CONTENTS

Contributors vii
Preface xi

1. Introduction to Pathogenomics
 Mark J. Pallen
 1

2. Understanding the Model and the Menace: a Postgenomic View of Escherichia coli
 Roy R. Chaudhuri and Gavin H. Thomas
 21

3. The Mycobacteria: a Postgenomic View
 Marien I. de Jonge, Timothy P. Stinear, Stewart T. Cole, and Roland Brosch
 49

4. Neisseria: a Postgenomic View
 Lori A. S. Snyder, Philip W. Jordan, and Nigel J. Saunders
 90

5. The Staphylococci: A Postgenomic View
 Jodi A. Lindsay and Matthew T. G. Holden
 120

6. Comparative Pathogenomics of Spirochetes
 George M. Weinstock, David Smajs, Petra Matějková, Timothy Palzkill, and Steven J. Norris
 141

7. Campylobacter Pathogenomics: Genomes and Beyond
 Derrick E. Fouts, Emmanuel F. Mongodin, and Karen E. Nelson
 160
8. Genomic Signatures of Intracellularity: Evolutionary Patterns and Paces in Bacterial Mutualists and Parasites
 Jennifer J. Wernegreen
 196

9. Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets
 Daniel G. Lee, Nicole T. Liberati, Jonathan M. Urbach, Gang Wu, and Frederick M. Ausubel
 213

10. Pathogenomics of Bacterial Biothreat Agents
 Timothy D. Read and Brendan Thomason
 232

11. Impact of Phages on Evolution of Bacterial Pathogenicity
 Harald Brüssow
 267

12. What Genomics Has Taught Us about Gram-Positive Protein Secretion and Targeting
 Olaf Schneewind and Dominique Missiakas
 301

13. What Genomics Has Taught Us about Bacterial Cell Wall Biosynthesis
 Lynn G. Dover
 327

14. What Genomics Has Taught Us about Intracellular Pathogens: the Example of Listeria monocytogenes
 Carmen Buchrieser and Pascale Cossart
 361

15. Genomic Analysis of Plant Pathogenic Bacteria
 Gail M. Preston, David S. Guttman, and Ian Toth
 392

16. Photorhabdus: Genomics of a Pathogen and Symbiont
 Richard H. ffrench-Constant, Andrea Dowling, Michelle Hares, Guowei Yang, and Nicholas Waterfield
 419

Index

441
CONTRIBUTORS

Frederick M. Ausubel
Department of Genetics, Harvard Medical School, and Department of Molecular Biology,
Massachusetts General Hospital, Boston, MA 02114

Roland Brosch
Unité de Génétique Moléculaire Bactérienne, 28 Rue du Dr. Roux, F-75724 Paris
Cedex 15, France

Harald Brüssow
Nestlé Research Centre, Nutrition and Health Department. / Food and Health
Microbiology, CH-1000 Lausanne 26, Vers-chez-les-Blanc, Switzerland

Carmen Buchrieser
Unité de Génomique des Microorganismes Pathogènes, Institut Pasteur, and CNRS URA
2171, F-75015 Paris, France

Roy R. Chaudhuri
Division of Immunity and Infection, IBR West, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom

Stewart T. Cole
Unité de Génétique Moléculaire Bactérienne, 28 Rue du Dr. Roux, F-75724 Paris
Cedex 15, France

Pascale Cossart
Unité de Interactions Bactéries-Cellules, Institut Pasteur; INSERM U604; and INRA,
USC 2020, F-75015 Paris, France

Marien I. de Jonge
Unité de Génétique Moléculaire Bactérienne, 28 Rue du Dr. Roux, F-75724 Paris Cedex
15, France

Lynn G. Dover
School of Biosciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
Andrea Dowling
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

Derrick E. Fouts
Department of Microbial Genomics, The Institute for Genomic Research, Rockville, MD 20850

Richard H. ffrench-Constant
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

David S. Guttman
Department of Botany, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B3, Canada

Michelle Hares
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

Matthew T. G. Holden
The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom

Philip W. Jordan
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom

Daniel G. Lee
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Nicole T. Liberati
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Jodi A. Lindsay
Department of Cellular & Molecular Medicine, St. George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom

Petra Matějková
Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic

Dominique Missiakas
Department of Microbiology, University of Chicago, Chicago, IL 60637

Emmanuel F. Mongodin
Department of Microbial Genomics, The Institute for Genomic Research, Rockville, MD 20850

Karen E. Nelson
Department of Microbial Genomics, The Institute for Genomic Research, Rockville, MD 20850, and Department of Biology, Howard University, Washington, DC 20059

Steven J. Norris
Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
Mark J. Pallen
Division of Immunity and Infection, Medical School, University of Birmingham,
Birmingham B15 2TT, United Kingdom

Timothy Palzkill
Department of Molecular Virology and Microbiology, Baylor College of Medicine,
1 Baylor Plaza, Houston, TX 77030

Gail M. Preston
Department of Plant Sciences, University of Oxford, South Parks Road,
Oxford OX1 3RE, United Kingdom

Timothy D. Read
Genomics Group, Biological Defense Research Directorate, Naval Medical Research
Center, Rockville, MD 20852

Nigel J. Saunders
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road,
Oxford OX1 3RE, United Kingdom

Olaf Schneewind
Department of Microbiology, University of Chicago, Chicago, IL 60637

David Šmajs
Department of Biology, Faculty of Medicine, Masaryk University, 625 00
Brno, Czech Republic

Lori A. S. Snyder
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road,
Oxford OX1 3RE, United Kingdom

Timothy P. Stinear
Department of Microbiology, Monash University, Wellington Road,
Clayton 3800, Australia

Gavin H. Thomas
Department of Biology, Area 10, University of York, P.O. Box 373, YorkYO10 5YW,
United Kingdom

Brendan Thomason
Genomics Group, Biological Defense Research Directorate, Naval Medical Research
Center, Rockville, MD 20852

Ian Toth
The Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom

Jonathan M. Urbach
Department of Genetics, Harvard Medical School, and Department of Molecular Biology,
Massachusetts General Hospital, Boston, MA 02114

Nicholas Waterfield
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

George M. Weinstock
Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza,
Houston, TX 77030
Jennifer J. Wernegreen
Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543

Gang Wu
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Guowei Yang
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom
PREFACE

Bliss was it in that dawn to be alive . . .
William Wordsworth, French Revolution as it appeared to enthusiasts at its commencement

The genomic era in bacteriology began when scientists at the Institute for Genomic Research in Maryland published the first two complete bacterial genome sequences in 1995. In the intervening 10 or more years, genome sequencing has exerted a stunning influence on bacteriology in general and the study of bacterial pathogenesis in particular. It has been a thrilling time to be in bacteriology. An apt analogy is with the space program, in particular, with the grand tour of the outer solar system during the 1970s and 1980s. Just as the two Voyager probes turned smudges glimpsed hazily through the telescope into newly mapped worlds, so bacterial genomics has allowed us to view the inner workings of our microscopic companions. Many of humankind’s most fearful microbial adversaries—from the agents of the black death to the white plague—have now been captured in silico. We now grapple with them on our desktop computers, as well as in the laboratory. Where once we saw through a glass darkly, we now see face to face!

Indeed, now that we have genome sequences from almost every significant bacterial pathogen of humans, plants, and animals, it is scarcely possible to imagine the study of bacterial pathogenesis without the backcloth of genomics. The ready availability of genome sequences pervades every corner of our discipline and underpins the steady incremental accumulation of new information on each bacterial pathogen. This book stands as a monument to this stunning success of “bacterial pathogenomics.” We have enlisted the contributions from over two dozen scientists from around the world to highlight the revolutionary contribution of genomics to the study of pathogenic bacteria and bacterial infection. We have adopted a twin-track approach: some chapters in this book survey the impact of genomics on our understanding of key taxonomic groups of pathogens, and others emphasize themes that cut across taxonomic boundaries,
integrating the impact of genomics on topics as diverse as bioterrorism, microbial ecology, bacterial evolution, bacterial protein secretion, and bacterial adaptations to pathogenic lifestyles. We hope that all readers, from student to professor, will gain new insights into pathogenomics from this book and will close its pages with an enthusiasm for this subject that will endure well into the second decade of bacteriology’s postgenomic era!

MARK PALLEN

March 2007
ABC transporters
gram-positive bacteria, 306
L. monocytogenes, 369
M. tuberculosis, 64–65
plant pathogens, 400–401
Acetate metabolism, 340
Acetylation, peptidoglycan, 339–341
Achromobactin, 399
ACME elements, S. aureus, 274
Actinobacillus actinomycetemcomitans, 312
ADP-ribose transferase, Neisseria, 96–97
Alginates, 396
Alpha chain disease, 162
d-Amino acids, cell wall, 329–330, 335
Anaplasma, 208
Anaplasma marginale, 198
Annotation, 5–7
E. coli K-12 genome, 36–39
Neisseria genomes, 110–111
Antibiotic production, Photorhabdus, 432
Antibiotic resistance
Campylobacter, 170, 177, 179
prophages and, 275
Antigens, T. pallidum, 147–149
Antituberculosis drugs, 69–70, 342
Applied genomics, 8–11
Arabinogalactan biosynthesis, 343–347
Arabinosyltransferases, M. tuberculosis, 70
AT-biased sequence evolution, intracellular bacteria, 205–207
ATP synthase, M. tuberculosis, 69
ATP/ADP translocase, intracellular bacteria, 205
Autoinducer-2, response in Neisseria, 98–99
Autolysins, 309, 370–371
Autotransporters, 95
Azorhizobium caulinans, 346
Bacillus anthracis
cell wall, 340–341
genome sequence, 250–252
S layer, 310
Sec-dependent secretion, 303–304
Tad secretion system, 312
Bacillus cereus
biothreat agent, 235, 239
cell wall, 341
Bacillus steatorophilus, 310
Bacillus subtilis
Blochmannia floridanus, 198
Blochmannia pennsylvanicus, 198
Botrytis genomic structure, 151–152
plasmids, 151–152
Borrelia afzelii, 150
Borrelia burgdorferi, 141, 150–152, 253
transposon mutagenesis, 154
virulence determinants, 152–154
Borrelia garinii, 150
Borrelia lonestari, 150
Borrelia miyamotoi, 150
Borrelia recurrentis, 150
Borrelia spielmanii, 150
Botulism, 272
genome sequence, 242–243
genomic tools for host, 219–220
genomic tools for pathogens, 218–219
nonredundant transposon mutation library for *P. aeruginosa* PA14, 220–222
studying bacterial pathogenesis, 214–216
studying host immunity, 216–218
Esp mutants, 217, 220
Campylobacter antibiotic resistance, 170, 177, 179
capsular polysaccharide synthesis, 176–177
cell adhesion, 175
comparative genome hybridization, 179
comparative genomics, 166–177
CRISPR analysis, 171
detection procedures, genome-based, 178
differential expression studies, 178–179
genomic islands, 168–169
hypervariable homopolymeric tracks, 175–176
informatics studies, 180
iron metabolism, 165, 179
licABCD locus, 175
LOS, 176–177
metabolic pathways, 172–173
microarray analysis, 178–179
motility, 173
phages, 168–169
phylogenetic analysis, 167–168
plasmids, 169–170
postgenomic studies, 177–180
promoters, 180
proteomics, 178–179, 183–184
restriction-modification systems, 171–172
sequencing projects contracts, 180–181
isolates to be sequenced in order of priority, 182–183
timelines, 183
SRP pathway, 173
stress-responsive regulon, 179
Tat secretion system, 173
transcriptional start mapping, 180
transposable elements, 170–171
transposon mutagenesis, 179–180
two-component regulatory systems, 165, 173–175, 179
type II secretion system, 173
type IV secretion system, 170
virulence, 173–175
yeast two-hybrid studies, 184
Campylobacter coli, 160–162, 166–177
Campylobacter concisus, 160, 183
Campylobacter curvus, 160, 183
Campylobacter fetus, 160–161, 181–182
Campylobacter hominis, 161, 183
Campylobacter jejuni, 160–177
biothreat agent, 234
cell wall, 340
genome sequence, 163–166
hypervariable polyG:C tracts, 163–166
isolates to be sequenced, 182–183
metabolic pathways, 165–166
pathogenesis disease ramifications, 161–162
molecular pathogenesis, 162–164
strain NCTC11168, 4, 163–166
toxins, 163, 165, 175
virulence genes, 165–166
Campylobacter lari, 160–161, 166–177
Campylobacter upsaliensis, 160–161, 166–177
Capsular polysaccharide, *Campylobacter*, 176–177
Caulobacter crescentus, 407
Cell adhesion
Campylobacter, 175
M. tuberculosis, 58–60
Neisseria, 100

Caenorhabditis elegans
G. elegans pathogenicity model, 213–231
biothreat agents, 241
collection and integration of data from research community, 224–226
distribution and adoption of genomic tools, 222–224
genomic tools for host, 219–220
genomic tools for pathogens, 218–219
nonredundant transposon mutation library for *P. aeruginosa* PA14, 220–222
studying bacterial pathogenesis, 214–216
studying host immunity, 216–218
Esp mutants, 217, 220

Campylobacter, 3, 160–194
antibiotic resistance, 170, 177, 179
capsular polysaccharide synthesis, 176–177
cell adhesion, 175
comparative genome hybridization, 179
comparative genomics, 166–177
CRISPR analysis, 171
detection procedures, genome-based, 178
differential expression studies, 178–179
genomic islands, 168–169
hypervariable homopolymeric tracks, 175–176
informatics studies, 180
iron metabolism, 165, 179
licABCD locus, 175
LOS, 176–177
metabolic pathways, 172–173
microarray analysis, 178–179
motility, 173
phages, 168–169
phylogenetic analysis, 167–168
plasmids, 169–170
postgenomic studies, 177–180
promoters, 180
proteomics, 178–179, 183–184
restriction-modification systems, 171–172
sequencing projects contracts, 180–181
isolates to be sequenced in order of priority, 182–183
timelines, 183
SRP pathway, 173
stress-responsive regulon, 179
Tat secretion system, 173
transcriptional start mapping, 180
transposable elements, 170–171
transposon mutagenesis, 179–180
two-component regulatory systems, 165, 173–175, 179
type II secretion system, 173
type IV secretion system, 170
virulence, 173–175
yeast two-hybrid studies, 184
Campylobacter coli, 160–162, 166–177
Campylobacter concisus, 160, 183
Campylobacter curvus, 160, 183
Campylobacter fetus, 160–161, 181–182
Campylobacter hominis, 161, 183
Campylobacter jejuni, 160–177
biothreat agent, 234
cell wall, 340
genome sequence, 163–166
hypervariable polyG:C tracts, 163–166
isolates to be sequenced, 182–183
metabolic pathways, 165–166
pathogenesis disease ramifications, 161–162
molecular pathogenesis, 162–164
strain NCTC11168, 4, 163–166
toxins, 163, 165, 175
virulence genes, 165–166
Campylobacter lari, 160–161, 166–177
Campylobacter upsaliensis, 160–161, 166–177
Capsular polysaccharide, *Campylobacter*, 176–177
Caulobacter crescentus, 407
Cell adhesion
Campylobacter, 175
M. tuberculosis, 58–60
Neisseria, 100
Cell division, 332–334
Cell division gene clusters, 332–334
Cell wall, see also Peptidoglycan biosynthesis, 327–360
cell division gene clusters, 332–334
Corynebacteriaceae, 342–347
genomic channeling, 334
chemical structure and molecular architecture, 328–329
in silico modeling, 328
interpeptide bridges, 337–339
pores, 328–329
proteins of gram-positive bacteria covalent anchoring, 305, 307–308
noncovalent anchoring, 305, 308–309
CFP-10 protein, M. tuberculosis, 63–64, 313–314
Chaperone-implemented posttranslational secretion, 303–304
CHIPS (chemotaxis inhibitory protein of Staphylococcus), 292
Chlamydia, 200, 203
peptidoglycan, 334–336
Chlamydia muridarum, 199
Chlamydia trachomatis, 162, 199, 334–336
Chlamydomonas abortus, 199
Chlamydomonas caratae, 199
Chlamydomonas pneumoniae, 199
Chromatin immunoprecipitation, 10–11
Chromobacterium violaceum, 407
Clavibacter michiganensis, 393–394, 401, 406
Clostridium, plant pathogens, 392
Clostridium acetobutylicum, 312
Clostridium botulinum
biothreat agent, 234, 237
toxins, 272
Clostridium difficile, 313
Clostridium thermocellum, 310
Coding tandem repeats, Neisseria, 107
Com pathway, 311–312, 365
Comparative genome hybridization
biothreat agents, 233
Campylobacter, 179
E. coli, 36
Comparative genomics, 8–11
Campylobacter, 166–177
E. coli, 35–36, 41
Listeria, 363–365, 377–382
Mycobacterium, 50, 52
Photorhabdus, 429–434
plant pathogens, 394–396
S. aureus prophages, 288–289
T. troglodytes, 143–144
Core variable genes, S. aureus, 129–130
Correia repeat-enclosed element, Neisseria, 106
Corynebacterium, cell wall, 342–347
Corynebacterium diphtheriae assembly of pili, 308
cell wall, 308, 342, 344–345, 347
toxins, 272
Corynebacterium glutamicum, 344
Coxiella burnetii, 197–198
biothreat agent, 233–235, 244–245, 253
gene sequence, 245
CREN, Neisseria, 97–98
CRISPR, analysis, Campylobacter, 171
Cytolethal distending toxin, Campylobacter, 163, 165, 175
Cytolysin-mediated transport, 310
DC-SIGN, M. tuberculosis, 59–60
DCW (division/cell wall) cluster, 332–335, 344
Diarrhea, C. jejuni, 161
Diarylquinolines, 69
Disseminated gonococcal infections, 103–104, 110
DNA microarray, see Microarray analysis
DNase, S. pyogenes prophages, 281–282
Efflux pump, Neisseria, 96
Ehrlichia, 208
Ehrlichia nuprinum, 198
Elementary body, 334–336
ELISPOT, M. tuberculosis, 70–71
Endemic syphilis, 141–142
Endopeptidase resistance, 338–339
Endosymbionts, see also Intracellular bacteria primary, 200, 203
Enterobactin, 399
Enterococcus faecalis
cell wall, 330–331, 333, 336, 338
“killing” of C. elegans, 214–215
Enterococcus faecium, cell wall, 330–331
Enterotoxin A, S. aureus, 291–292
Environa, 402–404
ice-nucleating, 399
Environa amylovora, 392–393, 397, 400
Environa chrysanthemi, 392, 398–400
Erysipelas, 278
ESAT-6 protein
M. tuberculosis, 7–8, 63–64, 313–314
M. ulcerans, 74
secretion, 313–314
Escherichia blattae, 34
Escherichia coli, 21–48
annotation of genome, 36–39
biothreat agent, 234
cell wall, 332–334, 336
comparative genomics, 35–36, 41
comparative genome hybridization, 36
comparisons with Photorhabdus, 420–429
computational resources for whole-genome comparison, 35–36

Escherichia coli (continued)
core genome, 36, 41
diarrheagenic, 23
diversity, 24–28
ECOR collection, 24–28, 36
differentiation from Shigella, 24–25
diversity, 24–28
enteroaggregative, 24–25, 27, 34–35
enterohemorrhagic, 23, 25, 27
enteroinvasive, 24–25, 27, 34
enteropathogenic, 23–24, 27, 34
enterotoxigenic, 23–24, 27, 34
genome evolution, 41
genome size, 27
genomes in progress, 34–35
horizontal gene transfer, 22–23
multilocus enzyme electrophoresis, 24–25
neonatal meningitis, 24
O157:H7, 23, 28–33, 267, 277
online resources for genomics, 37
pathogenic, 23–24
phylogenetics, 24–28
postgenomic era, 40
prophage, 31
Sec-dependent secretion, 302–303
strain K-12, 4, 21–48
strain Nissle 1917, 34–35
Tat secretion system, 311
type II secretion system, 7
uropathogenic, 24, 33, 40
Escherichia fergusonii, 35
EspA protein, 7
Evolution
genome, 8
infectious diseases, 300–303
strain K-12, 4, 21–48
strain Nissle 1917, 34–35
Tat secretion system, 311
type II secretion system, 7
Sec-dependent secretion, 302–303
horizontal gene transfer, 22–23
multilocus enzyme electrophoresis, 24–25
neonatal meningitis, 24
O157:H7, 23, 28–33, 267, 277
online resources for genomics, 37
pathogenic, 23–24
phylogenetics, 24–28
postgenomic era, 40
prophage, 31
Sec-dependent secretion, 302–303
strain K-12, 4, 21–48
strain Nissle 1917, 34–35
Tat secretion system, 311
type II secretion system, 7
uropathogenic, 24, 33, 40
Exochelins, 65
Extracellular polysaccharides, plant pathogens, 396
FarAB efflux pump, Neisseria, 96
fem factors, 337–338
flbA silent cassette system, N. meningitidis, 91
Fibronectin-binding proteins, 309
L. monocytogenes, 371
Finishing, genome sequence, 4–5
Flagella
absence in biothreat agents, 238
biogenesis, 312
Flagellin, Sec-independent secretion, 312
Fold coverage, 4
Francisella tularensis
biothreat agent, 233–235, 237, 243–244, 253
genome sequence, 244
fis genes, 332–334
Functional genomics, 8–11
biothreat agents, 233–236
Photorhabdus, 435–437
T. pallidum, 145–147
Fur box, Neisseria, 98
Furunculosis, 286
Gastroenteritis, Campylobacter, 160–161
Gene duplication, biothreat agents, 237
Genetic drift, intracellular bacteria, 201, 205–206
Genetically engineered pathogens, 252–254
Genome evolution, 8
Genome reduction
biothreat agents, 237–238
intracellular bacteria, 201–205, 238
M. ulcerans, 74–75
metabolic implications, 203
plant pathogens, 404–405
Genome sequencing
benefits, 1–3
costs, 11
future trends, 11–13
impact on bacteriology, 7–11
milestones, 1–2
mix and match approach, 3
sequencing centers and other resources, 3, 5
taxonomic skewing, 3
Genomes OnLine Database, 3
Genome-sequencing project, 3–7
annotation, 5–7
Campylobacter, 180–181
release and acceptable use of genome, 7
from shotgun to finishing, 4–5
strain choice, 3–4
Genomic channeling, 334
Genomic epidemiology, 12
Genomic islands, Campylobacter, 168–169
Geobacillus stearothermophilus, 310
Glanders, 242–243
Glutathione, L. monocytogenes, 374–375
Glycoproteomics, 10
Gonococcal genetic island, 105
Gram-positive bacteria
cell wall biosynthesis, 337–339
cell wall proteins
covalent anchoring, 305, 307–308
noncovalent anchoring, 305, 308–309
flagellin secretion, 312
lipoproteins, 305–307
protein targeting, 305–306
S layer, 306, 309–310
Sec-dependent secretion, 301–310
Sec-independent secretion, 301, 310–314
Tad secretion system, 311–312
Hemolytic uremic syndrome, 23
Hemorrhagic colitis, 23
Heparin-binding hemagglutinin, \textit{M. tuberculosis}, 59
Holins, 312–313
Homopolymeric tracks, hypervariable, \textit{Campylobacter}, 175–176
Horizontal gene transfer
biothreat agents, 237–238
detection, 22–23
\textit{E. coli}, 22–23
intracellular bacteria, 207–208
\textit{M. tuberculosis}, 54
\textit{Neisseria}, 91, 108–109
phage-bacterial coevolution, 275–276
plant pathogens, 394–395
\textit{S. aureus}, 290
\textit{S. pyogenes}, 278–279
Host-pathogen system, \textit{C. elegans}-based, 213–231
Hyaluronidase, \textit{S. pyogenes}, 281
Hydrogen peroxide, response in \textit{Neisseria}, 102–103
Ice-nucleation proteins, 399
iCLIP-like protease, 66
Illegitimate recombination, between prophages, 271
IMD pathway, 216–218
Immune response
to biothreat agents, 240
in insects, 434
to \textit{M. tuberculosis}, 56
Immunoproliferative small intestinal disease, 162
Indole-3-acetic acid, 400
Informatics studies, \textit{Campylobacter}, 180
Innate immune evasion cluster, 290–291
Innate immunity, 216
Insect endosymbionts, 200
Insect pathogens
human pathogens vs., 433–434
\textit{Photobacterium}, 419–429
Insect vectors
biothreat agents, 241–242
plant pathogens, 398
Interactome, 11
Interpeptide bridges, cell wall, 337–339
Intracellular bacteria, 196–212
ATP/ADP translocase, 205
biothreat agents, 240–242
effective population sizes, 201
evolution, 200–201, 205–207
genetic drift, 201, 205–206
genome reduction, 201–205, 237
genome stasis, 207–208
horizontal gene transfer, 207–208
infection strategies, 204–205
\textit{L. monocytogenes}, 361–391
lifestyle diversity, 197–200
metabolic pathways, 203–205
mutations, 201, 206–207
rapid, AT-biased sequence evolution, 205–207
recombination, 208
type III secretion systems, 204
type IV secretion systems, 204–205
urease genes, 205
Inversions, \textit{Staphylococcus}, 133–134
Iron metabolism
\textit{Campylobacter}, 165, 179
\textit{L. monocytogenes}, 370
\textit{M. tuberculosis}, 64–66, 70
\textit{Neisseria}, 94–95, 99–100
plant pathogens, 399
Johne’s disease, 50
\textit{Leifsonia xyli}, 393–394, 404–405
Leprosy, 49, 71–72, 342
\textit{Leptospira}, 141, 154–155
\textit{Leptospira borgpetersenii}, 154–155
\textit{Leptospira interrogans}, 154–155
Leptospirosis, 141, 154–155
\textit{licABCD} locus, \textit{Campylobacter}, 175
Lipid metabolism, \textit{M. tuberculosis}, 57, 66
Lipoate protein ligase, \textit{L. monocytogenes}, 375
Lipodepsinonapeptides, 400
Lipopolysaccharide
\textit{Neisseria}, 93
plant pathogens, 396–397
Lipoprotein(s)
gram-positive bacteria, 305–307
\textit{L. monocytogenes}, 369
secretion, 305
Lipoprotein diacylglycerol transferase, 306
Lipoprotein signal peptidase, 306
Lipoteichoic acid, 309
\textit{Listeria}
Com system, 311, 365
comparative genomics, 363–365, 377–382
genome conservation, 363–365
mobile genetic elements, 365
\textit{Listeria grayi}, 382–383
\textit{Listeria ivanovii}, 382–383
INDEX

Listeria monocytogenes, 361–391
ActA protein, 362, 366, 378
autolysins, 370–371
bile salt hydrolase, 375
biothreat agent, 234
cell wall proteins, 308–309
comparative genomics, 363–365, 377–382
environmental habitat, 382–383
evolution, 382–383
fibronectin–binding protein, 371
genome organization, 363–365
 glutathione, 374–375
hexose phosphate transporter, 371–372, 375
infection cycle, 361–363
intracellular gene expression, 376
intracellular movement, 362–363
iron metabolism, 370
lipoate protein lipase, 375
lipoproteins, 369
listerialysin, 362
microarray analysis, 375–377
phospholipases, 362
physiology and metabolism, 374–375
regulatory proteins, 369, 372–374
Sec-dependent secretion, 303–304
sigma factors, 375–376
sRNA regulators, 373
surface proteins, 365–371, 381
transport proteins, 369, 371–372, 377
two-component regulatory systems, 372
5′-untranslated region, 373–374
Vip protein, 371
vitamin B12, 374
Listeria seeligeri, 382–383
Listeria welshimeri, 382–383
Listeriolysin, 362
Listeriosis, 361–391
LolCDE transporter, 306
LOS, Campylobacter, 176–177
Lyme disease, 141, 150–151
Lymphoma, C. jejuni and, 162
Lysogenic conversion, 271–272
Lysogenic conversion genes, 276
Murein hydrolase, 312–313
Mutant library, genomic tools for pathogens, 219
Mutations
intracellular bacteria, 201, 206–207
pathoadaptive, Shigella, 32
Mutualists, intracellular, 200–201, 203–206
Myxobacterium, 49–89
cell wall, 342–347
comparative genomics, 50, 52
Metabolic streamlining, biothreat agents, 238
Metagenomics, 12–13
Metal sensing transcriptional regulators, M. tuberculosis, 65
Methicillin-resistant Staphylococcus aureus, 122–125, 274, 289–290, 337
Microarray analysis, 9–10
biothreat agents, 233–236, 240
Campylobacter, 178–179
comparative genome analysis, 36
genomic tools for pathogens, 218–219
L. monocytogenes, 375–377
M. tuberculosis, 54
Neisseria, 98–105
S. aureus, 128–130
Treponema, 142–143
Miller–Fisher syndrome, 161–162, 181
Minimal mobile elements, Neisseria, 108–109
Mitogen-activated protein kinase, 216–218
MLVA schemes, biothreat agents, 239
Mobile genetic elements, 276
Listeria, 365
M. ulcerans, 73, 75
S. aureus, 123–130
S. epidermidis, 131
S. haemolyticus, 132
S. saprophyticus, 133
Shigella, 32
Model host-pathogen system, 213–231
C. elegans as model host, 214–218
collection and integration of data from research community, 224–226
distribution and adoption of genomic tools, 222–224
genomic tools for hosts, 219–220
genomic tools for pathogens, 218–219
nonredundant transposon mutation library for P. aeruginosa PA14, 220–222
Modular theory, phage evolution, 270–271
MogR protein, L. monocytogenes, 373
Molecular barcode, 9–10
Morons, prophages, 274
Motility, Campylobacter, 173
MtrR transcriptional regulator, Neisseria, 97
Multilocus sequence typing
E. coli, 24–25
S. aureus, 128
S. epidermidis, 132
Murein hydrolase, 312–313
Mutant library, genomic tools for pathogens, 219
Phages, 270–271
Phage evolution, 270–271
Pathoadaptive, 32
Pathogenicity, 218–219
Pathogens, 128–130
Pathway evolution, 270–271
Phospholipases, 362
Phosphonolipases, 362
Phylogenetic analysis, 262
Phylogenetic trees, 262
Physiology and metabolism, 374–375
Phytopathogens, 216–218
Phytothax, 276
Phytothax, 278
Phytothax, 278–279
P. aeruginosa, 220–222
P. aeruginosa PA14, 220–222
peptidoglycan synthesis, 344
transposon site hybridization, 50, 53
Mycobacterium abscessus, 50–51
Mycobacterium africanum, 50–51, 59, 342
Mycobacterium avium, 50–51, 346
Mycobacterium avium paratuberculosis, 50–52, 66
Mycobacterium bovis, 49, 51, 58–59, 63, 67, 342
Mycobacterium canetti, 50–51
Mycobacterium chelonae, 50–51
Mycobacterium flavescens, 50
Mycobacterium leprae, 4, 49–51, 66, 71–72, 197, 199, 237
cell wall, 342
PE-PPE family, 71–72
protection against oxidative stress, 72
pseudogenes, 8
Mycobacterium marinum, 50–52, 64, 73–74, 314
Mycobacterium microti, 50–51, 59, 67
Mycobacterium neoaurum, 65
Mycobacterium smegmatis, 50–51, 63–66, 346
Mycobacterium tuberculosis, 49–52
ABC transporters, 64–65
ancient human populations, 53
anti-TB drug design, 69–70, 342
biothreat agent, 234
cell adhesion, 58–60
cell wall, 327, 342–347
CFP-10 protein, 63–64, 313–314
diagnostics, 70–71
ESAT-6 protein, 7–8, 63–64, 313–314
evolutionary aspects, 52–56
general features of genome, 57
horizontal gene transfer, 56
iron metabolism, 64–66, 70
lipid metabolism, 57, 66
microarray analysis, 54
PE-PPE family, 60, 71–72
phospholipase C, 66–67
proteases, 66
protection against oxidative and nitrosative stress, 60–62, 72
protein kinases and phosphatases, 67–70
protein secretion and virulence, 62–64
siderophores, 64–66
signal transduction, 67–69
single nucleotide polymorphisms, 53–56
smooth tubercle bacilli, 54
spoligotyping, 53
Tat secretion system, 63
two-component systems, 67–69
type II secretion system, 62–63
vaccine, 70–71
Mycobacterium ulcerans, 49, 51–52, 72–75
ESAT-6 protein, 74
evolution, 73
genome reduction, 74–75
genome sequence of AGY99, 73, 75
mobile genetic elements, 73
PE-PPE family, 74–75
plasmid MUM001, 73–74
toxin, 72–73
Mycobacterium vanbaalenii, 51
Mycobactins, 65–66, 70
Mycolactone, 72–74
Mycolic acids, 58, 313, 327, 342
Mycoplasma genitalium, 1
Mycosins, 66
Near-neighbor genomes, biothreat agents, 238–239
Necrosis-inducing protein, plant pathogens, 395, 404
Necrotizing fasciitis, 278, 287
Neisseria, 90–119
ADP-ribosyltransferase, 96–97
annotation of genomes, 110–111
coding tandem repeats, 107
Correia repeat-enclosed element, 106
demonstration of absence of system, 96
eflux pumps, 96
filamentous phage, 103
Fur box, 98
genome sequences from different species, 109
growth at increased temperature, 102
heat shock response, 101–102
horizontal gene transfer, 91, 108–109
identification of sequence repeats, 106–107
iron metabolism, 94–95, 99–100
lipopolysaccharide modification, 93
microarrays
assessing gene complement, 103–105
transcription profiling, 98–103
minimal mobile elements, 108–109
MtrR transcriptional regulator, 97
nitric oxide, 92
pathogenic vs. commensal, 104–105
penicillin-binding proteins, 94
phase-variable repeats, 106–107
PilT in adhesion, 100
pilus modification, 93
postgenomic findings, 109–110
prepilin proteins, 94
promoter-located motifs and sequences, 97–98
prophage genomes, 108
protection against oxidative stress, 92
proteomics, 105–106
PtsN regulator, 97
recombination, 95–96
REP2 repeats/CREN, 97–98
response to autoinducer-2, 98–99
response to host cells, 100–101
response to hydrogen peroxide, 102–103
response to serum, 102
reverse vaccinology, 107–108
RTX-like proteins, 95
sigma factor extracytoplasmic function, 102
sigma factor RpoH, 101, 110
Neisseria (continued)

- TonB-dependent family proteins, 94–95
- Transmembrane transport, 92–93
- Two-component regulatory system, 102
- Type I secretion systems, 95
- Type V secretion systems, 95
- Verification of metabolic pathway, 95–96

Neisseria gonorrhoeae, 90–119, 253

- Cell wall, 340–341
- Genes needed for disseminated infections, 103–104

Neisseria lactamica, 100, 104–105, 119

Neisseria meningitidis, 90–119

- Cell wall, 340
- GGI in, 104
- Hypervariable polyG:C tracts, 163–165
- Silent cassette systems, 91

Neonatal meningitis, 24

Nitric oxide, Neisseria, 92

Nitrosative stress, M. tuberculosis, 60–62

Nonribosomal-peptide synthase gene cluster, 433–434

NorM efflux pump, Neisseria, 96

NXZTN motif, 370

OAP clusters, 340–341

oriC environ, Staphylococcus, 134–135

Oxidative stress

- Mycobacterium, 60–62, 72
- Neisseria, 92

Paeocobacillus, 421

Pantoea agglomerans, 392

Pantoea stewartii, 397

Panton–Valentine leukocidin toxin, see PVL toxin

Parachlamydia, 203–205, 207–208

Parasite, intracellular, 197–200

Pathoadaption, 238

Pathogen-associated molecular patterns, 216, 306–307

Pathogenesis, model host-pathogen systems, 213–231

Pathogenicity islands, 23, 28, 33, 237, 394–395, 419–427

Pathosphere, 12

PE proteins

- M. leprae, 71–72
- M. tuberculosis, 60, 71–72
- M. ulcerans, 74–75

Penicillin-binding proteins, 329, 337

Photorhabdus, 419–439

antibiotic production, 432

functional genomics, 435–437

genomic comparisons between species, 429–434

genomic comparisons with E. coli, 420–429

genomic comparisons with Yersinia, 434–437

genomic islands, 419–427

encoding Mcf toxins, 423–424

encoding toxin complexes, 421–423

human infections, 433

life cycle, 419–420

nematode interactions, 431–433

photorhabdus virulence cassettes, 425–427

PirAB binary toxins, 427–428

secondary variants, 435

siderophores, 432–433

switch between symbiosis and pathogenicity, 434–435

toxin complexes, 421–423, 429–431, 434

two-component regulatory systems, 435

type III secretion system, 428–429

Photorhabdus asymbiotica, 419, 427–429, 433

Photorhabdus luminescens, 419–429, 433

Photorhabdus temperata, 428–431, 433

Phylogenetic analysis, Campylobacter, 167–168

Phytohormones, 400

Phytoplasma, 197, 392–393, 395, 404, 407

Phytoplasma asteris, 199, 208, 405

Phytotoxins, 399–400
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pili</td>
<td>308</td>
</tr>
<tr>
<td>C. diphtheriae</td>
<td>308</td>
</tr>
<tr>
<td>Neisseria</td>
<td>93</td>
</tr>
<tr>
<td>plant pathogens</td>
<td>396-398, 403-404</td>
</tr>
<tr>
<td>PilT, adhesion by Neisseria</td>
<td>100</td>
</tr>
<tr>
<td>Pinta</td>
<td>141-142</td>
</tr>
<tr>
<td>PirAB binary toxins</td>
<td>427-428</td>
</tr>
<tr>
<td>Photorhabdus</td>
<td>427-428</td>
</tr>
<tr>
<td>Plague</td>
<td>247-250</td>
</tr>
<tr>
<td>pnuemonic</td>
<td>250</td>
</tr>
<tr>
<td>Plant pathogens</td>
<td>392-418</td>
</tr>
<tr>
<td>comparative genomics</td>
<td>394-396</td>
</tr>
<tr>
<td>in environment, 406-409</td>
<td></td>
</tr>
<tr>
<td>extracellular polysaccharides</td>
<td>396</td>
</tr>
<tr>
<td>genome organization, 394-395</td>
<td></td>
</tr>
<tr>
<td>genome reduction, 404-405</td>
<td></td>
</tr>
<tr>
<td>horizontal gene transfer, 394-395</td>
<td></td>
</tr>
<tr>
<td>host attachment, 396-398</td>
<td></td>
</tr>
<tr>
<td>iron metabolism</td>
<td>399</td>
</tr>
<tr>
<td>lipopolysaccharide, 396-397</td>
<td></td>
</tr>
<tr>
<td>necrosis-inducing protein, 395, 404</td>
<td></td>
</tr>
<tr>
<td>niche colonization, 408</td>
<td></td>
</tr>
<tr>
<td>“overrepresented” protein domains, 406</td>
<td></td>
</tr>
<tr>
<td>penetration of plant, 398-399</td>
<td></td>
</tr>
<tr>
<td>physiological adaptation to life on plants, 404-406</td>
<td></td>
</tr>
<tr>
<td>phytotoxins, 399-400</td>
<td></td>
</tr>
<tr>
<td>pili, 396-398, 403-404</td>
<td></td>
</tr>
<tr>
<td>siderophores, 399</td>
<td></td>
</tr>
<tr>
<td>signaling proteins, 406</td>
<td></td>
</tr>
<tr>
<td>type I secretion system, 400-401</td>
<td></td>
</tr>
<tr>
<td>type II secretion system, 401-402</td>
<td></td>
</tr>
<tr>
<td>type III secretion system, 394, 402-403</td>
<td></td>
</tr>
<tr>
<td>type IV secretion system, 403-404</td>
<td></td>
</tr>
<tr>
<td>virulence factors, 396-404</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td>239</td>
</tr>
<tr>
<td>biothreat agents</td>
<td></td>
</tr>
<tr>
<td>Borrelia</td>
<td>151-152</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>169-170</td>
</tr>
<tr>
<td>M. ulcerans</td>
<td>73-74</td>
</tr>
<tr>
<td>PolyG:C tracts, hypervariable</td>
<td>163-166</td>
</tr>
<tr>
<td>C. jejuni</td>
<td></td>
</tr>
<tr>
<td>N. meningitidis</td>
<td>163-165</td>
</tr>
<tr>
<td>Polypeptide synthase</td>
<td>399</td>
</tr>
<tr>
<td>Polysosogeny</td>
<td>280</td>
</tr>
<tr>
<td>PPE proteins</td>
<td></td>
</tr>
<tr>
<td>M. leprae</td>
<td>71-72</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td>60, 71-72</td>
</tr>
<tr>
<td>M. ulcerans</td>
<td>74-75</td>
</tr>
<tr>
<td>Prepilin proteins, Neisseria</td>
<td>94</td>
</tr>
<tr>
<td>Promoters, Campylobacter</td>
<td>180</td>
</tr>
<tr>
<td>Phage(s), see also Phage(s)</td>
<td></td>
</tr>
<tr>
<td>antibiotic resistance and, 275</td>
<td></td>
</tr>
<tr>
<td>biothreat agents, 238-239</td>
<td></td>
</tr>
<tr>
<td>decay process, 277</td>
<td></td>
</tr>
<tr>
<td>deletion of prophage DNA, 269</td>
<td></td>
</tr>
<tr>
<td>E. coli, 31</td>
<td></td>
</tr>
<tr>
<td>extent and types, 267</td>
<td></td>
</tr>
<tr>
<td>“extra” genes at prophage ends, 272-274</td>
<td></td>
</tr>
<tr>
<td>forms, 268-269</td>
<td></td>
</tr>
<tr>
<td>gene expression, 268</td>
<td></td>
</tr>
<tr>
<td>increased fitness of lysogenic host, 269, 272, 274 induction, 269</td>
<td></td>
</tr>
<tr>
<td>interstrain genetic variability, 267-268</td>
<td></td>
</tr>
<tr>
<td>lysogenic conversion, 271-272</td>
<td></td>
</tr>
<tr>
<td>modular theory of evolution, 270-271</td>
<td></td>
</tr>
<tr>
<td>morons, 274</td>
<td></td>
</tr>
<tr>
<td>Neisseria, 108</td>
<td></td>
</tr>
<tr>
<td>phage-bacterial coevolution, 269-277</td>
<td></td>
</tr>
<tr>
<td>recombination, 270-271</td>
<td></td>
</tr>
<tr>
<td>S. aureus, 270-271, 274, 286-293</td>
<td></td>
</tr>
<tr>
<td>CHIPS, 292</td>
<td></td>
</tr>
<tr>
<td>comparative phage genomics, 288-289</td>
<td></td>
</tr>
<tr>
<td>DNA mobilization, 290</td>
<td></td>
</tr>
<tr>
<td>dynamics, 290</td>
<td></td>
</tr>
<tr>
<td>enterotoxin A, 291-292</td>
<td></td>
</tr>
<tr>
<td>innate immune evasion cluster, 290-291</td>
<td></td>
</tr>
<tr>
<td>SCIN, 292-293</td>
<td></td>
</tr>
<tr>
<td>staphylokinase, 292</td>
<td></td>
</tr>
<tr>
<td>S. enterica, 272</td>
<td></td>
</tr>
<tr>
<td>S. entomophila, 425-427</td>
<td></td>
</tr>
<tr>
<td>S. pyogenes, 267, 270, 273, 277-286</td>
<td></td>
</tr>
<tr>
<td>DNase, 281-282</td>
<td></td>
</tr>
<tr>
<td>fine structure analysis, 280</td>
<td></td>
</tr>
<tr>
<td>gene expression, 284, 286</td>
<td></td>
</tr>
<tr>
<td>gene regulation, 285</td>
<td></td>
</tr>
<tr>
<td>genome variability, 279-280</td>
<td></td>
</tr>
<tr>
<td>phospholipase, 282</td>
<td></td>
</tr>
<tr>
<td>polylysogeny, 280</td>
<td></td>
</tr>
<tr>
<td>SpeA vs. SpeB, 284-285</td>
<td></td>
</tr>
<tr>
<td>tail fibers and hyaluronidase, 281</td>
<td></td>
</tr>
<tr>
<td>virulence factors, 280-281</td>
<td></td>
</tr>
<tr>
<td>virulence factors, 267-268</td>
<td></td>
</tr>
<tr>
<td>Prophage remnants, 268, 277</td>
<td></td>
</tr>
<tr>
<td>Proteases, Mycobacterium, 66</td>
<td></td>
</tr>
<tr>
<td>Proteosome, mycobacterial, 62</td>
<td></td>
</tr>
<tr>
<td>Protein kinases, M. tuberculosis, 67-69</td>
<td></td>
</tr>
<tr>
<td>Protein secretion, 301-326</td>
<td></td>
</tr>
<tr>
<td>Protein targeting, gram-positive bacteria, 305-306</td>
<td></td>
</tr>
<tr>
<td>Protein translocation, 302, 315-316</td>
<td></td>
</tr>
<tr>
<td>Proteomics, 9-10</td>
<td></td>
</tr>
<tr>
<td>biothreat agents</td>
<td>236</td>
</tr>
<tr>
<td>Campylobacter, 178-179, 183-184</td>
<td></td>
</tr>
<tr>
<td>Neisseria, 105-106</td>
<td></td>
</tr>
<tr>
<td>T. pallidum, 147-149</td>
<td></td>
</tr>
<tr>
<td>Protozoa, intracellular bacteria, 242, 277-278, 382</td>
<td></td>
</tr>
<tr>
<td>Pseudogenes, 8</td>
<td></td>
</tr>
<tr>
<td>biothreat agents, 238-239</td>
<td></td>
</tr>
<tr>
<td>M. leprae, 8</td>
<td></td>
</tr>
<tr>
<td>Shigella, 32</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, 4</td>
<td></td>
</tr>
<tr>
<td>cell wall, 340</td>
<td></td>
</tr>
<tr>
<td>“killing” of C. elegans, 213-218</td>
<td></td>
</tr>
</tbody>
</table>
Pseudomonas aeruginosa (continued)
PA14NR set, 220–222
— collecting genome-wide data, 224
distribution and adoption of genomic tools, 222–224
— public pathogenomics database based on, 224–226
plant pathogen, 392–393, 407
pyocyanin, 216
Pseudomonas fluorescens, 403, 408, 424
Pseudomonas putida, 407
Pseudomonas syringae, 393, 395–400, 402–409
— comparative genomics, 408
— hrmA gene, 424
— ice-nucleating, 399
Pseudopilin export, 311–312
PTS-mediated transport, L. monocytogenes, 369, 372–374, 377
PtsN regulator, Neisseria, 97
PVL toxin, 274, 286–287
— epidemiology and spread, 287
— prophage genomics, 287–288
— PVL cell biology, 288
— PVL-associated fasciitis, 287
— PVL-associated pneumonia, 286–287
Pyocyanin, P. aeruginosa, 216
Pyodermitis, 278
Pyoverdine, 399
Pyrosequencing protocol, Treponema, 143
Q fever, 244–245
QuantiFERON-TB, 70–71
Ralstonia solanacarum, 393, 401–407, 409
Reactive arthritis, Campylobacter, 162
Real-time PCR, biothreat agents, 240
Recombination
— intracellular bacteria, 208
— Neisseria, 95–96
— prophages, 270–271
Reductive evolution, 8
Regulatory proteins, L. monocytogenes, 369
Relapsing fever
— endemic, 150
— epidemic, 150
REP2 repeats, Neisseria, 97–98
Restriction-modification systems, Campylobacter, 171–172
Reticulate body, 334–336
Reverse vaccinology, 3, 9
Neisseria, 107–108
Rheumatic fever, 278
Rhodococcus fasciatus, 392
Rickettsia, 203
Rickettsia conorii, 198, 234
Rickettsia felis, 198, 207–208
Rickettsia prowazekii, 198, 234
Rickettsia rickettsii, 234
Rickettsia typhi, 198
RNAi library, C. elegans, 220
RTX-like proteins, Neisseria, 95
RTX-like toxin, 401
S layer, gram-positive bacteria, 306, 309–310
Salmonella enterica, “killing” of C. elegans, 214–215
Salmonella enterica serovar Typhi, 234
Salmonella enterica serovar Typhimurium, 4, 162
— biothreat agent, 234
— prophages, 272
Scarlet fever, 272, 278
SCIN (staphylococcal complement inhibitor), 292–293
Sco protein, Neisseria, 92
Sec translocon, 302–305
Sec-dependent secretion system, see also Type II secretion system
E. coli, 302–303
— gram-positive bacteria, 301–310
— postsecretion processing, 305–306
Sec-independent secretion, see also Tad secretion system; Tat secretion system
— gram-positive bacteria, 301, 310–314
Secondary metabolites, plant, 406
Secretome, 305–306
Serratia entomophila
— antifeeding prophage, 425–427
— toxin complexes, 421
Serratia marcescens, “killing” of C. elegans, 214–215
Serum, response in Neisseria, 102
Shigella
— differentiation from E. coli, 24–25
— mobile genetic elements, 32
— pathoadaptive mutations, 32
— pseudogenes, 32
— type II secretion system, 40
Shigella boydii, 24, 29, 31–32, 34, 234
Shigella dysenteriae, 24, 29–32, 34, 162, 234
Shigella flexneri, 24, 29, 32, 40, 162
Shigella sonnei, 24, 29, 32, 34, 234
Shigellosis, 24
Siderophores
M. tuberculosis, 64–66
Photorhabdus, 432–433
plant pathogens, 399
Sigma factors
L. monocytogenes
— sigma B regulon, 375–376
— sigma-54, 376
Neisseria
— sigma factor extracytoplasmic function, 102
— sigma factor RpoH, 101, 110
Signal peptidase, 302, 304–306
Signal peptide, 315
“twin-arginine,” 311
Signal recognition particle pathway, 303

Campylobacter, 173

Signal sequence, 302–306, 308, 311

Signal transduction, *M. tuberculosis*, 67–69

Signaling proteins, plant pathogens, 406

Silent cassette systems, *N. meningitidis*, 91

Single nucleotide polymorphisms, *M. tuberculosis*, 53–56

SLH (surface layer homology) domains, 310

Sortase, 7, 305, 307–309, 370

Species concept, 8

Spirochetes

Borrelia, 149–154

Leptospira, 154–155

Treponema, 141–149

Spoligotyping, *M. tuberculosis*, 53

Spores, anthrax, 250–252

sRNA regulators, *L. monocytogenes*, 373

Staphylococcal scalded skin syndrome, 286, 288

Staphylococcus, 120–140

core genome, 133

gene organization, 133–135

inversions, 133–134

oriC environ, 134–135

pore structures in cell wall, 315

taxonomic definition of species, 122

Staphylococcus aureus, 4, 7, 120–130

ACME element, 274

comparative genomics, 128–130, 289

core genome, 126, 131, 133

core variable genes, 129–130

Ess secretion pathway, 314

in silico comparative analysis, 126–128

“killing” of *C. elegans*, 214–215

lipoproteins, 307

methicillin-resistant, 122–125, 274, 289–290, 337

microarray analysis, 128–130

mobile genetic elements, 123–130

multilocus sequence typing, 128

nasal carriage, 286

oriC environ, 135

prophages, 270–271, 274, 286–293

CHIPS, 292

comparative phage genomics, 288–289

DNA mobilization, 290

dynamics, 290

enterotoxin A, 291–292

innate immune evasion cluster, 290–291

SCIN, 292–293

staphylokinase, 292

PVL cell biology, 288

PVL epidemiology and spread, 287

PVL prophage genomics, 287–288

PVL toxin, 274

PVL-associated fasciitis, 287

PVL-associated pneumonia, 286–287

Sec-dependent secretion, 303–304

strain COL, 125, 129

strain FPR3757, 125, 127

strain MRSA252, 124–126

strain MSSA476, 124–126

strain Mu50, 123–124

strain MW2, 124

strain N315, 123–124, 126

strain NCTC8325, 125

strain RF122, 125–126

strain USA300, 274

toxins, 272, 288

vaccine, 315

Staphylococcus auricularis, 120

Staphylococcus capitis, 120, 338–339

Staphylococcus carnosus, 338

Staphylococcus delphini, 120

Staphylococcus epidermidis, 120–122, 130–132

cell wall, 339

core genome, 131, 133

inversions, 133

mobile genetic elements, 131

multilocus sequence typing, 132

oriC environ, 135

Sec-dependent secretion, 304

Staphylococcus haemolyticus, 120–122, 131–133, 135, 339

Staphylococcus hominis, 120

Staphylococcus lugdunensis, 120

Staphylococcus pasteuri, 120

Staphylococcus saprophyticus, 120–122, 131–133, 135

Staphylococcus simulans, 120, 338

Staphylococcus warneri, 120

Staphylokinase, 292

Stop transfer signal, 302

Streptococcus, Sec-independent secretion, 310–314

Streptococcus agalactiae, 3, 40–41, 127–128

Streptococcus equi, 280

Streptococcus gordonii, 304, 309

Streptococcus milleri, 339

Streptococcus parasanguis, 304

Streptococcus pneumoniae, 253

cell wall, 330, 337–338, 341

Streptococcus pyogenes

cell wall proteins, 309

horizontal gene transfer, 278–279

in vivo growth, 285–286

prophages, 267, 270, 273, 277–286

DNase, 281–282

fine structure analysis, 280

gene expression, 284, 286

gene regulation, 285

genome variability, 279–280

phospholipase, 282

polylysogeny, 280
Streptococcus pyogenes (continued)

- SpeA vs. SpeB, 284–285
- tail fibers and hyaluronidase, 281
- virulence factors, 280–281
- superantigens, 282–285
- toxins, 272, 281

Streptomyces scabies, 393–395, 404

Structural genomics, 10–11

Superantigens, *S. pyogenes*, 282–285

Surface proteins, *L. monocytogenes*, 365–371, 381

Syphilis, 141–142, 149

Syringomycins, 400

Tad secretion system, gram-positive bacteria, 311–312

Tat secretion system

- *Campylobacter*, 173
- gram-positive bacteria, 310–311
- *M. tuberculosis*, 63

Teichoic acids, 309

TIR domains, 217–218

TNF pathway, 216–218

Toll-like receptors, 216–218, 306–307

Toxin complexes, *Photorhabdus*, 421–423, 429–431, 434

- “Toxin gene paratoxin gene,” 281

Transcriptional profiling, 10

Transcriptional regulation, *Campylobacter*, 178–179

Transcriptional start mapping, *Campylobacter*, 180

Transcriptomics, 10

Transglycosylases, 329–331

Translocon, 315

- membrane, 302–305
- Transmembrane transport, *Neisseria*, 92–93
- Transpeptidation, 329–331

Transposable elements, *Campylobacter*, 170–171

Transposon mutagenesis

- *B. burgdorferi*, 154
- *Campylobacter*, 179–180
- Transposon site hybridization analysis, 219

Mycobacterium, 50, 53

Traveler's diarrhea, 24

Treponema, 141–149

- comparative genomics, 143–144
- microarray analysis, 142–143
- pyrosequencing protocol, 143
- whole genome fingerprints, 142–143

Treponema canadense, 141–142

Treponema denticola, 335

Treponema pallidum, 4, 141–149, 253

- antigen expression
 - during human infection, 149
 - during rabbit infection, 147–149

cloned open reading frames, 145–147

proteomics, 147–149

Treponema parahumicola, 141–143

Tropheryma whipplei, 4

Tubercle, 56

Tuberculosis, 49, 56, 69–70, 342

Tularemia, 243–244

Two-component regulatory systems

- *Campylobacter*, 165, 173–175, 179
- *L. monocytogenes*, 372
- *M. tuberculosis*, 67–69

Neisseria, 102

Photobacterium, 435

Type I secretion systems

Neisseria, 95

- plant pathogens, 400–401

Type II secretion systems, see also Sec-dependent secretion system

- *Campylobacter*, 173
- *E. coli*, 33
- *M. tuberculosis*, 62–63
- plant pathogens, 401–402

Shigella, 40

Type III secretion systems

- *E. coli*, 7, 28
- intracellular bacteria, 204

Photobacterium, 428–429

- plant pathogens, 394, 402–403

Type IV secretion systems

- *Campylobacter*, 170
- intracellular bacteria, 204–205
- plant pathogens, 403–404

Type V secretion systems, *Neisseria*, 95

Univector plasmid-fusion system, 145–147

5’-Untranslated region, *L. monocytogenes*, 373–374

Urease genes, intracellular bacteria, 205

Urinary tract infection

- *E. coli*, 24, 33, 40
- *S. saprophyticus*, 132

Vaccine

- gram-positive bacteria, 314–315
- *M. tuberculosis*, 70–71

Vibrio cholerae, 234

Vibrio enteroxolitica, 234

Vibrio mimicus, 234

Vibrio parahaemolyticus, 433

Vibrio vulniﬁcans, 234

Vip protein, *L. monocytogenes*, 371

Virulence

- modeling, 213–231
- phage-associated, 267

Vitamin B12, *L. monocytogenes*, 374

Weissella viridescens, 338

Whole-genome shotgun sequencing, 1–4
Wigglesworthia, 200, 203
Wigglesworthia glossinidia, 198
Wolbachia, 197–198, 205, 207–208
Wolinella succinogenes, 166, 172
WXG motif, 314

Xantham gum, 396–397
Xanthomonas, 403–404, 406
Xanthomonas axonopodis, 392–393, 395, 406–407
Xanthomonas campestris, 392–393, 395, 407
Xanthomonas oryzae, 393, 395
Xenorhabdus, toxins, 421–423
Xylella fastidiosa, 392–394, 398, 401, 404–405, 407

Yaws, 141–142
Yeast two-hybrid studies, Campylobacter, 184

Yersinia, genomic comparisons with Photorhabdus, 434–437
Yersinia enterocolitica, 162, 247–248, 421
Yersinia frederiksenii, 421
Yersinia pestis
genome sequence, 247–250
“killing” of C. elegans, 214–215
temperature effect on gene expression, 248
toxin complexes, 421, 434
Yersinia pseudotuberculosis
biothreat agent, 236, 239, 247, 253
genome sequence, 247–250
toxin complexes, 421, 434
Yersiniabactin, 399
YidC paralogues, 304