Aspergillus fumigatus and Aspergillosis
Aspergillus fumigatus and Aspergillosis

EDITED BY
Jean-Paul Latgé
Unité des Aspergillus, Institut Pasteur
Paris, France

William J. Steinbach
Division of Pediatric Infectious Diseases and Department of Molecular Genetics and Microbiology
Duke University Medical Center
Durham, North Carolina USA

WASHINGTON, D.C.
To the patients with aspergillosis, and their families, who have been told there is little hope

To our friends, colleagues, lab members, students, and families with whom we share this simultaneous love and hatred of *Aspergillus fumigatus*

And to Michelle, who has taught us both about surviving illness with dignity
Contents

Contributors xi
Preface xvii

1 Introduction 1
David A. Stevens

I THE SPECIES

2 Morphology and Reproductive Mode of Aspergillus fumigatus 7
Robert A. Samson, János Varga, and Paul S. Dyer

3 Molecular Methods for Species Identification and Strain Typing of Aspergillus fumigatus 15
S. Arunmozhi Balajee and Corné H. W. Klaassen

4 Aspergillus fumigatus Specificities as Deduced from Comparative Genomics 29
Amandine Gastebois, Karine Lambou, Joanne Wong Sak Hoi, and Fredj Tekaia

5 Essential Genes in Aspergillus fumigatus 39
Wenqi Hu, Bo Jiang, and Terry Roemer

II GROWTH AND SENSING, OR RESISTING ENVIRONMENTAL STRESS

6 Aspects of Primary Carbon and Nitrogen Metabolism 63
Sven Krappmann

7 Phospholipases of Aspergillus fumigatus 75
Geoffrey D. Robson

8 Aspergillus fumigatus Secreted Proteases 87
Michel Monod, Olivier Jousson, and Utz Reichard

9 Cations (Zn, Fe) 107
José Antonio Calera and Hubertus Haas
10 Conidial Germination in *Aspergillus fumigatus* 131
Nir Osherov

11 Growth Polarity 143
Michelle Momany and Yainitz Hernández-Rodríguez

12 Biofilm Formation in *Aspergillus fumigatus* 149
Anne Beauvais and Frank-Michael Müller

13 Signal Transduction 159
Gregory S. May and Taylor Schoberle

14 Cell Wall of *Aspergillus fumigatus*: a Dynamic Structure 169
Isabelle Mouyna and Thierry Fontaine

15 Genetic Regulation of *Aspergillus* Secondary Metabolites and Their Role in Fungal Pathogenesis 185
Robert A. Cramer, Jr., E. Keats Schwab, and Nancy P. Keller

16 *Aspergillus fumigatus*: Survival and Death under Stress 201
David S. Askew and Judith C. Rhodes

III IMMUNE DEFENSE AGAINST *ASPERGILLUS*

17 Reactive Oxygen Intermediates, pH, and Calcium 217
Elaine Bignell

18 Innate Defense against *Aspergillus*: the Phagocyte 229
Michel Chignard

19 Interactions of *Aspergillus* with the Mucosa 239
William W. Hope and Scott G. Filler

20 Dendritic Cells in *Aspergillus* Infection and Allergy 247
Luigina Romani

21 CD4+ T-Cell Responses to *Aspergillus fumigatus* 263
Amariliz Rivera and Eric G. Pamer

22 Innate Recognition of *Aspergillus fumigatus* by the Mammalian Immune System 279
Lisa M. Graham and Gordon D. Brown

IV THE SPECTRUM OF DISEASE

23 Invasive Pulmonary Aspergillosis 293
Aimee K. Zaas and Barbara D. Alexander

24 *Aspergillus* Sinusitis and Cerebral Aspergillosis 301
Stefan Schwartz and Markus Ruhnke

25 Chronic Aspergillosis 319
David W. Denning

26 Allergic Bronchopulmonary Aspergillosis 333
Richard B. Moss

V DIAGNOSIS

27 Histology and Radiology 353
Reginald Greene, Kazutoshi Shibuya, and Tsunihiro Ando
28 Galactomannan and Anti-Aspergillus Antibody Detection for the Diagnosis of Invasive Aspergillosis 363
Paul E. Verweij

29 Aspergillus PCR 373
P. Lewis White and Rosemary A. Barnes

VI THERAPY

30 Polyenes in the Treatment of Aspergillosis 391
Andreas H. Groll and Thomas J. Walsh

31 Azaoles in the Treatment of Aspergillosis 417
Raoul Herbrecht and Yasmine Nivoix

32 Echinocandins in the Treatment of Aspergillosis 435
Johan Maertens and Vincent Maertens

33 Antifungal Drug Interactions 445
Russell E. Lewis

34 Antifungal Mechanisms of Action and Resistance 457
David S. Perlin and Emilia Mellado

35 Immunotherapy 467
Brahm H. Segal and Luigina R. Romani

VII TIMING OF ANTIFUNGAL THERAPY

36 Prophylaxis against Invasive Aspergillosis 481
Jo-Anne H. Young

37 Therapy of Invasive Aspergillosis: Current Consensus and Controversies 491
Dimitrios P. Kontoyiannis and Kieren A. Marr

VIII SPECIFIC PATIENT POPULATIONS

38 Invasive Aspergillosis in Solid Organ Transplant Recipients 503
Hsin-Yun Sun, Patricia Muñoz, Emilio Bouza, and Nina Singh

39 Invasive Aspergillosis in Malignancy and Stem Cell Transplant Recipients 519
Elio Castagnola and Claudio Viscoli

40 Invasive Aspergillosis in Pediatric Patients 531
Emmanuel Roilides and Paraskevi Panagopoulou

IX FUTURE DIRECTIONS

41 A Perspective View of Aspergillus fumigatus Research for the Next Ten Years 549
Jean-Paul Latgé and William J. Steinbach

Index 559
Contributors

Barbara D. Alexander
Dept. of Medicine/Infectious Diseases and Dept. of Pathology, Duke University Medical Center, DUMC Box 3035, Durham, NC 27710

Tsunihiro Ando
Dept. of Surgical Pathology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo 143-8541, Japan

David S. Askew
Dept. of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0529

S. Arunmozhi Balajee
Mycotic Diseases Branch, Centers for Disease Control and Prevention, Mail Stop G11, 1600 Clifton Rd., Atlanta, GA 30333

Rosemary A. Barnes
Dept. of Medical Microbiology, Cardiff University, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom

Anne Beauvais
Unité des Aspergillus, Institut Pasteur, 25, Rue du Docteur Roux, 75015 Paris, France

Elaine Bignell
Dept. of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, United Kingdom

Emilio Bouza
Clinical Microbiology and Infectious Diseases Dept., Hospital General Universitario Gregorio Marañón, Spanish Study Group of Infection in Transplant Patients (GESITRA), and CIBER de Enfermedades Respiratorias (CIBERES), 28007 Madrid, Spain

Gordon D. Brown
Institute of Infectious Disease and Molecular Medicine, Division of Immunology, University of Cape Town, Observatory, 7925, South Africa
José Antonio Calera
Instituto de Microbiología-Bioquímica, Centro mixto CSIC/USAL,
Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza
Doctores de la Reina s/n, 37007 Salamanca, Spain

Elio Castagnola
Infectious Diseases Unit, Dept. of Hematology and Oncology, “G. Gaslini”
Children Hospital, 16147 Genoa, Italy

Michel Chignard
Institut Pasteur, Unité de Défense innée et Inflammation, and Inserm, U874,
25, Rue du Dr Roux, 75015 Paris, France

Robert A. Cramer, Jr.
Dept. of Veterinary Molecular Biology, Montana State University–Bozeman,
Bozeman, MT 59718

David W. Denning
Medicine and Medical Mycology, University of Manchester, and Education and
Research Centre, Wythenshawe Hospital, Manchester M23 9LT, United
Kingdom

Paul S. Dyer
School of Biology, University of Nottingham, Nottingham NG7 2RD, United
Kingdom

Scott G. Filler
Division of Infectious Diseases, Dept. of Medicine, Los Angeles Biomedical
Research Institute at Harbor-UCLA Medical Center, Torrance, CA, and The
David Geffen School of Medicine at UCLA, Los Angeles, CA 90502

Thierry Fontaine
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris,
France

Amandine Gastebois
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris,
France

Lisa M. Graham
Institute of Infectious Disease and Molecular Medicine, Division of
Immunology, University of Cape Town, Observatory, 7925, South Africa

Reginald Greene
Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114

Andreas H. Groll
Infectious Disease Research Program, Center for Bone Marrow Transplantation
and Dept. of Pediatric Hematology/Oncology, University Children’s Hospital,
48149 Muenster, Germany

Hubertus Haas
Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-
Pregl-Str. 3, A-6020 Innsbruck, Austria

Raoul Herbrecht
Dept. of Oncology and Hematology, Hôpital de Hautepierre, 67098
Strasbourg, France
Yainitza Hernández-Rodríguez
Dept. of Plant Biology, University of Georgia, Athens, GA 30602

William W. Hope
School of Translational Medicine, The University of Manchester, Manchester, United Kingdom

Wenqi Hu
Merck Frosst Center for Fungal Genetics, Merck & Co., Inc., Montreal, Quebec, H2X 3Y8, Canada

Bo Jiang
GlycoFi, Inc., Lebanon, NH 03766

Olivier Jousson
Centre for Integrative Biology, University of Trento, 38100 Trento, Italy

Nancy P. Keller
Dept. of Plant Pathology and Dept. of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI 53706

Corné H. W. Klaassen
Dept. of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands

Dimitrios P. Kontoyiannis
Dept. of Infectious Diseases, Infection Control and Employee Health and Dept. of Bone Marrow Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

Sven Krappmann
Research Center for Infectious Diseases, Julius-Maximilians-University Würzburg, Würzburg, Germany

Karine Lambou
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris, France

Jean-Paul Latgé
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris, France

Russell E. Lewis
Dept. of Clinical Sciences and Administration, The University of Houston College of Pharmacy, and The University of Texas M. D. Anderson Cancer Center, 1441 Moursund St., #424, Houston, TX 77030

Johan Maertens
Dept. of Haematology, Acute Leukaemia and Hematopoietic Stem Cell Transplantation Unit, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium

Vincent Maertens
Dept. of Haematology, Acute Leukaemia and Hematopoietic Stem Cell Transplantation Unit, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium

Kieren A. Marr
Comprehensive Transplant and Oncology Infectious Diseases Program, Dept. of Medicine, Johns Hopkins University, Baltimore, MD 21205
Gregory S. May
Division of Pathology and Laboratory Medicine, Dept. of Laboratory Medicine, Research, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030

Emilia Mellado
Servicio de Micologia, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuleo Km2, (28.220) Majadahonda, Madrid, Spain

Michelle Momany
Dept. of Plant Biology, University of Georgia, Athens, GA 30602

Michel Monod
Service de Dermatologie, Laboratoire de Mycologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland

Richard B. Moss
Center for Excellence in Pulmonary Biology, Dept. of Pediatrics, Stanford University, Palo Alto, CA 94304

Isabelle Mouyna
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris, France

Frank-Michael Müller
Päd. Pneumologie & Speziale Infektiologie, Zentrum für Kinder- u. Jugendmedizin, INF 153, D-69120 Heidelberg, Germany

Patricia Muñoz
Clinical Microbiology and Infectious Diseases Dept., Hospital General Universitario Gregorio Marañón, Spanish Study Group of Infection in Transplant Patients (GESITRA), and CIBER de Enfermedades Respiratorias (CIBERES), 28007 Madrid, Spain

Yasmine Nivoix
Dept. of Pharmacy and Pharmacology, Hôpital de Hautepierre, 67098 Strasbourg, France

Nir Osherov
Dept. of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel

Eric G. Pamer
Infectious Disease Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021

Paraskevi Panagopoulou
Dept. of Pediatric Oncology, Hippokration Hospital, Thessaloniki 54642, Greece

David S. Perlin
Public Health Research Institute, New Jersey Medical School-UMDNJ at the International Center for Public Health, 225 Warren St., Newark, NJ 07103

Utz Reichard
Dept. of Medical Microbiology and National Reference Center for Systemic Mycoses, University Hospital of Goettingen, 37075 Goettingen, Germany

Judith C. Rhodes
Dept. of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0529
Amariliz Rivera
Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021

Geoffrey D. Robson
Faculty of Life Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, United Kingdom

Terry Roemer
Dept. of Infectious Disease, Merck & Co. Inc., 126 East Lincoln Ave., Rahway, NJ 07065

Emmanuel Roilides
3rd Dept. of Pediatrics, Aristotle University Medical School, Hippokration Hospital, Thessaloniki 54642, Greece

Luigina Romani
Microbiology Section, Dept. of Experimental Medicine and Biochemical Sciences, and Fondazione “Istituto di Ricovero e Cura per le Biotecnologie Trapiantologiche” I.B.i.T., Perugia, Italy

Markus Ruhnke
Medizinische Klinik und Poliklinik II, Charité – Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany

Robert A. Samson
CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands

Taylor Schoberle
Division of Pathology and Laboratory Medicine, Dept. of Laboratory Medicine, Research, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030

E. Keats Schwab
Dept. of Plant Pathology and Dept. of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI 53706

Stefan Schwartz
Medizinische Klinik III, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany

Brahm H. Segal
Dept. of Medicine and Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263

Kazutoshi Shibuya
Dept. of Surgical Pathology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo 143-8541, Japan

Nina Singh
Dept. of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA

William J. Steinbach
Division of Pediatric Infectious Diseases and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

David A. Stevens
Dept. of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, and Stanford University Medical School, San Jose, CA 95128-2699
Hsin-Yun Sun
Dept. of Internal Medicine, National Taiwan University Hospital and National
Taiwan University College of Medicine, Taipei, Taiwan

Fredj Tekaia
Unité de Génétique Moléculaire des Levures (URA 2171 CNRS and UFR927
Univ. P. et M. Curie), Institut Pasteur, 25, Rue du Dr Roux, 75724 Paris
Cedex 15, France

János Varga
CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The
Netherlands

Paul E. Verweij
Dept. of Medical Microbiology, University Medical Center St. Radboud, and
Nijmegen University Center for Infectious Diseases, Inflammation and
Immunity, Nijmegen, The Netherlands

Claudio Viscoli
Division of Infectious Disease, University of Genoa, San Martino University
Hospital, 16132 Genoa, Italy

Thomas J. Walsh
Immunocompromised Host Section, Pediatric Oncology Branch, National
Cancer Institute, National Institutes of Health, Bethesda, MD 20892

P. Lewis White
NPHS Microbiology Cardiff, University Hospital of Wales, Cardiff CF14 4XN,
United Kingdom

Joanne Wong Sak Hoi
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris,
France

Jo-Anne H. Young
Division of Infectious Disease and International Medicine, Dept. of Medicine,
University of Minnesota, MMC 250, 420 Delaware St. S.E., Minneapolis, MN
55455

Aimee K. Zaas
Dept. of Medicine/Infectious Diseases, Duke University Medical Center,
DUMC Box 3355, Durham, NC 27710
Medicine has advanced astonishingly fast in the past several decades. As newer medical technologies are repairing the human body in ways never imagined only a few years ago, infectious diseases are emerging as a leading cause of morbidity and mortality among these newly susceptible patients. Invasive and chronic fungal infections have become a formidable clinical opponent, and foremost among them is *Aspergillus fumigatus*.

This volume has been carefully engineered to offer the latest insights into the fundamental biology and pathogenesis of this organism and how it establishes disease, as well as the newest strategies for characterizing, diagnosing, and treating its spectrum of clinical infection. Other great textbooks have been published which address general fungal physiology, overall medical mycology, the biology of the aspergilli specifically, or antifungal therapy, yet this is the first volume which specifically merges the newest scientific knowledge with the latest clinical experience and data to yield a combined synopsis of this organism and its diseases.

Here we have assembled chapters from a large and international contingent of experts in the field to explore every major aspect of *A. fumigatus* and how it kills so many patients. This includes chapters on the species itself, including morphology and unique essential genes. We also discuss the importance of growth and germination as well as the organism’s response to environmental stress by moving from a saprophyte to a pathogen. The interface with the host immune system is paramount to disease phenotype, and this is outlined, as are the many faces of disease created by *A. fumigatus*. Newer diagnostic strategies are covered, including advances from the molecular age, the optimal timing of antifungal therapy, and the strategic choice of which agent to use.

It is our intent that *Aspergillus fumigatus and Aspergillosis* will encompass the current state of knowledge to serve as a resource guide for the next decade of study on this organism and the many diseases it causes. We hope that this volume will also serve as a catalyst for future young investigators to begin their own explorations in this field, to challenge the unproven dogmas and define the mechanisms of disease. This textbook is purposefully designed to unify the world’s *Aspergillus* experts and collaborate toward our common goal. Here we outline today’s state of the art and propose tomorrow’s difficult and unanswered questions.

It has been our pleasure to serve as the coeditors, and also as authors, for this exciting new book merging science and medicine. We thank the many con-
tributors to this new voyage; their expertise and efforts have forged a complete volume summarizing the many facets of *A. fumigatus*. We are also grateful to Gregory Payne, our editor at ASM Press, for his tireless energy and dedication to producing such an excellent book. We hope that our effort not only outlines the best thinking, but inspires creative solutions to the growing problem of *A. fumigatus* and aspergillosis.

Jean-Paul Latgé
Institut Pasteur

William J. Steinbach
Duke University
INDEX

ABCD, see Amphotericin B colloidal dispersion
Abelcet, see Amphotericin B lipid complex
ABPA, see Allergic bronchopulmonary aspergillosis
Acquired immunodeficiency syndrome (AIDS)
Adhesion, conidial, 132, 138–140
Adoptive antigen-specific T cell therapies,
spectrum of activity, 392–393
structural properties, 391, 392
vortioxazole, compared, 396
Amphotericin B lipid complex (ABLC)
treatment, 341, 343–344
in pediatric patients, 540–541
prophylactic use, 483
structure of, 392
clinical data, 440
pharmacologically, 391, 392
pharmacokinetics, 399–400
antifungal efficacy, 402–403
safety, 402–403
mechanism of action, 407, 408
in vitro activities against Aspergillus spp., 419
Allergic bronchopulmonary aspergillosis (ABPA)
diagnosis of, 340, 342–343
differential diagnosis, 359
fungi associated with, 334
histopathology, 335–337
mouse model, 335, 339
pathogenesis, 334–337
pediatric patients, 536–537
radiology, 358–359
risk factors for, 338–343
CF transmembrane conductance regulator (CFTR) gene, 339
collectin polymorphisms, 338
IL-10 polymorphisms, 338–339
IL-1β polymorphisms, 339
MHC alleles, 339
table of, 338
role of CD4+ T-cell response, 335–337
serodiagnosis of, 337–338
stages, 341
treatment, 341, 343–344
Allergic response to Aspergillus corticosteroids and, 255–256
helper T cell overreaction and, 247
IDO+ pDC and prevention of, 255
role of CD4+ T cells, 263–274
schematic of dendritic cell subsets and, 253
Allergic sinusitis, 302
Allens, fungal resistance to, 462
terbinafine, 459, 462
Alveolar macrophages, see Macrophages
Aminocandin, 459
Amphotericin B colloidal dispersion (ABCD), 399–402
amphotericin B lipid complex (ABLC), 398, 402–404
antifungal efficacy, 399
liposomal amphotericin B (LAMB), 398, 404–407
molecular composition, schematic, 398
pharmacokinetics and pharmacodynamics, 397–398
principles of drug distribution, 396–397
safety, 399
mechanism of action, 457, 458
in pediatric patients, 540–541
prophylactic use, 483
structure of, 392
in vitro activities against Aspergillus spp., 419
Amphotericin B colloidal dispersion (ABCD) adverse effects, 391, 394–395
antifungal efficacy, 400
clinical efficacy, 401
pharmacokinetics, 399–400
treatment of invasive aspergillosis (IA), 400–401
vortioxazole, compared, 396
Amphotericin B deoxycholate (DAMB) adverse effects, 394–395
for cerebral aspergillosis, 309, 310, 311
clinical indications, 395–396
drug interactions, 395
fungal resistance to, 392
lipid emulsions of, 396, 491
mechanism of action, 391–392
pharmacodynamic, 393
pharmacokinetics, 394
spectrum of activity, 392–393
structural properties, 391, 392
vortioxazole, compared, 396
Amphotericin B lipid complex (ABLC) antifungal efficacy, 402–403
clinical indications, 404
molecular composition, schematic, 398
pharmacokinetics, 402
physicochemical properties, 397
safety, 402–403
treatment of invasive aspergillosis (IA), 403–404
pharmacodynamics, 393
pharmacokinetics, 394
spectrum of activity, 392–393
structural properties, 391, 392
vortioxazole, compared, 396
fungal resistance to, 462
terbinafine, 459, 462
Alveolar macrophages, see Macrophages
Pharmacodynamics, 393
Pharmacokinetics, 394
Spectrum of activity, 392–393
Structural properties, 391, 392
Vortioxazole, compared, 396
fungal resistance to, 462
terbinafine, 459, 462
Allergic sinusitis, 302
Alveolar macrophages, see Macrophages
Aminocandin, 459
Amphotericin B colloidal dispersion (ABCD), 399–402
Amphotericin B lipid complex (ABLC), 398, 402–404
antifungal efficacy, 399
liposomal amphotericin B (LAMB), 398, 404–407
molecular composition, schematic, 398
pharmacokinetics and pharmacodynamics, 397–398
principles of drug distribution, 396–397
safety, 399
mechanism of action, 457, 458
in pediatric patients, 540–541
prophylactic use, 483
structure of, 392
in vitro activities against Aspergillus spp., 419
Amphotericin B colloidal dispersion (ABCD) adverse effects, 391, 394–395
antifungal efficacy, 400
clinical efficacy, 401
pharmacokinetics, 399–400
safety, 400
treatment of invasive aspergillosis (IA), 400–401
vortioxazole, compared, 396
Amphotericin B deoxycholate (DAMB) adverse effects, 394–395
for cerebral aspergillosis, 309, 310, 311
clinical indications, 395–396
drug interactions, 395
fungal resistance to, 392
lipid emulsions of, 396, 491
mechanism of action, 391–392
Pharmacodynamics, 393
Pharmacokinetics, 394
Spectrum of activity, 392–393
Structural properties, 391, 392
Vortioxazole, compared, 396
INDEX
in pediatric patients, 541–542
P-glycoprotein and, 447–448
posaconazole, 426–428
prophylactic use, 483–485
ravuconazole, 428
serum monitoring, 495
use as risk factor for zygomycosis, 425
voriconazole, 309, 311–313, 326–327,
use as risk factor for zygomycosis, 425
serum monitoring, 495
ravuconazole, 428
prophylactic use, 483–485
posaconazole, 426–428
P-glycoprotein and, 447–448
characteristics, table of, 437
combination therapy, 439–440
compassionate use studies, 438–439
dosage, mechanism of action, toxicity, and spectrum, 493
empirical therapy, 439
organic anion transporting polypeptides (OATPs) and, 451
primary therapy for invasive aspergillosis, 439
prophylactic use, 485
for pulmonary aspergillosis, 438, 439
salvage treatment of aspergillosis, 438, 440
Catales, 220, 221
Cathepsin, 221, 222, 234
CCAT-binding complex, 122
CCPA, see Chronic cavitary pulmonary aspergillosis
CD4+ T cells
activation by dendritic cells, 265–268
adoptive antigen-specific T-cell therapies, 274
initiation of proliferative responses, 267–268
innate receptors and A. fumigatus-specific CD4+ T-cell differentiation, 269–270
kinetics of A. fumigatus-specific activation in vivo, 267–269
mouse model, 265
population expansion and contraction, 268–269
rejection to infected lung, 270–271
regulation of response to A. fumigatus, 271–272
responses to A. fumigatus antigens, 265
role in allergic response to A. fumigatus, 263–265
role in protection from invasive aspergillosis, 272, 274
role of Th17 T cells, 272
TLRs and T-cell activation, 269
visualization of in vivo proliferation, 268
CDF family, of zinc transporters, 108
Cell wall
biosynthesis of, 138
biosynthetic enzymes, table of, 172
cell wall–associated proteins (CWPs), 138–139
components
β-1,3-glucan, 169–170, 174–175, 178–179
chitin, 169–170, 175–176
galactomannan, 170–171, 177
galactosaminogalactan, 172
α-glucan, 170, 176–177
lipogalactomannan, 171
as PAMPs, 279–280
proteins, 172–173
compositional changes related to growth conditions, 151
germination and, 138–140
melanin layer, 173–174
mycelial compared, 138, 170
rodlet layer, 173
sialic acid, 173
specificities of, 173–174
conidial adhesion, 138–140
electron microscope images of, 170
genes, polarity–related, 145–147
O-glycosylation, 203
hydrolysis of cell wall polysaccharides, 177
hydrophobins, 138
as major antigen reservoir, 173
MpkA and cell wall repair, 165
overview, 169, 436
schematic representation of, 171
as target for antifungal drugs, 435–436, 441
thermotolerance and, 203
Cell wall–associated proteins (CWPs), 138–139
Cerebral aspergillosis, 307–313
clinical presentation, 307–308
molecular detection of, 382
overview, 307
PCR for diagnosis of, 374
pediatric patients, 537
treatment options, 311–313
CF transmembrane conductance regulator (CFTR) gene, 339
CGD (chronic granulomatous disorder), 233–234, 248, 533–535
CGrA protein
ribosome biogenesis, 203
role in thermotolerance, 203
Chitin, in cell wall, 169–170, 175–176
Chitinase genes, motif search, 32–33
Chromatin regulation, as mechanism of global secondary metabolite regulation, 193–194
Chronic cavitary pulmonary aspergillosis (CCPA)
Aspergillus bronchitis and otitis, 321
clinical fibrosing pulmonary aspergillosis, 321
clinical features and diagnosis, 322–323
role of lung disease, 321
treatment, 326
Chronic granulomatous disorder (CGD), 233–234, 248, 533–535
Chronic invasive and granulomatous sinusitis, 327–328
Chronic pulmonary aspergillosis
histology and radiology, 357–358
histopathology, 357–358
radiology, 358
Collectins
mannose-binding lectin (MBL), 283–284
surfactant protein A (SP-A), 283–284
surfactant protein D (SP-D), 283–284
Colony-stimulating factors (CSFs), as antifungal immunotherapy agent, 469
Comparative genomics, see Genomics, comparative
Compositing, 201, 202, 205, 206
Computed tomography (CT)
early use of, 492–494
pediatric patients, 539
of pulmonary aspergillosis, 354–357, 359–360
Conditional promoter replacement, as strategy to identify essential genes, 50–51
Confocal scanning laser microscopy, for analysis of fungal biofilms, 150–151
Conidia
adhesion, 132, 138–140
airborne conidia as infectious agent, 230
cell wall, 138–140, 145, 163–180
melanin layer, 173–174
rodlet layer, 173
sialic acid, 173
Conidia (Continued)

CGD patients and, 230
diet, as source of, 482
genetic control of development, 9
herbal supplements, as source of, 482
macrophage response to, 230–231
marijuana, as source of, 482
minimizing exposure to, 481–482
within neutrophils, 232
pathogenesis and, 143
plants, as source of, 482
role of, 131, 143
tobacco, as source of, 482

Conidial germination, 131–140
approaches to analysis of, 134–138
candidate gene approach, 136–168
genetic analysis, 134
genomic approaches, 135–136
biochemical changes during, 131, 132–134
cell wall and, 138–140
at elevated temperatures, 202–203
in epithelial lung cells, 143
host defenses and, 202–203
inhibition by neutrophil-generated ROIs, 233
micrographs, 133
model of, 139
in MpC mutants, 164
physiology of, 131–132
protein synthesis, necessity of, 133, 134
rasa and rasB gene expression and, 159
recognition by dectin-1, 231
in sak/c deletion mutants, 165
self-inhibition, 132
as trigger for innate immune response, 279
in various media, table of, 132

Corticosteroids
enhancement of A. fumigatus growth, 203
inhibition of ROI production, 231
as risk factor for aspergillosis, 230
treatment of allergic bronchopulmonary aspergillosis (ABPA), 255–256
CpcA transcription factor
nitrogen metabolism and, 69–70
virulence of A. fumigatus, 70
C-type lectins, 282–285
collectins, 283–284
DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), 282–283
dectin-1, 284–285, 471
Culture, for diagnosis in pediatric patients, 538
Cutaneous aspergillosis, in pediatric patients, 537–538
Cyp51A mutants and resistance to azoles, 460–461
CYP1A4/3A5, and clearance of azoles, 485
Cystic fibrosis, 241
A. fumigatus biofilms, 150, 153
allergic bronchopulmonary aspergillosis (ABPA) and, 335, 337, 341–344
Cystine disulfide bridges, reduction of, 101
Cytochrome P450s, and hepatic biotransformation of antifungal drugs, 449–450

Cytokines, see also specific cytokines
IL-1, 111–112
IL-17, 47, 472–474
innate immune response, 230, 231
interferon, 472–473
iron and zinc withholding, 107–108

DAMB, see Amphotericin B deoxycholate (DAMB)
Dectin-1
in immunotherapy, 471
recognition of β-1,3 glucan, 231, 284
role in inflammatory response, 231
role in macrophage-mediated phagocytosis, 231, 285
structure of, 284
TLR2 signaling, 231, 471

Dendritic cells (DC)
activation of specific Th cell populations, 251–254
in Aspergillus infection and allergy, 247–258
electron micrographs of, 250
expression of IDO, 254–256
as fungal vaccines in transplantation, 256–258
at the host-fungus interface, 250–251
interaction with T cells, 249
internalization of pathogens, 248–249, 250–251
migration and CD4+ T cell activation, 266–267
migration to lymphoid organs, 249
modulation of immune response to pathogens, 249
myeloid DC (conventional DC), 249, 251–254, 257
pDC activation of Tregs, 254–256
plasmacytoid DC (pDC), 249, 254–255, 257
TLR-mediated maturation of, 249
as vaccine component, 474
Dexamethasone, 256; see also Corticosteroids

Diagnosis, see also specific disorders; specific methods
allergic bronchopulmonary aspergillosis (ABPA), 337–338, 340, 342–343, 359
future improvements in, 554
invasive aspergillosis (IA)
anti fungal therapy and, 363, 364, 365, 368–369
commercial kits, 363–364, 366
computed tomography (CT), 363, 367, 368
detection of anti-Aspergillus antibodies, 365–367
detection of β-glucan, 369
detection of galactomannan, 363–365, 369
use of recombinant antigens, 366, 367
invasive pulmonary aspergillosis (IPA), 296–297, 354–355
Diet, as source of fungal spores, 482
Dipeptidyl-peptidase-9s, 98

Echinocandins, 433–441
adverse effects, 441
aminoacandin, 459
amphotericin B family, compared to, 435, 438, 439, 441
anidulafungin, 436, 437, 440
azoles, compared to, 435
caspofungin, 436, 437, 438–440
for cerebral aspergillosis, 310, 311
combination therapy, 439–440
cyclopomycin A (CyA), combined with, 438
dosage, mechanism of action, toxicity, and spectrum, 493
drug interactions, 438, 445
drug resistance to, 461
mechanism of action, 458–459
miconafungin, 437, 440–441
mode of action, 436
in pediatric patients, 542–543
pharmacokinetics, in humans, 437–438
prophylactic use, 483
safety and tolerability, 441
spectrum of activity, in vitro, 436–437
Elastase, 221, 222, 229, 234
Endophthalamic aspergillosis, molecular detection of, 382
Endoproteases, 93–97
aspatic proteases, 94–95
glutamic proteases, 95
metallo-endoproteases, 95–96
serine endoproteases, 96–97
Endosomal sorting complex required for transport (ESCRT) and pH signaling, 222–223
Enzyme immunoassay (EIA), for galactomannan commercial kits, 363–364
sensitivity, 364–365
Enzyme-linked immunosorbent assay (ELISA), for detection of anti-Aspergillus antibodies, 366, 367
Epipolyp-thiodioxideperazine (ETP), 188
ER stress, metacaspases and, 208
Ergosterol biosynthesis pathway, 53
Ergot alkaloids, 187
Estb, 117–119
European Organization for Research and Treatment of Cancer, Mycoses Study Group (EORTC/MSG), 375, 439
Exopeptidase-9s, 97–99
aminopeptidase, 97
carboxypeptidase, 99, 100
dipeptidyl-peptidase-9s, 98
tripeptidyl-peptidase-9s, 98–99
Extracellular matrix (ECM) in biofilms
electron micrographs of, 152, 153
resistance to antifungal drugs, 153–154, 156
role of, 153–154, 156
structure and composition, 150–151, 154–155
conidial adhesion and, 139–140
Ferricrocin, 113, 115, 123
Fet3p (multicopper ferroxidase), 119
FKS gene
β-1,3-glucan synthesis and, 174–175
motif search, 32, 33
as target of antifungal drugs, 175
Fluconazole, as prophylactic, 483, 485
Foods, as source of fungal spores, 482
Ftr1p (iron permease), 119
Fumagillin
anticancer properties, 187
control of Nosema diseases in honey bee, 187
genotoxicity of, 187
molecular target of, 187
Fumigaviruses, 187
Fumonectins, 185–187
Fungal growth, as major virulence determinant, 63–66
Fungus ball of the sinus, treatment, 327
Fusarium spp., trichotheccene (Tri) genes of, 36, 37
Fusidines, 187–188
Galactofuranose (Gal-f antigens), 363; see also Galactomannan
Galactomannan biosynthesis of, 177
in fungal cell wall, 170–171
Galactomannan test
detection in bronchoalveolar lavage (BAL), 363, 540
for diagnosis of invasive aspergillosis (IA), 363–365, 507–508
enzyme immunosassay (EIA), 363–364, 365, 507–508
in pediatric patients, 539, 540
Galactosaminogalactan, in cell wall, 172
GATA transcription factors, 121
Genealogical concordance phylogenetic
Gene expression
Gene duplication, 31
GATA transcription factors, 121
GTPase proteins, small, 159–161
parasexual genetics as approach to
GUA1 gene, 55
GFA1 gene, 53–54
Gliotoxin, 188–190
cilia beat frequency and, 242
disulfide bridge, importance of, 188
gene cluster, 189
gliotoxin-deficient mutants of A. fumigatus, 189, 190
immunosuppressive effects, 188–189
inhibition of neutrophil-mediated phagocytosis, 232
inhibition of ROI generation, 232
regulation of synthesis, 191, 192, 193
GliZ gene, 189, 190, 192, 193
β-1,3-Glucan biosynthesis of, 176–177
in fungal cell walls, 170
β-1,3-Glucan biosynthesis of, 174–175
branching and cross-linking enzymes, 178–179
in fungal cell walls, 169–170
inhibition of synthesis, by echinocandins, 436, 441
recognition by dectin-1, 231, 284
as vaccine component, 474
Glucocorticoids (GCs), as host defense,
Graft-versus-host disease, 520–521, 522, 523
G-protein signaling pathways, secondary
Goblet cells, 239
Glutamic proteases, 95
Granzyme B, as host defense, 411–412
growth, 144
chemokines, 143
Growth, polar, 143–147
of A. fumigatus in vitro, 143
Growth, polar, 143–147
chemokines of, 143–145
polarity-related genes, table of, 146
role in virulence, 148
Guanine exchange factors (GEFs), 203
Guanine exchange factors (GEFs), 203
Graft-versus-host disease, 520–521, 522, 524, 526
Granulocyte cytochrome, as antifungal immunotherapy, 470
Graft-versus-host disease, 520–521, 522, 524, 526
Granulocyte cytochrome, as antifungal immunotherapy, 470
Host defenses, see also Immune system, innate
candidal germination and, 202–203
cytokine IL-1, 111–112
glucocorticoids (GCs), 111–112
iron withholding, 123, 234
macrophage-mediated phagocytosis and killing, 218–220
myeloperoxidase (MPO), 221
neutrophil-mediated phagocytosis and killing, 220–222
proteases
cathepsin, 221, 222
elastase, 221, 222
reactive oxygen intermediates (ROIs), 217–222
HSCT, see Hematopoietic stem cell transplantation (HSCT) recipients
Hydrogen peroxide, 217, 218, 219, 220, 221
Hydrophobins
cell wall, 138
extracellular matrix (ECM), 155
Hydroxyferricrocin, 113
Hydroxyl radical, 217, 218, 219, 220, 221
Hyper-immunoglobulin E syndrome, 248, 355
Hypochlorous acid (HOCl), 218, 221
Hyperimmunoglobulin E syndrome, 248, 355
Hypochlorous acid (HOCl), 218, 221
Hypoxia, 108–111
Homeostasis, zinc, 108–111
components of the system that governs, 109–111
role of pH, 108–109, 110
schematic of proteins involved in, 110
transcription factors, 108–109
transporters, 108, 109
Honey bees, 187
HIV infection, in pediatric patients, 535–536
Innate immunity, 123
role of pH, 123
Iron, 123, 234
Iron withholding, 123, 234
Iron deficiency, 123
Aspergillus fumigatus
AUR1 gene, 39–41
Aspergillus nidulans
AUF1 gene, 42–44
Graft-versus-host disease, 520–521, 522, 523
G-protein signaling pathways, secondary
Goblet cells, 239
Glutamic proteases, 95
Glucocorticoids (GCs), as host defense,
Graft-versus-host disease, 520–521, 522, 523
G-protein signaling pathways, secondary
Goblet cells, 239
Glutamic proteases, 95
Glucocorticoids (GCs), as host defense,
Identification, Aspergillus species and strains (Continued)

single-locus sequence typing, 25–27

Immune system, innate, 229–234; see also Host defenses; specific immune components

collectins, 283–284

complement system, 286

contributing to fungal pathogenicity, 247–248

C-reactive protein, 286

type lectins, 282–285

DC-SIGN, 282–283

pentraxin-1, 284–285

in immunotherapy, 471

recognition of β-1,3 glucan, 231, 284

role in inflammatory response, 231

role in macrophage-mediated phagocytosis, 231, 285

structure of, 284

TLR2 signaling, 231, 471

epithelial cells, 234

macrophages

inflammation, 231–232

phagocytosis and killing of conidia, 230–231

neutrophils

defensins, 234

inflammation, 233–234

phagocytosis, 232–233

overview, 279

pattern recognition receptors (PRR), 230, 280–283

pentraxins, 285–286

PTX3, 283–286, 472

Toll-like receptors, 280–282

Immunosuppressants

adjunctive immunotherapeutic agents, 512

drug interactions with antifungal agents, 511–512

Immunotherapy, for aspergillosis, 469–475

colony-stimulating factors, 469

cytokine administration and depletion, 472

future research, 556–557

granulocyte transfusions, 470

IDO, 473–474

IL-17, 473–474

interferon, 472–473

myeloid transfusions, 470–471

neutrophil numbers, augmentation of, 469–471

pentraxin-3 (PTX3), 472

PRR ligands, 471–472

vaccination, 474

incidence of, 39

iron and, 123

in malignancy and stem cell transplant recipients, 519–526

mouse model, 203

in pediatric patients, 531–543

risk factors, table of, 468

in solid organ transplant recipients, 503–513

therapy, 491–498

combination, 496

current consensus, 491–494

current controversies, 494–498

factors influencing individualization, 498

failure, 495

immunomodulators, 496

outline, 493

preemptive, 495–496

primary, 494

surgical excision, 496

Invasive pulmonary aspergillosis (IPA)

angio-invasive pulmonary aspergillosis, 406

caspofungin for, 439

clinical presentation, 295–296

development of, 230

diagnosis, 296–297

differential diagnosis, early IPA, 354–355

differential diagnosis, late IPA, 354

epidemiology, 293–294

gliotoxin and, 189, 190

histology and radiology, 353–357

histopathology of early IPA, 354–355

histopathology of late IPA, 355–356

incidence of, 293–294

mortality rate, 294

mouse model, 189, 190, 232

pathophysiology, 294–295

pulmonary immune reconstitution inflammatory syndrome, 295–296

radiographic presentation, 296

radiology, early IPA, 354

radiology, late IPA, 356

risk factors for, 293

treatment, 297

Iron (Fe)

acquisition

low-affinity uptake, 119–120

ph and, 122

reductive iron assimilation (RIA), 119

siderophore-mediated uptake, 113–120

virulence and, 122–123

as micronutrient in A. fumigatus, 107

regulation of iron metabolism, 121–122

storage, in fungal cells, 120

siderophore-mediated, 120

vacuolar, 120

virulence and, 122–123

Iron-responsive GATA factors (IRGFS), 121–122

Isavuconazole, 418, 419, 429

Itraconazole

absorption at gastric pH, 446–447

adverse effects, 421

for allergic bronchopulmonary aspergillosis, 341, 343–344

amphotericin B vs amphotericin B deoxycholate, compared, 420

animal studies, 417–418

approved indications, 418

breakthrough fungal infections, 421

for cerebral aspergillosis, 309, 310, 311, 313

for chronic aspergillosis, 326–327

clinical efficacy, 420–421

dosage, mechanism of action, toxicity, and spectrum, 492

guidelines, 421–422

hepatic biotransformation of, 449–450

P-glycoprotein and, 447–448

pharmacokinetics and metabolism, 419–420

prophylactic use, 420, 484, 486

safety and tolerability, 421

salvage therapy, 494

spectrum of activity, 417

use and administration in aspergillosis, 421

in vitro activities against Aspergillus spp., 419

ITS regions, comparative sequence analysis of, 18–19

laeA gene, 193–194

LightCycler, 374

Lipogalactomannan, in cell wall, 171

Liposomal amphotericin B (LAMB) antifungal efficacy, 405–406

clinical indications, 407

molecular composition, schematic, 398, 404

pharmacokinetics, 404–405

physicochemical properties, 397

safety, 405–406

treatment of invasive aspergillosis, 406–407

voriconazole, compared, 424

Liposomal nystatin

clinical trials, 407–408

physicochemical properties, 397

Liver transplant recipients, 503–504

Low-affinity iron (Fe²⁺) uptake, 119–120

Lung transplant recipients, 504–505, 507
Macrophages
inflammation, 231–232
inhibition by gliotoxin, 188
macrophage-mediated phagocytosis and killing, 218–220
phagocytosis and killing of conidia, 230–231
MagNA Pure LC DNA extraction (Roche), 374
Malignancy
32–34
Monoclonal antibodies, 556–557
Molecular methods for species identification, 21–22
Microsatellite typing, 21–22
Micafungin
Methionine aminopeptidase 2 (MetAP-2), 164
Metallothioneins, zinc-chelating, 108, 109
Metallo-endoproteases, 95–96
Melanin
Mating type, 10–11, 164
Marijuana, as source of fungal spores, 482
Mating type, 10–11, 164
Meningitis, 519–526
Magnaporthe grisea
Mannose-binding lectin (MBL), 283–284
INDEX 565
Polar growth, see also Phylogenetic species recognition concept, 17
Plants, as source of fungal spores, 482
Polyenes, 492; Polycyclic triterpenes, 188
Phospholipids, 75–84
Phospholipases, 75–84
Phagocytosis, 224–225
pH, 224–225
Persister cells, in biofilms, 153, 154
Pentraxins, 285, 286
Penicillin, as secondary metabolite, 192, 194
Pentane-1,2-diol (PTD), 484
Polymerase chain reaction (PCR), for detection of Aspergillus spp., 484
Polymerase chain reaction (PCR), for detection of Aspergillus species, 484
Polymers, 101
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Polymerase chain reaction (PCR), for detection of Aspergillus fumigatus, 484
Surfactant protein A (SP-A), 283–284
Surfactant protein D (SP-D), 283–284
Surgical excision, 496

T cells
CD4+ T cells and allergic response to A. fumigatus, 263–274
immunopathogenesis, 472
importance in protection against invasive aspergillosis, 263, 272
inhibition by gliotoxin, 188
role of Th17 T cells, 272, 473
T regs, 254–256, 257, 258, 271, 473
Th activation by dendritic cells (DC), 251–254

TAFC, see Triacetylfusarinine C

TaqMan, 374

Targeted gene disruption, as strategy to identify essential genes, 42–44

Terbinafine, 459, 462

Thermal stress, 201–203; see also Thermotolerance

Thermotolerance

cell wall integrity, 203
CgrA protein, 202–203
composting, 201, 203
gene expression, temperature-regulated, 202
heat shock proteins, 202
link to virulence, 201–202
O-glycosylation of proteins, 203
ribosome biosynthesis and, 203
THTA gene, 202
upstream open reading frames (uORFs), 202

THTA gene, and thermotolerance, 202

Tobacco, as source of fungal spores, 482
Toll-like receptors (TLRs), 230, 231, 234, 248, 280–282
TOR kinase, 70, 203
Torsades de pointes (TdP), 451–453

Transcription factors
coregulation of gene clusters, 192–193
ZafA, 109, 111, 123

Zap1, 108, 111
zinc homeostasis and, 108–109

Transplantation
as risk factor for aspergillosis, 230
solid organ transplant (SOT) recipients, 503–513

Transporters, siderophore as antifungal drug carriers, 117
gene expression and pH, 122
number of putative genes encoding, in Aspergillus spp., 117

phylogeny, 118
substrate specificities, 117

Transporters, zinc
CDF family, 108
metallothioneins (MTs), 108, 109
ZIP family, 108–111
ZrtA, 109–111
ZrtB, 109–111

Triacetylfusarinine C (TAFC), 113–118, 122, 123

Triazoles, see Azoles

Trichothecene (Tr) genes, 36, 37
Tripeptidyl-peptidases, 98–99
Triterpenes, polycyclic, 188
TRR1 gene, 54

Tryptophan metabolic pathway, and control of dendritic cell state, 254–255, 256

Tumor necrosis factor-α (TNF-α), 231

UK Fungal PCR Consensus Group, 375, 383

Upstream open reading frames (uORFs), 202

Vaccines, antifungal
β-1,3-glucan as vaccine component, 474
dendritic cells in transplantation, 256–258, 474
strategies, 272–274

Vacuolar iron storage, 120

Verruculogen, 185–187, 241
Virus biology, see Pathogenicity and virulence, of A. fumigatus

Voriconazole
adverse effects, 424–425

amphotericin B, compared, 423, 424
animal studies, 422
approved indications, 418
for bone aspergillosis, 424
breakthrough fungal infections, 425
for cerebral aspergillosis, 311, 312, 313
for chronic aspergillosis, 326
clinical efficacy, 423–424
dosage, mechanism of action, toxicity, and spectrum, 492
guidelines, 425–426
hepatic biotransformation of, 449–450
liposomal amphotericin B, compared, 424
pharmacokinetics and metabolism, 419–420, 422–423
as primary therapy, 491
prophylactic use, 484–485, 486
safety and tolerability, 424–425
spectrum of activity, 422

Treatments failures, 495
use and administration in aspergillosis, 425

Whole-genome expression array, 202

Xenosiderophores, 117

ZafA
as potential antifungal drug target, 124
zinc homeostasis and, 109, 111–112

Zinc (Zn), as micronutrient in A. fumigatus cytokine response, 107–108, 111–112
homeostasis, 108–111
pathogenicity and, 107–108, 111–112
transporters, 108–111

CDF family of transporters, 108
metallothioneins (MTs), 108
ZIP family of transporters, 108–111

Zinc binuclear proteins, 193
Zinc finger motifs, GATA transcription factors and, 121
ZIP family, of zinc transporters, 108–111
Zrt proteins, 109–111