1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

–Bacteria Interactions: Their Impact on Human Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Devon L. Allison1, Hubertine M. E. Willems3, J.A.M.S. Jayatilake4, Vincent M. Bruno5, Brian M. Peters7, Mark E. Shirtliff8
  • Editors: Indira T. Kudva10, Paul J. Plummer11
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, MD 21201; 2: Department of Microbial Pathogenesis, University of Maryland-Baltimore, Dental School, Baltimore, MD 21201; 3: Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163; 4: Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka; 5: The Institute for Genomic Sciences; 6: Department of Microbiology and Immunology, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201; 7: Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163; 8: Department of Microbial Pathogenesis, University of Maryland-Baltimore, Dental School, Baltimore, MD 21201; 9: The Institute for Genomic Sciences; 10: National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA; 11: Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
  • Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
  • Received 08 March 2016 Accepted 04 April 2016 Published 13 May 2016
  • Mark E. Shirtliff, mshirtliff@umaryland.edu
image of <span class="jp-italic">Candida</span>–Bacteria Interactions: Their Impact on Human Disease
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    –Bacteria Interactions: Their Impact on Human Disease, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/VMBF-0030-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/3/VMBF-0030-2016-2.gif
  • Abstract:

    species are the most common infectious fungal species in humans; out of the approximately 150 known species, is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both and bacteria while uniquely impacting the pathogen–host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of -associated polymicrobial infections. This article explores the current literature on the interactions between and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.

  • Citation: Allison D, Willems H, Jayatilake J, Bruno V, Peters B, Shirtliff M. 2016. –Bacteria Interactions: Their Impact on Human Disease. Microbiol Spectrum 4(3):VMBF-0030-2016. doi:10.1128/microbiolspec.VMBF-0030-2016.

Key Concept Ranking

Type III Secretion System
0.41153646
Outer Membrane Protein A
0.4103006
Confocal Laser Scanning Microscopy
0.4086528
0.41153646

References

1. Abu-Elteen K, Hamad M. 2012. Changing epidemiology of classical and emerging human fungal infections: a review. Jordan J Biol Sci 5:215–230.
2. Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163. [PubMed][CrossRef]
3. Budtz-Jorgensen E. 2000. Ecology of Candida-associated denture stomatitis. Microb Ecol Health Dis 12:170–185. [CrossRef]
4. Gendreau L, Loewy ZG. 2011. Epidemiology and etiology of denture stomatitis. J Prosthodont 20:251–260. [PubMed][CrossRef]
5. Achkar JM, Fries BC. 2010. Candida infections of the genitourinary tract. Clin Microbiol Rev 23:253–273. [PubMed][CrossRef]
6. Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol 9:327–335. [PubMed][CrossRef]
7. Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL. 2009. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206:299–311. [PubMed][CrossRef]
8. Peleg AY, Hogan DA, Mylonakis E. 2010. Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349. [PubMed][CrossRef]
9. Klotz SA, Chasin BS, Powell B, Gaur NK, Lipke PN. 2007. Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. Diagn Microbiol Infect Dis 59:401–406. [PubMed][CrossRef]
10. Baena-Monroy T, Moreno-Maldonado V, Franco-Martinez F, Aldape-Barrios B, Quindos G, Sanchez-Vargas LO. 2005. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med Oral Patol Oral Cir Bucal 10(Suppl 1):E27–E39. [PubMed]
11. Sousa C, Botelho C, Rodrigues D, Azeredo J, Oliveira R. 2012. Infective endocarditis in intravenous drug abusers: an update. Eur J Clin Microbiol Infect Dis 31:2905–2910. [PubMed][CrossRef]
12. Pammi M, Zhong D, Johnson Y, Revell P, Versalovic J. 2014. Polymicrobial bloodstream infections in the neonatal intensive care unit are associated with increased mortality: a case-control study. BMC Infect Dis 14:390. [PubMed][CrossRef]
13. Douglas LJ. 2003. Candida biofilms and their role in infection. Trends Microbiol 11:30–36. [PubMed][CrossRef]
14. Shirtliff ME, Mader JT, Camper AK. 2002. Molecular interactions in biofilms. Chem Biol 9:859–871. [PubMed][CrossRef]
15. Donlan RM, Costerton JW. 2002/4. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. [PubMed][CrossRef]
16. Mah TF, O’Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. [PubMed][CrossRef]
17. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. 2012. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 25:193–213. [PubMed][CrossRef]
18. Wolcott R, Costerton JW, Raoult D, Cutler SJ. 2013. The polymicrobial nature of biofilm infection. Clin Microbiol Infect 19:107–112. [PubMed][CrossRef]
19. Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A. 2014. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 4:101. [PubMed][CrossRef]
20. Dutton LC, Paszkiewicz KH, Silverman RJ, Splatt PR, Shaw S, Nobbs AH, Lamont RJ, Jenkinson HF, Ramsdale M. 2016. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii. Mol Oral Microbiol 31:136–161. [PubMed][CrossRef]
21. Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J. 2013. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 13:257. [PubMed][CrossRef]
22. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545. [PubMed][CrossRef]
23. Fonzi WA, Irwin MY. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728. [PubMed]
24. Nakayama H, Mio T, Nagahashi S, Kokado M, Arisawa M, Aoki Y. 2000. Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect Immun 68:6712–6719. [PubMed][CrossRef]
25. Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991. [PubMed][CrossRef]
26. Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, Edwards JE, Filler SG. 2005. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 7:499–510. [PubMed][CrossRef]
27. Peters BM, Palmer GE, Nash AK, Lilly EA, Fidel PL, Jr, Noverr MC. 2014. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect Immun 82:532–543. [PubMed][CrossRef]
28. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949. [PubMed][CrossRef]
29. Centeno A, Davis CP, Cohen MS, Warren MM. 1983. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates. Infect Immun 39:1354–1360. [PubMed]
30. Hogan DA, Kolter R. 2002. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232. [PubMed][CrossRef]
31. Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME. 2010. Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol 59:493–503. [PubMed][CrossRef]
32. Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hansch GM, Filler SG, Jabra-Rizk MA, Shirtliff ME. 2015. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161:168–181. [PubMed][CrossRef]
33. Fox SJ, Shelton BT, Kruppa MD. 2013. Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria. PLoS One 8:e71939. doi:10.1371/journal.pone.0071939. [PubMed][CrossRef]
34. Hwang G, Marsh G, Gao L, Waugh R, Koo H. 2015. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J Dent Res 94:1310–1317. [PubMed][CrossRef]
35. Katharios-Lanwermeyer S, Xi C, Jakubovics NS, Rickard AH. 2014. Mini-review: microbial coaggregation: ubiquity and implications for biofilm development. Biofouling 30:1235–1251. [PubMed][CrossRef]
36. Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF. 2010. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun 78:4644–4652. [PubMed][CrossRef]
37. Bagg J, Silverwood RW. 1986. Coagglutination reactions between Candida albicans and oral bacteria. J Med Microbiol 22:165–169. [PubMed][CrossRef]
38. Jenkinson HF, Lala HC, Shepherd MG. 1990. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun 58:1429–1436. [PubMed]
39. Holmes AR, Gopal PK, Jenkinson HF. 1995. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect Immun 63:1827–1834. [PubMed]
40. Diaz PI, Xie Z, Sobue T, Thompson A, Biyikoglu B, Ricker A, Ikonomou L, Dongari-Bagtzoglou A. 2012. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 80:620–632. [PubMed][CrossRef]
41. Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M. 2015. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent. FEMS Yeast Res 15:fov038. [PubMed][CrossRef]
42. Archer NK, Harro JM, Shirtliff ME. 2013. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infect Immun 81:2070–2075. [PubMed][CrossRef]
43. Marks DJ, Hyams C, Koo CY, Pavlou M, Robbins J, Koo CS, Rodger G, Huggett JF, Yap J, Macrae MB, Swanton RH, Zumla AI, Miller RF. 2015. Clinical features, microbiology and surgical outcomes of infective endocarditis: a 13-year study from a UK tertiary cardiothoracic referral centre. QJM 108:219–229. [PubMed][CrossRef]
44. Thuny F, Grisoli D, Collart F, Habib G, Raoult D. 2012. Management of infective endocarditis: challenges and perspectives. Lancet 379:965–975. [PubMed][CrossRef]
45. Carlson E. 1982. Synergistic effect of Candida albicans and Staphylococcus aureus on mouse mortality. Infect Immun 38:921–924. [PubMed]
46. Carlson E. 1983. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect Immun 39:193–197. [PubMed]
47. Carlson E, Johnson G. 1985. Protection by Candida albicans of Staphylococcus aureus in the establishment of dual infection in mice. Infect Immun 50:655–659. [PubMed]
48. Venkatesh MP, Pham D, Fein M, Kong L, Weisman LE. 2007. Neonatal coinfection model of coagulase-negative Staphylococcus (Staphylococcus epidermidis) and Candida albicans: fluconazole prophylaxis enhances survival and growth. Antimicrob Agents Chemother 51:1240–1245. [PubMed][CrossRef]
49. Peters BM, Noverr MC. 2013. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun 81:2178–2189. [PubMed][CrossRef]
50. Kucharikova S, Gerits E, De Brucker K, Braem A, Ceh K, Majdic G, Spanic T, Pogorevc E, Verstraeten N, Tournu H, Delattin N, Impellizzeri F, Erdtmann M, Krona A, Lovenklev M, Knezevic M, Frohlich M, Vleugels J, Fauvart M, de Silva WJ, Vandamme K, Garcia-Forgas J, Cammue BP, Michiels J, Van Dijck P, Thevissen K. 2016. Covalent immobilization of antimicrobial agents on titanium prevents Staphylococcus aureus and Candida albicans colonization and biofilm formation. J Antimicrob Chemother 71:936–945. [PubMed][CrossRef]
51. Harriott MM, Noverr MC. 2010. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob Agents Chemother 54:3746–3755. [PubMed][CrossRef]
52. Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, Busscher HJ, van der Mei HC, Jabra-Rizk MA, Shirtliff ME. 2012. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology 158:2975–2986. [PubMed][CrossRef]
53. Jabra-Rizk MA, Falkler WA, Jr, Merz WG, Kelley JI, Baqui AA, Meiller TF. 1999. Coaggregation of Candida dubliniensis with Fusobacterium nucleatum. J Clin Microbiol 37:1464–1468. [PubMed]
54. Nobile CJ, Mitchell AP. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155. [PubMed][CrossRef]
55. Beaussart A, Herman P, El-Kirat-Chatel S, Lipke PN, Kucharikova S, Van Dijck P, Dufrene YF. 2013. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction. Nanoscale 5:10894–10900. [PubMed][CrossRef]
56. Fehrmann C, Jurk K, Bertling A, Seidel G, Fegeler W, Kehrel BE, Peters G, Becker K, Heilmann C. 2013. Role for the fibrinogen-binding proteins coagulase and Efb in the Staphylococcus aureus-Candida interaction. Int J Med Microbiol 303:230–238. [PubMed][CrossRef]
57. Krause J, Geginat G, Tammer I. 2015. Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms. PLoS One 10:e0135404. doi:10.1371/journal.pone.0135404. [PubMed][CrossRef]
58. Centers for Disease Control and Prevention. 2012. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Methicillin-Resistant Staphylococcus aureus, 2011. http://www.cdc.gov/abcs/reports-findings/surveyreports/mrsa11.pdf.
59. Adam B, Baillie GS, Douglas LJ. 2002. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349. [PubMed][CrossRef]
60. Harriott MM, Noverr MC. 2009. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53:3914–3922. [PubMed][CrossRef]
61. Al-Fattani MA, Douglas LJ. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48:3291–3297. [PubMed][CrossRef]
62. Centers for Disease Control and Prevention. 2013. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.
63. Neely AN, Law EJ, Holder IA. 1986. Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes. Infect Immun 52:200–204. [PubMed]
64. Yu L, Lee KK, Hodges RS, Paranchych W, Irvin RT. 1994. Adherence of Pseudomonas aeruginosa and Candida albicans to glycosphingolipid (Asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins. Infect Immun 62:5213–5219. [PubMed]
65. Kerr JR. 1994. Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 32:525–527. [PubMed]
66. Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52:385–387. [PubMed][CrossRef]
67. Kaleli I, Cevahir N, Demir M, Yildirim U, Sahin R. 2007. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses 50:74–78. [PubMed][CrossRef]
68. Brand A, Barnes JD, Mackenzie KS, Odds FC, Gow NA. 2008. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol Lett 287:48–55. [PubMed][CrossRef]
69. Hogan DA, Vik A, Kolter R. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223. [PubMed][CrossRef]
70. McAlester G, O’Gara F, Morrissey JP. 2008. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 57:563–569. [PubMed][CrossRef]
71. Cugini C, Calfee MW, Farrow JM, 3rd, Morales DK, Pesci EC, Hogan DA. 2007. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906. [PubMed][CrossRef]
72. Gibson J, Sood A, Hogan DA. 2009. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 75:504–513. [PubMed][CrossRef]
73. Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA. 2010. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78:1379–1392. [PubMed][CrossRef]
74. Holcombe LJ, McAlester G, Munro CA, Enjalbert B, Brown AJ, Gow NA, Ding C, Butler G, O’Gara F, Morrissey JP. 2010. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology 156:1476–1486. [PubMed][CrossRef]
75. Bandara HM, Yau JY, Watt RM, Jin LJ, Samaranayake LP. 2010. Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol 10:125. [PubMed][CrossRef]
76. Bandara HM, Lam OL, Watt RM, Jin LJ, Samaranayake LP. 2010. Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 59:1225–1234. [PubMed][CrossRef]
77. Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, Ha DG, Willger SD, O’Toole GA, Harwood CS, Dietrich LE, Hogan DA. 2014. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 10:e1004480. doi:10.1371/journal.ppat.1004480. [PubMed][CrossRef]
78. Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, Hooper LV, Koh AY. 2015. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog 11:e1005129. doi:10.1371/journal.ppat.1005129. [PubMed][CrossRef]
79. Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. 2013. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4:400–409. [PubMed][CrossRef]
80. Coenye T. 2010. Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol 5:1087–1099. [PubMed][CrossRef]
81. Drevinek P, Holden MT, Ge Z, Jones AM, Ketchell I, Gill RT, Mahenthiralingam E. 2008. Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect Dis 8:121. [PubMed][CrossRef]
82. Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36. [PubMed][CrossRef]
83. Rangaka MX, Cavalcante SC, Marais BJ, Thim S, Martinson NA, Swaminathan S, Chaisson RE. 2015. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet 386:2344–2353. [PubMed][CrossRef]
84. Kali A, Charles MP, Noyal MJ, Sivaraman U, Kumar S, Easow JM. 2013. Prevalence of Candida co-infection in patients with pulmonary tuberculosis. Australas Med J 6:387–391. [PubMed][CrossRef]
85. Ochieng W, Wanzala P, Bii C, Oishi I, Ichimura H, Lihana R, Mpoke S, Mwaniki D, Okoth FA. 2005. Tuberculosis and oral Candida species surveillance in HIV infected individuals in northern Kenya, and the implications on tuberculin skin test screening for DOPT-P. East Afr Med J 82:609–613. [PubMed]
86. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CS, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL. 2015. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:606–613. [PubMed][CrossRef]
87. Kukita K, Kawada-Matsuo M, Oho T, Nagatomo M, Oogai Y, Hashimoto M, Suda Y, Tanaka T, Komatsuzawa H. 2013. Staphylococcus aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva. Infect Immun 81:1870–1879. [PubMed][CrossRef]
88. Nelson-Filho P, Borba IG, Mesquita KS, Silva RA, Queiroz AM, Silva LA. 2013. Dynamics of microbial colonization of the oral cavity in newborns. Braz Dent J 24:415–419. [PubMed][CrossRef]
89. Merghni A, Ben Nejma M, Hentati H, Mahjoub A, Mastouri M. 2014. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity. Microb Pathog 73:7–12. [PubMed][CrossRef]
90. Kim GY, Lee CH. 2015. Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. J Periodontal Implant Sci 45:223–228. [PubMed][CrossRef]
91. Koukos G, Sakellari D, Arsenakis M, Tsalikis L, Slini T, Konstantinidis A. 2015. Prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in the oral cavity. Arch Oral Biol 60:1410–1415. [PubMed][CrossRef]
92. McCormack MG, Smith AJ, Akram AN, Jackson M, Robertson D, Edwards G. 2015. Staphylococcus aureus and the oral cavity: an overlooked source of carriage and infection? Am J Infect Control 43:35–37. [PubMed][CrossRef]
93. O’Donnell LE, Smith K, Williams C, Nile CJ, Lappin DF, Bradshaw D, Lambert M, Robertson DP, Bagg J, Hannah V, Ramage G. 2016. Dentures are a reservoir for respiratory pathogens. J Periodontal Implant Sci 25:99–104. [PubMed][CrossRef]
94. Sanford BA, Thomas VL, Ramsay MA, Jones TO. 1986. Characterization of clinical strains of Staphylococcus aureus associated with pneumonia. J Clin Microbiol 24:131–136. [PubMed]
95. Ohara-Nemoto Y, Haraga H, Kimura S, Nemoto TK. 2008. Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. J Med Microbiol 57:95–99. [PubMed][CrossRef]
96. Smith AJ, Robertson D, Tang MK, Jackson MS, MacKenzie D, Bagg J. 2003. Staphylococcus aureus in the oral cavity: a three-year retrospective analysis of clinical laboratory data. Br Dent J 195:701–703; discussion 694. [PubMed][CrossRef]
97. Miyake Y, Iwai T, Sugai M, Miura K, Suginaka H, Nagasaka N. 1991. Incidence and characterization of Staphylococcus aureus from the tongues of children. J Dent Res 70:1045–1047. [PubMed][CrossRef]
98. Pulimood S, Ganesan L, Alangaden G, Chandrasekar P. 2002. Polymicrobial candidemia. Diagn Microbiol Infect Dis 44:353–357. [CrossRef]
99. Carlson E. 1983. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect Immun 39:193–197. [PubMed]
100. Carlson E. 1983. Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity. Infect Immun 42:285–292. [PubMed]
101. Kong EF, Kucharikova S, Van Dijck P, Peters BM, Shirtliff ME, Jabra-Rizk MA. 2015. Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease. Infect Immun 83:604–613. [PubMed][CrossRef]
102. Holmes AR, McNab R, Jenkinson HF. 1996. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect Immun 64:4680–4685. [PubMed]
103. Bamford CV, d’Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704. [PubMed][CrossRef]
104. Hoyer LL, Oh SH, Jones R, Cota E. 2014. A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins. Front Microbiol 5:564. [PubMed][CrossRef]
105. Dutton LC, Nobbs AH, Jepson K, Jepson MA, Vickerman MM, Aqeel Alawfi S, Munro CA, Lamont RJ, Jenkinson HF. 2014. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities. MBio 5:e00911-14. doi:10.1128/mBio.00911-14. [PubMed][CrossRef]
106. Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP. 2009. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell 8:1658–1664. [PubMed][CrossRef]
107. Vilchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Sztajer H, Wagner-Dobler I. 2010. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chembiochem 11:1552–1562. [PubMed][CrossRef]
108. Raja M, Hannan A, Ali K. 2010. Association of oral candidal carriage with dental caries in children. Caries Res 44:272–276. [PubMed][CrossRef]
109. de Carvalho FG, Silva DS, Hebling J, Spolidorio LC, Spolidorio DM. 2006. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol 51:1024–1028. [PubMed][CrossRef]
110. Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, Wagner-Dobler I. 2014. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J 8:2256–2271. [PubMed][CrossRef]
111. Gregoire S, Xiao J, Silva BB, Gonzalez I, Agidi PS, Klein MI, Ambatipudi KS, Rosalen PL, Bauserman R, Waugh RE, Koo H. 2011. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol 77:6357–6367. [PubMed][CrossRef]
112. Savage A, Eaton KA, Moles DR, Needleman I. 2009. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodontol 36:458–467. [PubMed][CrossRef]
113. Canabarro A, Valle C, Farias MR, Santos FB, Lazera M, Wanke B. 2013. Association of subgingival colonization of Candida albicans and other yeasts with severity of chronic periodontitis. J Periodontal Res 48:428–432. [PubMed][CrossRef]
114. Bostanci N, Belibasakis GN. 2012. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333:1–9. [PubMed][CrossRef]
115. Tamai R, Sugamata M, Kiyoura Y. 2011. Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microb Pathog 51:250–254. [PubMed][CrossRef]
116. Herbert BA, Novince CM, Kirkwood KL. 2015. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis. Mol Oral Microbiol [Epub ahead of print.] doi:10.1111/omi.12119. [CrossRef]
117. Raja M, Ummer F, Dhivakar CP. 2014. Aggregatibacter actinomycetemcomitans: a tooth killer? J Clin Diagn Res 8:ZE13–ZE16. [PubMed][CrossRef]
118. Bachtiar EW, Bachtiar BM, Jarosz LM, Amir LR, Sunarto H, Ganin H, Meijler MM, Krom BP. 2014. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front Cell Infect Microbiol 4:94. [PubMed][CrossRef]
119. Al Mubarak S, Robert AA, Baskaradoss JK, Al-Zoman K, Al Sohail A, Alsuwyed A, Ciancio S. 2013. The prevalence of oral Candida infections in periodontitis patients with type 2 diabetes mellitus. J Infect Public Health 6:296–301. [PubMed][CrossRef]
120. Richards AM, Abu Kwaik Y, Lamont RJ. 2015. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol 30:2–15. [PubMed][CrossRef]
121. Gaddy JA, Tomaras AP, Actis LA. 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 77:3150–3160. [PubMed][CrossRef]
122. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE, Jr, Filler SG. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64. [PubMed][CrossRef]
123. Donskey CJ. 2004. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226. [PubMed][CrossRef]
124. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. 2006. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98. [PubMed][CrossRef]
125. Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA. 2013. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun 81:189–200. [PubMed][CrossRef]
126. Shekh RM, Roy U. 2012. Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis. BMC Microbiol 12:132. [PubMed][CrossRef]
127. Ishijima SA, Hayama K, Ninomiya K, Iwasa M, Yamazaki M, Abe S. 2014. Protection of mice from oral Candidiasis by heat-killed Enterococcus faecalis, possibly through its direct binding to Candida albicans. Med Mycol J 55:E9–E19. [PubMed][CrossRef]
128. Hermann C, Hermann J, Munzel U, Ruchel R. 1999. Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses 42:619–627. [PubMed][CrossRef]
129. Goldstein EJ. 2002. Intra-abdominal anaerobic infections: bacteriology and therapeutic potential of newer antimicrobial carbapenem, fluoroquinolone, and desfluoroquinolone therapeutic agents. Clin Infect Dis 35:S106–S111. [PubMed][CrossRef]
130. Edey M, Hawley CM, McDonald SP, Brown FG, Rosman JB, Wiggins KJ, Bannister KM, Johnson DW. 2010. Enterococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 116 cases. Nephrol Dial Transplant 25:1272–1278. [PubMed][CrossRef]
131. Barraclough K, Hawley CM, McDonald SP, Brown FG, Rosman JB, Wiggins KJ, Bannister KM, Johnson DW. 2010. Polymicrobial peritonitis in peritoneal dialysis patients in Australia: predictors, treatment, and outcomes. Am J Kidney Dis 55:121–131. [PubMed][CrossRef]
132. Dupont H, Paugam-Burtz C, Muller-Serieys C, Fierobe L, Chosidow D, Marmuse JP, Mantz J, Desmonts JM. 2002. Predictive factors of mortality due to polymicrobial peritonitis with Candida isolation in peritoneal fluid in critically ill patients. Arch Surg 137:1341–1346; discussion 1347. [PubMed][CrossRef]
133. Klaerner HG, Uknis ME, Acton RD, Dahlberg PS, Carlone-Jambor C, Dunn DL. 1997. Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J Surg Res 70:161–165. [PubMed][CrossRef]
134. Henry-Stanley MJ, Hess DJ, Erickson EA, Garni RM, Wells CL. 2003. Effect of lipopolysaccharide on virulence of intestinal Candida albicans. J Surg Res 113:42–49. [PubMed][CrossRef]
135. Bandara HM, Yau JY, Watt RM, Jin LJ, Samaranayake LP. 2009. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol 58:1623–1631. [PubMed][CrossRef]
136. Bandara HM, Cheung BP, Watt RM, Jin LJ, Samaranayake LP. 2013. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J Investig Clin Dent 4:186–199. [PubMed][CrossRef]
137. De Brucker K, Tan Y, Vints K, De Cremer K, Braem A, Verstraeten N, Michiels J, Vleugels J, Cammue BP, Thevissen K. 2015. Fungal beta-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob Agents Chemother 59:3052–3058. [PubMed][CrossRef]
138. Baixench MT, Aoun N, Desnos-Ollivier M, Garcia-Hermoso D, Bretagne S, Ramires S, Piketty C, Dannaoui E. 2007. Acquired resistance to echinocandins in Candida albicans: case report and review. J Antimicrob Chemother 59:1076–1083. [PubMed][CrossRef]
139. Hurley D, McCusker MP, Fanning S, Martins M. 2014. Salmonella-host interactions: modulation of the host innate immune system. Front Immunol 5:481. [PubMed][CrossRef]
140. Tampakakis E, Peleg AY, Mylonakis E. 2009. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium. Eukaryot Cell 8:732–737. [PubMed][CrossRef]
141. Zhou D, Galan J. 2001. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3:1293–1298. [PubMed][CrossRef]
142. Ly KT, Casanova JE. 2007. Mechanisms of Salmonella entry into host cells. Cell Microbiol 9:2103–2111. [PubMed][CrossRef]
143. McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. 2009. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12:117–124. [PubMed][CrossRef]
144. Kim Y, Mylonakis E. 2011. Killing of Candida albicans filaments by Salmonella enterica serovar Typhimurium is mediated by sopB effectors, parts of a type III secretion system. Eukaryot Cell 10:782–790. [PubMed][CrossRef]
145. Haley KP, Gaddy JA. 2015. Helicobacter pylori: genomic insight into the host-pathogen interaction. Int J Genomics 2015:386905. [PubMed][CrossRef]
146. Salmanian AH, Siavoshi F, Akbari F, Afshari A, Malekzadeh R. 2008. Yeast of the oral cavity is the reservoir of Heliobacter pylori. J Oral Pathol Med 37:324–328. [PubMed][CrossRef]
147. Ince AT, Kocaman O, Ismailova M, Tozlu M, Gucin Z, Iraz M. 2014. A rare co-existence of Helicobacter pylori, Candida albicans and Candida keyfr in a giant gastric ulcer. Turk J Gastroenterol 25:435–436. [PubMed][CrossRef]
148. Saniee P, Siavoshi F, Nikbakht Broujeni G, Khormali M, Sarrafnejad A, Malekzadeh R. 2013. Localization of H. pylori within the vacuole of Candida yeast by direct immunofluorescence technique. Arch Iran Med 16:705–710. [PubMed]
149. Saniee P, Siavoshi F, Nikbakht Broujeni G, Khormali M, Sarrafnejad A, Malekzadeh R. 2013. Immunodetection of Helicobacter pylori-specific proteins in oral and gastric Candida yeasts. Arch Iran Med 16:624–630. [PubMed]
150. Siavoshi F, Saniee P. 2014. Vacuoles of Candida yeast as a specialized niche for Helicobacter pylori. World J Gastroenterol 20:5263–5273. [PubMed][CrossRef]
151. Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. 2016. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 69:187–203. [PubMed][CrossRef]
152. Kunz J. 1995. Causes and consequences of an unbalanced vaginal ecosystem. Praxis (Bern 1994) 84:1405–1415. [In German.]
153. Martinez RC, Franceschini SA, Patta MC, Quintana SM, Nunes AC, Moreira JL, Anukam KC, Reid G, De Martinis EC. 2008. Analysis of vaginal lactobacilli from healthy and infected Brazilian women. Appl Environ Microbiol 74:4539–4542. [PubMed][CrossRef]
154. McLean NW, Rosenstein IJ. 2000. Characterisation and selection of a Lactobacillus species to re-colonise the vagina of women with recurrent bacterial vaginosis. J Med Microbiol 49:543–552. [PubMed][CrossRef]
155. Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J. 2006. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol 48:75–83. [PubMed][CrossRef]
156. Mijac VD, Dukic SV, Opavski NZ, Dukic MK, Ranin LT. 2006. Hydrogen peroxide producing lactobacilli in women with vaginal infections. Eur J Obstet Gynecol Reprod Biol 129:69–76. [PubMed][CrossRef]
157. Fitzsimmons N, Berry DR. 1994. Inhibition of Candida albicans by Lactobacillus acidophilus: evidence for the involvement of a peroxidase system. Microbios 80:125–133. [PubMed]
158. Strus M, Kucharska A, Kukla G, Brzychczy-Wloch M, Maresz K, Heczko PB. 2005. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstet Gynecol 13:69–75. [PubMed][CrossRef]
159. Orsi CF, Sabia C, Ardizzoni A, Colombari B, Neglia RG, Peppoloni S, Morace G, Blasi E. 2014. Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J Biol Regul Homeost Agents 28:743–752. [PubMed]
160. Kohler GA, Assefa S, Reid G. 2012. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 2012:636474. [PubMed][CrossRef]
161. Wagner RD, Johnson SJ. 2012. Probiotic Lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans. J Biomed Sci 19:58. [PubMed][CrossRef]
162. Rizzo A, Losacco A, Carratelli CR. 2013. Lactobacillus crispatus modulates epithelial cell defense against Candida albicans through Toll-like receptors 2 and 4, interleukin 8 and human beta-defensins 2 and 3. Immunol Lett 156:102–109. [PubMed][CrossRef]
163. Martinez RC, Seney SL, Summers KL, Nomizo A, De Martinis EC, Reid G. 2009. Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol Immunol 53:487–495. [PubMed][CrossRef]
164. Martinez RC, Franceschini SA, Patta MC, Quintana SM, Candido RC, Ferreira JC, De Martinis EC, Reid G. 2009. Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Lett Appl Microbiol 48:269–274. [PubMed][CrossRef]
165. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT. 2015. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates. J Appl Microbiol 118:1180–1190. [PubMed][CrossRef]
166. Romani L, Zelante T, Palmieri M, Napolioni V, Picciolini M, Velardi A, Aversa F, Puccetti P. 2015. The cross-talk between opportunistic fungi and the mammalian host via microbiota’s metabolism. Semin Immunopathol 37:163–171. [PubMed][CrossRef]
167. Hockey LJ, Fujita NK, Gibson TR, Rotrosen D, Montgomerie JZ, Edwards JE, Jr. 1982. Detection of fungemia obscured by concomitant bacteremia: in vitro and in vivo studies. J Clin Microbiol 16:1080–1085. [PubMed]
168. Daef E, Moharram A, Eldin SS, Elsherbiny N, Mohammed M. 2014. Evaluation of chromogenic media and seminested PCR in the identification of Candida species. Braz J Microbiol 45:255–262. [PubMed][CrossRef]
169. Ahmad S, Khan Z, Mustafa AS, Khan ZU. 2002. Seminested PCR for diagnosis of candidemia: comparison with culture, antigen detection, and biochemical methods for species identification. J Clin Microbiol 40:2483–2489. [PubMed][CrossRef]
170. Fredricks DN, Relman DA. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev 9:18–33. [PubMed]
171. Foster JS, Kolenbrander PE. 2004. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340–4348. [PubMed][CrossRef]
172. Dowd SE, Delton Hanson J, Rees E, Wolcott RD, Zischau AM, Sun Y, White J, Smith DM, Kennedy J, Jones CE. 2011. Survey of fungi and yeast in polymicrobial infections in chronic wounds. J Wound Care 20:40–47. [PubMed][CrossRef]
173. Webb D, Thadepalli H. 1979. Skin and soft tissue polymicrobial infections from intravenous abuse of drugs. West J Med 130:200–204. [PubMed]
174. Klotz SA, Gaur NK, De Armond R, Sheppard D, Khardori N, Edwards JE, Jr, Lipke PN, El-Azizi M. 2007. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol 45:363–370. [PubMed][CrossRef]
175. Brook I. 2002. Microbiology of polymicrobial abscesses and implications for therapy. J Antimicrob Chemother 50:805–810. [PubMed][CrossRef]
176. Carlson E. 1983. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect Immun 39:193–197. [PubMed]
177. Bertesteanu S, Triaridis S, Stankovic M, Lazar V, Chifiriuc MC, Vlad M, Grigore R. 2014. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int J Pharm 463:119–126. [PubMed][CrossRef]
178. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459. [PubMed][CrossRef]
179. Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. 2008. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22. [PubMed][CrossRef]
180. Mader JT, Shirtliff M, Calhoun JH. 1999. The host and the skeletal infection: classification and pathogenesis of acute bacterial bone and joint sepsis. Baillieres Best Pract Res Clin Rheumatol 13:1–20. [PubMed][CrossRef]
181. Mader JT, Shirtliff ME, Bergquist SC, Calhoun J. 1999. Antimicrobial treatment of chronic osteomyelitis. Clin Orthop Relat Res (360):47–65. [PubMed][CrossRef]
182. Miclau T, Schmidt AH, Wenke JC, Webb LX, Harro JM, Prabhakara R, Shirtliff ME. 2010. Infection. J Orthop Trauma 24:583–586. [PubMed][CrossRef]
183. Parvizi J, Alijanipour P, Barberi EF, Hickok NJ, Phillips KS, Shapiro IM, Schwarz EM, Stevens MH, Wang Y, Shirtliff ME. 2015. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections. J Am Acad Orthop Surg 23(Suppl):S32–S43. [PubMed][CrossRef]
184. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. 2012. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 25:193–213. [PubMed][CrossRef]
185. Shirtliff ME, Leid JG, Costerton JW. 2002. Basic science of musculoskeletal infections, p 1–62. In Mader JT, Calhoun JH (ed), Musculoskeletal Infections. Marcel Dekker, Inc., New York, New York.
186. Shirtliff ME, Mader JT. 2000. Osteomyelitis: clinical features and molecular aspects of persistence, p 375–395. In Nataro JP, Blaser MJ, Cunningham-Rundles S (ed), Persistent Bacterial Infections. ASM Press, Washington, DC. [CrossRef]
187. Shirtliff ME, Peters BM, Jabra-Rizk MA. 2009. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8. [PubMed][CrossRef]
188. Xu Z, Li L, Shirtliff ME, Peters BM, Li B, Peng Y, Alam MJ, Yamasaki S, Shi L. 2011. Resistance class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in southern China, 2001-2006. Clin Microbiol Infect 17:714–718. [PubMed][CrossRef]
189. Melander RJ, Melander C. 2015. Innovative strategies for combating biofilm-based infections. Adv Exp Med Biol 831:69–91. [PubMed][CrossRef]
190. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. 2013. Innovative strategies to overcome biofilm resistance. Biomed Res Int 2013:150653. [PubMed][CrossRef]
191. Galanzha EI, Shashkov E, Sarimollaoglu M, Beenken KE, Basnakian AG, Shirtliff ME, Kim JW, Smeltzer MS, Zharov VP. 2012. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS One 7:e45557. doi:10.1371/journal.pone.0045557. [PubMed][CrossRef]
192. Ishikawa KH, Mayer MP, Miyazima TY, Matsubara VH, Silva EG, Paula CR, Campos TT, Nakamae AE. 2015. A multispecies probiotic reduces oral Candida colonization in denture wearers. J Prosthodont 24:194–199. [PubMed][CrossRef]
193. Roberfroid MB. 2000. Prebiotics and probiotics: are they functional foods? Am J Clin Nutr 71:1682S–1687S; discussion 1688S–1690S.
194. Harro JM, Peters BM, O’May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME. 2010. Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. FEMS Immunol Med Microbiol 59:306–323. [PubMed][CrossRef]
195. Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, Busscher HJ, van der Mei HC, Jabra-Rizk MA, Shirtliff ME. 2012. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology 158:2975–2986. [PubMed][CrossRef]
196. Metwalli KH, Khan SA, Krom BP, Jabra-Rizk MA. 2013. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog 9:e1003616. doi:10.1371/journal.ppat.1003616. [PubMed][CrossRef]
microbiolspec.VMBF-0030-2016.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0030-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0030-2016
2016-05-13
2017-04-28

Abstract:

species are the most common infectious fungal species in humans; out of the approximately 150 known species, is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both and bacteria while uniquely impacting the pathogen–host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of -associated polymicrobial infections. This article explores the current literature on the interactions between and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic showing the interdependent relationships required for development of human disease. Infection is influenced by microbe–microbe interactions, microbe–host interactions, antimicrobial host defenses, and environmental factors. Significant changes in any of these factors can lead to the development of or predisposition to infection. For example, microbes lacking virulence factors may become apathogenic. Similarly, host immunodeficiencies will encourage infectious processes. It is now becoming increasingly appreciated that intermicrobial interactions and environmental cues also determine infection outcomes such that specific microbial populations under certain conditions may enhance or predict disease progression ( 184 ).

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

strain DAY185 stained with a combination of calcofluor white (blue)/Syto9 (green) and imaged by confocal laser scanning microscopy ( 195 ).

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Scanning electron micrographs of a polymicrobial biofilm formed on discs of hydroxyapatite. This shows the affinity of to the hyphal elements as the streptococcal chains wrap around the hyphae. Small perforations are evident on the surfaces of the hydroxyapatite due to the highly acidic local microenvironment induced by the acidogenic bacterial species, ( 196 ). Bar = 10 mm.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

We and others have previously reported the association of with hyphae during polymicrobial biofilm growth. High-resolution scanning electron microscopy confirmed these findings and demonstrated a three-dimensionally distributed pattern of hyphal attachment. Not only can be found bordering the basal layer of the hyphae-substratum interface, but bacterial cells are also seen attached to the upper portion of the hyphal surface. The precise architectural details and spatial arrangement cannot be fully appreciated like those in the cryo-SEM image of a dual species biofilm on PVC catheter disks.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Images of biofilm probed with TAMRA-labeled universal yeast probe and FlTC-labeled probe and TAMRA-labeled probe and FITC-labeled probe ( 31 ).

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Infection of CD-1 mouse tongue tissue b alone, DAY185 + (DAY185+SA), or als3 mutant + + SA) and subsequently stained by PNA-FISH or hematoxylin and eosin (H&E). Monomicrobial (green) infections were confined to the epithelial surface but were noninvasive as confirmed by a lack of inflammatory infiltrate by H&E staining. Coinfection with DAY185+SA showed staphylococci attached to the hyphal surface of (red) and in some instances where hyphae had pierced the epithelial layer, (green) could be seen coembedded within the epithelium (white arrow). However, coinfection with Δ +SA demonstrated a fully invasive infection with relatively few staphylococci seen attached to the hyphae and an absence of epithelial coinvasion ( 195 ).

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.VMBF-0030-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error