1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Surviving Between Hosts: Sporulation and Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Michelle C. Swick1, Theresa M. Koehler2, Adam Driks3
  • Editors: Indira T. Kudva4, Tracy L. Nicholson5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: University of Texas Medical School at Houston, Houston, TX 77030; 2: University of Texas Medical School at Houston, Houston, TX 77030; 3: Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153; 4: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 5: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.VMBF-0029-2015
  • Received 23 November 2015 Accepted 21 December 2015 Published 29 July 2016
  • Adam Driks, adriks@luc.edu
image of Surviving Between Hosts: Sporulation and Transmission
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Surviving Between Hosts: Sporulation and Transmission, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/VMBF-0029-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/VMBF-0029-2015-2.gif
  • Abstract:

    To survive adverse conditions, some bacterial species are capable of developing into a cell type, the “spore,” which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, and , focusing on and , and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.

  • Citation: Swick M, Koehler T, Driks A. 2016. Surviving Between Hosts: Sporulation and Transmission. Microbiol Spectrum 4(4):VMBF-0029-2015. doi:10.1128/microbiolspec.VMBF-0029-2015.

Key Concept Ranking

Hydrogen Peroxide Vapor
0.42126074
0.42126074

References

1. Cardazzo B, Negrisolo E, Carraro L, Alberghini L, Patarnello T, Giaccone V. 2008. Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol 74:850–860. [PubMed][CrossRef]
2. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:343–346. [PubMed][CrossRef]
3. Helgason E, Caugant DA, Olsen I, Kolsto AB. 2000. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622. [PubMed]
4. Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolsto AB. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201. [PubMed][CrossRef]
5. Drean P, McAuley CM, Moore SC, Fegan N, Fox EM. 2015. Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiol 15:38. [PubMed][CrossRef]
6. Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A. 2013. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63:31–40. [PubMed][CrossRef]
7. Guinebretiere MH, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C. 2010. Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J Clin Microbiol 48:3388–3391. [PubMed][CrossRef]
8. Soufiane B, Cote JC. 2009. Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses. Antonie van Leeuwenhoek 95:33–45. [PubMed][CrossRef]
9. Jensen GB, Hansen BM, Eilenberg J, Mahillon J. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640. [PubMed][CrossRef]
10. Tourasse NJ, Helgason E, Okstad OA, Hegna IK, Kolsto AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101:579–593. [PubMed][CrossRef]
11. Bengis RG, Frean J. 2014. Anthrax as an example of the One Health concept. Rev Sci Tech 33:593–604. [PubMed][CrossRef]
12. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806. [PubMed]
13. van Frankenhuyzen K, Liu Y, Tonon A. 2010. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J Invertebr Pathol 103:124–131. [PubMed][CrossRef]
14. Moayeri M, Leppla SH, Vrentas C, Pomerantsev AP, Liu S. 2015. Anthrax pathogenesis. Annu Rev Microbiol 69:185–208. [PubMed][CrossRef]
15. Grunow R, Klee SR, Beyer W, George M, Grunow D, Barduhn A, Klar S, Jacob D, Elschner M, Sandven P, Kjerulf A, Jensen JS, Cai W, Zimmermann R, Schaade L. 2013. Anthrax among heroin users in Europe possibly caused by same Bacillus anthracis strain since 2000. Euro Surveill 18(13):pii=20437. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20437. [PubMed]
16. Ringertz SH, Hoiby EA, Jensenius M, Maehlen J, Caugant DA, Myklebust A, Fossum K. 2000. Injectional anthrax in a heroin skin-popper. Lancet 356:1574–1575. [PubMed][CrossRef]
17. Keim P, Gruendike JM, Klevytska AM, Schupp JM, Challacombe J, Okinaka R. 2009. The genome and variation of Bacillus anthracis. Mol Aspects Med 30:397–405. [PubMed][CrossRef]
18. Liu S, Moayeri M, Leppla SH. 2014. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 22:317–325. [PubMed][CrossRef]
19. Lowe DE, Glomski IJ. 2012. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2:76. [PubMed][CrossRef]
20. Jelacic TM, Chabot DJ, Bozue JA, Tobery SA, West MW, Moody K, Yang D, Oppenheim JJ, Friedlander AM. 2014. Exposure to Bacillus anthracis capsule results in suppression of human monocyte-derived dendritic cells. Infect Immun 82:3405–3416. [PubMed][CrossRef]
21. Jeon JH, Lee HR, Cho MH, Park OK, Park J, Rhie GE. 2015. The poly-gamma-d-glutamic acid capsule surrogate of the Bacillus anthracis capsule is a novel Toll-like receptor 2 agonist. Infect Immun 83:3847–3856. [PubMed][CrossRef]
22. Piris-Gimenez A, Corre JP, Jouvion G, Candela T, Khun H, Goossens PL. 2009. Encapsulated Bacillus anthracis interacts closely with liver endothelium. J Infect Dis 200:1381–1389. [PubMed][CrossRef]
23. Soberon M, Gill SS, Bravo A. 2009. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349. [PubMed][CrossRef]
24. Melo AL, Soccol VT, Soccol CR. 2015. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol 36:317–326. [PubMed][CrossRef]
25. Verplaetse E, Slamti L, Gohar M, Lereclus D. 2015. Cell differentiation in a Bacillus thuringiensis population during planktonic growth, biofilm formation, and host infection. MBio 6:e00138-15. doi:10.1128/mBio.00138-15. [PubMed][CrossRef]
26. Hernandez E, Ramisse F, Ducoureau JP, Cruel T, Cavallo JD. 1998. Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36:2138–2139. [PubMed]
27. Samples JR, Buettner H. 1983. Corneal ulcer caused by a biologic insecticide (Bacillus thuringiensis). Am J Ophthalmol 95:258–260. [PubMed][CrossRef]
28. Celandroni F, Salvetti S, Senesi S, Ghelardi E. 2014. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. FEMS Microbiol Lett 361:95–103. [PubMed][CrossRef]
29. Arslan S, Eyi A, Kucuksari R. 2014. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream. Anaerobe 25:42–46. [PubMed][CrossRef]
30. Ehling-Schulz M, Fricker M, Scherer S. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 48:479–487. [PubMed][CrossRef]
31. Yutin N, Galperin MY. 2013. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15:2631–2641. [PubMed][CrossRef]
32. Grass JE, Gould LH, Mahon BE. 2013. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010. Foodborne Pathog Dis 10:131–136. [PubMed][CrossRef]
33. Barbut F. 2015. How to eradicate Clostridium difficile from the environment. J Hosp Infect 89:287–295. [PubMed][CrossRef]
34. Aronoff DM. 2013. Clostridium novyi, sordellii, and tetani: mechanisms of disease. Anaerobe 24:98–101. [PubMed][CrossRef]
35. Kelly CP, LaMont JT. 2008. Clostridium difficile: more difficult than ever. N Engl J Med 359:1932–1940. [PubMed][CrossRef]
36. Rupnik M, Wilcox MH, Gerding DN. 2009. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536. [PubMed][CrossRef]
37. Paredes-Sabja D, Shen A, Sorg JA. 2014. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22:406–416. [PubMed][CrossRef]
38. Shields K, Araujo-Castillo RV, Theethira TG, Alonso CD, Kelly CP. 2015. Recurrent Clostridium difficile infection: from colonization to cure. Anaerobe 34:59–73. [PubMed][CrossRef]
39. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. 2010. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713. [PubMed][CrossRef]
40. Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP. 2014. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis 209:83–86. [PubMed][CrossRef]
41. Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, Howarth P, Clare S, Cunningham B, Sambol SP, Cheknis A, Figueroa I, Johnson S, Gerding D, Rood JI, Dougan G, Lawley TD, Lyras D. 2015. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio 6:e00551-15. doi:10.1128/mBio.00551-15. [CrossRef]
42. Stewart DB, Berg A, Hegarty J. 2013. Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg 17:118–124, discussion 124–115.
43. Stevens DL, Aldape MJ, Bryant AE. 2012. Life-threatening clostridial infections. Anaerobe 18:254–259. [PubMed][CrossRef]
44. Bryant AE, Stevens DL. 2010. Clostridial myonecrosis: new insights in pathogenesis and management. Curr Infect Dis Rep 12:383–391. [PubMed][CrossRef]
45. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. 2014. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377. [PubMed][CrossRef]
46. Fisher DJ, Fernandez-Miyakawa ME, Sayeed S, Poon R, Adams V, Rood JI, Uzal FA, McClane BA. 2006. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun 74:5200–5210. [PubMed][CrossRef]
47. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA. 2013. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev 77:208–233. [PubMed][CrossRef]
48. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525. [PubMed][CrossRef]
49. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572. [PubMed][CrossRef]
50. Driks A. 2002. Proteins of the spore core and coat, p 527–536. In Sonenshein AL, Hoch JA, Losick R (ed), Bacillus subtilis and Its Closest Relatives. ASM Press, Washington, DC. [CrossRef]
51. Setlow P. 2003. Spore germination. Curr Opin Microbiol 6:550–556. [PubMed][CrossRef]
52. Knudsen SM, Cermak N, Feijo Delgado F, Setlow B, Setlow P, Manalis SR. 2015. Water and small molecule permeation of dormant Bacillus subtilis spores. J Bacteriol 198:168–177. [PubMed][CrossRef]
53. Moir A. 2006. How do spores germinate? J Appl Microbiol 101:526–530. [PubMed][CrossRef]
54. Francis MB, Allen CA, Shrestha R, Sorg JA. 2013. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9:e1003356. doi:10.1371/journal.ppat.1003356. [PubMed]
55. Ross C, Abel-Santos E. 2010. The Ger receptor family from sporulating bacteria. Curr Issues Mol Biol 12:147–158. [PubMed]
56. Cutting SM, Vander Horn PB. 1990. Molecular Biological Methods for Bacillus. John Wiley & Sons, Chichester, United Kingdom.
57. Aronson AI, Fitz-James P. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol Rev 40:360–402. [PubMed]
58. Holt SC, Leadbetter ER. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol Rev 33:346–378. [PubMed]
59. Driks A. 1999. The Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20. [PubMed]
60. Giorno R, Bozue J, Cote C, Wenzel T, Moody K-S, Ryan M, Wang R, Zielke R, Maddock JM, Friedlander A, Welkos S, Driks A. 2007. Morphogenesis of the Bacillus anthracis spore. J Bacteriol 189:691–705. [PubMed][CrossRef]
61. Henriques AO, Moran CP, Jr. 2000. Structure and assembly of the bacterial endospore coat. Methods 20:95–110. [PubMed][CrossRef]
62. Henriques AO, Costa TV, Martins LO, Zilhao R. 2004. The functional architecture and assembly of the coat, p 65–86. In Ricca RE, Henriques AO, Cutting SM (ed), Bacterial Spore Formers: Probiotics and Emerging Applications. Horizon Biosciences, Norfolk, United Kingdom. [PubMed]
63. Traag BA, Driks A, Stragier P, Bitter W, Broussard G, Hatfull G, Chu F, Adams KN, Ramakrishnan L, Losick R. 2010. Do mycobacteria produce endospores? Proc Natl Acad Sci USA 107:878–881. [PubMed][CrossRef]
64. Driks A. 2002. Maximum shields: the armor plating of the bacterial spore. Trends Microbiol 10:251–254. [PubMed][CrossRef]
65. Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding D, Driks A. 2014. Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 9:e87757. doi:10.1371/journal.pone.0087757. [PubMed][CrossRef]
66. McKenney PT, Driks A, Eichenberger P. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11:33–44. [PubMed][CrossRef]
67. Kim H, Hahn M, Grabowski P, McPherson DC, Wang R, Ferguson C, Eichenberger P, Driks A. 2006. The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59:487–502. [PubMed][CrossRef]
68. McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, Gitai Z, Eichenberger P. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the B. subtilis spore coat. Curr Biol 29:934–938. [PubMed][CrossRef]
69. Henriques AO, Moran CP. 2007. Structure, assembly and function of the spore surface layers. Annu Rev Microbiol 61:555–588. [PubMed][CrossRef]
70. Driks A. 2003. The dynamic spore. Proc Natl Acad Sci USA 100:3007–3009. [PubMed][CrossRef]
71. Chada VG, Sanstad EA, Wang R, Driks A. 2003. Morphogenesis of Bacillus spore surfaces. J Bacteriol 185:6255–6261. [PubMed][CrossRef]
72. Sahin O, Yong E-H, Driks A, Mahadevan L. 2012. Physical basis for the adaptive flexibility of Bacillus spore coats. J R Soc Interface 9:3156–3160. [PubMed][CrossRef]
73. Westphal AJ, Price PB, Leighton TJ, Wheeler KE. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc Natl Acad Sci USA 100:3461–3466. [PubMed][CrossRef]
74. Chen X, Goodnight D, Gao Z, Cavusoglu AH, Sabharwal N, DeLay M, Driks A, Sahin O. 2015. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat Commun 6:7346. [PubMed][CrossRef]
75. Chen X, Mahadevan L, Driks A, Sahin O. 2014. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat Nanotechnol 9:137–141. [PubMed][CrossRef]
76. Laaberki MH, Dworkin J. 2008. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J Bacteriol 190:6197–6203. [PubMed][CrossRef]
77. Klobutcher LA, Ragkousi K, Setlow P. 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila. Proc Natl Acad Sci USA 103:165–170. [PubMed][CrossRef]
78. Walker JR, Gnanam AJ, Blinkova AL, Hermandson MJ, Karymov MA, Lyubchenko YL, Graves PR, Haystead TA, Linse KD. 2007. Clostridium taeniosporum spore ribbon-like appendage structure, composition and genes. Mol Microbiol 63:629–643. [PubMed][CrossRef]
79. Driks A. 2007. Surface appendages of bacterial spores. Mol Microbiol 63:623–625. [PubMed][CrossRef]
80. Qin H, Driks A. 2013. Contrasting evolutionary patterns of spore coat proteins in two Bacillus species groups are linked to a difference in cellular structure. BMC Evol Biol 13:261. [PubMed][CrossRef]
81. Giorno R, Bozue J, Mallozzi M, Moody K-S, Slack A, Wang R, Friedlander A, Welkos S, Driks A. 2009. Characterization of a Bacillus anthracis spore protein with roles in exosporium morphology. Microbiology 155:1133–1145 [PubMed][CrossRef]
82. Todd SJ, Moir AJ, Johnson MJ, Moir A. 2003. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J Bacteriol 185:3373–3378. [PubMed][CrossRef]
83. Severson KM, Mallozzi M, Bozue J, Welkos SL, Cote CK, Knight KL, Driks A. 2009. Roles of the Bacillus anthracis spore protein ExsK in exosporium maturation and germination. J Bacteriol 191:7587–7596. [PubMed][CrossRef]
84. Ball DA, Taylor R, Todd SJ, Redmond C, Couture-Tosi E, Sylvestre P, Moir A, Bullough PA. 2008. Structure of the exosporium and sublayers of spores of the Bacillus cereus family revealed by electron crystallography. Mol Microbiol 68:947–958. [PubMed][CrossRef]
85. Kailas L, Terry C, Abbott N, Taylor R, Mullin N, Tzokov SB, Todd SJ, Wallace BA, Hobbs JK, Moir A, Bullough PA. 2011. Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale. Proc Natl Acad Sci USA 108:16014–16019. [PubMed][CrossRef]
86. Johnson MJ, Todd SJ, Ball DA, Shepherd AM, Sylvestre P, Moir A. 2006. ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus. J Bacteriol 188:7905–7913. [PubMed][CrossRef]
87. Redmond C, Baille L, Hibbs S, Moir A, Charlton S. 2001. Characterization of the exosporium of Bacillus anthracis. Abstract, 4th International Confernece on Anthrax, Annapolis, MD.
88. Redmond C, Baillie LW, Hibbs S, Moir AJ, Moir A. 2004. Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150:355–563. [PubMed][CrossRef]
89. Charlton S, Moir AJ, Baillie L, Moir A. 1999. Characterization of the exosporium of Bacillus cereus. J Appl Microbiol 87:241–245. [PubMed][CrossRef]
90. Rodenburg CM, McPherson SA, Turnbough CL, Jr, Dokland T. 2014. Cryo-EM analysis of the organization of BclA and BxpB in the Bacillus anthracis exosporium. J Struct Biol 186:181–187. [PubMed][CrossRef]
91. Tan L, Turnbough CL, Jr. 2010. Sequence motifs and proteolytic cleavage of the collagen-like glycoprotein BclA required for its attachment to the exosporium of Bacillus anthracis. J Bacteriol 192:1259–1268. [PubMed][CrossRef]
92. Steichen C, Chen P, Kearney JF, Turnbough CL, Jr. 2003. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 185:1903–1910. [PubMed][CrossRef]
93. Steichen CT, Kearney JF, Turnbough CL, Jr. 2005. Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis. J Bacteriol 187:5868–5876. [PubMed][CrossRef]
94. Steichen CT, Kearney JF, Turnbough CL, Jr. 2007. Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for spore germination and outgrowth. Mol Microbiol 64:359–367. [PubMed][CrossRef]
95. Boydston JA, Chen P, Steichen CT, Turnbough CL, Jr. 2005. Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis. J Bacteriol 187:5310–5317. [PubMed][CrossRef]
96. Boydston JA, Yue L, Kearney JF, Turnbough CL, Jr. 2006. The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis. J Bacteriol 188:7440–7448. [PubMed][CrossRef]
97. Weaver J, Kang TJ, Raines KW, Cao GL, Hibbs S, Tsai P, Baillie L, Rosen GM, Cross AS. 2007. Protective role of Bacillus anthracis exosporium in macrophage-mediated killing by nitric oxide. Infect Immun 75:3894–3901. [PubMed][CrossRef]
98. Liang L, He X, Liu G, Tan H. 2008. The role of a purine-specific nucleoside hydrolase in spore germination of Bacillus thuringiensis. Microbiology 154:1333–1340. [PubMed][CrossRef]
99. Chesnokova ON, McPherson SA, Steichen CT, Turnbough CL, Jr. 2009. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J Bacteriol 191:1303–1310. [PubMed][CrossRef]
100. Brahmbhatt TN, Janes BK, Stibitz ES, Darnell SC, Sanz P, Rasmussen SB, O’Brien A D. 2007. Bacillus anthracis exosporium protein BclA affects spore germination, interaction with extracellular matrix proteins, and hydrophobicity. Infect Immun 75:5233–5239. [PubMed][CrossRef]
101. Bozue J, Moody KL, Cote CK, Stiles BG, Friedlander AM, Welkos SL, Hale ML. 2007. Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect Immun 75:4498–4505. [PubMed][CrossRef]
102. Oliva C, Turnbough CL, Jr, Kearney JF. 2009. CD14-Mac-1 interactions in Bacillus anthracis spore internalization by macrophages. Proc Natl Acad Sci USA 106:13957–13962. [PubMed][CrossRef]
103. Oliva CR, Swiecki MK, Griguer CE, Lisanby MW, Bullard DC, Turnbough CL, Jr, Kearney JF. 2008. The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc Natl Acad Sci USA 105:1261–1266. [PubMed][CrossRef]
104. Hong HA, Khaneja R, Tam NM, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM. 2009. Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. [PubMed][CrossRef]
105. Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. 2010. Bacillus anthracis and Bacillus subtilis spore surface properties as analyzed by transport analysis. Colloids Surf B Biointerfaces 76:512–518. [PubMed][CrossRef]
106. Grossman AD. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29:477–508. [PubMed][CrossRef]
107. Hoch JA. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 47:441–465. [PubMed][CrossRef]
108. van Gestel J, Vlamakis H, Kolter R. 2015. Division of labor in biofilms: the ecology of cell differentiation. Microbiol Spectr 3:MB-0002-2014. doi:10.1128/microbiolspec.MB-0002-2014. [PubMed][CrossRef]
109. Hugh-Jones M, Blackburn J. 2009. The ecology of Bacillus anthracis. Mol Aspects Med 30:356–367. [PubMed][CrossRef]
110. Perego M, Hoch JA. 2008. Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol 16:215–221. [PubMed][CrossRef]
111. Brunsing RL, La Clair C, Tang S, Chiang C, Hancock LE, Perego M, Hoch JA. 2005. Characterization of sporulation histidine kinases of Bacillus anthracis. J Bacteriol 187:6972–6981. [PubMed][CrossRef]
112. Bongiorni C, Stoessel R, Shoemaker D, Perego M. 2006. Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J Bacteriol 188:487–498. [PubMed][CrossRef]
113. White AK, Hoch JA, Grynberg M, Godzik A, Perego M. 2006. Sensor domains encoded in Bacillus anthracis virulence plasmids prevent sporulation by hijacking a sporulation sensor histidine kinase. J Bacteriol 188:6354–6360. [PubMed][CrossRef]
114. Edwards AN, McBride SM. 2014. Initiation of sporulation in Clostridium difficile: a twist on the classic model. FEMS Microbiol Lett 358:110–118. [PubMed][CrossRef]
115. Edwards AN, Nawrocki KL, McBride SM. 2014. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82:4276–4291. [PubMed][CrossRef]
116. Aronson A. 2002. Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cell Mol Life Sci 59:417–425. [PubMed][CrossRef]
117. Debro L, Fitz-James PC, Aronson A. 1986. Two different parasporal inclusions are produced by Bacillus thuringiensis subsp. finitimus. J Bacteriol 165:258–268. [PubMed]
118. Ammons DR, Reyna A, Granados JC, Ventura-Suarez A, Rojas-Avelizapa LI, Short JD, Rampersad JN. 2013. A novel Bacillus thuringiensis Cry-like protein from a rare filamentous strain promotes crystal localization within the exosporium. Appl Environ Microbiol 79:5774–5776. [PubMed][CrossRef]
119. Chai PF, Rathinam X, Solayappan M, Ahmad Ghazali AH, Subramaniam S. 2014. Microscopic analysis of a native Bacillus thuringiensis strain from Malaysia that produces exosporium-enclosed parasporal inclusion. Microscopy (Oxf) 63:371–375. [PubMed][CrossRef]
120. Dubois T, Faegri K, Perchat S, Lemy C, Buisson C, Nielsen-LeRoux C, Gohar M, Jacques P, Ramarao N, Kolsto AB, Lereclus D. 2012. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog 8:e1002629. doi:10.1371/journal.ppat.1002629. [PubMed][CrossRef]
121. Fisher N, Carr KA, Giebel JD, Hanna PC. 2011. Anthrax Spore Germination. John Wiley & Sons, Hoboken, NJ.
122. Fisher N, Hanna P. 2005. Characterization of Bacillus anthracis germinant receptors in vitro. J Bacteriol 187:8055–8062. [PubMed][CrossRef]
123. Francis MB, Allen CA, Sorg JA. 2015. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. J Bacteriol 197:2276–2283. [PubMed][CrossRef]
124. Ireland JA, Hanna PC. 2002. Amino acid- and purine ribonucleoside-induced germination of Bacillus anthracis DeltaSterne endospores: gerS mediates responses to aromatic ring structures. J Bacteriol 184:1296–1303. [CrossRef]
125. Weiner MA, Hanna PC. 2003. Macrophage-mediated germination of Bacillus anthracis endospores requires the gerH operon. Infect Immun 71:3954–3959. [CrossRef]
126. Yi X, Setlow P. 2010. Studies of the commitment step in the germination of spores of Bacillus species. J Bacteriol 192:3424–3433. [PubMed][CrossRef]
127. Atluri S, Ragkousi K, Cortezzo DE, Setlow P. 2006. Cooperativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this cooperativity by alterations in the GerB receptor. J Bacteriol 188:28–36. [PubMed][CrossRef]
128. Bergman NH, Anderson EC, Swenson EE, Niemeyer MM, Miyoshi AD, Hanna PC. 2006. Transcriptional profiling of the Bacillus anthracis life cycle in vitro and an implied model for regulation of spore formation. J Bacteriol 188:6092–6100. [PubMed][CrossRef]
129. Griffiths KK, Zhang J, Cowan AE, Yu J, Setlow P. 2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol Microbiol 81:1061–1077. [PubMed][CrossRef]
130. Behravan J, Chirakkal H, Masson A, Moir A. 2000. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol 182:1987–1994. [PubMed][CrossRef]
131. Kroos L, Kunkel B, Losick R. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526–529. [PubMed][CrossRef]
132. Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang L, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolstø AB, Fraser CM. 2003. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86. [PubMed][CrossRef]
133. Paidhungat M, Ragkousi K, Setlow P. 2001. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183:4886–4893. [PubMed][CrossRef]
134. Christie G, Gotzke H, Lowe CR. 2010. Identification of a receptor subunit and putative ligand-binding residues involved in the Bacillus megaterium QM B1551 spore germination response to glucose. J Bacteriol 192:4317–4326. [PubMed][CrossRef]
135. Mongkolthanaruk W, Cooper GR, Mawer JS, Allan RN, Moir A. 2011. Effect of amino acid substitutions in the GerAA protein on the function of the alanine-responsive germinant receptor of Bacillus subtilis spores. J Bacteriol 193:2268–2275. [PubMed][CrossRef]
136. Guidi-Rontani C, Pereira Y, Ruffie S, Sirard JC, Weber-Levy M, Mock M. 1999. Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis. Mol Microbiol 33:407–414. [PubMed][CrossRef]
137. McKevitt MT, Bryant KM, Shakir SM, Larabee JL, Blanke SR, Lovchik J, Lyons CR, Ballard JD. 2007. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun 75:5726–5734. [PubMed][CrossRef]
138. Shah IM, Laaberki MH, Popham DL, Dworkin J. 2008. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–496. [PubMed][CrossRef]
139. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190:2505–2512. [PubMed][CrossRef]
140. Ridlon JM, Kang DJ, Hylemon PB. 2006. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259. [PubMed][CrossRef]
141. Howerton A, Ramirez N, Abel-Santos E. 2011. Mapping interactions between germinants and Clostridium difficile spores. J Bacteriol 193:274–282. [PubMed][CrossRef]
142. Wheeldon LJ, Worthington T, Lambert PA. 2011. Histidine acts as a co-germinant with glycine and taurocholate for Clostridium difficile spores. J Appl Microbiol 110:987–994. [PubMed][CrossRef]
143. Sorg JA, Sonenshein AL. 2009. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191:1115–1117. [PubMed][CrossRef]
144. Foster SJ, Johnstone K. 1986. The use of inhibitors to identify early events during Bacillus megaterium KM spore germination. Biochem J 237:865–870. [PubMed][CrossRef]
145. Stewart GS, Johnstone K, Hagelberg E, Ellar DJ. 1981. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J 198:101–106. [PubMed][CrossRef]
146. Venkatasubramanian P, Johnstone K. 1989. Biochemical analysis of the Bacillus subtilis 1604 spore germination response. J Gen Microbiol 135:2723–2733. [PubMed][CrossRef]
147. Wang S, Shen A, Setlow P, Li YQ. 2015. Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 197:2361–2373. [PubMed][CrossRef]
148. Ghosh S, Setlow P. 2009. Isolation and characterization of superdormant spores of Bacillus species. J Bacteriol 191:1787–1797. [PubMed][CrossRef]
149. Yi X, Liu J, Faeder JR, Setlow P. 2011. Synergism between different germinant receptors in the germination of Bacillus subtilis spores. J Bacteriol 193:4664–4671. [PubMed][CrossRef]
150. Chen Y, Ray WK, Helm RF, Melville SB, Popham DL. 2014. Levels of germination proteins in Bacillus subtilis dormant, superdormant, and germinating spores. PLoS One 9:e95781. doi:10.1371/journal.pone.0095781.
151. Setlow P. 2013. When the sleepers wake: the germination of spores of Bacillus species. J Appl Microbiol 115:1251–1268. [PubMed][CrossRef]
152. Setlow P. 2014. Germination of spores of Bacillus species: what we know and do not know. J Bacteriol 196:1297–1305. [PubMed][CrossRef]
153. Heffron JD, Orsburn B, Popham DL. 2009. Roles of germination-specific lytic enzymes CwlJ and SleB in Bacillus anthracis. J Bacteriol 191:2237–2247. [PubMed][CrossRef]
154. Boland FM, Atrih A, Chirakkal H, Foster SJ, Moir A. 2000. Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146(Pt 1):57–64. [PubMed][CrossRef]
155. Bagyan I, Setlow P. 2002. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J Bacteriol 184:1219–1224. [PubMed][CrossRef]
156. Chirakkal H, O’Rourke M, Atrih A, Foster SJ, Moir A. 2002. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:2383–2392. [PubMed][CrossRef]
157. Li Y, Butzin XY, Davis A, Setlow B, Korza G, Ustok FI, Christie G, Setlow P, Hao B. 2013. Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination. J Bacteriol 195:2530–2540. [PubMed][CrossRef]
158. Ragkousi K, Eichenberger P, van Ooij C, Setlow P. 2003. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J Bacteriol 185:2315–2329. [PubMed][CrossRef]
159. Giebel JD, Carr KA, Anderson EC, Hanna PC. 2009. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence. J Bacteriol 191:5569–5576. [PubMed][CrossRef]
160. Adams CM, Eckenroth BE, Putnam EE, Doublie S, Shen A. 2013. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9:e1003165. doi:10.1371/journal.ppat.1003165. [CrossRef]
161. Koch R. 1881. On the Etiology of Anthrax. Greenwood Press, New York, New York.
162. Koch R. 1881. Mitt. Kaisserliche Gesundheitsamte 1:174–206.
163. Ross J. 1957. The pathogenesis of anthrax following the administration of spores by the respiratory route. J Pathol Bacteriol 73:485–494. [CrossRef]
164. Cleret A, Quesnel-Hellmann A, Vallon-Eberhard A, Verrier B, Jung S, Vidal D, Mathieu J, Tournier JN. 2007. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J Immunol 178:7994–8001. [PubMed][CrossRef]
165. Sanz P, Teel LD, Alem F, Carvalho HM, Darnell SC, O’Brien AD. 2008. Detection of Bacillus anthracis spore germination in vivo by bioluminescence imaging. Infect Immun 76:1036–1047. [PubMed][CrossRef]
166. Cote CK, Van Rooijen N, Welkos SL. 2006. Roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection. Infect Immun 74:469–480. [PubMed][CrossRef]
167. Plaut RD, Kelly VK, Lee GM, Stibitz S, Merkel TJ. 2012. Dissemination bottleneck in a murine model of inhalational anthrax. Infect Immun 80:3189–3193. [PubMed][CrossRef]
168. Lowe DE, Ernst SM, Zito C, Ya J, Glomski IJ. 2013. Bacillus anthracis has two independent bottlenecks that are dependent on the portal of entry in an intranasal model of inhalational infection. Infect Immun 81:4408–4420. [PubMed][CrossRef]
169. Theriot CM, Koenigsknecht MJ, Carlson PE, Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB. 2014. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5:3114. [PubMed][CrossRef]
170. Theriot CM, Young VB. 2015. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol 69:445–461. [PubMed][CrossRef]
171. Bowman KA, Broussard EK, Surawicz CM. 2015. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol 8:285–291. [PubMed]
172. Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD. 2012. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80:2704–2711. [PubMed][CrossRef]
173. Jump RL, Pultz MJ, Donskey CJ. 2007. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob Agents Chemother 51:2883–2887. [PubMed][CrossRef]
174. Roth NG, Livery DH, Hodge HM. 1955. Influence of oxygen uptake and age of culture on sporulation of Bacillus anthracis and Bacillus globigii. J Bacteriol 69:455–459. [PubMed]
175. Mignot T, Mock M, Robichon D, Landier A, Lereclus D, Fouet A. 2001. The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42:1189–1198. [PubMed][CrossRef]
176. Goel AK. 2015. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases 3:20–33. [PubMed][CrossRef]
177. Dragon DC, Rennie RP. 1995. The ecology of anthrax spores: tough but not invincible. Can Vet J 36:295–301. [PubMed]
178. Dutz W, Kohout-Dutz E. 1981. Anthrax. Int J Dermatol 20:203–206. [PubMed][CrossRef]
179. Baines SD, O’Connor R, Saxton K, Freeman J, Wilcox MH. 2009. Activity of vancomycin against epidemic Clostridium difficile strains in a human gut model. J Antimicrob Chemother 63:520–525. [PubMed][CrossRef]
180. Ali S, Moore G, Wilson AP. 2011. Spread and persistence of Clostridium difficile spores during and after cleaning with sporicidal disinfectants. J Hosp Infect 79:97–98. [PubMed][CrossRef]
181. Andersson A, Ronner U, Granum PE. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 28:145–155. [PubMed][CrossRef]
182. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO. 2005. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978. [PubMed][CrossRef]
183. Jones TO, Turnbull PC. 1981. Bovine mastitis caused by Bacillus cereus. Vet Record 108:271–274. [PubMed][CrossRef]
184. McAuley CM, McMillan K, Moore SC, Fegan N, Fox EM. 2014. Prevalence and characterization of foodborne pathogens from Australian dairy farm environments. J Dairy Sci 97:7402–7412. [PubMed][CrossRef]
185. Nfor NN, Lapin CN, McLaughlin RW. 2015. Isolation of Bacillus cereus group from the fecal material of endangered wood turtles. Curr Microbiol 71:524–527. [PubMed][CrossRef]
186. Feinberg L, Jorgensen J, Haselton A, Pitt A, Rudner R, Margulis L. 1999. Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: dietary influences on bacterial development and population density. Symbiosis 27:109–123. [PubMed]
187. Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA, Lo SC. 1998. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241. [PubMed][CrossRef]
188. Beeton ML, Atkinson DJ, Waterfield NR. 2013. An amoeba phagocytosis model reveals a novel developmental switch in the insect pathogen Bacillus thuringiensis. J Insect Physiol 59:223–231. [PubMed][CrossRef]
189. Turnbull PC. 2002. Introduction: anthrax history, disease and ecology. Curr Topics Microbiol Immunol 271:1–19. [PubMed][CrossRef]
190. Bradaric N, Punda-Polic V. 1992. Cutaneous anthrax due to penicillin-resistant Bacillus anthracis transmitted by an insect bite. Lancet 340:306–307. [PubMed][CrossRef]
191. Turell MJ, Knudson GB. 1987. Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus). Infect Immun 55:1859–1861. [PubMed]
192. Martinez-Blanch JF, Sanchez G, Garay E, Aznar R. 2009. Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. Int J Food Microbiol 135:15–21. [PubMed][CrossRef]
193. Christiansson A, Bertilsson J, Svensson B. 1999. Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period. J Dairy Sci 82:305–314. [PubMed][CrossRef]
194. Vissers MM, Te Giffel MC, Driehuis F, De Jong P, Lankveld JM. 2007. Minimizing the level of Bacillus cereus spores in farm tank milk. J Dairy Sci 90:3286–3293. [PubMed][CrossRef]
195. Zottola EA, Sasahara KC. 1994. Microbial biofilms in the food processing industry: should they be a concern? Int J Food Microbiol 23:125–148. [PubMed][CrossRef]
196. Blackburn JK, McNyset KM, Curtis A, Hugh-Jones ME. 2007. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling. Am J Trop Med Hyg 77:1103–1110. [PubMed]
197. Hampson K, Lembo T, Bessell P, Auty H, Packer C, Halliday J, Beesley CA, Fyumagwa R, Hoare R, Ernest E, Mentzel C, Metzger KL, Mlengeya T, Stamey K, Roberts K, Wilkins PP, Cleaveland S. 2011. Predictability of anthrax infection in the Serengeti, Tanzania. J Appl Ecol 48:1333–1344. [PubMed][CrossRef]
198. Halverson LJ, Clayton MK, Handelsman J. 1993. Variable stability of antibiotic-resistance markers in Bacillus cereus UW85 in the soybean rhizosphere in the field. Mol Ecol 2:65–78. [PubMed][CrossRef]
199. Saile E, Koehler TM. 2006. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 72:3168–3174. [PubMed][CrossRef]
200. Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 49:291–297. [PubMed]
201. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91. [PubMed][CrossRef]
202. Marcheggiani S, D’Ugo E, Puccinelli C, Giuseppetti R, D’Angelo AM, Gualerzi CO, Spurio R, Medlin LK, Guillebault D, Weigel W, Helmi K, Mancini L. 2015. Detection of emerging and re-emerging pathogens in surface waters close to an urban area. Int J Environ Res Public Health 12:5505–5527. [PubMed][CrossRef]
203. Schneeberger CL, O’Driscoll M, Humphrey C, Henry K, Deal N, Seiber K, Hill VR, Zarate-Bermudez M. 2015. Fate and transport of enteric microbes from septic systems in a coastal watershed. J Environ Health 77:22–30. [PubMed]
204. Espelund M, Klaveness D. 2014. Botulism outbreaks in natural environments: an update. Front Microbiol 5:287. [PubMed][CrossRef]
205. Hargreaves KR, Clokie MR. 2015. A taxonomic review of Clostridium difficile phages and proposal of a novel genus, “Phimmp04likevirus”. Viruses 7:2534–2541. [PubMed][CrossRef]
206. Gerding DN, Muto CA, Owens RC, Jr. 2008. Measures to control and prevent Clostridium difficile infection. Clin Infect Dis 46(Suppl 1):S43–S49. [PubMed][CrossRef]
207. Cairns LS, Hobley L, Stanley-Wall NR. 2014. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol 93:587–598. [PubMed][CrossRef]
208. Pantaleon V, Bouttier S, Soavelomandroso AP, Janoir C, Candela T. 2014. Biofilms of Clostridium species. Anaerobe 30:193–198. [PubMed][CrossRef]
microbiolspec.VMBF-0029-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0029-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0029-2015
2016-07-29
2017-11-19

Abstract:

To survive adverse conditions, some bacterial species are capable of developing into a cell type, the “spore,” which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, and , focusing on and , and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of spores of (left), (middle), and (right) illustrating the major spore structures. The innermost compartment (housing the spore DNA), the core, is white. The inner membrane (the location of the germinant receptors in and , but not ) is the black oval surrounding the core. The gray region is the spore peptidoglycan and, surrounding that, the dark blue is the coat. Although an outer membrane is present during spore formation, it is most likely not present in the mature spore ( 72 ) and, therefore, is not shown here. For simplicity, the sublayers of the coat are not indicated. (but not the other two species) ( 65 ) possesses an additional outer layer, the exosporium, indicated by a red line (the exosporium basal layer) and protrusions extending from the basal layer surface (the hair-like projections, or nap). The region between the coat and the exosporium is the interspace. The coat has a scalloped appearance in cross-section, as indicated in the figure.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.VMBF-0029-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error