BACTERIAL PATHOGENOMICS
BACTERIAL PATHOGENOMICS

Mark J. Pallen
Editor-in-chief
University of Birmingham
Birmingham, United Kingdom

Karen E. Nelson
Department of Biology
Howard University
Washington, DC
and
The Institute for Genomic Research
Rockville, Maryland

Gail M. Preston
Oxford University
Oxford, United Kingdom

ASM PRESS
Washington, DC
CONTENTS

Contributors vii
Preface xi

1. Introduction to Pathogenomics
 Mark J. Pallen
 1

2. Understanding the Model and the Menace: a Postgenomic View of Escherichia coli
 Roy R. Chaudhuri and Gavin H. Thomas
 21

3. The Mycobacteria: a Postgenomic View
 Marien I. de Jonge, Timothy P. Stinear, Stewart T. Cole, and Roland Brosch
 49

4. Neisseria: a Postgenomic View
 Lori A. S. Snyder, Philip W. Jordan, and Nigel J. Saunders
 90

5. The Staphylococci: A Postgenomic View
 Jodi A. Lindsay and Matthew T. G. Holden
 120

6. Comparative Pathogenomics of Spirochetes
 George M. Weinstock, David Šmajs, Petra Matějková, Timothy Palzkill, and Steven J. Norris
 141

7. Campylobacter Pathogenomics: Genomes and Beyond
 Derrick E. Fouts, Emmanuel F. Mongodin, and Karen E. Nelson
 160
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Genomic Signatures of Intracellularity: Evolutionary Patterns and Paces in Bacterial Mutualists and Parasites</td>
<td>Jennifer J. Wernegreen</td>
</tr>
<tr>
<td>10.</td>
<td>Pathogenomics of Bacterial Biothreat Agents</td>
<td>Timothy D. Read and Brendan Thomason</td>
</tr>
<tr>
<td>11.</td>
<td>Impact of Phages on Evolution of Bacterial Pathogenicity</td>
<td>Harald Brüssow</td>
</tr>
<tr>
<td>12.</td>
<td>What Genomics Has Taught Us about Gram-Positive Protein Secretion and Targeting</td>
<td>Olaf Schneewind and Dominique Missiakas</td>
</tr>
<tr>
<td>13.</td>
<td>What Genomics Has Taught Us about Bacterial Cell Wall Biosynthesis</td>
<td>Lynn G. Dover</td>
</tr>
<tr>
<td>14.</td>
<td>What Genomics Has Taught Us about Intracellular Pathogens: the Example of Listeria monocytogenes</td>
<td>Carmen Buchrieser and Pascale Cossart</td>
</tr>
<tr>
<td>15.</td>
<td>Genomic Analysis of Plant Pathogenic Bacteria</td>
<td>Gail M. Preston, David S. Guttman, and Ian Toth</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Frederick M. Ausubel
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Roland Brosch
Unité de Génétique Moléculaire Bactérienne, 28 Rue du Dr. Roux, F-75724 Paris Cedex 15, France

Harald Brüssow
Nestlé Research Centre, Nutrition and Health Department. / Food and Health Microbiology, CH-1000 Lausanne 26, Vers-chez-les-Blanc, Switzerland

Carmen Buchrieser
Unité de Génomique des Microorganismes Pathogènes, Institut Pasteur, and CNRS URA 2171, F-75015 Paris, France

Roy R. Chaudhuri
Division of Immunity and Infection, IBR West, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Stewart T. Cole
Unité de Génétique Moléculaire Bactérienne, 28 Rue du Dr. Roux, F-75724 Paris Cedex 15, France

Pascale Cossart
Unité de Interactions Bactéries-Cellules, Institut Pasteur; INSERM U604; and INRA, USC 2020, F-75015 Paris, France

Marien I. de Jonge
Unité de Génétique Moléculaire Bactérienne, 28 Rue du Dr. Roux, F-75724 Paris Cedex 15, France

Lynn G. Dover
School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
CONTRIBUTORS

Andrea Dowling
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

Derrick E. Fouts
Department of Microbial Genomics, The Institute for Genomic Research, Rockville, MD 20850

Richard H. ffrench-Constant
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

David S. Guttman
Department of Botany, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B3, Canada

Michelle Hares
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

Matthew T. G. Holden
The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom

Philip W. Jordan
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom

Daniel G. Lee
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Nicole T. Liberati
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Jodi A. Lindsay
Department of Cellular & Molecular Medicine, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom

Petra Matějková
Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic

Dominique Missiakas
Department of Microbiology, University of Chicago, Chicago, IL 60637

Emmanuel F. Mongodin
Department of Microbial Genomics, The Institute for Genomic Research, Rockville, MD 20850

Karen E. Nelson
Department of Microbial Genomics, The Institute for Genomic Research, Rockville, MD 20850, and Department of Biology, Howard University, Washington, DC 20059

Steven J. Norris
Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
Mark J. Pallen
Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom

Timothy Palzkill
Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030

Gail M. Preston
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom

Timothy D. Read
Genomics Group, Biological Defense Research Directorate, Naval Medical Research Center, Rockville, MD 20852

Nigel J. Saunders
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom

Olaf Schneewind
Department of Microbiology, University of Chicago, Chicago, IL 60637

David Šmajs
Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic

Lori A. S. Snyder
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom

Timothy P. Stinear
Department of Microbiology, Monash University, Wellington Road, Clayton 3800, Australia

Gavin H. Thomas
Department of Biology, Area 10, University of York, P.O. Box 373, York YO10 5YW, United Kingdom

Brendan Thomason
Genomics Group, Biological Defense Research Directorate, Naval Medical Research Center, Rockville, MD 20852

Ian Toth
The Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom

Jonathan M. Urbach
Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

Nicholas Waterfield
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom

George M. Weinstock
Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
CONTRIBUTORS

Jennifer J. Wernegreen
Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine
Biological Laboratory, Woods Hole, MA 02543

Gang Wu
Department of Genetics, Harvard Medical School, and Department of Molecular Biology,
Massachusetts General Hospital, Boston, MA 02114

Guowei Yang
Department of Biology, University of Bath, Bath BA2 7AY, United Kingdom
PREFACE

Bliss was it in that dawn to be alive . . .

William Wordsworth, French Revolution as it appeared to enthusiasts at its commencement

The genomic era in bacteriology began when scientists at the Institute for Genomic Research in Maryland published the first two complete bacterial genome sequences in 1995. In the intervening 10 or more years, genome sequencing has exerted a stunning influence on bacteriology in general and the study of bacterial pathogenesis in particular. It has been a thrilling time to be in bacteriology. An apt analogy is with the space program, in particular, with the grand tour of the outer solar system during the 1970s and 1980s. Just as the two Voyager probes turned smudges glimpsed hazily through the telescope into newly mapped worlds, so bacterial genomics has allowed us to view the inner workings of our microscopic companions. Many of humankind’s most fearful microbial adversaries—from the agents of the black death to the white plague—have now been captured in silico. We now grapple with them on our desktop computers, as well as in the laboratory. Where once we saw through a glass darkly, we now see face to face!

Indeed, now that we have genome sequences from almost every significant bacterial pathogen of humans, plants, and animals, it is scarcely possible to imagine the study of bacterial pathogenesis without the backcloth of genomics. The ready availability of genome sequences pervades every corner of our discipline and underpins the steady incremental accumulation of new information on each bacterial pathogen. This book stands as a monument to this stunning success of “bacterial pathogenomics.” We have enlisted the contributions from over two dozen scientists from around the world to highlight the revolutionary contribution of genomics to the study of pathogenic bacteria and bacterial infection. We have adopted a twin-track approach: some chapters in this book survey the impact of genomics on our understanding of key taxonomic groups of pathogens, and others emphasize themes that cut across taxonomic boundaries,
integrating the impact of genomics on topics as diverse as bioterrorism, microbial ecology, bacterial evolution, bacterial protein secretion, and bacterial adaptations to pathogenic lifestyles. We hope that all readers, from student to professor, will gain new insights into pathogenomics from this book and will close its pages with an enthusiasm for this subject that will endure well into the second decade of bacteriology’s postgenomic era!

MARK PALLE
March 2007
INDEX

ABC transporters
gram-positive bacteria, 306
L. monocytogenes, 369
M. tuberculosis, 64–65
plant pathogens, 400–401
Acetate metabolism, 340
Acetylation, peptidoglycan, 339–341
Achromobactin, 399
ACME elements, S. aureus, 274
Actinobacillus actinomycetemcomitans, 312
ADP-ribose transferase, Neisseria, 96–97
Alginate, 396
Alpha chain disease, 162
t-Amino acids, cell wall, 329–330, 335
Anaplasma, 208
Anaplasma marginale, 198
Annotation, 5–7
E. coli K-12 genome, 36–39
Neisseria genomes, 110–111
Antibiotic production, Photorhabdus, 432
Antibiotic resistance
Campylobacter, 170, 177, 179
prophages and, 275
Antigens, T. pallidum, 147–149
Antituberculosis drugs, 69–70, 342
Applied genomics, 8–11
Arabinogalactan biosynthesis, 343–347
Arabinosyltransferases, M. tuberculosis, 70
AT-biased sequence evolution, intracellular bacteria, 205–207
ATP synthase, M. tuberculosis, 69
ATP/ADP translocase, intracellular bacteria, 205
Autoinducer-2, response in Neisseria, 98–99
Autolysins, 309, 370–371
Autotransporters, 95
Azorhizobium caulinodans, 346
Bacillus anthracis
cell wall, 340–341
genome sequence, 250–252
S layer, 310
Sec-dependent secretion, 303–304
Tad secretion system, 312
Bacillus cereus
biothreat agent, 235, 239
cell wall, 341
Bacillus stearothermophilus, 310
Bacillus subtilis
cell wall, 331–333, 336, 342
Com system, 312, 365
Sec-dependent secretion, 303–305
Bacillus thuringiensis, 235, 407
Bacteremia, S. aureus, 286
Bacteria
antipredation strategy against grazing protozoa, 277–278, 382
evolution, 275–276, see also Phage-bacterial coevolution
Bacteriophage, see Phage(s); Prophage(s)
Bartonella henselae, 207
Bartonella quintana, 207
Bermuda accords, 7
Bile salt hydrolase, L. monocytogenes, 375
Biodefense, 236–242, 252–254
Biothreat agents, 232–266
biodefense and pathogen ecology, 240–242
biothreat pathogen near neighbors, 238–239
in C. elegans pathogenicity model, 241
comparative genome hybridization, 233
definition, 233–234
DNA-based detection methods, 239–240
DNA-based genotyping, 239–240
enhanced pathogenicity from gains and losses from genome, 237–238
functional genomics, 233–236
gene duplication, 237
genetically engineered, 252–254
genome reduction, 237–238
genome sequences, 239–240
horizontal gene transfer, 237–238
host genomics, 240
insect vectors, 241–242
intracellular pathogens, 240–242
lack of flagellar machinery, 238
major bacterial agents, 242–252
metabolic streamlining, 238
microarray analysis, 233–236, 240
multiagent counteragents, 252–254
outputs of biothreat pathogenomic studies, 252–254
pathoadaptation, 238
pathogenomic themes in biodefense, 236–242
plasmids, 239
prophages, 237–238
proteomics, 236
pseudogenes, 238–239
real-time PCR, 240
Biotrophs, 404
Blochmannia, 200, 203, 205, 207
Blochmannia floridanus, 198
Blochmannia pennsylvanicus, 198
Borrelia, 149–154
genomic structure, 151–152
plasmids, 151–152
Borrelia afzelii, 150
Borrelia burgdorferi, 141, 150–152, 253
transposon mutagenesis, 154
virulence determinants, 152–154
Borrelia garinii, 150
Borrelia lonestari, 150
Borrelia miyamotoi, 150
Borrelia recurrentis, 150
Borrelia spielmani, 150
Botulism, 272
Brucella melitensis
genome sequence, 246–247
Brucellosis, 246–247
Buchnera, 8, 200, 202–203, 205–207
Buchnera aphidicola, 198, 404
Burkholderia cepacia, plant pathogen, 392
Burkholderia mallei
biothreat agent, 233–235, 238, 242–243
genome sequence, 242–243
Burkholderia pseudomallei
genome sequence, 242–243
toxins, 421
Burkholderia thailandensis, 235, 238
Buruli ulcer, 49, 72–75
Caenorhabditis elegans
G. elegans pathogenicity model, 213–231
biothreat agents, 241
collection and integration of data from research community, 224–226
distribution and adoption of genomic tools, 222–224
genomic tools for host, 219–220
genomic tools for pathogens, 218–219
nonredundant transposon mutation library for
P. aeruginosa PA14, 220–222
studying bacterial pathogenesis, 214–216
studying host immunity, 216–218
Esp mutants, 217, 220
Campylobacter, 3, 160–194
antibiotic resistance, 170, 177, 179
capsular polysaccharide synthesis, 176–177
cell adhesion, 175
comparative genome hybridization, 179
comparative genomics, 166–177
CRISPR analysis, 171
detection procedures, genome-based, 178
differential expression studies, 178–179
genomic islands, 168–169
hypervariable homopolymeric tracks, 175–176
informatics studies, 180
iron metabolism, 165, 179
licABCD locus, 175
LOS, 176–177
metabolic pathways, 172–173
microarray analysis, 178–179
motility, 173
phages, 168–169
phylogenetic analysis, 167–168
plasmids, 169–170
postgenomic studies, 177–180
promoters, 180
proteomics, 178–179, 183–184
restriction-modification systems, 171–172
sequencing projects
contracts, 180–181
isolates to be sequenced in order of priority, 182–183
timelines, 183
SRP pathway, 173
stress-responsive regulon, 179
Tat secretion system, 173
transcriptional start mapping, 180
transposable elements, 170–171
transposon mutagenesis, 179–180
two-component regulatory systems, 165, 173–175, 179
type II secretion system, 173
type IV secretion system, 170
virulence, 173–175
yeast two-hybrid studies, 184
Campylobacter coli, 160–162, 166–177
Campylobacter concisus, 160, 183
Campylobacter curvus, 160, 183
Campylobacter fetus, 160–161, 181–182
Campylobacter hominis, 161, 183
Campylobacter jejuni, 160–177
biothreat agent, 234
cell wall, 340
genome sequence, 163–166
hypervariable polyG:C tracts, 163–166
isolates to be sequenced, 182–183
metabolic pathways, 165–166
pathogenesis
disease ramifications, 161–162
molecular pathogenesis, 162–164
strain NCTC11168, 4, 163–166
toxins, 163, 165, 175
virulence genes, 165–166
Campylobacter lari, 160–161, 166–177
Campylobacter upsaliensis, 160–161, 166–177
Capsular polysaccharide, Campylobacter, 176–177
Caulobacter crescentus, 407
Cell adhesion
Campylobacter, 175
M. tuberculosis, 58–60
Neisseria, 100
Cell division, 332–334
Cell division gene clusters, 332–334
Cell wall, see also Peptidoglycan
biosynthesis, 327–360
 cell division gene clusters, 332–334
 Corynebacteriaceae, 342–347
genomic channeling, 334
chemical structure and molecular architecture,
328–329
in silico modeling, 328
interpeptide bridges, 337–339
pores, 328–329
proteins of gram-positive bacteria
covalent anchoring, 305, 307–308
noncovalent anchoring, 305, 308–309
CFP-10 protein, M. tuberculosis, 63–64, 313–314
Chaperone-implemented posttranslational secretion,
303–304
CHIPS (chemotaxis inhibitory protein of Staphylo-
coccus), 292
Chlamydia, 200, 203
 peptidoglycan, 334–336
Chlamydia muridarum, 199
Chlamydia trachomatis, 162, 199, 334–336
Chlamydia abortus, 199
Chlamydia psittaci, 199
Chlamydia pneumoniae, 199
Chromatin immunoprecipitation, 10–11
Chromobacterium violaceum, 407
Clavibacter michiganensis, 393–394, 401, 406
Clostridium, plant pathogens, 392
Clostridium acetobutylicum, 312
Clostridium botulinum
 biothreat agent, 234, 237
toxins, 272
Clostridium difficile, 313
Clostridium thermocellum, 310
Coxiella burnetii, 197–198
biothreat agent, 233–235, 244–245, 253
genome sequence, 245
CREN, Neisseria, 97–98
CRISPR analysis, Campylobacter, 171
Cytolethal distending toxin, Campylobacter, 163, 165,
175
Cytoysis-mediated transport, 310
DC-SIGN, M. tuberculosis, 59–60
DCW (division/cell wall) cluster, 332–335, 344
Diarrhea, C. jejuni, 161
Diarylquinolines, 69
Disseminated gonococcal infections, 103–104, 110
DNA microarray, see Microarray analysis
DNase, S. pyogenes prophages, 281–282
Efflux pump, Neisseria, 96
Ehrlichia, 208
Ehrlichia ruminantium, 198
Elementary body, 334–336
ELISPOT, M. tuberculosis, 70–71
Endemic syphilis, 141–142
Endopeptidase resistance, 338–339
Endosymbionts, see also Intracellular bacteria
primary, 200, 203
Enterobactin, 399
Enterococcus faecalis
 cell wall, 330–331, 333, 336, 338
 “killing” of C. elegans, 214–215
Enterococcus faecium, cell wall, 330–331
Enterotoxin A, S. aureus, 291–292
Envirinia, 402–404
 ice-nucleating, 399
Envirinia amylovora, 392–393, 397, 400
Envirinia carotovora, 392–393, 395–397, 399, 404, 406–
407
Envirinia chrysanthemi, 392, 398–400
Erysipelis, 278
ESAT-6 protein
 M. tuberculosis, 7–8, 63–64, 313–314
 M. ulcerans, 74
secretion, 313–314
Escherichia blattae, 34
Escherichia coli, 21–48
annotation of genome, 36–39
biothreat agent, 234
cell wall, 332–334, 336
comparative genomics, 35–36, 41
comparative genome hybridization, 36
comparisons with Photobacterium, 420–429
computational resources for whole-genome
comparison, 35–36
Escherichia coli (continued)
core genome, 36, 41
diarraheagenic, 23
differentiation from Shigella, 24–25
diversity, 24–28
ECOR collection, 24–28, 36
teroaggregative, 24–25, 27, 34–35
terohemorrhagic, 23, 25, 27
teroinvasive, 24–25, 27, 34
teropathogenic, 23–24, 27, 34
terotoxigenic, 23–24, 27, 34
genome evolution, 41
genome size, 27
genomes in progress, 34–35
horizontal gene transfer, 22–23
multilocus enzyme electrophoresis, 24–25
neonatal meningitis, 24
O157:H7, 23, 28–33, 267, 277
online resources for genomics, 37
pathogenic, 23–24
phylogenetics, 24–28
postgenomic era, 40
prophage, 31
Sec-dependent secretion, 302–303
strain K–12, 4, 21–48
strain Nissle 1917, 34–35
Tat secretion system, 311
type II secretion system, 7, 28
uropathogenic, 24, 33, 40
Escherichia fergusonii, 35
EspA protein, 7
Evolution
genome, 8
intraacellular bacteria, 200–201, 205–207
L. monocytogenes, 382–383
M. tuberculosis, 52–56
M. ulcerans, 73
phage-bacterial coevolution, 267–300
Exochelins, 65
Extracellular polysaccharides, plant pathogens, 396
FarAB efflux pump, Neisseria, 96
fem factors, 337–338
flaB silent cassette system, N. meningitidis, 91
Fibronectin-binding proteins, 309
L. monocytogenes, 371
Finishing, genome sequence, 4–5
Flagella
absence in biothreat agents, 238
biogenesis, 312
Flagellin, Sec-independent secretion, 312
Fold coverage, 4
Francisella tularensis
biothreat agent, 233–235, 237, 243–244, 253
genome sequence, 244
fts genes, 332–334
Functional genomics, 8–11
biothreat agents, 233–236
Photobacterium, 435–437
T. pallidum, 145–147
Fur box, Neisseria, 98
Furunculosis, 286
Gastroenteritis, Campylobacter, 160–161
Gene duplication, biothreat agents, 237
Genetic drift, intraacellular bacteria, 201, 205–206
Genetically engineered pathogens, 252–254
Genome evolution, 8
Genome reduction
biothreat agents, 237–238
intraacellular bacteria, 201–205, 238
M. ulcerans, 74–75
metabolic implications, 203
plant pathogens, 404–405
Genome sequencing
benefits, 1–3
costs, 11
future trends, 11–13
impact on bacteriology, 7–11
milestones, 1–2
mix and match approach, 3
sequencing centers and other resources, 3, 5
taxonomic skewing, 3
Genomes OnLine Database, 3
Genome-sequencing project, 3–7
annotation, 5–7
Campylobacter, 180–181
release and acceptable use of genome, 7
from shotgun to finishing, 4–5
strain choice, 3–4
Genomic channeling, 334
Genomic epidemiology, 12
Genomic islands, Campylobacter, 168–169
Geobacillus stearothermophilus, 310
Glanders, 242–243
Glutathione, L. monocytogenes, 374–375
Glycoproteomics, 10
Gonococcal genetic island, 105
Gram-positive bacteria
cell wall biosynthesis, 337–339
cell wall proteins
covalent anchoring, 305, 307–308
noncovalent anchoring, 305, 308–309
flagellin secretion, 312
lipoproteins, 305–307
protein targeting, 305–306
S layer, 306, 309–310
Sec-dependent secretion, 301–310
Sec-independent secretion, 301, 310–314
Tad secretion system, 311–312
Tat secretion system, 310–311
vaccine design, 314–315
Guillain-Barré syndrome, 161–162, 181
GW modules, 309, 366–367, 370, 381

Haemophilus influenzae, 1, 332
Helicobacter hepaticus, 166
Helicobacter pylori, 105, 166, 253, 340, 342
Hemolytic uremic syndrome, 23
Hemorrhagic colitis, 23
Heparin-binding hemagglutinin, *M. tuberculosis*, 59
Holins, 312–313
Homopolymeric tracks, hypervariable, *Campylobacter*, 175–176

Horizontal gene transfer
- biothreat agents, 237–238
detection, 22–23
E. coli, 22–23
intracellular bacteria, 207–208
M. tuberculosis, 54
Neisseria, 91, 108–109
phage–bacterial coevolution, 275–276
plant pathogens, 394–395
S. aureus, 290
S. pyogenes, 278–279
Host–pathogen system, *C. elegans*-based, 213–231
Hyaluronidase, *S. pyogenes*, 281
Hydrogen peroxide, response in *Neisseria*, 102–103

Ice-nucleation proteins, 399
iCLIP-like protease, 66
Illegitimate recombination, between prophages, 271
IMD pathway, 216–218
Immune response
to biothreat agents, 240
in insects, 434
to *M. tuberculosis*, 56
Immunoproliferative small intestinal disease, 162
Indole-3-acetic acid, 400
Informatics studies, *Campylobacter*, 180
Innate immune evasion cluster, 290–291
Innate immunity, 216
Insect endosymbionts, 200
Insect pathogens
human pathogens vs., 433–434
Photorhabdus, 419–429
Insect vectors
biothreat agents, 241–242
plant pathogens, 398
Interactome, 11
Interpeptide bridges, cell wall, 337–339
Intracellular bacteria, 196–212
ATP/ADP translocase, 205
biothreat agents, 240–242
effective population sizes, 201
evolution, 200–201, 205–207
genetic drift, 201, 205–206
genome reduction, 201–205, 237
genome stasis, 207–208
horizontal gene transfer, 207–208
infection strategies, 204–205
L. monocytogenes, 361–391
lifestyle diversity, 197–200
metabolic pathways, 203–205
mutations, 201, 206–207
rapid, AT-biased sequence evolution, 205–207
recombination, 208
type III secretion systems, 204
type IV secretion systems, 204–205
urease genes, 205
Inversions, *Staphylococcus*, 133–134
Iron metabolism
- *Campylobacter*, 165, 179
- *L. monocytogenes*, 370
- *M. tuberculosis*, 64–66, 70
- *Neisseria*, 94–95, 99–100
plant pathogens, 399

Johne's disease, 50

Leifsonia xyli, 393–394, 404–405
Leprosy, 49, 71–72, 342
Leptospira, 141, 154–155
Leptospira borgpetersenii, 154–155
Leptospira interrogans, 154–155
Leptospirosis, 141, 154–155
licABCD locus, *Campylobacter*, 175
Lipid metabolism, *M. tuberculosis*, 57, 66
Lipoate protein ligase, *L. monocytogenes*, 375
Lipodepsinonapeptides, 400
Lipopoly saccharide
Neisseria, 93
plant pathogens, 396–397
Lipoprotein(s)
- gram-positive bacteria, 305–307
- *L. monocytogenes*, 369
secretion, 305
Lipoprotein diacylglycerol transferase, 306
Lipoprotein signal peptidase, 306
Lipoteichoic acid, 309
Listeria
- *Com system*, 311, 365
- comparative genomics, 363–365, 377–382
- genome conservation, 363–365
- mobile genetic elements, 365
- *Listeria grayi*, 382–383
- *Listeria ivanovii*, 382–383
Listeria monocytogenes, 361–391
ActA protein, 362, 366, 378
autolysins, 370–371
bile salt hydrolase, 375
biothreat agent, 234
cell wall proteins, 308–309
comparative genomics, 363–365, 377–382
environmental habitat, 382–383
evolution, 382–383
fibronectin-binding protein, 371
gene organization, 363–365
hexose phosphate transporter, 371–372, 375
infection cycle, 361–363
intracellular gene expression, 376
intracellular movement, 362–363
iron metabolism, 370
lipoate protein lipase, 375
lipoproteins, 369
Listeria seeligeri, 382–383
Listeria welshimeri, 382–383
Listeriosis, 361–391
Listeria, 365
L. monocytogenes, 375–377
M. tuberculosis, 54
Neisseria, 98–105
S. aureus, 128–130
Treponema, 142–143
Miller-Fisher syndrome, 161–162, 181
Minimal mobile elements, Neisseria, 108–109
Mitogen-activated protein kinase, 216–218
MLVA schemes, biothreat agents, 239
Mobile genetic elements, 276
Listeria, 365
M. ulcerans, 73, 75
S. aureus, 123–130
S. epidermidis, 131
S. haemolyticus, 132
S. saprophyticus, 133
Shigella, 32
Model host-pathogen system, 213–231
C. elegans as model host, 214–218
collection and integration of data from research community, 224–226
distribution and adoption of genomic tools, 222–224
genomic tools for hosts, 219–220
genomic tools for pathogens, 218–219
nonredundant transposon mutation library for P. aeruginosa PA14, 220–222
Modular theory, phage evolution, 270–271
MogR protein, L. monocytogenes, 373
Molecular barcode, 9–10
Morons, prophages, 274
Motility, Campylobacter, 173
MtrR transcriptional regulator, Neisseria, 97
Multilocus sequence typing
E. coli, 24–25
S. aureus, 128
S. epidermidis, 132
Murein hydrolase, 312–313
Mutant library, genomic tools for pathogens, 219
Mutations
intracellular bacteria, 201, 206–207
pathoadaptive, Shigella, 32
Mutualists, intracellular, 200–201, 203–206
Myxobacterium, 49–89
cell wall, 342–347
comparative genomics, 50, 52
peptidoglycan synthesis, 344
transposon site hybridization, 50, 53
Mycobacterium abscessus, 50–51
Mycobacterium africans, 50–51, 59, 342
Mycobacterium avium, 50–51, 346
Mycobacterium avium paratuberculosis, 50–52, 66
Mycobacterium bovis, 49, 51, 58–59, 63, 67, 342
Mycobacterium canettii, 50–51
Mycobacterium chelonae, 50–51
Mycobacterium flavescens, 50
Mycobacterium leprae, 4, 49–51, 66, 71–72, 197, 199, 237
cell wall, 342
PE-PPE family, 71–72
protection against oxidative stress, 72
pseudogenes, 8
Mycobacterium marinum, 50–52, 64, 73–74, 314
Mycobacterium microti, 50–51, 59, 67
Mycobacterium neoaurum, 65
Mycobacterium smegmatis, 50–51, 63–66, 346
Mycobacterium tuberculosis, 49–52
ABC transporters, 64–65
ancient human populations, 53
anti-TB drug design, 69–70, 342
biothreat agent, 234
cell adhesion, 58–60
cell wall, 327, 342–347
CFP-10 protein, 63–64, 313–314
diagnostics, 70–71
ESAT-6 protein, 7–8, 63–64, 313–314
evolutionary aspects, 52–56
general features of genome, 57
horizontal gene transfer, 54
host-related factors in infection, 56
iron metabolism, 64–66, 70
lipid metabolism, 57, 66
microarray analysis, 54
PE-PPE family, 60, 71–72
phospholipase C, 66–67
proteases, 66
protection against oxidative and nitrosative stress, 60–62, 72
protein kinases and phosphatases, 67–70
protein secretion and virulence, 62–64
siderophores, 64–66
signal transduction, 67–69
single nucleotide polymorphisms, 53–56
smooth tubercle bacilli, 54
spoligotyping, 53
Tat secretion system, 63
two-component systems, 67–69
type II secretion system, 62–63
vaccine, 70–71
Mycobacterium ulcerans, 49, 51–52, 72–75
ESAT-6 protein, 74
evolution, 73
genome reduction, 74–75
genome sequence of AGY99, 73, 75
mobile genetic elements, 73
PE-PPE family, 74–75
plasmid MUM001, 73–74
toxin, 72–73
Mycobacterium vanbaalenii, 51
Mycobactins, 65–66, 70
Mycolactone, 72–74
Mycolic acids, 58, 313, 327, 342
Mycoplasmagentialium, 1
Mycosins, 66
Near-neighbor genomes, biothreat agents, 238–239
Necrosis-inducing protein, plant pathogens, 395, 404
Necrotizing fasciitis, 278, 287
Neisseria, 90–119
ADP-ribosyltransferase, 96–97
annotation of genomes, 110–111
coding tandem repeats, 107
Correia repeat-enclosed element, 106
demonstration of absence of system, 96
efflux pumps, 96
filamentous phage, 103
Fur box, 98
genome sequences from different species, 109
growth at increased temperature, 102
heat shock response, 101–102
horizontal gene transfer, 91, 108–109
identification of sequence repeats, 106–107
iron metabolism, 94–95, 99–100
lipopolysaccharide modification, 93
microarrays
 assessing gene complement, 103–105
 transcription profiling, 98–103
minimal mobile elements, 108–109
MtrR transcriptional regulator, 97
nitric oxide, 92
pathogenic vs. commensal, 104–105
penicillin-binding proteins, 94
phase-variable repeats, 106–107
PilT in adhesion, 100
pilus modification, 93
postgenomic findings, 109–110
prepilin proteins, 94
promoter-located motifs and sequences, 97–98
prophage genomes, 108
protection against oxidative stress, 92
proteomics, 105–106
PtsN regulator, 97
recombination, 95–96
REP2 repeats/CREN, 97–98
response to autoinducer-2, 98–99
response to host cells, 100–101
response to hydrogen peroxide, 102–103
response to serum, 102
reverse vaccinology, 107–108
RTX-like proteins, 95
sigma factor extracytoplasmic function, 102
sigma factor RpoH, 101, 110
Neisseria (continued)

TonB-dependent family proteins, 94–95
transmembrane transport, 92–93
two-component regulatory system, 102
type I secretion systems, 95
type V secretion systems, 95
verification of metabolic pathway, 95–96

Neisseria gonorrhoeae, 90–119, 253
cell wall, 340–341
genes needed for disseminated infections, 103–104

Neisseria lactamica, 100, 104–105, 119

Neisseria meningitidis, 90–119
cell wall, 340
GGI in, 104
hypervariable polyG:C tracts, 163–165
silent cassette systems, 91

Neonatal meningitis, 24
Nitric oxide, Neisseria, 92
Nitrosative stress, M. tuberculosis, 60–62

Nonribosomal-peptide synthase gene cluster, 433–434
NorM efflux pump, Neisseria, 96
NXZTN motif, 370

OAP clusters, 340–341
oriC environ, Staphylococcus, 134–135
Oxidative stress
Mycobacterium, 60–62, 72
Neisseria, 92

Pectobacterium, 421
Pantoea agglomerans, 392
Pantoea stewartii, 397
Panton–Valentine leukocidin toxin, see PVL toxin
Parachlamydia, 203–205, 207–208
Parasite, intracellular, 197–200

Pathoadaptation, 238
Pathogen-associated molecular patterns, 216, 306–307
Pathogenesis, model host-pathogen systems, 213–231
Pathogenicity islands, 23, 28, 33, 237, 394–395, 419–427

Pathosphere, 12
PE proteins
M. leprae, 71–72
M. tuberculosis, 60, 71–72
M. ulcerans, 74–75
Penicillin-binding proteins, 329, 337

Chlamydia, 335
high-molecular-weight, 331–332, 335–336, 344
Mycobacterium, 344
Neisseria, 94

Peptidoglycan
acetylation, 339–341
breakdown by autolysins, 309
chemical structure, 328–329
Chlamydia, 334–336
deacetylation, 341–342
enzymology of monomer biosynthesis, 329–330, 332
genome-driven insights into polymerization, 331–332
polymerization and crosslinking of strands, 330–331
synthesis in Mycobacterium, 344

Peptidoglycan hydrolases, 338–339
Phage(s), see also Prophage(s)
Campylobacter, 168–169
evolution, 269–275
filamentous, in Neisseria, 103
holins, 312–313
Phage–bacterial coevolution, 267–300
bacterial side, 275–277
ecological perspective, 277–278
phage side, 269–275
time dimension, 269–270
timeline, 276–277

Pharyngitis, 278, 286
Phaseolotoxin, 399
Phase-variable repeats, Neisseria, 106–107
Phosphatases, M. tuberculosis, 67–70
Phospholipase
S. pyogenes prophages, 282
L. monocytogenes, 362
Phospholipase C, M. tuberculosis, 66–67
Photorhabdus, 419–439
antibiotic production, 432
functional genomics, 435–437
genomic comparisons between species, 429–434
genomic comparisons with E. coli, 420–429
genomic comparisons with Yersinia, 434–437

genomic islands, 419–427
encoding Mcf toxins, 423–424
encoding toxin complexes, 421–423
human infections, 433
life cycle, 419–420
nematode interactions, 431–433
photorhabdus virulence cassettes, 425–427
PirAB binary toxins, 427–428
secondary variants, 435
siderophores, 432–433
switch between symbiosis and pathogenicity, 434–435
toxin complexes, 421–423, 429–431, 434
two-component regulatory systems, 435
type III secretion system, 428–429
Photorhabdus asymbiotica, 419, 427–429, 433
Photorhabdus luminescens, 419–429, 433
Photorhabdus temperata, 428–431, 433
Phylogenetic analysis, Campylobacter, 167–168
Phytohormones, 400
Phytoplasma, 197, 392–393, 395, 404, 407
Phytoplasma asteris, 199, 208, 405
Phytotoxins, 399–400
Pili
- *C. diphtheriae*, 308
- *Neisseria*, 93

Plant pathogens
- 396–398, 403–404
- Neisseria, 100
- Pinta, 141–142
- PilT, adhesion by *Neisseria*, 100
- PirAB binary toxins, *Photorhabdus*, 427–428
- Plague, 247–250

Plasmids
- biothreat agents, 239
- *Borrelia*, 151–152
- *Campylobacter*, 169–170
- *M. ulcerans*, 73–74
- PolyG:C tracts, hypervariable
 - *C. jejuni*, 163–166
 - *N. meningitidis*, 163–165
- Polyketide synthase, 399
- Polysyngen, 280

Proteins
- PPE proteins
 - *M. leprae*, 71–72
 - *M. tuberculosis*, 60, 71–72
 - *M. ulcerans*, 74–75
- Prehelin proteins, *Neisseria*, 94
- Promoters, *Campylobacter*, 180
- Prophage(s), see also Phage(s)
 - antibiotic resistance and, 275
 - biothreat agents, 237–238
 - decay process, 277
 - deletion of prophage DNA, 269

Proteomics
- 9–10
- biothreat agents, 236
- *Campylobacter*, 178–179, 183–184
- *Neisseria*, 105–106
- *T. pallidum*, 147–149

Proteases
- *Mycobacterium*, 66
- Proteosome, mycobacterial, 62
- Protein kinases, *M. tuberculosis*, 67–69
- Protein secretion, 301–326
- Protein targeting, gram-positive bacteria, 305–306
- Protein translocation, 302, 315–316

Pyrosequencing
- biothreat agents, 236
- *Campylobacter*, 178–179, 183–184
- *Neisseria*, 105–106
- *T. pallidum*, 147–149

Protozoa
- intracellular bacteria, 242, 277–278, 382

Pseudogenes
- 8
- biothreat agents, 238–239
- *M. leprae*, 8
- *Shigella*, 32
- *Pseudomonas aeruginosa*, 4
 - cell wall, 340
 - “killing” of *C. elegans*, 213–218

Plague
- pneumonic, 250

Plasmids
- biothreat agents, 239
- *Borrelia*, 151–152
- *Campylobacter*, 169–170
- *M. ulcerans*, 73–74

PolyG:C tracts, hypervariable
- *C. jejuni*, 163–166
- *N. meningitidis*, 163–165

Polyketide synthase, 399

Polylysogeny, 280

PPE proteins
- *M. leprae*, 71–72
- *M. tuberculosis*, 60, 71–72
- *M. ulcerans*, 74–75

Prehelin proteins, *Neisseria*, 94

Promoters, *Campylobacter*, 180

Prophage(s), see also Phage(s)
- antibiotic resistance and, 275
- biothreat agents, 237–238
- decay process, 277
- deletion of prophage DNA, 269

Proteins
- PPE proteins
 - *M. leprae*, 71–72
 - *M. tuberculosis*, 60, 71–72
 - *M. ulcerans*, 74–75
- Prehelin proteins, *Neisseria*, 94
- Promoters, *Campylobacter*, 180
- Prophage(s), see also Phage(s)
 - antibiotic resistance and, 275
 - biothreat agents, 237–238
 - decay process, 277
 - deletion of prophage DNA, 269
Pseudomonas aeruginosa (continued)
PA14NR set, 220–222
collecting genome-wide data, 224
distribution and adoption of genomic tools,
222–224
public pathogenomics database based on, 224–226
plant pathogen, 392–393, 407
pyocyanin, 216
Pseudomonas fluorescens, 403, 408, 424
Pseudomonas putida, 407
Pseudomonas syringae, 393, 395–400, 402–409
comparative genomics, 408
hrmA gene, 424
ice-nucleating, 399
Pseudopilin export, 311–312
PTS-mediated transport, L. monocytogenes, 369, 372–374, 377
PtsN regulator, Neisseria, 97
PVL toxin, 274, 286–287
epidemiology and spread, 287
prophage genomics, 287–288
PVL cell biology, 288
PVL-associated fascitis, 287
PVL-associated pneumonia, 286–287
Pyocyanin, P. aeruginosa, 216
Pyodermatitis, 278
Pyoverdine, 399
Pyrosequencing protocol, Treponema, 143
Q fever, 244–245
QuantiFERON-TB, 70–71
Ralstonia solanacearum, 393, 401–407, 409
Reactive arthritis, Campylobacter, 162
Real-time PCR, biothreat agents, 240
Recombination
intracellular bacteria, 208
Neisseria, 95–96
prophages, 270–271
Reductive evolution, 8
Regulatory proteins, L. monocytogenes, 369
Relapsing fever
demic, 150
epidemic, 150
REP2 repeats, Neisseria, 97–98
Restriction-modification systems, Campylobacter, 171–172
Reticulate body, 334–336
Reverse vaccinology, 3, 9
Neisseria, 107–108
Rheumatic fever, 278
Rhodococcus fascians, 392
Rickettsia, 203
Rickettsia conorii, 198, 234
Rickettsia felis, 198, 207–208
Rickettsia prowazekii, 198, 234
Rickettsia rickettsii, 234
Rickettsia typhi, 198
RNAi library, C. elegans, 220
RTX-like proteins, Neisseria, 95
RTX-like toxin, 401
S layer, gram-positive bacteria, 306, 309–310
Salmonella enterica, “killing” of C. elegans, 214–215
Salmonella enterica serovar Typhi, 234
Salmonella enterica serovar Typhimurium, 4, 162
biothreat agent, 234
prophages, 272
Scarlet fever, 272, 278
SCIN (staphylococcal complement inhibitor), 292–293
Sco protein, Neisseria, 92
Sec translocon, 302–305
Sec-dependent secretion system, see also Type II secretion system
E. coli, 302–303
gram-positive bacteria, 301–310
postsecretion processing, 305–306
Sec-independent secretion, see also Tad secretion system; Tat secretion system
gram-positive bacteria, 301, 310–314
Secondary metabolites, plant, 406
Secretome, 305–306
Serratia enteromorphila
antifeeding prophage, 425–427
toxin complexes, 421
Serratia marcescens, “killing” of C. elegans, 214–215
Serum, response in Neisseria, 102
Shigella
differentiation from E. coli, 24–25
mobile genetic elements, 32
pathoadaptive mutations, 32
pseudogenes, 32
type II secretion system, 40
Shigella boydii, 24, 29, 31–32, 34, 234
Shigella dysenteriae, 24, 29–32, 34, 162, 234
Shigella flexneri, 24, 29, 32, 40, 162
Shigella sonnei, 24, 29, 32, 34, 234
Shigellosis, 24
Siderophores
M. tuberculosis, 64–66
Photorhabdus, 432–433
plant pathogens, 399
Sigma factors
L. monocytogenes
sigma B regulon, 375–376
sigma-54, 376
Neisseria
sigma factor extracytoplasmic function, 102
sigma factor RpoH, 101, 110
Signal peptidase, 302, 304–306
Signal peptide, 315
“twin-arginine,” 311
Signal recognition particle pathway, 303
Campylobacter, 173
Signal sequence, 302–306, 308, 311
Signal transduction, *M. tuberculosis*, 67–69
Signaling proteins, plant pathogens, 406
Silent cassette systems, *N. meningitidis*, 91
Single nucleotide polymorphisms, *M. tuberculosis*, 53–56
SLH (surface layer homology) domains, 310
Sortase, 7, 305, 307–309, 370
Species concept, 8
Spirochetes
Borrelia, 149–154
Leptospira, 154–155
Treponema, 141–149
Spoligotyping, *M. tuberculosis*, 53
Spores, anthrax, 250–252
sRNA regulators, *L. monocytogenes*, 373
Staphylococcal scalded skin syndrome, 286, 288
Staphylococcus, 120–140
core genome, 133
genome organization, 128–130, 289
core genome, 126, 131, 133
core variable genes, 128–130
Ess secretion pathway, 314
in silico comparative analysis, 126–128
“killing” of *C. elegans*, 214–215
lipoepitopes, 307
methicillin-resistant, 122–125, 274, 289–290, 337 microarray analysis, 120–130
mobile genetic elements, 128–130
multilocus sequence typing, 128
nasal carriage, 286
oriC environ, 135
prophages, 270–271, 274, 286–293
CHIPS, 292
comparative phage genomics, 288–289
DNA mobilization, 290
dynamics, 290
enterotoxin A, 291–292
innate immune evasion cluster, 290–291
SCIN, 292–293
staphylokinase, 292
PVL cell biology, 288
PVL epidemiology and spread, 287
PVL prophage genomics, 287–288
PVL toxin, 274
PVL-associated fasciitis, 287
PVL-associated pneumonia, 286–287
Sec-dependent secretion, 303–304
strain COL, 125, 129
strain FPR3757, 125, 127
strain MRSA252, 124–126
strain MSSA476, 124–126
strain Mu50, 123–124
strain MW2, 124
strain N315, 123–124, 126
strain NCTC8325, 125
strain RF122, 125–126
strain USA300, 274
toxins, 272, 288
vaccine, 315
Staphylococcus auricularis, 120
Staphylococcus capitis, 120, 338–339
Staphylococcus carnosus, 338
Staphylococcus delphini, 120
Staphylococcus epidermidis, 120–122, 130–132
cell wall, 339
core genome, 131, 133
inversions, 133
mobile genetic elements, 131
multilocus sequence typing, 132
oriC environ, 135
Sec-dependent secretion, 304
Staphylococcus haemolyticus, 120–122, 131–133, 135, 339
Staphylococcus hominis, 120
Staphylococcus lugdunensis, 120
Staphylococcus pasteuri, 120
Staphylococcus saprophyticus, 120–122, 131–133, 135
Staphylococcus simulans, 120, 338
Staphylococcus warneri, 120
Staphylokinase, 292
Stop transfer signal, 302
Streptococcus, Sec-independent secretion, 310–314
Streptococcus agalactiae, 3, 40–41, 127–128
Streptococcus equi, 280
Streptococcus gordonii, 304, 309
Streptococcus milleri, 339
Streptococcus mutans, 304
Streptococcus parasanguis, 304
Streptococcus pneumoniae, 253
cell wall, 330, 337–338, 341
Streptococcus pyogenes
cell wall proteins, 309
horizontal gene transfer, 278–279
in vivo growth, 285–286
prophages, 267, 270, 273, 277–286
DNase, 281–282
fine structure analysis, 280
gene expression, 284, 286
gene regulation, 285
genome variability, 279–280
phospholipase, 282
polylysogeny, 280
Wigglesworthia, 200, 203
Wigglesworthia glossinidia, 198
Wolbachia, 197–198, 205, 207–208
Wolinella succinogenes, 166, 172
WXG motif, 314

Xantham gum, 396–397
Xanthomonas, 403–404, 406
Xanthomonas axonopodis, 392–393, 395, 406–407
Xanthomonas campestris, 392–393, 395, 407
Xanthomonas oryzae, 393, 395
Xenorhabdus, toxins, 421–423
Xylella fastidiosa, 392–394, 398, 401, 404–405, 407

Yaws, 141–142
Yeast two-hybrid studies, Campylobacter, 184

Yersinia, genomic comparisons with Photorhabdus, 434–437
Yersinia enterocolitica, 162, 247–248, 421
Yersinia frederiksenii, 421
Yersinia pestis
genome sequence, 247–250
“killing” of C. elegans, 214–215
temperature effect on gene expression, 248
toxin complexes, 421, 434
Yersinia pseudotuberculosis
biothreat agent, 236, 239, 247, 253
genome sequence, 247–250
toxin complexes, 421, 434
Yersiniabactin, 399
YidC paralogues, 304