [PubMed][CrossRef]
148. Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. [PubMed][CrossRef]
149. Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183. [PubMed]
150. Gotz F. 2002. Staphylococcus and biofilms. Mol Microbiol 43:1367–1378. [PubMed][CrossRef]
151. Dunne WM, Jr. 2002. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166. [PubMed][CrossRef]
152. Molnar C, Hevessy Z, Rozgonyi F, Gemmell CG. 1994. Pathogenicity and virulence of coagulase negative staphylococci in relation to adherence, hydrophobicity, and toxin production in vitro. J Clin Pathol 47:743–748. [PubMed][CrossRef]
153. Steer JA, Hill GB, Srinivasan S, Southern J, Wilson AP. 1997. Slime production, adherence and hydrophobicity in coagulase-negative staphylococci causing peritonitis in peritoneal dialysis. J Hosp Infect 37:305–316. [PubMed][CrossRef]
154. Rupp ME, Archer GL. 1992. Hemagglutination and adherence to plastic by Staphylococcus epidermidis. Infect Immun 60:4322–4327. [PubMed]
155. Fey PD, Ulphani JS, Gotz F, Heilmann C, Mack D, Rupp ME. 1999. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J Infect Dis 179:1561–1564. [PubMed][CrossRef]
156. Rohde H, Knobloch JK, Horstkotte MA, Mack D. 2001. Correlation of biofilm expression types of Staphylococcus epidermidis with polysaccharide intercellular adhesin synthesis: evidence for involvement of icaADBC genotype-independent factors. Med Microbiol Immunol (Berl) 190:105–112.
157. Koerner RJ, Butterworth LA, Mayer IV, Dasbach R, Busscher HJ. 2002. Bacterial adhesion to titanium-oxy-nitride (TiNOX) coatings with different resistivities: a novel approach for the development of biomaterials. Biomaterials 23:2835–2840. [PubMed][CrossRef]
158. Arciola CR, Campoccia D, Montanaro L. 2002. Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials 23:1495–1502. [PubMed][CrossRef]
159. Heilmann C, Gerke C, Perdreau-Remington F, Gotz F. 1996. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282. [PubMed]
160. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091. [PubMed][CrossRef]
161. Heilmann C, Hussain M, Peters G, Gotz F. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024. [PubMed][CrossRef]
162. McKenney D, Hubner J, Muller E, Wang Y, Goldmann DA, Pier GB. 1998. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66:4711–4720. [PubMed]
163. Ziebuhr W, Lossner I, Rachid S, Dietrich K, Gotz F, Hacker J. 2000. Modulation of the polysaccharide intercellular adhesin (PIA) expression in biofilm forming Staphylococcus epidermidis. Analysis of genetic mechanisms. Adv Exp Med Biol 485:151–157. [PubMed][CrossRef]
164. Neal CP, Freestone PP, Maggs AF, Haigh RD, Williams PH, Lyte M. 2001. Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiol Lett 194:163–169. [PubMed][CrossRef]
165. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006. [PubMed]
166. Deighton MA, Balkau B. 1990. Adherence measured by microtiter assay as a virulence marker for Staphylococcus epidermidis infections. J Clin Microbiol 28:2442–2447. [PubMed]
167. Linton CJ, Sherriff A, Millar MR. 1999. Use of a modified Robbins device to directly compare the adhesion of Staphylococcus epidermidis RP62A to surfaces. J Appl Microbiol 86:194–202. [PubMed][CrossRef]
168. Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, Marchant RE. 1998. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J Biomed Mater Res 42:425–432. [PubMed][CrossRef]
169. Galliani S, Viot M, Cremieux A, Van der Auwera P. 1994. Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene: influence of hydrophobicity, slime production, plasma, albumin, fibrinogen, and fibronectin. J Lab Clin Med 123:685–692. [PubMed]
170. Matinaho S, von Bonsdorff L, Rouhiainen A, Lonnroth M, Parkkinen J. 2001. Dependence of Staphylococcus epidermidis on non-transferrin-bound iron for growth. FEMS Microbiol Lett 196:177–182. [PubMed][CrossRef]
171. Lindsay JA, Riley TV, Mee BJ. 1995. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiology 141(Pt 1):197–203. [PubMed][CrossRef]
172. Stewart PS. 2003. New ways to stop biofilm infections. Lancet 361:97. [PubMed][CrossRef]
173. Freestone PP, Haigh RD, Lyte M. 2008. Catecholamine inotrope resuscitation of antibiotic-damaged staphylococci and its blockade by specific receptor antagonists. J Infect Dis 197:1044–1052. [PubMed][CrossRef]
174. Crnich CJ, Maki DG. 2004. Are antimicrobial-impregnated catheters effective? Don’t throw out the baby with the bathwater. Clin Infect Dis 38:1287–1292. [PubMed][CrossRef]
175. Marciante KD, Veenstra DL, Lipsky BA, Saint S. 2003. Which antimicrobial impregnated central venous catheter should we use? Modeling the costs and outcomes of antimicrobial catheter use. Am J Infect Control 31:1–8. [PubMed][CrossRef]
176. Lanter BB, Sauer K, Davies DG. 2014. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. MBio 5:e01206-14. doi:10.1128/mBio.01206-14. [CrossRef]
177. Freestone PP, Hirst RA, Sandrini SM, Sharaff F, Fry H, Hyman S, O’Callaghan C. 2012. Pseudomonas aeruginosa-catecholamine inotrope interactions: a contributory factor in the development of ventilator-associated pneumonia? Chest 142:1200–1210. [PubMed][CrossRef]
178. Sandrini S, Alghofaili F, Freestone P, Yesilkaya H. 2014. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiol 14:180. [PubMed][CrossRef]
179. Vlisidou I, Lyte M, van Diemen PM, Hawes P, Monaghan P, Wallis TS, Stevens MP. 2004. The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect Immun 72:5446–5451. [PubMed][CrossRef]
180. Kendall MM, Sperandio V. 2007. Quorum sensing by enteric pathogens. Curr Opin Gastroenterol 23:10–15. [PubMed][CrossRef]
181. Pasupuleti S, Sule N, Cohn WB, MacKenzie DS, Jayaraman A, Manson MD. 2014. Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. J Bacteriol 196:3992–4000. [PubMed][CrossRef]
182. Park JP, Choi MJ, Kim SH, Lee SH, Lee H. 2014. Preparation of sticky Escherichia coli through surface display of an adhesive catecholamine moiety. Appl Environ Microbiol 80:43–53. [PubMed][CrossRef]
183. Bowdre JH, Krieg NR, Hoffman PS, Smibert RM. 1976. Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subspecies jejuni. Appl Environ Microbiol 31:127–133. [PubMed]
184. Ienistea C. 1971. Bacterial production and destruction of histamine in foods, and food poisoning caused by histamine. Nahrung 15:109–113. [PubMed][CrossRef]
185. Tarjan V, Janossy G. 1978. The role of biogenic amines in foods. Nahrung 22:285–289. [PubMed][CrossRef]
186. Stratton JE. 1990. Biogenic amines in cheese and other fermented foods: a review. J Food Prot 54:460–470.
187. Devalia JL, Grady D, Harmanyeri Y, Tabaqchali S, Davies RJ. 1989. Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J Clin Pathol 42:516–522. [PubMed][CrossRef]
188. Voropaeva EA. 2002. Resistance to antibiotics and histamine production at the bacteria, isolated from the stomatopharynx of the children with bronchial asthma. Antibiot Khimioter 47:8–13. [In Russian.] [PubMed]
189. Bearson BL, Bearson SM, Uthe JJ, Dowd SE, Houghton JO, Lee I, Toscano MJ, Lay DC, Jr. 2008. Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect 10:807–816. [PubMed][CrossRef]
190. Nakano M, Takahashi A, Sakai Y, Nakaya Y. 2007. Modulation of pathogenicity with norepinephrine related to the type III secretion system of Vibrio parahaemolyticus. J Infect Dis 195:1353–1360. [PubMed][CrossRef]
191. Yang Q, Anh ND, Bossier P, Defoirdt T. 2014. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi. Front Microbiol 5:584. [PubMed][CrossRef]
192. Lacoste A, Jalabert F, Malham SK, Cueff A, Poulet SA. 2001. Stress and stress-induced neuroendocrine changes increase the susceptibility of juvenile oysters (Crassostrea gigas) to Vibrio splendidus. Appl Environ Microbiol 67:2304–2309. [PubMed][CrossRef]
193. Pande GS, Suong NT, Bossier P, Defoirdt T. 2014. The catecholamine stress hormones norepinephrine and dopamine increase the virulence of pathogenic Vibrio anguillarum and Vibrio campbellii. FEMS Microbiol Ecol 90:761–769. [PubMed][CrossRef]
194. Malikina KD, Shishov VA, Chuvelev DI, Kudrin VS, Oleskin AV. 2010. Regulatory role of monoamine neurotransmitters in Saccharomyces cerevisiae cells. Prikl Biokhim Mikrobiol 46:672–677. [In Russian.] [CrossRef]
195. Clemons KV, Shankar J, Stevens DA. 2010. Mycologic endocrinology, p 269–290. In Lyte M, Freestone PPE (ed), Microbial Endocrinology Interkingdom Signaling in Infectious Disease and Health. Springer, New York, NY. [CrossRef]
196. Pan JX, Mikkelsen RB, Wallach DF, Asher CR. 1987. Synthesis of a somatostatin-like peptide by Plasmodium falciparum. Mol Biochem Parasitol 25:107–111. [PubMed][CrossRef]
197. Zavala-Castro JE, Guzman-Marin E, Zavala-Velazquez J. 1995. Adrenergic ligands trigger intracellular differentiation of Trypanosoma cruzi. Arch Med Res 26:449–450. [PubMed]
198. Coppi A, Merali S, Eichinger D. 2002. The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stage. J Biol Chem 277:8083–8090. [PubMed][CrossRef]
199. Coppi A, Eichinger D. 1999. Regulation of Entamoeba invadens encystation and gene expression with galactose and N-acetylglucosamine. Mol Biochem Parasitol 102:67–77. [PubMed][CrossRef]
200. Moore D, Waters WR, Wannemuehler MJ, Harp JA. 2001. Treatment with agmatine inhibits Cryptosporidium parvum infection in infant mice. J Parasitol 87:211–213. [PubMed][CrossRef]
201. Molderings GJ, Haenisch B. 2012. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential. Pharmacol Ther 133:351–365. [PubMed][CrossRef]
202. Haenisch B, von Kugelgen I, Bonisch H, Gothert M, Sauerbruch T, Schepke M, Marklein G, Hofling K, Schroder D, Molderings GJ. 2008. Regulatory mechanisms underlying agmatine homeostasis in humans. Am J Physiol Gastrointest Liver Physiol 295:G1104–G1110. [PubMed][CrossRef]
203. Reid G. 2011. Neuroactive probiotics. Bioessays 33:562. [PubMed][CrossRef]
204. Collins SM, Kassam Z, Bercik P. 2013. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol 16:240–245. [PubMed][CrossRef]
205. Neufeld KA, Kang N, Bienenstock J, Foster JA. 2011. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 4:492–494. [PubMed][CrossRef]
206. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055. [PubMed][CrossRef]
207. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. 2013. Microbiota is essential for social development in the mouse. Mol Psychiatry [Epub ahead of print.] doi:10.1038/mp.2013.65. [CrossRef]
208. Lyte M. 2014. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 5:381–389. [PubMed][CrossRef]
209. Lyte M. 2014. Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24. [PubMed][CrossRef]
210. Jessen KR, Mirsky R. 1983. Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218. [PubMed]
211. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. 2005. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19:334–344. [PubMed][CrossRef]
212. Lyte M, Gaykema R, Goehler L. 2009. Behavior modification of host by microbes, p 121–127. In Schaechter M (ed), Encyclopedia of Microbiology, 3rd ed. Elsevier, Oxford, UK. [CrossRef]
213. Le Roith D, Shiloach J, Berelowitz M, Frohman LA, Liotta AS, Krieger DT, Roth J. 1983. Are messenger molecules in microbes the ancestors of the vertebrate hormones and tissue factors? Fed Proc 42:2602–2607. [PubMed]
214. Frohlich M, Lefering R, Probst C, Paffrath T, Schneider MM, Maegele M, Sakka SG, Bouillon B, Wafaisade A, Committee on Emergency Medicine, Intensive Care and Trauma Management of the German Trauma Society (Sektion NIS). 2014. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg 76:921–927; discussion 927–928. [PubMed][CrossRef]
215. Tsukamoto T, Chanthaphavong RS, Pape HC. 2010. Current theories on the pathophysiology of multiple organ failure after trauma. Injury 41:21–26. [PubMed][CrossRef]
216. Baue AE, Durham R, Faist E. 1998. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10:79–89. [PubMed][CrossRef]
217. Swank GM, Deitch EA. 1996. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 20:411–417. [PubMed][CrossRef]
218. Wang P, Ba ZF, Cioffi WG, Bland KI, Chaudry IH. 1998. Is gut the “motor” for producing hepatocellular dysfunction after trauma and hemorrhagic shock? J Surg Res 74:141–148. [PubMed][CrossRef]
219. Mittal R, Coopersmith CM. 2014. Redefining the gut as the motor of critical illness. Trends Mol Med 20:214–223. [PubMed][CrossRef]
220. Balk RA. 2014. Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today? Virulence 5:20–26. [PubMed][CrossRef]
221. Bengmark S. 2012. Pro- and synbiotics to prevent sepsis in major surgery and severe emergencies. Nutrients 4:91–111. [PubMed][CrossRef]
222. Boyd JH, Russell JA, Fjell CD. 2014. The meta-genome of sepsis: host genetics, pathogens and the acute immune response. J Innate Immun 6:272–283. [PubMed][CrossRef]
223. Madan JC, Salari RC, Saxena D, Davidson L, O’Toole GA, Moore JH, Sogin ML, Foster JA, Edwards WH, Palumbo P, Hibberd PL. 2012. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 97:F456–F462. [CrossRef]
224. Sultan S, Forsmark CE. 2010. Therapeutics. Review: enteral nutrition reduces mortality, multiple organ failure, and systemic infection more than TPN in acute pancreatitis. Ann Intern Med 153:JC1–6. [PubMed][CrossRef]
225. Shimizu K, Ogura H, Asahara T, Nomoto K, Morotomi M, Tasaki O, Matsushima A, Kuwagata Y, Shimazu T, Sugimoto H. 2013. Probiotic/synbiotic therapy for treating critically ill patients from a gut microbiota perspective. Dig Dis Sci 58:23–32. [PubMed][CrossRef]
226. Marshall JC, Christou NV, Meakins JL. 1993. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg 218:111–119. [PubMed][CrossRef]
227. Marshall JC, Christou NV, Horn R, Meakins JL. 1988. The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg 123:309–315. [PubMed][CrossRef]
228. Rocha F, Laughlin R, Musch MW, Hendrickson BA, Chang EB, Alverdy J. 2001. Surgical stress shifts the intestinal Escherichia coli population to that of a more adherent phenotype: role in barrier regulation. Surgery 130:65–73. [PubMed][CrossRef]
229. Alverdy J, Holbrook C, Rocha F, Seiden L, Wu RL, Musch M, Chang E, Ohman D, Suh S. 2000. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 232:480–489. [PubMed][CrossRef]
230. Alverdy JC, Chang EB. 2008. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 83:461–466. [PubMed][CrossRef]
231. Lyte M. 2009. Reciprocal gut-brain evolutionary symbiosis provokes and amplifies the postinjury systemic inflammatory response syndrome. Surgery 146:950–954. [PubMed][CrossRef]
232. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. 2001. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345:1223–1229. [PubMed][CrossRef]
microbiolspec.VMBF-0021-2015.citations
cm/4/2
content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0021-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0021-2015
2016-03-25
2017-09-25

Abstract:

Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology–based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The conceptual basis of microbial endocrinology represents the intersection of microbiology and neurobiology and is based on the commonly shared neurochemicals that form the evolutionary basis of cell-to-cell communication in vertebrates (see text for in-depth discussion).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The chemical biosynthetic pathway for catecholamines utilizes the same pathway (substrates and cofactors) in microorganisms as it does in animals ( 47 ). Courtesy of NEUROtiker, licensed under CC-BY-SA 3.0 (https://creativecommons.org/licenses/by/3.0/us/).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The plant metabolite -coumaroylnorepinephrine is synthesized in response to stress and infection. This compound as well as -coumaroyldopamine are hydroxycinnamic acid amides of norepinephrine (box designates norepinephrine part of the structure) and dopamine, respectively, and have been shown to have direct antimicrobial activity against the plant pathogen ( 50 ).

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4a
FIGURE 4a

The evolution-based neurochemical signaling pathway between microorganism and host means that a neurochemical(s) produced by the host can influence the microorganism , and at the same time a neurochemical(s) produced by the microorganism can, in turn, influence the host . As shown in part B, diet plays a crucial part in the latter because it provides the substrates and cofactors necessary for the microorganism to produce a specific neurochemical according to a biosynthetic pathway that is the same as that found in the host.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4b
FIGURE 4b

The evolution-based neurochemical signaling pathway between microorganism and host means that a neurochemical(s) produced by the host can influence the microorganism , and at the same time a neurochemical(s) produced by the microorganism can, in turn, influence the host . As shown in part B, diet plays a crucial part in the latter because it provides the substrates and cofactors necessary for the microorganism to produce a specific neurochemical according to a biosynthetic pathway that is the same as that found in the host.

Source: microbiolspec March 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.VMBF-0021-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error