Aspergillus fumigatus and Aspergillosis
Aspergillus fumigatus
and Aspergillosis

EDITED BY
Jean-Paul Latgé
Unité des Aspergillus, Institut Pasteur
Paris, France

William J. Steinbach
Division of Pediatric Infectious Diseases
and Department of Molecular Genetics and Microbiology
Duke University Medical Center
Durham, North Carolina USA

WASHINGTON, D.C.
To the patients with aspergillosis, and their families, who have been told there is little hope.

To our friends, colleagues, lab members, students, and families with whom we share this simultaneous love and hatred of *Aspergillus fumigatus*.

And to Michelle, who has taught us both about surviving illness with dignity.
Contents

Contributors xi
Preface xvii

1 Introduction 1
 David A. Stevens

I THE SPECIES

2 Morphology and Reproductive Mode of Aspergillus fumigatus 7
 Robert A. Samson, János Varga, and Paul S. Dyer

3 Molecular Methods for Species Identification and Strain Typing of Aspergillus fumigatus 15
 S. Arummozhi Balajee and Corné H. W. Klaassen

4 Aspergillus fumigatus Specificities as Deduced from Comparative Genomics 29
 Amandine Gastebois, Karine Lambou, Joanne Wong Sak Hoi, and Fredj Tekaia

5 Essential Genes in Aspergillus fumigatus 39
 Wenqi Hu, Bo Jiang, and Terry Roemer

II GROWTH AND SENSING, OR RESISTING ENVIRONMENTAL STRESS

6 Aspects of Primary Carbon and Nitrogen Metabolism 63
 Sven Krappmann

7 Phospholipases of Aspergillus fumigatus 75
 Geoffrey D. Robson

8 Aspergillus fumigatus Secreted Proteases 87
 Michel Monod, Olivier Jousson, and Utz Reichard

9 Cations (Zn, Fe) 107
 José Antonio Calera and Hubertus Haas
10 Conidial Germination in *Aspergillus fumigatus* 131
 Nir Osherov

11 Growth Polarity 143
 Michelle Momany and Yainitzsa Hernández-Rodríguez

12 Biofilm Formation in *Aspergillus fumigatus* 149
 Anne Beauvais and Frank-Michael Müller

13 Signal Transduction 159
 Gregory S. May and Taylor Schoberle

14 Cell Wall of *Aspergillus fumigatus*: a Dynamic Structure 169
 Isabelle Mouyna and Thierry Fontaine

15 Genetic Regulation of *Aspergillus* Secondary Metabolites and Their Role in Fungal Pathogenesis 185
 Robert A. Cramer, Jr., E. Keats Schwab, and Nancy P. Keller

16 *Aspergillus fumigatus*: Survival and Death under Stress 201
 David S. Askew and Judith C. Rhodes

II IMMUNE DEFENSE AGAINST *ASPERGILLUS*

17 Reactive Oxygen Intermediates, pH, and Calcium 217
 Elaine Bignell

18 Innate Defense against *Aspergillus*: the Phagocyte 229
 Michel Chignard

19 Interactions of *Aspergillus* with the Mucosa 239
 William W. Hope and Scott G. Filler

20 Dendritic Cells in *Aspergillus* Infection and Allergy 247
 Luigina Romani

21 CD4+ T-Cell Responses to *Aspergillus fumigatus* 263
 Amariliz Rivera and Eric G. Pamer

22 Innate Recognition of *Aspergillus fumigatus* by the Mammalian Immune System 279
 Lisa M. Graham and Gordon D. Brown

III THE SPECTRUM OF DISEASE

23 Invasive Pulmonary Aspergillosis 293
 Aimee K. Zaas and Barbara D. Alexander

24 *Aspergillus* Sinusitis and Cerebral Aspergillosis 301
 Stefan Schwartz and Markus Ruhnke

25 Chronic Aspergillosis 319
 David W. Denning

26 Allergic Bronchopulmonary Aspergillosis 333
 Richard B. Moss

V DIAGNOSIS

27 Histology and Radiology 353
 Reginald Greene, Kazutoshi Shibuya, and Tsunehiro Ando
Galactomannan and Anti-Aspergillus Antibody Detection for the Diagnosis of Invasive Aspergillosis
Paul E. Verweij

Aspergillus PCR
P. Lewis White and Rosemary A. Barnes

VI THERAPY

Polyenes in the Treatment of Aspergillosis
Andreas H. Groll and Thomas J. Walsh

Aoles in the Treatment of Aspergillosis
Raoul Herbrecht and Yasmine Nivoix

Echinocandins in the Treatment of Aspergillosis
Johan Maertens and Vincent Maertens

Antifungal Drug Interactions
Russell E. Lewis

Antifungal Mechanisms of Action and Resistance
David S. Perlin and Emilia Mellado

Immunotherapy
Brahm H. Segal and Luigina R. Romani

VII TIMING OF ANTIFUNGAL THERAPY

Prophylaxis against Invasive Aspergillosis
Jo-Anne H. Young

Therapy of Invasive Aspergillosis: Current Consensus and Controversies
Dimitrios P. Kontoyiannis and Kieren A. Marr

VIII SPECIFIC PATIENT POPULATIONS

Invasive Aspergillosis in Solid Organ Transplant Recipients
Hsin-Yun Sun, Patricia Muñoz, Emilio Bouza, and Nina Singh

Invasive Aspergillosis in Malignancy and Stem Cell Transplant Recipients
Elio Castagnola and Claudio Viscoli

Invasive Aspergillosis in Pediatric Patients
Emmanuel Roilides and Paraskevi Panagopoulou

IX FUTURE DIRECTIONS

A Perspective View of Aspergillus fumigatus Research for the Next Ten Years
Jean-Paul Latgé and William J. Steinbach

Index
Contributors

Barbara D. Alexander
Dept. of Medicine/Infectious Diseases and Dept. of Pathology, Duke University Medical Center, DUMC Box 3035, Durham, NC 27710

Tsunehiro Ando
Dept. of Surgical Pathology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo 143-8541, Japan

David S. Askew
Dept. of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0529

S. Arunmozhi Balajee
Mycotic Diseases Branch, Centers for Disease Control and Prevention, Mail Stop G11, 1600 Clifton Rd., Atlanta, GA 30333

Rosemary A. Barnes
Dept. of Medical Microbiology, Cardiff University, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom

Anne Beauvais
Unité des Aspergilloses, Institut Pasteur, 25, Rue du Docteur Roux, 75015 Paris, France

Elaine Bignell
Dept. of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, United Kingdom

Emilio Bouza
Clinical Microbiology and Infectious Diseases Dept., Hospital General Universitario Gregorio Marañón, Spanish Study Group of Infection in Transplant Patients (GESITRA), and CIBER de Enfermedades Respiratorias (CIBERES), 28007 Madrid, Spain

Gordon D. Brown
Institute of Infectious Disease and Molecular Medicine, Division of Immunology, University of Cape Town, Observatory, 7925, South Africa
José Antonio Calera
Instituto de Microbiología-Bioquímica, Centro mixto CSIC/USAL,
Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza
Doctores de la Reina s/n, 37007 Salamanca, Spain

Elio Castagnola
Infectious Diseases Unit, Dept. of Hematology and Oncology, “G. Gaslini”
Children Hospital, 16147 Genoa, Italy

Michel Chignard
Institut Pasteur, Unité de Défense innée et Inflammation, and Inserm, U874,
25, Rue du Dr Roux, 75015 Paris, France

Robert A. Cramer, Jr.
Dept. of Veterinary Molecular Biology, Montana State University–Bozeman,
Bozeman, MT 59718

David W. Denning
Medicine and Medical Mycology, University of Manchester, and Education and
Research Centre, Wythenshawe Hospital, Manchester M23 9LT, United
Kingdom

Paul S. Dyer
School of Biology, University of Nottingham, Nottingham NG7 2RD, United
Kingdom

Scott G. Filler
Division of Infectious Diseases, Dept. of Medicine, Los Angeles Biomedical
Research Institute at Harbor-UCLA Medical Center, Torrance, CA, and The
David Geffen School of Medicine at UCLA, Los Angeles, CA 90502

Thierry Fontaine
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris,
France

Amandine Gastebois
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris,
France

Lisa M. Graham
Institute of Infectious Disease and Molecular Medicine, Division of
Immunology, University of Cape Town, Observatory, 7925, South Africa

Reginald Greene
Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114

Andreas H. Groll
Infectious Disease Research Program, Center for Bone Marrow Transplantation
and Dept. of Pediatric Hematology/Oncology, University Children’s Hospital,
48149 Muenster, Germany

Hubertus Haas
Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-
Pregl-Str. 3, A-6020 Innsbruck, Austria

Raoul Herbrecht
Dept. of Oncology and Hematology, Hôpital de Hautepiere, 67098
Strasbourg, France
Yainitza Hernández-Rodríguez
Dept. of Plant Biology, University of Georgia, Athens, GA 30602

William W. Hope
School of Translational Medicine, The University of Manchester, Manchester, United Kingdom

Wenqi Hu
Merck Frosst Center for Fungal Genetics, Merck & Co., Inc., Montreal, Quebec, H2X 3Y8, Canada

Bo Jiang
GlycoFi, Inc., Lebanon, NH 03766

Olivier Jousson
Centre for Integrative Biology, University of Trento, 38100 Trento, Italy

Nancy P. Keller
Dept. of Plant Pathology and Dept. of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI 53706

Corné H. W. Klaassen
Dept. of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands

Dimitrios P. Kontoyiannis
Dept. of Infectious Diseases, Infection Control and Employee Health and Dept. of Bone Marrow Transplantation, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

Sven Krappmann
Research Center for Infectious Diseases, Julius-Maximilians-University Würzburg, Würzburg, Germany

Karine Lambou
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris, France

Jean-Paul Latgé
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris, France

Russell E. Lewis
Dept. of Clinical Sciences and Administration, The University of Houston College of Pharmacy, and The University of Texas M. D. Anderson Cancer Center, 1441 Moursund St., #424, Houston, TX 77030

Johan Maertens
Dept. of Haematology, Acute Leukaemia and Hematopoietic Stem Cell Transplantation Unit, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium

Vincent Maertens
Dept. of Haematology, Acute Leukaemia and Hematopoietic Stem Cell Transplantation Unit, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium

Kieren A. Marr
Comprehensive Transplant and Oncology Infectious Diseases Program, Dept. of Medicine, Johns Hopkins University, Baltimore, MD 21205
Gregory S. May
Division of Pathology and Laboratory Medicine, Dept. of Laboratory Medicine, Research, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030

Emilia Mellado
Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2, (28.220) Majadahonda, Madrid, Spain

Michelle Momany
Dept. of Plant Biology, University of Georgia, Athens, GA 30602

Michel Monod
Service de Dermatologie, Laboratoire de Mycologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland

Richard B. Moss
Center for Excellence in Pulmonary Biology, Dept. of Pediatrics, Stanford University, Palo Alto, CA 94304

Isabelle Mouyna
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris, France

Frank-Michael Müller
Päd. Pneumologie & Speziale Infektiologie, Zentrum für Kinder- u. Jugendmedizin, INF 153, D-69120 Heidelberg, Germany

Patricia Muñoz
Clinical Microbiology and Infectious Diseases Dept., Hospital General Universitario Gregorio Marañón, Spanish Study Group of Infection in Transplant Patients (GESITRA), and CIBER de Enfermedades Respiratorias (CIBERES), 28007 Madrid, Spain

Yasmine Nivoix
Dept. of Pharmacy and Pharmacology, Hopital de Hautepierre, 67098 Strasbourg, France

Nir Osherov
Dept. of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel

Eric G. Pamer
Infectious Disease Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021

Paraskevi Panagopoulou
Dept. of Pediatric Oncology, Hippokration Hospital, Thessaloniki 54642, Greece

David S. Perlin
Public Health Research Institute, New Jersey Medical School-UMDNJ at the International Center for Public Health, 225 Warren St., Newark, NJ 07103

Utz Reichard
Dept. of Medical Microbiology and National Reference Center for Systemic Mycoses, University Hospital of Goettingen, 37075 Goettingen, Germany

Judith C. Rhodes
Dept. of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0529
Amariliz Rivera
Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021

Geoffrey D. Robson
Faculty of Life Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, United Kingdom

Terry Roemer
Dept. of Infectious Disease, Merck & Co. Inc., 126 East Lincoln Ave., Rahway, NJ 07065

Emmanuel Roilides
3rd Dept. of Pediatrics, Aristotle University Medical School, Hippokration Hospital, Thessaloniki 54642, Greece

Luigina Romani
Microbiology Section, Dept. of Experimental Medicine and Biochemical Sciences, and Fondazione “Istituto di Ricovero e Cura per le Biotecnologie Trapiantologiche” I.B.i.T., Perugia, Italy

Markus Ruhnke
Medizinische Klinik und Poliklinik II, Charité – Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany

Robert A. Samson
CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands

Taylor Schoberle
Division of Pathology and Laboratory Medicine, Dept. of Laboratory Medicine, Research, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030

E. Keats Schwab
Dept. of Plant Pathology and Dept. of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI 53706

Stefan Schwartz
Medizinische Klinik III, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany

Brahm H. Segal
Dept. of Medicine and Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263

Kazutoshi Shibuya
Dept. of Surgical Pathology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-Ku, Tokyo 143-8541, Japan

Nina Singh
Dept. of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA

William J. Steinbach
Division of Pediatric Infectious Diseases and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

David A. Stevens
Dept. of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, and Stanford University Medical School, San Jose, CA 95128-2699
Hsin-Yun Sun
Dept. of Internal Medicine, National Taiwan University Hospital and National
Taiwan University College of Medicine, Taipei, Taiwan

Fredj Tekaia
Unité de Génétique Moléculaire des Levures (URA 2171 CNRS and UFR927
Univ. P. et M. Curie), Institut Pasteur, 25, Rue du Dr Roux, 75724 Paris
Cedex 15, France

János Varga
CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The
Netherlands

Paul E. Verweij
Dept. of Medical Microbiology, University Medical Center St. Radboud, and
Nijmegen University Center for Infectious Diseases, Inflammation and
Immunity, Nijmegen, The Netherlands

Claudio Viscoli
Division of Infectious Disease, University of Genoa, San Martino University
Hospital, 16132 Genoa, Italy

Thomas J. Walsh
Immunocompromised Host Section, Pediatric Oncology Branch, National
Cancer Institute, National Institutes of Health, Bethesda, MD 20892

P. Lewis White
NPHS Microbiology Cardiff, University Hospital of Wales, Cardiff CF14 4XN,
United Kingdom

Joanne Wong Sak Hoi
Unité des Aspergillus, Institut Pasteur, 25, Rue du Dr Roux, 75015 Paris,
France

Jo-Anne H. Young
Division of Infectious Disease and International Medicine, Dept. of Medicine,
University of Minnesota, MMC 250, 420 Delaware St. S.E., Minneapolis, MN
55455

Aimee K. Zaas
Dept. of Medicine/Infectious Diseases, Duke University Medical Center,
DUMC Box 3355, Durham, NC 27710
Preface

Medicine has advanced astonishingly fast in the past several decades. As newer medical technologies are repairing the human body in ways never imagined only a few years ago, infectious diseases are emerging as a leading cause of morbidity and mortality among these newly susceptible patients. Invasive and chronic fungal infections have become a formidable clinical opponent, and foremost among them is *Aspergillus fumigatus*.

This volume has been carefully engineered to offer the latest insights into the fundamental biology and pathogenesis of this organism and how it establishes disease, as well as the newest strategies for characterizing, diagnosing, and treating its spectrum of clinical infection. Other great textbooks have been published which address general fungal physiology, overall medical mycology, the biology of the aspergilli specifically, or antifungal therapy, yet this is the first volume which specifically merges the newest scientific knowledge with the latest clinical experience and data to yield a combined synopsis of this organism and its diseases.

Here we have assembled chapters from a large and international contingent of experts in the field to explore every major aspect of *A. fumigatus* and how it kills so many patients. This includes chapters on the species itself, including morphology and unique essential genes. We also discuss the importance of growth and germination as well as the organism’s response to environmental stress by moving from a saprophyte to a pathogen. The interface with the host immune system is paramount to disease phenotype, and this is outlined, as are the many faces of disease created by *A. fumigatus*. Newer diagnostic strategies are covered, including advances from the molecular age, the optimal timing of antifungal therapy, and the strategic choice of which agent to use.

It is our intent that *Aspergillus fumigatus and Aspergillosis* will encompass the current state of knowledge to serve as a resource guide for the next decade of study on this organism and the many diseases it causes. We hope that this volume will also serve as a catalyst for future young investigators to begin their own explorations in this field, to challenge the unproven dogmas and define the mechanisms of disease. This textbook is purposefully designed to unify the world’s *Aspergillus* experts and collaborate toward our common goal. Here we outline today’s state of the art and propose tomorrow’s difficult and unanswered questions.

It has been our pleasure to serve as the coeditors, and also as authors, for this exciting new book merging science and medicine. We thank the many con-
tributors to this new voyage; their expertise and efforts have forged a complete volume summarizing the many facets of *A. fumigatus*. We are also grateful to Gregory Payne, our editor at ASM Press, for his tireless energy and dedication to producing such an excellent book. We hope that our effort not only outlines the best thinking, but inspires creative solutions to the growing problem of *A. fumigatus* and aspergillosis.

Jean-Paul Latgé
Institut Pasteur

William J. Steinbach
Duke University
INDEX

ABCD, see Amphotericin B colloidal dispersion
Abelcet, see Amphotericin B lipid complex
ABLC, see Amphotericin B lipid complex
ABPA, see Allergic bronchopulmonary aspergillosis
Acquired immunodeficiency syndrome (AIDS)
aspergilloma, 360
pediatric patients, 535–536
Adhesion, conidial, 132, 138–140
Adaptive antigen-specific T cell therapies,
corticosteroids and, 255–256
role of CD4+ helper T cell overreaction and,
247
schematic of dendritic cell subsets and,
254
Afut1 gene, 193
aflR gene, 193
AFLP (amplified fragment length polymorphism), 22–23
Afut1 hybridization, 20–21
Air crescent sign, 356, 538–539
Airway invasive pulmonary aspergillosis, 357
Albaconazole, 419, 429
Albamon, 419, 429
Allergic bronchopulmonary aspergillosis (ABPA)
in asthma patients, 335, 337, 340–341
characteristics, 334
corticosteroids and, 255–256
in cystic fibrosis patients, 335, 337, 341–344
diagnosis of, 340, 342–343
differential diagnosis, 359
fungi associated with, 334
immunopathology, 358
immunopathogenesis, 335–337
mouse model, 335, 339
pathogenesis, 334–337
pediatric patients, 536–537
radiology, 358–359
risk factors for, 338–343
CF transmembrane conductance regulator (CFTR) gene, 339
collectin polymorphisms, 338
IL-10 polymorphisms, 338–339
IL-18 polymorphisms, 339
MHC alleles, 339
table of, 338
role of CD4+ T-cell response, 335–337
serodiagnosis of, 337–338
stages, 341
treatment, 341, 343–344
Allergic response to Aspergillus
 corticosteroids and, 255–256
helper T cell overreaction and, 247
IDO+ pDC and prevention of, 255
role of CD4+ T cells, 263–274
schematic of dendritic cell subsets and, 253
Allergic sinusitis, 302
Allylamines
fungal resistance to, 462
terbinafine, 459, 462
Alveolar macrophages, see Macrophages
Aminocandin, 459
Aminopeptidases, 97
Amphotericin B colloidal dispersion (ABCD), 399–402
amphotericin B lipid complex (ABLC), 398, 402–404
antifungal efficacy, 399
liposomal amphotericin B (LAMB), 398, 404–407
molecular composition, schematic, 398
pharmacokinetics and pharmacodynamics, 397–398
principles of drug distribution, 396–397
safety, 399
mechanism of action, 457, 458
in pediatric patients, 540–541
prophylactic use, 483
structure of, 392
in vitro activities against Aspergillus spp., 419
Amphotericin B colloidal dispersion (ABCD)
adverse effects, 401
for cerebral aspergillosis, 309, 310, 311, 313
for chronic aspergillosis, 32, 325, 327
DAMB, 310, 311, 391–396
doseage, mechanism of action, toxicity, and spectrum, 492
drug interactions, 445
echinocandins, compared to, 435, 438, 439, 441
lipid formulations of, 396–397, 396–407, 491
amphotericin B colloidal dispersion (ABCD), 399–402
amphotericin B lipid complex (ABLC), 398, 402–404
antifungal efficacy, 399
liposomal amphotericin B (LAMB), 398, 404–407
molecular composition, schematic, 398
pharmacokinetics and pharmacodynamics, 397–398
principles of drug distribution, 396–397
safety, 399
mechanism of action, 457, 458
in pediatric patients, 540–541
prophylactic use, 483
structure of, 392
in vitro activities against Aspergillus spp., 419
Amphotericin B colloidal dispersion (ABCD)
adverse effects, 401
for cerebral aspergillosis, 309, 310, 311, 313
for chronic aspergillosis, 32, 325, 327
DAMB, 310, 311, 391–396
doseage, mechanism of action, toxicity, and spectrum, 492
drug interactions, 445
echinocandins, compared to, 435, 438, 439, 441
lipid formulations of, 396–397, 396–407, 491
Amphotericin B colloidal dispersion (ABCD), 399–402
amphotericin B lipid complex (ABLC), 398, 402–404
antifungal efficacy, 399
liposomal amphotericin B (LAMB), 398, 404–407
molecular composition, schematic, 398
pharmacokinetics and pharmacodynamics, 397–398
principles of drug distribution, 396–397
safety, 399
mechanism of action, 457, 458
in pediatric patients, 540–541
prophylactic use, 483
structure of, 392
in vitro activities against Aspergillus spp., 419
Anidulafungin
for cerebral aspergillosis, 309
characteristics, 437
clinical data, 440
dosage, mechanism of action, toxicity, and spectrum, 493
spectrum of activity, in vitro, 436
Antibodies
detection of anti-Aspergillus, 365–367
monoclonal, 556–557
Antifungal drug interactions, 445–454
cardiac conduction, pharmacokinetic interactions affecting, 451–453
database of, 453–454
drug characteristics predisposing to, 446
drug transporters, 450–451
in the gastrointestinal tract, 446–448
gastric pH and absorption, 446–447
presystemic biotransformation and clearance, 447–448
role of cytochrome P450 3A4/3A5 (CYP3A4/3A5), 448
role of P-glycoprotein (P-gp), 447–448
hepatic biotransformation, 449–450
chemotherapy agents, 450
immunosuppressants, 450
role of cytochrome P450 family, 449–450
table of common drug interactions, 450
with immunosuppressants, 511–512
management of, 453–454
pharmacodynamic interactions, 445–446
pharmacokinetic interactions, 445–446
recommendations for drug monitoring, 454
renal elimination, 451
risk factors, 445
in solid organ transplant recipients, 511–512
torsades de pointes (TdP), 451–453
Antifungal drugs, see also Prophylaxis, for aspergillosis; specific applications; specific drugs
alloxazines, 458, 459
amphotericin B, 309, 310, 311, 313, 325, 326, 327, 540–541
azoles, 417–430
alcavanazole, 429
drug monitoring, 429–430
isavuconazole, 429
itraconazole, 409–411, 313, 326–327, 341, 343–344, 417–422
mechanism of action, 417
pediatric patients, 541–542
posaconazole, 426–428
ravuconazole, 428
use as risk factor for zygomycosis, 425
voriconazole, 309, 311–313, 326–327, 422–426
caspofungin, 309, 310, 311
micafungin, 309, 310, 311
hepatic biotransformation of, 449–450
future, 555–556
essential genes as targets, 36–40, 51–55

carbon metabolism, 63, 66–68
immunocompromised host, 553–554
molecular tools for subtyping, 19–27
invasive aspergillosis (IA), 36
resistance to, 459–463
A. fumigatus resistance in
resistance by persister cells in biofilms, prophylactic use, 482–486
in pediatric patients, 542–543
micafungin, 437, 440–441
combination therapy, 439–440
treatment, 326
Aspergillosis, see also Invasive aspergillosis
chronic antifungal and surgical treatment of, 326–328
aspergillosis, 320–322
bronchitis, 324–325
chronic cavitary pulmonary aspergillosis (CCPA), 321, 322–323
chronic fibrosing pulmonary aspergillosis, 323
chronic invasive and granulomatous sinusitis, 324
chronic pulmonary aspergillosis, 319–320
chronic rhinosinusitis, 320
clinical features and diagnosis, 321–326
cutaneous aspergillosis, 328
definitions and nomenclature, 319
epidemiology, 319–320
fungus ball of the sinus, 320–321, 323–324, 327
ophomycosis, 328
other pulmonary diseases, 321
otis, 325, 328
primary cutaneous aspergillosis and onychomycosis, 325
prognosis, 328
sinusitis, 319, 320–321, 323–324
syndromes, table of, 320
underlying disease, pathology, and pathogenesis, 320–321
corticosteroid treatment as risk factor for, 320
immunocompromised host, 63–64
neuropaenia as risk factor for, 230
in pediatric patients, 531–543
transplantation as risk factor for, 230
Aspergillus fumigatus allergens, 264–265, 337
auxotrophs, 64–66
biofilm formation, 149–156
carbon metabolism, 63, 66–68
CD4+ T-cell responses to, 263–274
cell wall of, 169–180
comparative genomics, 29–37
composting and, 201, 202
conidial germination, 131–140
ecological niches, 63, 64
essential genes in, 39–55
future research, 549–557
Trojan horse approach, 117
use in solid organ transplant recipients, 508–513
voriconazole, 309, 311, 312, 313, 326, 422–426
ZafA as potential target, 123
Antioxidant factors, 205–206, 220, 221
Apoptosis fungal, 207–209
host cell, 188, 189
Aspata-re-specific cysteine proteases, see Caspase superfamily
Aspartic proteases, 94–95
Aspergilloma in AIDS patients, 360
caspofungin, 436, 437, 438–440
azoles, compared to, 435, 439
anidulafungin, 436, 437, 440
amphotericin B family, compared to, 435, 438, 439
itraconazole, 309, 310, 311, 313, 326–327, 328, 341, 343–344, 417–422
mechanism of action, 417
pediatric patients, 541–542
mode of action, 436
micafungin, 437, 440–441
drug interactions, 438
phospholipases of, 75–84
sexuality, evidence for, 10–11
signal transduction, 159–165
survival and death under stress, 201–209
sexuality, evidence for, 10–11
signal transduction, 159–165
survival and death under stress, 201–209
virulence factors, 549–552
Aspergillus fumigatus var. occulatum, 16
Aspergillus lentulus resistance to antifungal drugs, 462
species identification, 15–18
Aspergillus nidulans calcium signaling, 137–138
conidial germination studies, 131–134
conidium-enriched transcripts (cet), 135–136
Genetic analysis of, 134
as genetic model for genus, 223
histidine kinase signaling, 137
as genetic model for genus, 223
histidine kinase signaling, 137
Aspergillus section Fumigati, 8, 15–17
Asthma, allergic bronchopulmonary aspergillosis (ABPA) and, 335, 337, 340–341
AURI gene, 54–55
Autophagy
conidiation and, 205
heterokaryon incompatibility (HI), 209
Azoles, 417–430; see also specific drugs
albiconazole, 429
CYP3A4/3A5 and, 448
drug monitoring, 429–430
fluconazole, 483, 485
fungal resistance to, 460–461
gastric pH, effect on absorption, 446–447
hepatic biotransformation of, 449–450
isavuconazole, 429
troconazole, 309–311, 313, 326–327, 341, 343–344, 417–422
mechanism of action, 417, 458
in pediatric patients, 541–542
P-glycoprotein and, 447–448
posaconazole, 426–428
prophylactic use, 483–485
ravuconazole, 428
serum monitoring, 495
use as risk factor for zygomycosis, 425
voriconazole, 309, 311–313, 326–327,
prophylactic use, 483–485
ravuconazole, 428
P-glycoprotein and, 447–448
for cerebral aspergillosis, 309, 310, 311
Combination therapy, 439–440
salvage treatment of aspergillosis, 438, 440
Caspofungin Caspase superfamily, 207–209
Carboxypeptidases, 99, 100
Caspase 207–209
carbonate, conidial germination and,
carbon sensing, conidial germination and,
carbon metabolism
Candidate genes, in conidial germination,
cAMP-dependent protein kinase (PKA)
calcineurin, 137–138
Calcium signaling, 136–137
Calciumensing, 137–138
Calcium signaling, 137–138
cAMP-dependent protein kinase (PKA)
signaling pathway
calcium signaling, 137–138
cAMP signaling, 136–137
histidine kinase signaling, 137
RAS signaling, 137
Carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Carbon sensing, conidial germination and,
carbon metabolism
in Aspergillus fumigatus, 63, 66–68
CCAA-binding complex, 122
phospholipids and, 83–84
regulation of, 67–68
sources of carbon, 66–67
virulence and, 68
Conidia (Continued)
CGD patients and, 230
diet, as source of, 482
genetic control of development, 9
herbal supplements, as source of, 482
macrophage response to, 230–231
marijuana, as source of, 482
minimizing exposure to, 481–482
within neutrophils, 232
pathogenesis and, 143
plants, as source of, 482
role of, 131, 143
tobacco, as source of, 482
Conidial germination, 131–140
approaches to analysis of, 134–138
candidate gene approach, 136–168
genetic analysis, 134
genomic approaches, 135–136
biochemical changes during, 131, 132–134
cell wall and, 138–140
at elevated temperatures, 202–203
in epithelial lung cells, 143
host defenses and, 202–203
inhibition by neutrophil-generated ROS, 233
micrographs, 133
model of, 139
in MpoΔ mutants, 164
physiology of, 131–132
protein synthesis, necessity of, 133, 134
rasA and rasB gene expression and, 159
recognition by dectin-1, 231
in sakA deletion mutants, 165
self-inhibition, 132
as trigger for innate immune response, 279
in various media, table of, 132
Corticosteroids
enhancement of A. fumigatus growth, 203
inhibition of ROI production, 231
as risk factor for aspergillosis, 230
treatment of allergic bronchopulmonary aspergillosis (ABPA), 255–256
CopA transcription factor
nitrogen metabolism and, 69–70
virulence of A. fumigatus, 70
C-type lectins, 282–285
collectins, 283–284
DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), 282–283
dectin-1, 284–285, 471
DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), 282–283
dectin-1, 284–285, 471
Culture, for diagnosis in pediatric patients, 538
Cutaneous aspergillosis, in pediatric patients, 537–538
Cyp51A mutants and resistance to azoles, 460–461
CYP1A4/3A5, and clearance of azoles, 448
Cytochrome P450s, and hepatic biotransformation of antifungal drugs, 449–450
Cytokines, see also specific cytokines
IL-1, 111–112
IL-17, 47, 472–474
innate immune response, 230, 231
interferon, 472–473
iron and zinc withholding, 107–108
DAMB, see Amphoterican B deoxycholate (DAMB)
Dectin-1
in immunotherapy, 471
recognition of β-1,3 glucan, 231, 284
role in inflammatory response, 231
role in macrophage-mediated phagocytosis, 231, 285
structure of, 284
TLR2 signaling, 231, 471
Dendritic cells (DC)
activation of specific Th cell populations, 251–254
in Aspergillus infection and allergy, 247–258
electron micrographs of, 250
expression of IDO, 254–256
as fungal vaccines in transplantation, 256–258
at the host-fungus interface, 250–251
interaction with T cells, 249
internalization of pathogens, 248–249, 250–251
migration and CD4+ T cell activation, 266–267
migration to lymphoid organs, 249
modulation of immune response to pathogens, 249
myeloid DC (conventional DC), 249, 251–254, 257
pDC activation of Tregs, 254–256
plasmacytoid DC (pDC), 249, 254–255, 257
TLR-mediated maturation of, 249
as vaccine component, 474
Dexamethasone, 256; see also Corticosteroids
Diagnosis, see also specific disorders; specific methods
allergic bronchopulmonary aspergillosis (ABPA), 337–338, 340, 342–343, 359
future improvements in, 554
invasive aspergillosis (IA)
antifungal therapy and, 363, 364, 365, 368–369
commercial kits, 363–364, 366
computed tomography (CT), 363, 367, 368
detection of anti-Aspergillus antibodies, 363–367
detection of β-glucan, 369
detection of galactomannan, 363–365, 369
use of recombinant antigens, 366, 367
invasive pulmonary aspergillosis (IPA), 296–297, 354–355
Diet, as source of fungal spores, 482
Dipeptidyl-peptidases, 98
Dosage, mechanism of action, toxicity, and spectrum, 493
drug interactions, 438, 445
fungal resistance to, 461
mechanism of action, 458–459
micafungin, 437, 440–441
mode of action, 436
in pediatric patients, 542–543
pharmacokinetics, in humans, 437–438
prophylactic use, 483
safety and tolerability, 441
Endastase, 221, 222, 229, 234
Endothelial aspergillosis, molecular detection of, 382
Endoproteases, 93–97
aseptic proteases, 94–95
glutamic proteases, 95
metallo-endoproteases, 95–96
serine endoproteases, 96–97
Endosomal sorting complex required for transport (ESCRT) and pH signaling, 222–223
Enzyme immunoassay (EIA), for galactomannan commercial kits, 363–364
sensitivity, 364–365
Enzyme-linked immunosorbent assay (ELISA), for detection of anti-Aspergillus antibodies, 366, 367
Epipolythiodioxopiperazine (ETP), 188
ER stress, metacaspases and, 208
Ergosterol biosynthesis pathway, 53
Ergot alkaloids, 187
Estb, 117–119
European Organization for Research and Treatment of Cancer, Mycoses Study Group (EORTC/MSG), 375, 439
Exopeptidases, 97–99
dipeptidyl-peptidases, 97
carboxypeptidases, 99, 100
dipeptidyl-peptidases, 98
tripetidyl-peptidases, 98–99
Extracellular matrix (ECM)
in biofilms
electron micrographs of, 152, 153
resistance to antifungal drugs, 153–154, 156
role of, 153–154, 156
structure and composition, 150–151, 154–155
conidial adhesion and, 139–140
Ferricrocin, 113, 115, 123
Fet3p (multicopper ferroxidase), 119
FKS gene
β-1,3-glucan synthesis and, 174–175
motif search, 32, 33
as target of antifungal drugs, 175
Flucanazole, as prophylactic, 483, 485
Foods, as source of fungal spores, 482
Ftr1p (iron permease), 119
Fumagillin
anticancer properties, 187
control of Nosema diseases in honey bee, 187
genotoxicity of, 187
molecular target of, 187
Fumigaclavines, 187
Fungi
growth, as major virulence determinant, 63–66
Fungus ball of the sinus, treatment, 327
Galactofuranose (Gal-f antigens), 363; Fusidines, 187–188
Genes, essential, 39–55
Gene knockout, as strategy to identify
Gene duplication, 31
Gene clusters
GATA transcription factors, 121
Galactomannan test
Galactomannan
spp., trichothecene (Fusarium)
TRR1
TOM40
As targets of antifungal drugs, 39–40, 51–52
targeted gene disruption and knockout,
table of experimentally validated, 46–48
gene, 54
SEC31
parasexual genetics as approach to
Neurospora crassa
gene, 55
ergosterol biosynthesis pathway, 53
conditional promoter replacement, 50–51
cell wall genes, polarity-related, 145–146
mechanisms of, 143–145
polarity-related genes, table of, 146
role in virulence, 148
signal generation, polarity-related, 145, 146
GT-Pase proteins, small, 159–161
Ras family, 159–160
Relh family, 160–161
GT-Pase-activating proteins (GAPs), 203
GUAI gene, 55
Guanine exchange factors (GEFs), 203
Halo sign, 354–355, 363
Heart transplant recipients, 505, 507
Heart-lung transplant recipients, 504–505, 507
Heat shock proteins, 202
Helvolic acid, 187–188
Hematopoietic stem cell transplantation
(HSCT) recipients, 519–526
clinical features of aspergillosis, 523
epidemiology of A. fumigatus infection,
management and prognosis of
aspergillosis, 524–525
prevention of aspergillosis, 526
risk factors for aspergillosis, 519–521
source of Aspergillus, 519–521
HEPA filters, 481–482, 486
Herbal supplements, as source of fungal
speres, 482
Heterokaryon incompatibility (HI), 209
Histidine kinase signaling
conidial germination and, 137
role in response to osmotic/oxidative
stress, 137
Histology
airway invasive pulmonary aspergillosis,
357
allergic bronchopulmonary aspergillosis
(ABPA), 358
aspergilloma, 359
chronic pulmonary aspergillosis, 357–358
invasive pulmonary aspergillosis (IPA),
353–354, 355–356
pediatric patients, 538
Histone modification, 194
HIV infection, in pediatric patients, 535–536
Homeostasis, zinc, 108–111
components of the system that governs,
role of pH, 108–109, 110
schematic of proteins involved in, 108
transcription factors, 108–109
transporters, 108, 109
Honey bees, 187
Host defenses, see also Immune system,
ninate
conidial germination and, 202–203
cytokine IL-1, 111–112
glucocorticoids (GCs), 111–112
iron withholding, 123, 234
macrophage-mediated phagocytosis and killing,
218–220
myeloperoxidase (MPO), 221
neutrophil-mediated phagocytosis and killing,
220–222
H2O2, 222–223
proteases
cathepsin, 221, 222
elastase, 221, 222
reactive oxygen intermediates (ROIs), 217–222
HSCT, see Hematopoietic stem cell
transplantation (HSCT) recipients
Hydrogen peroxide, 217, 218, 219, 220, 221
Hydroporphins
wall, 138
extracellular matrix (ECM), 155
Hydroxysteroricoxin, 113
Hydroxyl radical, 217, 218, 219, 221
Hyper-immunoglobulin E syndrome, 248, 535
Hypochlorous acid (HOCl), 217, 218, 219, 221
Hyper-Antigenemia, 107
Hypoxia, 107–108, 111–112
IA, see Invasive aspergillosis
Identification, Aspergillus species and strains
clinical laboratory, 17–18
molecular methods
Afu1 hybridization, 20–21
amplified fragment length polymorphism (AFLP), 22–23
ITS regions, comparative sequence
analysis of, 18–19
microsatellite typing, 21–22
MLST, 24
protein-coding regions, comparative
sequence analysis, 19
Identification, Aspergillus species and strains (Continued)

single-locus sequence typing, 25–27
Immune system, innate, 229–234; see also Host defenses; specific immune components
collectins, 283–284
complement system, 286
contributing to fungal pathogenicity, 247–248
C-reactive protein, 286
C-type lectins, 282–285
DC-SIGN, 282–283
dectin-1, 284–285
in immunotherapy, 471
recognition of β-1,3 glucan, 231, 284
role in inflammatory response, 231
role in macrophage-mediated phagocytosis, 231, 285
structure of, 284
TLR2 signaling, 231, 471
epithelial cells, 234
macrophages
inflammation, 231–232
phagocytosis and killing of conidia, 230–231
neutrophils
defensins, 234
inflammation, 233–234
phagocytosis, 232–233
overview, 279
pattern recognition receptors (PRR), 230, 280–283
pentraxins, 285–286
PTX3, 285–286, 472
Toll-like receptors, 280–282
Immunosuppressants
adjunctive immunotherapeutic agents, 512
drug interactions with antifungal agents, 469–471
future research, 556–557
IL-17, 473–474
IDO, 471–473
microbiota, 471
neutrophil numbers, augmentation of, 472
pentraxin-3 (PTX3), 472
vaccination, 474
incidence of, 39
Iron (Fe)
iron and, 123
in malignancy and stem cell transplant recipients, 519–526
mouse model, 203
in pediatric patients, 531–543
risk factors, table of, 468
in solid organ transplant recipients, 503–505
therapy, 491–498
combination, 496
current consensus, 491–494
current controversies, 494–498
factors influencing individualization, 498
failure, 495
immunomodulators, 496
outline, 493
preemptive, 495–496
primary, 494
surgical excision, 496
Invasive pulmonary aspergillosis (IPA)
Angio-invasive pulmonary aspergillosis, 353
caspofungin for, 439
clinical presentation, 295–296
development of, 230
diagnosis, 296–297
differential diagnosis, early IPA, 354–355
differential diagnosis, late IPA, 354
epidemiology, 293–294
gliotoxin and, 189, 190
histology and radiology, 353–357
histopathology of early IPA, 353–354
histopathology of late IPA, 355–356
incidence of, 293–294
mortality rate, 294
mouse model, 189, 190, 232
pathophysiology, 294–295
pulmonary immune reconstitution inflammatory syndrome, 295–296
radiographic presentation, 296
radiology, early IPA, 354
radiology, late IPA, 356
risk factors for, 293
treatment, 297
Iron (Fe) acquisition
low-affinity uptake, 119–120
pH and, 122
reductive iron assimilation (RIA), 119
siderophore-mediated uptake, 113–120
virulence and, 122–123
as micronutrient in A. fumigatus, 107, 112–123
regulation of iron metabolism, 121–122
storage, in fungal cells, 120
siderophore-mediated, 120
vacuolar, 120
virulence and, 122–123
Iron-responsive GATA factors (IRGFGs), 121–122
Isvavuconazole, 418, 419, 429
Itraconazole
absorption at gastric pH, 446–447
adverse effects, 421
for allergic bronchopulmonary aspergillosis, 341, 343–344
amphotericin B vs amphotericin B deoxycholate, compared, 420
animal studies, 417–418
approved indications, 418
breakthrough fungal infections, 421
for cerebral aspergillosis, 309, 310, 311, 313
for chronic aspergillosis, 326–327
clinical efficacy, 420–421
dosage, mechanism of action, toxicity, and spectrum, 492
guidelines, 421–422
hepatic biotransformation of, 449–450
P-glycoprotein and, 447–448
pharmacokinetics and metabolism, 419–420
prophylactic use, 420, 484, 486
safety and tolerability, 421
salvage therapy, 494
spectrum of activity, 417
use and administration in aspergillosis, 421
in vitro activities against Aspergillus spp., 419
ITS regions, comparative sequence analysis of, 18–19
laeA gene, 193–194
LightCycler, 374
Lipogalactomannan, in cell wall, 171
Liposomal amphotericin B (LAMB) antifungal efficacy, 405–406
clinical indications, 407
molecular composition, schematic, 398, 404
pharmacokinetics, 404–405
physicochemical properties, 397
safety, 405–406
treatment of invasive aspergillosis, 406–407
voriconazole, compared, 424
Liposomal nystatin
clinical trials, 407–408
physicochemical properties, 397
Liver transplant recipients, 503–504
Low-affinity iron (Fe2+) uptake, 119–120
Lung transplant recipients, 504–505, 507
Macrophages
inflammation, 231–232
inhibition by gliotoxin, 188
macrophage-mediated phagocytosis and killing, 218–220
phagocytosis and killing of conidia, 230–231
MagNA Pure LC DNA extraction (Roche), 374
Magnaporthe grisea
Monoclonal antibodies, 556–557
Microsatellite typing, 21–22
Micafungin
Metallothioneins, zinc-chelating, 108, 109
Metallo-endoproteases, 95–96
Melanin
Marijuana, as source of fungal spores, 482
Mating type, 10–11, 164
Melanin
biosynthesis of, 173–174
in conidial cell wall, 173–174
in extracellular matrix (ECM), 155
oxidative stress response and, 206
as virulence factor, 173
Metacaspase, 207–208
Metallo-endoproteases, 95–96
Metallothioneins, zinc-chelating, 108, 109
Methionine aminopeptidase 2 (MetAP-2), 187
Micafungin
for cerebral aspergillosis, 309, 310, 311
characteristics, table of, 437
clinical data, 440–441
dosage, mechanism of action, toxicity, and spectrum, 493
prophylactic use, 485
spectrum of activity, in vitro, 436
Microsatellite typing, 21–22
Mitogen-activated protein kinases (MAPKs), 162–165
MpkB, 163–164
MpkC, 164
nitrogen sensing and, 69
SakA, 165
Molecular methods for species identification, 15–27
Aft1 hybridization, 20–21
amplified fragment length polymorphism (AFLP), 22–23
ITS regions, comparative sequence analysis of, 18–19
microsatellite typing, 21–22
MLST, 24
protein-coding regions, comparative sequence analysis, 19
single-locus sequence typing, 25–27
Monoclonal antibodies, 556–557
Motif searches, 32–34
Mouse model, responses to *A. fumigatus* allergens, 265
MpkB, 163–164
MpkC, 164
Mucosa, sinus
Aspergillus fumigatus interaction with, 240–241
dysfunction and *Aspergillus*-related disease, 241
epithelium, 239
goblet cells, 239
mucus layer, 239–240
reaction to *Aspergillus* secondary metabolites, 241
structure and function, 239
submucosal glands, 239
in vitro models of, 240
Mucus
composition, 240
function, 239–240
Multilocus sequence typing (MLST), 24
Mycetoma
Risk factors for aspergillosis, 519–521
Management and prognosis of
Epidemiology of
Aspergillus fumigatus
Clinical features of aspergillosis, 523
Pathogenicity and virulence, of *A. fumigatus*
Carbon/nitrogen metabolism and, 63–66, 68–69, 70
Granulomatous inflammation, 231–232
Host tissue damage and, 229, 233
Defensins, 234
Conidia and, 232–234
Calcium changes within, 225–226
Activated, 229
Phagolysosomes and, 217–218, 219
Chronic granulomatous disorder (CGD) and, 218, 229
Host tissue damage and, 229, 233
Inflammation, 233–234
Neutrophil extracellular traps (NETs), 229
Role of ROS in killing of microorganisms, 220–222
Nitrate assimilation, 69
Nitrogen deficiency autophagy, 205
As trigger for sporulation, 205
Nitrogen metabolism in *A. fumigatus*, 63, 68–71
CCAAT-binding complex, 122
Cross-pathway control/general control of amino acid biosynthesis (CPC/GC signaling), 69–70
Regulation, 68–71
Sources of nitrogen, 68–69
Virulence and, 68–69, 70, 161
Nitrogen sensing, 69–70
Ras protein family, 203–204
RlhA, 161
Rhb protein regulation of TOR kinase signaling pathway, 203
RlhA gene, 203–204
Nonmitochondrial oxygen consumption, 217; see also Respiratory burst
Nonribosomal peptide synthetases (NRPSs), 115–116
Gliotoxin synthesis, 189, 193
table of characterized fungal siderophore NRPSs, 116
Nuclear factor κB (NF-κB), 188
Nucleic acid sequence-based amplification, 374
Nutrients
iron (Fe), 107, 112–123, 112–124
Sensing, 203–205
Zinc (Zn), 107–112
Nystatin
liposomal clinical trials, 407–408
Physicochemical properties, 397
Structure of, 392
Organic anion transporting polypeptides, 450–451
Oxidative stress, 205–206
In compost, 205–206
Protein kinase A (PKA) pathway and, 206–207
Proteomic approach to studying fungal response to, 220
Transcription factors, 206
Oxylipin, 192
Ozone, 218
Parasexual genetics, as strategy to identify essential genes, 44–45, 49
Pathogen-associated molecular patterns (PAMP), 230
Pathogenicity and virulence, of *A. fumigatus*
Carbon/nitrogen metabolism and, 63–66, 68–69, 70
CgRα and ribosome biogenesis, 203
Fungal growth as major determinant, 63–66
Future research, 549–553
Gliotoxin and, 188–189
Iron acquisition and, 122–123
PacC and pH adaptation, 224
Phospholipases and, 75, 81, 83, 84
Protein kinase A (PKA), 204
Role of growth polarity, 143, 147
Role of secreted proteases, 101–102
Upstream open reading frames (uORFs), 202
Verruculogen, 187
Zinc availability, 107–108, 111–112
Pattern recognition receptor (PRR), 230
C-type lectins, 282–285
dectin-1, 471
Overview, 279
Pentraxins, 285–286
Toll-like receptors (TLRs), 280–282, 471–472
PCR, see Polymerase chain reaction (PCR), for detection of *Aspergillus*
Pediatric patients, aspergillosis in, 531–534
Allergic bronchopulmonary aspergillosis (ABPA), 536–537
Cerebral aspergillosis, 537
Cutaneous aspergillosis, 537–538
Primary, 537–538
Secondary, 537–538
Diagnostic considerations, 538–540
BAL, 540
culture, 538
Histology, 538
Imaging studies, 538–539
PCR, 539–540
Serology, 539
Epidemiology, 531–533
Pediatric patients, aspergillosis in (Continued)
hematological malignancies, 533
HIV infection, 353–356
premature neonates, 536
primary immunodeficiencies, 533–535
chronic granulomatous disease (CGD), 533–535
hyper-IL-10 syndrome, 535
sinusitis, 538
therapy, 540–543
amphotericin B, 540–541
azoles, 541–542
echinocandins, 542–543
Penicillins, as secondary metabolite, 482–486
Polar growth, 482
Plants, as source of fungal spores, 482
Polyenes, 492–493
Polyclonal antibody therapy, 494–503
Proteases
fungi, 491–492
endoproteases, 93–97
exopeptidases, 97–99
production of, 93
ascomycetes, 91
signal peptide cleavage, 87, 92–93
table of, 88–91
virulence of Aspergillus fumigatus, 101–102
host cell
cathespin, 221, 222
elastase, 221, 222
Protein digestion and assimilation of proteolytic products, 99–101
Protein kinase A (PKA) pathway, see also cAMP-dependent protein kinase (PKA) signaling pathway
carbon abundance and quality, 204
compartmenatalization, 204
conidiation, 206
hemoenzyme complex, 204
oxidative stress response, 206–207
regulation by glucose in Saccharomyces cerevisiae, 204
regulation of cell cycle, 206–207
virulence and, 204
Protein synthesis, importance in conidial germination, 133, 134
Proteins, in cell wall, 172–173
Proteomics, as approach to assess responses to oxidative stress, 220
PRR, see Pattern recognition receptor
PTX3
binding and opsonization of conidia, 285
functions, 285
as therapeutic agent, 285–286
Pulmonary epithelial cells
Aspergillus fumigatus interaction with, 241–243
adherence of conidia to, 242
antimicrobial peptide production, 242
cilium, 241
endocytosis of conidia, 242–243
proinflammatory response to Aspergillus fumigatus, 241, 243
surfactant protein D, 242
Pulmonary immune reconstitution inflammatory syndrome, 295–296
Radiology
air crescent sign, 356, 538–539
airway invasive pulmonary aspergillosis, 357
allergic bronchopulmonary aspergillosis (ABPA), 358–359
aspergillosis, 359–360
chronic pulmonary aspergillosis, 358
halo sign, 354–355, 363
invasive pulmonary aspergillosis (IPA), 354–355, 356
RAS family signaling, 159–160
conidial development, 160
conidial germination, 137, 159
hypal growth, 160
virulence, 160
Rasconazole
adverse effects, 428
approved indications, 418
clinical efficacy, 428
pharmacokinetics, 428
in vitro activities against Aspergillus spp., 419
Reactive oxygen intermediates (ROIs), 217–222
glucuronate-mediated inhibition of production of, 232
neutrophils, 229
production during phagocytosis, schematic of, 219
resistance to and fungal virulence, 220
role in macrophage-mediated killing of A. fumigatus, 218–220
role in neutrophil-mediated killing of A. fumigatus, 220–222
Reactive oxygen species (ROS), see Reactive oxygen intermediates (ROIs)
Recombinant DNA, as source of diagnostic antigens and allergens, 337, 366
Reductive iron assimilation (RIA)
Rhinosinusitis, see Sinusitis
RhbA protein
Ribosome biogenesis
nitrogen sensing, 203
thermotolerance and, 203
RNA interference (RNAi), 49–50
Rodlet layer, of conidial cell wall, 173, 279
Root canal, and sinus aspergillomas, 241
RSC9 gene, 54
Saccharomyces cerevisiae
gene function, 40
iron metabolism, Aspergillus compared, 113, 121
iron uptake and storage, schematic of, 113
low-affinity iron (Fe(II)) uptake, 119–120
mating types, 164
as model organism, 40
polar growth, 143–144
reductive iron assimilation (RIA) in, 119
siderophore transporters, 117
zinc homeostasis, 108–109
SakA, 165
Salvage therapy, 494, 495
SEC31 gene, 54
Secondary metabolites
epipolythiodioxopiperazine (ETP) class, 188, 189
fumagillin, 187
fumicladavines, 187
fumitremorgins, 185–187
glotoxic, 185–190
helvolic acid, 187–188
regulation of, 191–194
chromatin regulation, 193–194
environmental cues, 191–192
G-protein coupling of development, 192
irritation of, 192–193
transcription factors, 192–193
Renal transplant recipients, 506
Reproductive mode
sexuality, evidence for, 10–11
expression of sex-related genes, 11
genome analysis, 10
matting type gene presence and genome analysis, 10
population genetic analysis, 10
Research, future
anti-Aspergillus therapies, 555–556
early stages of infection and defense reactions, 552–553
high risk patients, 554–555
immunotherapy, 556–557
laboratory diagnosis, 554
large-scale biological studies, 553–554
lipid signaling molecules, 192
neutrophils, 229
production during phagocytosis, schematic of, 219
resistance to and fungal virulence, 220
role in macrophage-mediated killing of A. fumigatus, 218–220
role in neutrophil-mediated killing of A. fumigatus, 220–222
Reactive oxygen species (ROS), see Reactive oxygen intermediates (ROIs)
Restriction fragment length polymorphism (RFLP) typing for species identification, 21
Retron, see Haematopoietic stem cell transplantation (HSCT) recipients
RhB protein
adaptive response to suboptimal nitrogen, 204
virulence and, 204
Rheb protein family, and nitrogen metabolism, 69
Rhinosinusitis, see Sinusitis
Surfactant protein A (SP-A), 283–284
Surfactant protein D (SP-D), 283–284
Surgical excision, 496

T cells
CD4+ T cells and allergic response to *A. fumigatus*, 263–274
immunopathogenesis, 472
importance in protection against invasive aspergillosis, 263, 272
inhibition by gliotoxin, 188
role of Th17 T cells, 272, 473
T regs, 254–256, 257, 258, 271, 473
Th activation by dendritic cells (DC), 251–254

TAFc, see Triacetylfusarinine C

TaqMan, 374

Targeted gene disruption, as strategy to identify essential genes, 42–44

Terbinafine, 459, 462

Thermal stress, 201–203; see also Thermotolerance

Thermotolerance

cell wall integrity, 203
CgrA protein, 202–203
composting, 201, 203
gene expression, temperature-regulated, 202
heat shock proteins, 202
link to virulence, 201–202
O-glycosylation of proteins, 203
ribosome biogenesis and, 203
THTA gene, 202
upstream open reading frames (uORFs), 202

THTA gene, and thermotolerance, 202

Tobacco, as source of fungal spores, 482
Toll-like receptors (TLRs), 230, 231, 234, 248, 280–282

TOM40 gene, 53
TOR kinase, 70, 203
Torsades de pointes (TdP), 451–453

Transcription factors
coregulation of gene clusters, 192–193

ZafA, 109, 111, 123

Zap1, 108, 111
zinc homeostasis and, 108–109

Transplantation
as risk factor for aspergillosis, 230
solid organ transplant (SOT) recipients, 503–513

Transporters, siderophore
as antifungal drug carriers, 117
gene expression and pH, 122
number of putative genes encoding, in *Aspergillus* spp., 117

Phylogeny, 118
substrate specificities, 117

Transporters, zinc
CDF family, 108
metallothioneins (MTs), 108, 109
ZIP family, 108–111
ZrfA, 109–111
ZrfB, 109–111
Triacetylfusarinine C (TAFC), 113–118, 122, 123
Triazole, see Azoles
Trichothecene (Tr) genes, 36, 37
Tripeptidyl-peptidases, 98–99
Triterpenes, polycyclic, 188

TRR1 gene, 54

Virulence, see Pathogenicity and virulence, of *A. fumigatus

Voriconazole adverse effects, 424–425

amphotericin B, compared, 423, 424
animal studies, 422
approved indications, 418
for bone aspergillosis, 424
breakthrough fungal infections, 425
for cerebral aspergillosis, 311, 312, 313
for chronic aspergillosis, 326
clinical efficacy, 423–424
dosage, mechanism of action, toxicity, and spectrum, 492
guidelines, 425–426
hepatic biotransformation of, 449–450
liposomal amphotericin B, compared, 424
pharmacokinetics and metabolism, 419–420, 422–423
as primary therapy, 491
prophylactic use, 484–485, 486
safety and tolerability, 424–425
spectrum of activity, 422
treatment failures, 495
use and administration in aspergillosis, 425
in vitro activities against *Aspergillus* spp., 419

Whole-genome expression array, 202

Xenosiderophores, 117

ZafA as potential antifungal drug target, 124
zinc homeostasis and, 109, 111–112

Zinc (Zn), as micronutrient in *A. fumigatus*
cytokine response, 107–108, 111–112
homeostasis, 108–111
pathogenicity and, 107–108, 111–112
transporters, 108–111

CDF family of transporters, 108
metallothioneins (MTs), 108
ZIP family of transporters, 108–111

Zinc binuclear proteins, 193
Zinc finger motifs, GATA transcription factors and, 121
ZIP family, of zinc transporters, 108–111

Zrf proteins, 109–111