Chemical Communication among Bacteria
Chemical Communication among Bacteria

Edited by

Stephen C. Winans
Department of Microbiology
Cornell University
Ithaca, New York

and

Bonnie L. Bassler
Howard Hughes Medical Institute
Chevy Chase, Maryland and
Department of Molecular Biology
Princeton University
Princeton, New Jersey

Washington, DC
Chemical communication among bacteria / edited by Stephen C. Winans and Bonnie L. Bassler.

Includes bibliographical references and index.
1. Quorum sensing (Microbiology) 2. Cellular signal transduction.
3. Bacteria—Physiology. I. Winans, Stephen Carlyle. II. Bassler, Bonnie L.
 III. American Society for Microbiology.
 4. Intercellular Signaling Peptides and Proteins. QW 52 C5166 2008]

QR 96.5.C54 2008
571.74—dc22 2007052056

10 9 8 7 6 5 4 3 2 1

All Rights Reserved
Printed in the United States of America

Cover: A *Staphylococcus aureus-Pseudomonas aeruginosa* co-culture biofilm. Aggregates of *S. aureus* (colored red from SYTO 62 staining) are surrounded by a monolayer of *P. aeruginosa* (green-GFP tagged) in this 24-h-old biofilm. How and when interspecies signaling occurs to form organized mixed species communities represent an emerging area. Photo courtesy of Dinding An and Matthew R. Parsek.
CONTENTS

 Contributors ix
 Preface xv

I. CELL-CELL SIGNALING DURING DEVELOPMENT AND DNA EXCHANGE 1

1. Intercompartmental Signal Transduction during Sporulation in Bacillus subtilis
 David Z. Rudner and Thierry Doan 3

2. Extracellular Peptide Signaling and Quorum Responses in Development, Self-Recognition, and Horizontal Gene Transfer in Bacillus subtilis
 Jennifer M. Auchting and Alan D. Grossman 13

3. New Insights into Pheromone Control and Response in Enterococcus faecalis pCF10
 Heather A. H. Haemig and Gary M. Dunny 31

4. C-Signal Control of Aggregation and Sporulation
 Dale Kaiser 51

5. The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in Myxococcus xanthus
 Lawrence J. Shinkets 65
6. Heterocyst Development and Pattern Formation
 M. Ramona Aldea, Kritthika Kumar, and James W. Golden
 75

7. Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes
 Joanne M. Willey and Justin R. Nodwell
 91

8. Metabolites as Intercellular Signals for Regulation of Community-Level Traits
 Russell D. Monds and George A. O’Toole
 105

II. CELL-CELL SIGNALING IN MUTUALISTIC AND PATHOGENIC ASSOCIATIONS WITH HUMANS, ANIMALS, AND PLANTS 131

9. LuxR-Type Proteins in Pseudomonas aeruginosa Quorum Sensing: Distinct Mechanisms with Global Implications
 Martin Schuster and E. P. Greenberg
 133

10. Quorum Sensing in Vibrio cholerae Pathogenesis
 Fiona R. Stirling, Zhi Liu, and Jun Zhu
 145

11. Signal Integration and Virulence Gene Regulation in Staphylococcus aureus
 Edward Geisinger and Richard P. Novick
 161

12. Quorum Sensing in the Soft-Rot Erwinias
 Sarah J. Coulthurst, Rita E. Monson, and George P. C. Salmond
 185

13. Role of Quorum-Sensing Regulation in Pathogenesis of Pantoea stewartii subsp. stewartii
 Susanne B. von Bodman, Aurelien L. Carlier, and Ann M. Stevens
 201

14. Cell-to-Cell Communication in Rhizobia: Quorum Sensing and Plant Signaling
 J. Allan Downie and Juan E. González
 213

15. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium Vibrio fischeri
 E. V. Stabb, A. Schaefer, J. L. Bose, and E. G. Ruby
 233
16. Acylated Homoserine Lactone Signaling in Marine Bacterial Systems
Elisha M. Cicirelli, Holly Williamson, Karen Tait, and Clay Fuqua

III. PRODUCTION, DETECTION, AND QUENCHING OF CHEMICAL SIGNALS 273

17. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism
Mair E. A. Churchill and Jake P. Herman

18. Cell-Cell Signaling within Crown Gall Tumors
Stephen C. Winans

19. A New Look at Secondary Metabolites
Michael G. Surette and Julian Davies

20. Signal Integration in the Vibrio harveyi and Vibrio cholerae Quorum-Sensing Circuits
Brian Hammer and Bonnie L. Bassler

21. Signal Trafficking with Bacterial Outer Membrane Vesicles
Lauren Mashburn-Warren and Marvin Whiteley

22. Cooperative Regulation of Competence Development in Streptococcus pneumoniae: Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor
Marco R. Oggioni and Donald A. Morrison

23. The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in Streptomyces
Sueharu Horinouchi

24. Quorum Quenching: Impact and Mechanisms
Lian-Hui Wang, Yi-Hu Dong, and Lian-Hui Zhang

25. Quorum-Sensing Inhibition
Staffan Kjelleberg, Diane McDougald, Thomas Bovbjerg Rasmussen, and Michael Givskov
IV. EUKARYOTIC QUORUM SENSING AND INTERACTIONS WITH QUORUM-SENSING BACTERIA 417

26. Interdomain Cross Talk
Carla Cugini, Roberto Kolter, and Deborah A. Hogan
419

27. Intercellular Signaling by Rhomboids in Eukaryotes and Prokaryotes
Matthew Freeman and Philip Rather
431

28. Quorum Sensing in Fungi
Claire C. Tseng and Gerald R. Fink
443

29. Quorum Sensing in Rotifers
Julia Kubanek and Terry W. Snell
453

30. “Quorum Sensing” in Honeybees: Pheromone Regulation of Division of Labor
Yves Le Conte, Zachary Huang, and Gene E. Robinson
463

Index 469
CONTRIBUTORS

M. Ramona Aldea
Department of Biology, Texas A&M University, College Station, TX 77843

Jennifer M. Auchtung
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Bonnie L. Bassler
Howard Hughes Medical Institute, Chevy Chase, MD, and Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014

J. L. Bose
Department of Microbiology, University of Georgia, Athens, GA 30602

Aurelien L. Carrier
Department of Plant Science, University of Connecticut, Storrs, CT 06269-4163

Mair E. A. Churchill
Department of Pharmacology and Program in Biomolecular Structure, The University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045

Elisha M. Cicirelli
Department of Biology, Indiana University, Bloomington, IN 47405

Sarah J. Coulthurst
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom

Carla Cugini
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

Julian Davies
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
Thierry Doan
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, MA 02115

Yi-Hu Dong
Institute of Molecular and Cell Biology, Singapore 138673

J. Allan Downie
John Innes Centre, Norwich NR4 7UH, United Kingdom

Gary M. Dunny
Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

Gerald R. Fink
Whitehead Institute for Biomedical Research, Cambridge, MA 02142

Matthew Freeman
MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom

Clay Fuqua
Department of Biology, Indiana University, Bloomington, IN 47405

Edward Geisinger
Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology
and Medicine at the Skirball Institute for Biomolecular Medicine, New York University
School of Medicine, New York, NY 10016

Michael Givskov
BioScience and Technology, Technical University of Denmark, Lyngby,
Copenhagen, Denmark

James W. Golden
Department of Biology, Texas A&M University, College Station, TX 77843

Juan E. González
Department of Molecular & Cell Biology, University of Texas at Dallas, Richardson, TX

E. P. Greenberg
Department of Microbiology, University of Washington, Seattle, WA 98195

Alan D. Grossman
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

Heather A. H. Haemig
Department of Microbiology, University of Minnesota, Minneapolis, MN 55455

Brian Hammer
Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014

Jake Herman
Department of Pharmacology, The University of Colorado at Denver and Health Sciences
Center, Aurora, CO 80045

Deborah A. Hogan
Department of Microbiology and Immunology, Dartmouth Medical School,
Hanover, NH 03755
Sueharu Horinouchi
Department of Biotechnology, Graduate School of Agriculture and Life Sciences,
The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Zachary Huang
Department of Entomology, Michigan State University, East Lansing, MI 48824

Dale Kaiser
Departments of Biochemistry and Developmental Biology,
Stanford University School of Medicine, Stanford, CA 94305

Staffan Kjelleberg
Centre for Marine Biofouling and Bio-Innovation, The University of New South Wales,
New South Wales, Australia

Roberto Kolter
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, MA 02115

Julia Kubanek
School of Biology and School of Chemistry & Biochemistry,
Georgia Institute of Technology, Atlanta, GA 30332

Krithika Kumar
Department of Biology, Texas A&M University, College Station, TX 77843

Yves Le Conte
INRA, UMR406 INRA/UAPV Ecologie des Invertébrés, Laboratoire Biologie et
Protection de l’Abeille, Site Agroparc, Domaine Saint-Paul,
84914 Avignon Cedex 9, France

Zhi Liu
Department of Microbiology, University of Pennsylvania School of Medicine,
Philadelphia, PA 19104-6076

Lauren Mashburn-Warren
Section of Molecular Genetics and Microbiology, The University of Texas at Austin,
Austin, TX 78712

Diane McDougald
Centre for Marine Biofouling and Bio-Innovation, The University of New South Wales,
New South Wales, Australia

Russell D. Monds
Department of Microbiology and Immunology, Dartmouth Medical School,
Hanover, NH 03755

Rita E. Monson
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW,
United Kingdom

Donald A. Morrison
Laboratory for Molecular Biology, Department of Biological Sciences,
University of Illinois at Chicago, Chicago, IL 60607
CONTRIBUTORS

Justin R. Nodwell
Department of Biochemistry, Health Sciences Centre, McMaster University, Hamilton, Ontario L8N 3Z5, Canada

Richard Novick
Molecular Pathogenesis Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016

Marco R. Oggioni
Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy

George A. O’Toole
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

Thomas Bovbjerg Rasmussen
Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark

Philip Rather
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322

Gene E. Robinson
Department of Entomology, Neuroscience Program, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

E. G. Ruby
Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706

David Z. Rudner
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

George P. C. Salmond
Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom

A. Schaefer
Department of Microbiology, University of Washington, Seattle, WA 98195

Martin Schuster
Department of Microbiology, Oregon State University, Corvallis, OR 97331

Lawrence J. Shimkets
Department of Microbiology, University of Georgia, Athens, GA 30602

Terry W. Snell
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

E. V. Stabb
Department of Microbiology, University of Georgia, Athens, GA 30602

Ann M. Stevens
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
CONTRIBUTORS

Fiona R. Stirling
Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076

Michaela G. Surette
Department of Microbiology and Infectious Diseases and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada

Karen Tait
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom

Claire C. Tseng
Whitehead Institute for Biomedical Research, Cambridge, MA 02142

Susanne B. von Bodman
Departments of Plant Science and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-4163

Lian-Hui Wang
Institute of Molecular and Cell Biology, Singapore 138673

Marvin Whiteley
Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712

Joanne M. Willey
Department of Biology, Hofstra University, Hempstead, NY 11549

Holly Williamson
Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom

Stephen C. Winans
Department of Microbiology, Cornell University, Ithaca, NY 14853

Lian-Hui Zhang
Institute of Molecular and Cell Biology, Singapore 138673

Jun Zhu
Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076
A lthough a few groups of bacteria have long been known to communicate via diffusible chemical signals, we are only now learning that this process is enormously widespread. We are now in a position to begin to appreciate the importance of cell–cell communication in areas as fundamental as bacterial physiology, ecology, evolution, and pathogenesis. Approximately one decade ago, ASM Press published the first comprehensive review of the topic of bacterial cell–cell communication, Cell-Cell Signaling in Bacteria, with chapters contributed by leaders in the then-nascent field. We hope readers of this new volume will agree that an enormous amount of information on major aspects of signaling has surfaced since that first book was published and that a fresh view of the topic is now appropriate and important for a diverse audience of researchers, educators, and clinicians.

The past decade has witnessed new insights about the chemical composition, synthesis, and turnover of a variety of bacterial signal molecules. First, the enzymes that synthesize signal molecules are far better understood than they were 10 years ago. At the close of the 20th century, no signal synthase had been studied at the structural level. Currently, the structures of three bacterial signal synthases have been solved, two of which produce AHLs (chapter 16) and one of which synthesizes AI-2 (chapter 19). In other developments, the Streptomyces coelicolor 15-residue SapB peptide, required for aerial fruiting body formation, is now known to be synthesized by a nonribosomal peptide synthase (chapter 6). We recently learned that at least one class of extremely hydrophobic signal travels as a component of vesicles derived from the cell outer membrane (chapter 20). This signal, designated PQS (Pseudomonas quorum signal) also has antimicrobial properties against gram-positive bacteria. Many new types of signal molecules with a variety of novel structures are under study, including polyamines, rhamnolipids, and metabolites such as indole and amino acids (chapters 3, 7, and 17). During the past decade, a variety of enzymes capable of degrading bacterial communication signals have been described, as well as natural and synthetic small molecules that agonize or antagonize signaling (chapters 10, 24, and 25). Future studies may help us understand whether the
substrates for which these enzymes were selected are signaling molecules or whether the destruction of signal molecules is incidental to the activity for which they were selected.

There has been an explosion of new information on signal receptors and mechanisms of signal transduction. Where 10 years ago there was no structural information about quorum sensing receptors, there now exists structural information for seven of these receptors (chapters 21, 13, 19, and 23) (2, 7). It is striking that at least five of these receptors (PrgX, CprB, TraR, LasR, and SdiA) fully or partially engulf their respective ligands, which contribute to the hydrophobic cores of these proteins. In the case of the cytoplasmic TraR, LasR, and SdiA receptors, ligand binding is required for protein folding and resistance to proteolysis, while PrgX and CprB function as apo-proteins, so their folding must occur in the absence of ligand. Quorum sensing structural studies have provided other surprises. For example, it was found that AI-2 bound to LuxP includes a boron atom and, perhaps equally surprising, that AI-2 bound to the homologous Lsr receptor lacks boron (chapter 19). Also surprising is that the LuxPQ structures provide a new mechanism for two-component signal transduction across the bacterial membrane that differs dramatically from that proposed for signal relay in chemotaxis systems. A cocrystal containing TraR and its antiactivator TraM provides insight into the mechanism for how TraM allosterically prevents TraR from binding DNA (3). Thus, studies of the molecular biology of cell-cell signaling are providing unexpected insights into other areas of molecular biology.

New discoveries about signal transduction pathways and the expression of target genes have also been made. For example, a decade ago we could not have guessed that at the heart of the Vibrio harveyi and Vibrio cholerae quorum sensing cascades would lie several redundant small RNAs. We could not have predicted that two autoinducers and two AI synthases in Vibrio fischeri would influence the activity of LuxR. Large sets of new target genes have been identified using global high throughput techniques such as proteomics and DNA microarrays (6) (chapter 8).

The repertoire of phenotypes affected by cell-cell communication has grown considerably. For example, it has long been appreciated that oligopeptides stimulate sporulation and competence for transformation in Bacillus subtilis, but only recently has it been reported that peptides also stimulate the conjugation of the integrative and conjugative element ICEBs1 (chapter 2). Expression of these genes is also induced by DNA damage, similar to the corresponding genes of the STX element of V. cholerae (1). A decade ago it was clear that communication is required for biofilm formation in Pseudomonas aeruginosa (4), but recently it has been discovered that communication has the opposite effect on biofilms in V. cholerae (chapter 9). The surprising finding that increases in population densities activate this trait in P. aeruginosa and inhibit the same trait in V. cholerae most likely defines the persistent versus acute diseases, respectively, caused by these pathogens.

Studies of P. aeruginosa have been especially fast-paced in this past decade. It was already known that this organism has two AHL signals, as well as a quinolone signal called PQS, and that there were two AHL synthases and two AHL receptors. We now know that a third AHL receptor exists that detects one of the known AHLs. The P. aeruginosa LasR protein has been extensively stud-
ied in vitro and binds both to canonical las box binding sites as well as to completely different sites (chapter 8). Binding to some sites is cooperative, while at other sites, the protein binds noncooperatively. Microarrays and random fusions have shown that hundreds of genes are controlled by one or more of these systems, including many genes that encode exported proteins. The crystal structure of the LasR N-terminal domain, complexed with the cognate AHL, was recently determined (2) and revealed interesting structural similarities to TraR of A. tumefaciens (chapter 13).

What discoveries might we anticipate in the coming decade? We will look for the elucidation of new classes of signaling molecules, such as the one described late in 2007 (5). We expect that the next 10 years will also witness advances in structural and biochemical studies of signal synthases and receptors, including structural determination of peptide signals complexed with their receptors. There will likely be surprises about the mechanisms of diffusion of different signals, perhaps aided by nanofabrication technologies. Genetic approaches and transcriptional profiling will likely lead to new understanding of network design principles that provide noise reduction, signal integration, and signal amplification. We will learn how bacterial regulatory circuits are wired to provide ordered temporal and spatial expression of large sets of target genes. We also will expect further collaborations between biologists and molecular modelers. We can be reasonably confident about progress in all of these areas. On the other hand, the most exciting discoveries will generally be the ones that no one can even begin to anticipate. To paraphrase a former U.S. Secretary of Defense, it is hard to predict the unknown, but much harder still to predict the unknown unknowns. If the rate of progress of the past decade is to continue at the present pace for another 10 years, we will be able to glimpse a body of knowledge about which we could not even have dreamt when the first ASM volume on this topic went to press just 10 years ago.

REFERENCES

2. Bottomley, M. J., E. Muraglia, R. Bazzo, and A. Carfi. 2007. Structure of the P. aeruginosa LasR ligand-binding domain bound to its autoinducer. Direct submission to protein Data Bank, submission number 2uv0.
INDEX

A factor, Streptomyces, 93, 363–376
in ArpA dissociation, 371
biological activities of, 364–365
biosynthesis of, 367–370
homologues of, 365–366
in quorum sensing, 313, 444
receptor for, 370–371
regulation of, 370–373
in streptomycin production, 373
structure of, 368–370

A factor receptor protein (ArpA), in streptomycin production, 366–367, 370–371
AarA protein, Pantoea stewartii, 433–436
AbrB protein, in ComK regulation, 22
Accessory genes, Staphylococcus aureus, see Staphylococcus aureus, virulon regulation of
AccR protein, in quorum sensing, 293
O-Acetylserine, 115–116
Acr proteins, in quorum sensing, 155
Acidification, of seawater, AHL signaling and, 253
Acr proteins, in biofilm formation, 113
Actinobacteria, see Streptomyces
Actinorhodin, 95
Acyl-homoserine lactone acylases, in quorum sensing quenching, 386–387
Acyl-homoserine lactone lactonases, in quorum sensing quenching, 383–385
Acyl-homoserine lactone oxidoreductases, in quorum sensing quenching, 387
Acyl-homoserine lactone synthases
active sites of, 279, 281
families of, 275–277
list of, 278
LuxI type, 277–279
mechanisms of action of, 281
in quorum sensing
Agrobacterium tumefaciens, 291, 294–299
Vibrio harveyi, 323
structures of, 278–279
Acyl-homoserine lactones, 275–289
acyl chain lengths of, 252
analogs of, molecular design of, 399–404
antibiotic resistance and, 318
degradation of, 285
destruction of, 404–406
furanones and, 396–406
in one-way sensing, 420–426
in quorum sensing, 312–313
Aeromonas, 260
Agrobacterium tumefaciens, 254
Antarctobacter, 255
antibiotic-producing organisms, 314–316
Chromobacterium violaceum, 254
Delisea pulchra, 265
Dinoroseobacter shibae, 254, 257, 259
Enunonia, 185–195
Erythrobacter, 256
fish pathogens, 260–262
general models for, 251–252
Glacecoloa polaris, 254
inhibitors of, 381–388
Jannaschia, 254, 257, 259
Laminaria digitata, 267
Lokanella, 255, 257, 260
macroalgae, 262–268
marine bacterial systems, 251–272
Marinobacter, 254
milky sea phenomenon, 265
Oceanibulbus, 255
Oceanicola, 257, 259, 260
Octadecabacter, 255
Pantoea stewartii, 202–210
Acyl-homoserine lactones (continued)

parameters for, 252–253

Phaeobacter, 254

Pseudoalteromonas atlantica, 254

Pseudomonas aeruginosa, 133–140, 333

Rhizobia, 216–226

Rhodobacteriales bacterium, 257

Roseobacter, 254–260

Roseovarius, 254, 257, 259

Roseovivax, 255

Ruegeria, 255, 256

Sagittula, 255, 257

Salipiger, 255

Silicibacter, 255–257, 259

Staleya, 255, 256

Sulfitobacter, 254, 255, 257, 259

Ulva, 262–265

Vibrio, 256, 260–264

Vibrio fischeri, 233–244, 251–252, 254

Vibrio harveyi, 252, 256

screening for, 398–399

structures of, 275–280

synthase active sites in, 279, 281

synthesis of, 251–252, 277–278

enzymatic mechanism in, 281

intrinsic specificity of, 281–282

LuxI synthases in, 277–279

modulation of, 282–286

species differences and, 275–277

specificity and, 282–286

S-Adenosyl-L-methionine

in acyl-homoserine lactone synthesis, 276, 279, 281

in Al-1 synthesis, 327

inhibitors of, 381

Adhesins, in biofilm formation, 107

AdpA protein

in aerial hypha formation and secondary metabolism, 93

in A factor regulation, 366, 371–373

AdsA protein, in aerial hypha formation and secondary metabolism, 93–94

Aeromonas hydrophila, quorum sensing in, 260

Aeromonas salmonicida, quorum sensing in, 260

AfsA protein, in butyrolactone synthesis, 364–370

Aggregatibacter actinomycetemcomitans, quorum sensing in, 338–339

Aggregation, Myxococcus xanthus, 58–59

Aggregation substance, in pheromone binding, 33, 45

Agr proteins, in virulon regulation, 167, 169–170

agr system, in virulon regulation, Staphylococcus aureus, 161–171

AgrA protein, 169–170

AgrB protein, 167

AgrC protein, 169

AgrD protein, 167

autoinducing peptide, 165–169

in vivo studies of, 170–171

pathogenicity of, 170–171

RNAIII, 170, 173, 175–176

specificity groups, 165, 167

Agrobacterium radiobacter, 292, 293

Agrobacterium rhizogenes, 292

Agrobacterium rubi, 292

Agrobacterium tumefaciens

acyl-homoserine lactone synthase of, 276

in biofilms, 114

cell-to-cell signaling in, 291–306

Ti plasmids and, 292–293

TraR, in, 293–302

characteristics of, 292

genome of, 292

horizontal gene transfer in, 22

quorum sensing in, 138, 254, 291–306

inhibitors of, 405–407

quenching of, 384, 385, 387

Agrobacterium vitis, 292

Agrocinopines, in crown gall tumors, 291, 293

AhlM protein, in quorum quenching, 387

AHLs, see Acyl-homoserine lactones

AhyRI protein, in quorum sensing, 260

Al-3, in co-opting, 423

Al-1 and Al-2

in quorum sensing, 313

furanones and, 397

Vibrio cholerae, 148, 152–153, 325–329

Vibrio fischeri, 237–240, 244

Vibrio harveyi, 323–324, 327–329

synthesis of, 327–329

AiiA protein, in quorum quenching, 383–385

Ain proteins, in quorum sensing

acyl-homoserine lactone synthesis and, 276

Vibrio fischeri, 237–241, 244

Akinetes, versus heterocysts, 84–85

Algae

quorum sensing inhibitors in, 423

signaling of, acyl-homoserine lactones in, 262–268

Alpha factor, in quorum sensing, 444

Alteration, in interdomain signaling, 423–424

Amanita muscaria, Streptomyces communication with, 424

Amf proteins, in aerial hypha formation and secondary metabolism, 93, 96–97

Ami proteins, Tat protein export system and, 435, 436

Amino acids, metabolites of, 115–116

Aminoglycosides, in biofilm formation, 107

Ammonia, in quorum sensing, 449

Ammonium, for nitrogen fixation, 76

Anabaena, heterocysts of, see Heterocysts

Anaerobic regulator, in quorum sensing, 136

ANR anaerobic regulator, in quorum sensing, 136

Antitobacter, quorum sensing in, 255

Anthramide, in quorum quenching, 381

Antibiotics, 310–311
in biofilm formation, 112–115
definition of, 310
economic importance of, 310
Pseudomonas aeruginosa, 336–337
resistance to, 317–318
signaling activity of, 314–316
Streptomyces, 363–377
subinhibitory, 106–109, 315–316
synthesis of, 308–310
AphA protein, in quorum sensing, 152, 154–155
AphD protein, in A factor regulation, 371
App protein, in sporulation regulation, 16
Aquatic animals, quorum sensing in, 453–462
Arabidopsis, salicylic acid effects on, 119
ArcA/ArcB system, in quorum sensing, 244
ArgC protein, in quorum sensing, 380
arlRS system, in virulon regulation, 164, 171–172
Aro proteins, in quorum sensing, 448
ArpA protein
in aerial hypha formation and secondary metabolism, 93, 95
in streptomycin production, 366–367, 370–372
Arr protein, in biofilm formation, 107
Arthrobacter, quorum sensing in, 405–406
Asc10 protein, function of, 38–39, 44–46
Aspergillus nidulans, quorum sensing in, 447
AstD protein, in biofilm formation, 308–310
Auxin, in dimorphic transition, 118
Auxofurans, in two-way communication, 424
B factor, in secondary metabolite regulation, 373
Bacillus, quorum sensing in, quenching of, 382
Bacillus cereus, quorum-sensing inhibitors of, 405
Bacillus mycoides, quorum-sensing inhibitors of, 405
Bacillus subtilis, 13–30
cell density phenomena in, 13–14
competence development in, 13–22
gene transfer in
horizontal, 22–23
regulation of, 23–24
population density signals of, 17–21
quorum sensing in, 14–17, 313
quenching of, 382
sporulation in, 3–16
cell density and, 13–14
forespore response in, 8–9
forespore signaling in, 4–6
mother cell response in, 6–7
quorum sensing and, 14–16
surfactin of, 97
Baillus thuringiensis, quorum sensing in inhibitors of, 405
quenching of, 382, 384–385
Bacteroids, in nodulation, 215
BarA protein, in butyrolactone synthesis, 370
Bees, *see* Honeybees
Biofilms
Aerobacter aerogenes, 114
Bacillus subtilis, 15
Citrobacter koseri, 114
control of, *see* Quorum-sensing inhibitors
Escherichia coli, examples of, 394
formation of, 393–394
agr system in, 171
amino acid metabolites in, 115–116
antibiotics in, 112–115
indole in, 112–115
quorum sensing in, 133–134
Klebsiella oxytoca, 114
membrane vesicles in, 341
Morganella morganii, 114
Myxococcus xanthus, 66–67
Pantoea stewartii, 207–308
Providencia stuartii, 114, 115
Pseudomonas aeruginosa, 107, 117–118, 394, 396, 398, 401–403, 405–410
Pseudomonas aureofaciens, 114
Pseudomonas fluorescens, regulation of, Spol proteins in, 15
resistance to environmental effects, 393–394
Staphylococcus aureus, 171
Staphylococcus epidermidis, 107
Streptococcus, 355–356
Streptococcus pneumoniae, 354–356
Vibrio cholerae, 110, 146, 152–157
Yersinia pestis, 109–110
Biofilm Protein, in quorum sensing, 216–217
BlcC protein, in TraA regulation, 299
BofA protein, in sporulation, 8–9
B. calyciflorus, quorum sensing in, 454
B. phialophora, quorum sensing in, 453–462
ecological consequences of, 458–459
historical perspective of, 454–459
Bradyrhizobium japonicum, quorum sensing in, 220, 224–225
Brood pheromone, in regulation of labor in honeybees, 465–466
Burkholderia cenocepacia, quorum-sensing inhibitors of, 404
Burkholderia cepacia, quorum-sensing inhibitors of, 407
Burkholderia pseudomallei, quorum sensing in, 381
N-Butyryl homoserine lactone analogues of, for quorum-sensing inhibition, 401–402
in interdomain signaling, 420
in quorum sensing, 134, 136, 139

C signaling, in fruiting body development, 57–58
Caenorhabditis elegans quorum-sensing inhibitors of, 408
rhomboid proteases of, 433
signaling mechanisms of, 422

CAI-1 protein, in quorum sensing
Vibrio anguillarum, 262
Vibrio cholerae, 148–150, 152–153, 325–327
Vibrio harveyi, 323–324
Calcium, in heterocyst development, 79–80

Candida albicans
Pseudomonas aeruginosa communication with, 424–426
quorum sensing in, 443, 445–449
Candida mogii, quorum sensing in, 449
Capsular polysaccharides
in quorum sensing, 201, 206
in virulon regulation, 162
Car proteins, production of, 186–189
Carbapenem, production of, 186–189
CcbP protein, in heterocyst development, 80
cCF10 pheromone
naming of, 32
PrgX binding to, 39, 40–43
regulation of, 32
synthesis of, 33–36

CcIA peptide, in pheromone regulation, 33
Cde42 protein, in quorum quenching, 387
Cel protein, in quorum sensing, 192
Cell density factor, in quorum sensing, 224–225
Centroccystis ulmi, quorum sensing in, 449
Cfp protein, in sporulation, 4–5
CglB protein, in motility, 55
Chaplins, 96
Che proteins, in motility, 69, 71–72
CheA-like histidine kinase, in motility, 66
Chemosensory system, Dif, see Dif chemosensory system
Chemo taxis, 56–57, 67–70, 420–422
Chl3lp1 protein, in quorum sensing, 447
Chlamydomonas reinhardtii, quorum sensing inhibitors in, 423
Cholera, see Vibrio cholerae
Cholera toxin, 325–327
Chromobacterium violaceum
quorum sensing in, 254
quorum-sensing inhibitors of, 397, 398
CinI protein, in quorum sensing, 217, 219–222
CinR, protein, in quorum sensing, 219–222
Citrobacter koseri, in biofilms, 114
Closantel, in quorum quenching, 382
ClyA toxin, 339
CodY protein, in ComK regulation, 22
Coi proteins, in competence-stimulating peptide synthesis, 350, 351
Com proteins
in cell population regulation, 17–22
in competence-stimulating peptide synthesis, 346–351, 354–357
population regulation, 21–22
Commonmononas, quorum-sensing inhibitors of, 405–406

Competition
biofilms and, 354–356
versus cell density, 13–14
Com proteins in, 17–23
pheromones in, 346–353
phosphorelay in, 14–15
versus quorum sensing, 352–353
Rap- Phr signaling in, 15–17, 19–21
Streptococcus pneumoniae, 14, 345–362

Competencestimulating peptide, Streptococcus pneumoniae
in biofilm formation, 354–356
gene clusters in, 348–349
in infections, 356–357
regulation of, 349–352
synthesis of, 346
transduction pathway for, 346–348
Conjugal opines, in crown gall tumors, 291–292
Conjugal transfer, in rhizobia, 215–225, see also Rhizobia, quorum sensing in
Co-opting of signals, 422–423
Corn flea beetle, as Pantoea stewartii vector, 201

CprB protein
in aerial hypha formation and secondary metabolism, 95
structure of, 371

Cpx protein, in swarming, 112
Cqs proteins
in CAI-1 synthesis, 148–140
in quorum sensing
Vibrio anguillarum, 262
Vibrio cholerae, 325–327
Vibrio fischeri, 240
Vibrio harveyi, 323–324
Crown gall tumors, cell-cell signaling within, 291–306
Ti plasmids and, 292–293
TraR in, 293–302

Crs proteins, in quorum sensing, 150, 325
Csr proteins
homologs of, in quorum sensing, 239
in quorum sensing
Escherichia coli, 193
Vibrio cholerae, 152
CtpB protein, in sporulation, 8–9
Cyanobacteria, heterocysts of, see Heterocysts
Cyanophycin, in heterocysts, 82
Cyclodextrins, in quorum quenching, 382
Cys proteins, in biofilms formation, 113, 115–116
Cysteine, metabolites of, 115
Cystic fibrosis, Pseudomonas aeruginosa infections in, 333, 337
Cytolysin, pCF10 synergism with, 45
Cytotoxins
in quorum sensing, 243
in virulon regulation, 162
Daughter cells, in sporulation, 3
DegU protein, in ComK regulation, 22
Delisea pulchra
quorum-sensing inhibitors of, 408, 423
signaling mechanisms of, 265
Desferrioxamine, in aerial hypha formation and secondary metabolism, 99
Dev proteins
in heterocyst development, 79
in heterocyst envelope synthesis, 82
Dicytostelium, fruiting body development in, 70
Dif chemosensory system, Myxococcus xanthus, 65–74
in fruiting body development, 70
function of, 70–72
in lipid chemotaxis, 67–70
in S motility, 65–66
4,5-Dihydroxy-2,3-pentanedione, in AI-1 synthesis, 327–328
Dinoroseobacter shibae, quorum sensing in, 254, 257
Division of labor in, honeybees, pheromones in, 465–466
Drosophila, rhomboid proteases of, 431–433
DsB protein, in quorum sensing, 194
Dsp protein, see Dif chemosensory system
Dynorphin A, in co-opting, 423
ECA proteins, in quorum sensing, 190, 194
Eep protein, in pheromone regulation, 34–35
Efflux pumps, amino acid, 115–116
EF-Ts protein, in quorum sensing, 221
Ehrlichia chaffensis, quorum sensing in, quenching of, 382
Endogalacturonase, in quorum sensing, 185
Engulfment, in sporulation, 6–7
Enhancer-binding activator protein, Myxococcus xanthus, 59–60
Enterobacter agglomerans, quorum-sensing inhibitors of, 407
Enterococcus faecalis
autoinducing peptide of, 168
horizontal gene transfer in, 22–23
pCF10 plasmid of, see pCF10 plasmid
quorum sensing in, 313
Enterotoxins, in virulon regulation, 162, 173–175
Epidermal growth factor receptor, homologue of, in Drosophila, 432–433
Epinephrine, in co-opting, 423
Environia amylovora, quorum sensing in, 195
Environia carotovora
acyl-homoserine lactone synthase of, 282
quorum sensing in, 185–199
inhibitors of, 404–405
quenching of, 382
virulence factors of, 189–193
Environia chrysanthemi, quorum sensing in, 138, 194, 195
Environia stewartii, see Pantoea stewartii
Erythrobacter, quorum sensing in, 256
esA/esAR system
in acyl-homoserine lactone synthesis, 282, 284
in quorum sensing, 202–208
esAR/RcsA system, in quorum sensing, 206–207
Escherichia coli
acyl-homoserine lactone synthase of, 276
in biofilms, 107, 112–115
chemotaxis of, 69, 71–72
ComX pheromone of, 17–19
enterohemorrhagic, co-opting by, 422–423
enterotoxigenic, membrane vesicles of, 339
A factor homolog of, 368
microcin of, 97
nitrogen fixation in, 76
polyamine transport system of, 109, 110
quorum sensing in, 193
inhibitors of, 396, 406, 407
membrane vesicles in, 335, 338
Tat protein export system of, 435, 436
Euprymna scolopes, Vibrio fischeri luminescence in, 235, 241–244, 424
Exfoliatins, in virulon regulation, 162
Exopolysaccharides
in pili, 65–66
in quorum sensing
Pantoea stewartii, 201–202, 205–208
rhizobia, 215
ExpR proteins, in quorum sensing
Environia carotovora, 189–192
Environia chrysanthemi, 195
rhizobia, 224
Extracellular matrix, Dif chemosensory system and, 65–68–72
Extracellular peptide signaling
cell density and, 13–14
in competence development, 17–22
in gene transfer, 22–24
in quorum sensing, 14–17
Factor C, in Streptomycetes, 93, 98
FarA protein, in butyrolactone synthesis, 370
Farnesol, in quorum sensing, 425–426, 445–447
FibA protein
 in motility, 70
Myxococcus xanthus, 68
Fibronectins, in virulon regulation, 163
Fimbrolides, Delisea pulchra, 395
Fis protein, in quorum sensing, 149–150, 327
Flavonoids, rhizobial recognition of, 213–214
Flo11 protein
 in dimorphic transition, 118
 in quorum sensing, 448
Forespores
 mother cell response to, 6–7
 response of, 8–9
 signal initiation by, 4–6
Frizzilator, in motility, 55–56
FruAP protein, in motility, 58–60
Fruit flies, rhomboid proteases of, 431–433
Fruiting bodies, Myxococcus xanthus
 aggregation of, 58–59
 appearance of, 51, 52
 development of, 56–60, 70
 solid surface for, 51
Frz proteins, in motility, 55–56, 67–68, 72–73
Fungi, see also specific fungi
 quorum sensing in, 443–452
 alcohols in, 445–449
 ammonia, 449
 mating pheromones in, 444–445
Furanones
 for animal infections, 407–408
 bacteria producing, 397–398
 Delisea pulchra, 395, 423
 discovery of, 395
 identification of, 398–399
 mode of action of, 396–397
 molecular design of, 399–404
 plant producing, 398
GabT protein, in biofilm formation, 113
GacA/GacS system, in quorum sensing, 137
Garlic, quorum-sensing inhibitors of, 398, 408–409
γ-Butyrolactones, in Streptomyces, 93–96, 363–365, see also A factor
Gene transfer, in Bacillus subtilis, 22–24
GerE protein, 297
Glaciecola polaris, quorum sensing in, 254
Gln proteins, in nitrogen limitation detection, 76–77
GlpG protein, structure of, 437
Glutamine synthase, in nitrogen limitation detection, 76
Glycolipids, in heterocyst envelope synthesis, 81–82
Goadsporin, 96, 97
Growth factor signaling, in Drosophila, 431–433
Haemophilus influenzae, competence development in, 14
HAI-1 protein, in quorum sensing, 323–324
Halobacterium salinarum, phototaxis of, 72
Halofex volcani, quorum sensing in, 447
HdtS proteins, in quorum sensing, acyl-homoserine lactone synthesis and, 276–277
Helicobacter pylori, membrane vesicles of, 339
Hemolysins
 pCF10 synergism with, 45
 in virulon regulation, 162
Het proteins, in heterocyst development
 HetC, 80
 HetE, 80–81
 HetN, 84
 HetR, 78–79, 83–84
Heterocysts, 75–90
 development of
 envelope synthesis in, 81–82
 metabolic changes in, 82
 regulation of, 76–81
 metabolic changes in, 82
 nitrogen fixation process in, 82
 versus other developmental alternatives, 84–85
 pattern formation of, 82–84
Hgl proteins, in heterocyst envelope synthesis, 81–82
Histoplasma capsulatum, quorum sensing in, 449
H-NOX proteins, in nitric oxide signaling, 117
Honeybees, division of labor in, 463–468
 description of, 463–464
 social factors in, 464–465
Horizontal gene transfer, description of, 22–23
Hormesis, in secondary metabolites, 309, 314
Hormogonia, versus heterocysts, 85
HrpN protein, in quorum sensing, 194
Hydrogen cyanide, in quorum sensing, 136
Hydrophobins, 97
Hydroxyalkanoic acid core, of rhamnolipids, 111–112
ICEB1 element, regulation of, 23–24
iCF10 peptide
 function of, 32
 PrgX binding to, 39, 40–43
 synthesis of, 33–36
IM-2 butyrolactone, 365
ImmR protein, in ICEB1 regulation, 24
Indole, in biofilm formation, 112–115
Indole-3-acetic acid (auxin), in dimorphic transition, 118
Integrative and conjugative elements, regulation of, 23–24
Intercellular adhesins, in biofilm formation, 107
Interdomain signaling, 419–429
 co-opting in, 422–423
 modulation in, 423–424
INDEX

Methionine, acetylated derivatives of, 115
Methyl-accepting chemosensory protein, 55, 66, 70–72
Methylenenomycin, production of, 366
Mex proteins, inhibition of, 381
Mgl proteins, in motility, 55
Microcin, 97–98
Milky sea phenomenon, 265
Mitochondrial rhomboids, 438
Mixo-inducing protein, in rotifers, see Rotifers, quorum sensing in
Modulation, in interdomain signaling, 423–424
Morganella morganii, in biofilms, 114
Mother cells
forespore response to, 8–9
forespore signaling to, 4–6
response of, 6–7
Mrt proteins, in quorum sensing, 225
Mucor mucedo, quorum sensing in, 444
Multicellularity, heterocysts as, see Heterocysts
Multimerization, in quorum sensing, 138
MvfR protein, in quorum sensing, 136
MXAN4899 enhancer-binding protein, Myxococcus xanthus, 60
Myxococcus xanthus, 51–63
aggregation of, 58–59
in biofilms, 66–67
chemotaxis of, 67–70
C-signaling in, 57–58
Dif chemosensory system of, 65–74
evolution of, 51
fruiting body development and, 56–57
gene alterations due to, 59–60
life cycle of, 51, 52
motility of, 51, 65–66
pilus engine of
description of, 51, 53, 65–66
reversal of, 53–57
slime engine of
description of, 53, 66
reversal of, 53–57
NADPH oxidase, in quorum sensing quenching, 387–388
NafA protein, in motility, 71
NarL protein, 297
NctA protein, in heterocyst development, 77–80
Necrosis-inducing protein, in quorum sensing, 194
Neisseria gonorrhoeae
competence development in, 14
membrane vesicles of, 338
pilus fibers of, 53
Nif proteins, in heterocysts, 82
Nip protein, in quorum sensing, 194
NirS protein, in nitric oxide signaling, 117
Nitrate, for nitrogen fixation, 76
Nitric oxide signaling
Pseudomonas aeruginosa, 116–118
Vibrio fisheri–Euprymna scolopes, 424
Nitrogen-fixing bacteria, heterocysts of, see Heterocysts
Nitrosomonas europaea, acyl-homoserine lactone synthesis of, 276–277
Novarsia mediterranei, in rifamycin synthesis, 373
Nod proteins, in quorum sensing, 213–215, 424
Nodulation formation, rhizobial, see Rhizobia
Nopaline-type Ti plasmids, 291–293
Norfloxacin, in biofilm formation, 107
Norspermidine, in biofilm formation, 110
Noire, heterocysts of, see Heterocysts
Nitric oxide signaling
Nitrosomonas europaea, acyl-homoserine lactone synthesis of, 276–277
Novalia mediterranei, in rifamycin synthesis, 373
Nod proteins, in quorum sensing, 213–215, 424
Nodulation formation, rhizobial, see Rhizobia
Nopaline-type Ti plasmids, 291–293
Norfloxacin, in biofilm formation, 107
Norspermidine, in biofilm formation, 110
Noire, heterocysts of, see Heterocysts
Nod genes, in heterocyst development, 79
NspS protein, in biofilm formation, 110
Ntr proteins, in nitrogen limitation detection, 76
OccR protein, in quorum sensing, 293
Oceanibulbus, quorum sensing in, 235
Oceanicola batensis, quorum sensing in, 257, 259, 260
Oceanicola granulosus, quorum sensing in, 257, 260
Octovesaeter, quorum sensing in, 255
Octopines, in crown gall tumors, 291–293
One-way sensing, 420–422
Opines, in crown gall tumors, 291–296
Opp protein, in sporulation regulation, 16
OprF protein, in co-opting, 422
Organ of transfer, of pCF10, 44
Outer membrane vesicles, see Membrane vesicles
Oxidoreductases, in quorum sensing quenching, 387
N-3-(Oxo-decanoyl)-homoserine lactone
in interdomain signaling, 422
in quorum sensing, 140
N-3-(Oxo-dodecanoyl)-homoserine lactone analogues of, for quorum-sensing inhibition, 401–404
destruction of, 406
in interdomain signaling, 422
in quorum sensing, 134–140
quenching of, 382–383
2-Oxoglutarate, in nitrogen fixation, 76–77
N-3-(Oxo-hexanoyl)-homoserine lactone analogues of, for quorum-sensing inhibition, 399, 401, 402
destruction of, 404–406
in interdomain signaling, 422
in quorum sensing, 134–140
quenching of, 382–383
2-Oxoglutarate, in nitrogen fixation, 76–77
N-3-(Oxo-octanoyl)-homoserine lactone analogues of, for quorum-sensing inhibition, 194
N-3-(Oxo-octanoyl)-homoserine lactone analogues of, for quorum-sensing inhibition, 399, 401, 402
destruction of, 404–406
in interdomain signaling, 422
in quorum sensing, 134–140
quenching of, 382–383
2-Oxoglutarate, in nitrogen fixation, 76–77
INDEX ■ 477

Agrobacterium tumefaciens, 291, 294–299
Erwinia carotovora, 192
Pantoea stewartii, 202
Pseudomonas aeruginosa, 138–140
rhizobia, 216, 218, 220–221, 223
Vibrio fischeri, 236–244

PA-1 lectin, in co-opting, 422
pAD1 plasmid, pheromones and, 31–32, 35, 46–47
pAM373 plasmid, pheromones and, 32
Panamycins, in aerial hypha formation and secondary metabolism, 99
Pantoea stewartii, 201–212
acyl-homoserine lactone synthase of, 278
in biofilms, 207–308
characteristics of, 201–202
pathogenicity of, 201–202
quorum sensing in, 138, 195, 202–210
esaI/esaR system in, 202–208
esaR/RcsA system in, 206–207
Paraoxonases, in quorum sensing quenching, 385–386
Parasites, rhomboids in, 438–439
PARLs (mitochondrial rhomboids), 438
Pat proteins, in heterocyst development, 80, 82–84
Patulin
production of, 397–398
in quorum quenching, 381
pCF10 plasmid, 31–49
conjugative transfer mechanism of, 32–33, 44–45
evolution of, 46–47
genes of, 32–33
induction mechanism of, 36–40
overview of, 31–33
in pheromone synthesis and control, 33–36
pheromone-inducible functions of, 43–46
pheromone-sensing machinery of, 46–47
virulence traits of, 45–46
Pdc proteins, in quorum sensing, 448
PeeS protein, in quorum sensing, 195
Pectinases, in quorum sensing, 185
Penicillin acid, production of, 397–398
Penicillin, resistance to, 317
Penicillium, quorum-sensing inhibitors of, 397–398
Peptides, extracellular signaling with, see Extracellular peptide signaling
Peptidoglycan, in quorum sensing, 243
Periodontal disease, membrane vesicle involvement in, 338–339
pH, of seawater, AHL signaling and, 253
Phacobacter, quorum sensing in, 254
Phenazines, in biofilm formation, 107–108
Phenylethanol, in quorum sensing, 446, 448–449
Pheromones
designation of, 32
Escherichia coli, 17–19
fungal, 444–445
in regulation of labor in honeybees, 465–466
Streptococcus pneumoniae
gene clusters in, 348–349
regulation of, 349–352
synthesis of, 346
transduction pathway for, 346–348
Phosphatidylethanolamine, in chemotaxis, 67–69
Phosphorelay, in sporulation regulation, 14–15
Phr peptides
in ICEB1 regulation, 24
in sporulation, 14–17, 19–21
PI factor, in secondary metabolite regulation, 373–374
PII protein, in nitrogen fixation, 76–78
Pil proteins, 53–55, 70
Pilus engine, Myxococcus xanthus
description of, 51, 53, 65–66
in fruiting body development, 70
reversal of, 53–57
Pimaricin, production of, 373–374
Plant cell wall-degrading enzymes, in quorum sensing, 185, 190–194
Plasmodium, rhomboids in, 438
Pneumococci, see Streptococcus pneumoniae
Polarity, Myxococcus xanthus, reversal of, 53–57
Polyamines
in biofilm formation, 109–110
in swarming, 109
Polygalacturonases, in quorum sensing, 185
Polysaccharide intercellular adhesin, in biofilm formation, 107
Porphyromonas gingivalis, membrane vesicle effects on, 338
pPD1 plasmid, pheromones and, 32, 35, 46–47
PQa promoter, in PrgQ, 37
PqQR protein, in quorum sensing, 334
Presenilin, 437
Prevotella bocis, membrane vesicle effects on, 338
PrgQ protein, in pheromone regulation, 36–38
PrgX protein
autoregulation of, 38–40
in pheromone binding, 33
in pheromone regulation, 36, 38–43
C-terminal arm in, 40–43
negative, 39–40
structure of, 38, 40–44
as target of cDF10 and iCF10, 39
tetramerization of, 40
PrgY protein, in pheromone regulation, 33, 35–36
PrgZ protein, in pheromone binding, 32–33
Pristinamycin, production of, 366
Proheterocysts, 75
Propionibacterium acnes, quorum sensing in, 447
Proteases, in virulon regulation, 162
Proteus mirabilis
swarming in, 109
Tat protein export system of, 435
Providencia, rhomboids of, 438
Providencia stuartii
in biofilms, 114, 115
rhomboid proteases of, 433–436
Pseudalteromonas atlantica, quorum sensing in, 254
Pseudomonas aeruginosa
acyl-homoserine lactone synthase of, 276, 278, 282, 283, 285
antibiotics isolated from, 336–337
in biofilms, 107, 117–118, 394, 396, 398, 401–403, 405–410
Candida albicans communication with, 424–426
characteristics of, 133
chemotaxis of, 67
co-opting by, 422–423
membrane vesicles of, 333–338
nitric oxide signaling in, 116–118
one-way sensing by, 420–422
pilius fibers of, 53–54
plant signaling with, 120
quorum sensing in, 133–144, 150–151
membrane vesicles in, 333–338
quenching of, 381, 382, 386–387
rhamnolipids of, 111–112
salicylic acid interactions with, 118–119
secondary metabolites of, 314–315
virulence factors of, 133
Pseudomonas aureofaciens, in biofilms, 114
Pseudomonas diminuta, quorum sensing in, quenching of, 387
Pseudomonas fluorescens
acyl-homoserine lactone synthase of, 276–277
in biofilms, 114
quorum sensing in, quenching of, 382
Pseudomonas quinolone signal in co-opting, 423
in quorum sensing, 334–336, 425–426
Putrescine
in biofilm formation, 109–110
in swarming, 109
PvdQ protein, in quorum quenching, 387
Pyocyanin
in biofilm formation, 107–108
in quorum sensing, 382
Qua RNA, in pheromone binding, 37, 40, 42–43
Qrr proteins, in quorum sensing, 324–325
Vibrio cholerae, 325, 329–330
Vibrio harveyi, 329–330
QS-box, in quorum sensing, 135
QscR protein, in quorum sensing, 134–136, 139–140
Queen mandibular pheromone, in regulation of labor in honeybees, 466
Quinolone signaling pathway, in quorum sensing, 136, 336
Quinuprisin-dalfopristin, in biofilm formation, 107
QuiP protein, in quorum quenching, 387
Quorum quenching, see also Quorum-sensing inhibitors
mode of action of, 380–383
blocking signal generation, 381
disturbing signal exchange, 381
enzymes in, 383–388
inactivating signals, 382
preventing signal recognition, 381–382
signal trapping, 382
Quorum sensing
acyl-homoserine lactones in, see Acyl-homoserine lactones
advantages of, 380
Aggregatibacter actinomycetemcomitans, 338–339
Agrobacterium tumefaciens, 291–306
quenching of, 384, 385, 387
Arthrobacter, quenching of, 382, 384, 385
Aspergillus nidulans, 447
Bacillus, quenching of, 382–385
Bacillus subtilis, 14–17, 313
quenching of, 382
Bacillus thuringiensis, quenching of, 382, 384–385
Brachybacterium plicatilis, 453–462
Bradyrhizobium japonicum, 220, 224–225
Burkholderia pseudomallei, 381
Candida albicans, 443, 445–449
Candida mogii, 449
Candida norvegica, 449
description of, 105
as drug targets, 406–407
Ehrlichia chaffeensis, quenching of, 382
Enterococcus faecalis, 313
Ennemia amylovora, 195
Ennemia carotovora, 185–199
quenching of, 382
Ennemia chrysanthemi, 138, 194, 195
Escherichia coli, 193, 335, 338
fungi, 443–452
Haloflex vulcani, 447
Histoplasma capsulatum, 449
in honeybees, 463–468
inhibitors of, see Quorum quenching
interdomain signaling and, 419–429
interference with, see Quorum quenching
Klebsiella pneumoniae, quenching of, 384, 385
Kluyveromyces lactis, 449
mechanisms of, 379–380
Mesorhizobium, 225
Mesorhizobium loti, 216, 218–219
Mucor mucedo, 444
Pantoea stewartii, 138, 195, 202–210
Propionibacterium acne, 447
Pseudomonas aeruginosa, 133–144, 150–151
membrane vesicles in, 333–338
quenching of, 381, 382, 386–387
Pseudomonas diminuta, quenching of, 387
Rhomboid proteases (continued)
 functions of, 431, 436–438
 in P. stuartii, 433–436
 in parasites, 438–439
 structures of, 437–438
 TatA system, 436
 in yeasts, 438–439
Rlt proteins, 116
Rifamycin, production of, 373
Rms proteins, in quorum sensing, 190–194
RNAIII, in virulon regulation, 170, 173, 175–176
Rok protein, in ComK regulation, 22
Roots, of legumes, rhizobial communication with, see Rhizobia
Roseobacter, quorum sensing in, 254, 255, 260
Roseobacter denitrificans, quorum sensing in, 256, 257
Roseobacter litoralis, quorum sensing in, 256
Roseovarius, quorum sensing in, 257, 259
Roseovivax, quorum sensing in, 255
Rot system, in virulon regulation, 162–164, 173
Rotifers, quorum sensing in, 433–462
 ecological consequences of, 458–459
 evolutionary implications of, 459–460
 historical perspective of, 454–459
Rpo proteins
 in nitrogen limitation detection, 77
 in quorum sensing, 135–136
Rsm proteins, in quorum sensing, 137
Ruegeria, quorum sensing in, 255, 256
RWJ-49815, in quorum quenching, 382
Saccharomyces cerevisiae
 dimorphic transition of, 118
 quorum sensing in, 443–445, 447–449
 rhomboids in, 438
Saccharomyces pombe, quorum sensing in, 443, 444
SadB protein, in swarming, 112
sacRS system, in virulon regulation, 162–163, 171
Sagittula, quorum sensing in, 255, 257
Salicylic acid, as virulence factor, 118–119
Salipiger, quorum sensing in, 255
Salmonella enterica
 serovar Typhimurium, subinhibitory antibiotic effects on, 108
 proteins, in aerial hypha formation and secondary metabolism, 92, 96–98
 in virulon regulation, 162–164, 173
SCB-1 protein, in aerial hypha formation and secondary metabolism, 95
SchR protein
 in aerial hypha formation and secondary metabolism, 95
 in butyrolactone synthesis, 370
SdiA protein, in biofilm formation, 114–115
Secondary metabolites, 307–322, see also Antibiotics
 definition of, 308
 A factor and, see A factor
 functions of, 308–309
 importance of, 310
 in quorum sensing, 311–314
 receptors, 316–317
 resistance to, 317–318
 Streptomycetes, 363–377
 synthesis of, 308–310
 γ-Secretase, 437
Serine proteases, rhomboid, see Rhomboid proteases
Seratia liquifaciens, see Seratia marcescens
Seratia marcescens, quorum sensing in, 224
 inhibitors of, 395, 407
 quenching of, 382
Seratia proteamaculans, quorum-sensing inhibitors of, 407
Sexual reproduction, in rotifers, see Rotifers, quorum sensing in
SgmA protein, in aerial hypha formation and secondary metabolism, 94
Shigella, antibiotic resistance in, 317
Siderophores, in aerial hypha formation and secondary metabolism, 99
Sigma factor(s)
 in aerial hypha formation and secondary metabolism, 94
 in competence-stimulating peptide synthesis, 346–347, 351
 in heterocyst development, 81
 precursors of, 8–9
 in sporulation, 4–9
 in virulon regulation, 172–173
Sigma factor-54 activator proteins, Myxococcus xanthus, 59
Signal peptide peptidase, 437
Sil proteins, in quorum sensing, 257, 259
Silisbacter, quorum sensing in, 255, 256, 259
Silisbacter pomeroyi, quorum sensing in, 257, 259, 260
Sin proteins, in quorum sensing, 224
Sinorhizobium meliloti
 acyl-homoserine lactone synthase of, 282
 quorum sensing in, 215–216, 218, 220, 223–224
 quorum sensing inhibitors in, 423–424
Site-2 protease
 discovery of, 436–437
 in sporulation, 8
Slime engine, Myxococcus xanthus
 description of, 53, 66
 reversal of, 53–57
Small bacteriocin, in quorum sensing, 219
SmaR protein, in quorum sensing, 189
Soft-rot erwinias, quorum sensing in, 185–199
SoxR protein, in biofilm formation, 108
Spe proteins, in biofilm formation, 109–110
Spitz ligand, Drosophila, 432
Spo0A protein
 in ICEB1 regulation, 24
 in sporulation, 4, 14–15
Spo0AP protein, in sporulation regulation, 15
Spo0B protein, in sporulation regulation, 15
Spo0F protein, in sporulation regulation, 15
Spo0FP protein, in sporulation regulation, 15–17
SpoIAB protein, in sporulation, 7
SpoIIGA protein, in sporulation, 5–6
SpoIIGQ protein, in sporulation, 6–8
SpoIIR protein, in sporulation, 5–6
SpoIVB protein, in sporulation, 8–9
SpoIVFA protein, in sporulation, 8–9
SpoIVFB protein, in sporulation, 8–9

Sporulation, 3–10, see also Fruiting bodies

in Bacillus subtilis, 3–16

benefits of, 14

cell density and, 13–14
costs of, 14

Factor C effects on, 98
forespore response in, 8–9
forespore signaling in, 4–6
mother cell response in, 6–7

quorum sensing and, 14–16

Streptomyces, 91, 98

Spr proteins, in aerial hypha formation and secondary metabolism, 94

srrAB system, in virulon regulation, 172

Streptomyces, 91–104
bald (bld) mutants of, 91–92, 97
cell-cell communication with, 92–93
density factors in, 98
desferrioxamine in, 99
factor C in, 98
γ-butyrolactones in, 93–96
hydrophobic peptides in, 96–98
pamamycins in, 99
characteristics of, 91–92, 363
A factor of, see A factor
fungal communication with, 424
γ-butyrolactones of, 363–365, see also A factor
programmed death of, 98
quorum sensing in, 313
inhibitors of, 397, 405–406
quenching of, 386–387

white (whi) mutants of, 91

Streptomyces albidoflavus, 92
Streptomyces albogriseolus, 99
Streptomyces antibioticus, 368, 397
Streptomyces avermitilis, 96
Streptomyces bikiniensis, A factor homolog of, 365
Streptomyces coelicolor, 92–93, 95–97
A factor homolog of, 365–366, 368, 371
Streptomyces cyaneofuscatus, A factor homolog of, 365
Streptomyces flavofungini, 92, 98
Streptomyces fradiae, 93–94
A factor homolog of, 366
Streptomyces griseus, 93–94, 96–99
A factor of, see A factor
Streptomyces lavendulae, 95
A factor homolog of, 365
Streptomyces lividans, 97
Streptomyces natalensis, in pimaricin production, 374

Streptococcus

in biofilms, 354–356
competence in, 445
in biofilms, 354–356
development of, 14, 345–362
in infection, 353–354, 356–357
pheromones in, 346–353
versus quorum sensing, 352–353
quorum sensing in, 313
versus competence, 352–353
quenching of, 381

Streptococcus pyogenes, competence of, 347
Streptococcus sanguis, in biofilms, 355
Streptococcus, 91–104
bald (bld) mutants of, 91–92, 97
cell-cell communication in, 92–93
density factors in, 98
desferrioxamine in, 99
factor C in, 98
γ-butyrolactones in, 93–96
hydrophobic peptides in, 96–98
pamamycins in, 99
characteristics of, 91–92, 363
A factor of, see A factor
fungal communication with, 424
γ-butyrolactones of, 363–365, see also A factor
programmed death of, 98
quorum sensing in, 313
inhibitors of, 397, 405–406
quenching of, 386–387

white (whi) mutants of, 91

Streptomyces albidoflavus, 92
Streptomyces albogriseolus, 99
Streptomyces antibioticus, 368, 397
Streptomyces avermitilis, 96
Streptomyces bikiniensis, A factor homolog of, 365
Streptomyces coelicolor, 92–93, 95–97
A factor homolog of, 365–366, 368, 371
Streptomyces cyaneofuscatus, A factor homolog of, 365
Streptomyces flavofungini, 92, 98
Streptomyces fradiae, 93–94
A factor homolog of, 366
Streptomyces griseus, 93–94, 96–99
A factor of, see A factor
Streptomyces lavendulae, 95
A factor homolog of, 365
Streptomyces lividans, 97
Streptomyces natalensis, in pimaricin production, 374
Streptomyces pristinaespiralis, A factor homolog of, 366
Streptomyces scabies, 96
Streptomyces tanashiensis, 99
Streptomyces tenda, 96
Streptomyces venezuelae, A factor homolog of, 366
Streptomyces virginiae, A factor homolog of, 365–366, 368
Streptomyces viridochromogenes, A factor homolog of, 365
Streptomycin production of, A factor in, see A factor
resistance to, 317
Streptomycin-6-phosphotransferase, in A factor regulation, 371, 373
StrR protein in aerial hypha formation and secondary metabolism, 93
in A factor regulation, 371, 373
Succinoglycan, in quorum sensing, 215
Sulfitobacter, quorum sensing in, 254, 255, 257–259–260
Superantigens, in virulon regulation, 162–163, 173–175
Surfactants, rhamnolipids as, 111–112
Surfactin, 17, 97
Svx protein, in quorum sensing, 194
Swarming
Myxococcus xanthus, 53
Proteus mirabilis, 109
rhamnolipids in, 111–112
Symbiosis
two-way communication, in, 424–426
Synechocystis, pilus fibers of, 53
Tat protein export system
AarA protein and, 434–436
signaling function of, 436
Tcpp proteins, in quorum sensing, 151–152
Tendrils, in swarming, 111
Tet proteins, 95
tetracycline, in biofilm formation, 107
Tgl protein, in pili, 53–55
T plasmids, in crown gall tumors, 292–293
TnaB protein, in biofilm formation, 113
Tobramycin, in biofilm formation, 107
Tox proteins, in quorum sensing, 151–152
Toxic shock toxin-1, in virulon regulation, 162, 173–175
Toxin-coregulated pilus, Vibrio cholerae, 325–327
Toxins
in membrane vesicles, 338–339
Vibrio cholerae, 146–147
Toxoplasma, rhomboids in, 438
Tpk2p protein, in quorum sensing, 448
Tra proteins
TraA folding of, 293–295
in pheromone binding, 33
in pheromone regulation, 37
in quorum sensing, 216–224
TraB, in pheromone regulation, 35
TraI, in quorum sensing, 291–292
TraM, in TraA regulation, 298
TraR, 293–302
activity of, posttranscriptional control of, 293–296
antiactivators of, 297–299
gene expression of, regulation of, 293, 300–302
in quorum sensing, 137–140, 299–300
structural of, 296–297
in transcription activation, 299–300
Tracheal cytotoxin, in quorum sensing, 243
Transcription factors, in virulon regulation, 164, 173–175
Triclosan, in quorum quenching, 381
TR protein, in TraA regulation, 298–299, 301–302
Trypsin, 112–114
Tryptophol, in quorum sensing, 446, 448–449
Twin–arginine-dependent translocation system (Tat protein system), AarA protein and, 434–436
Two-way communication, in interdomain signaling, 424–426
Tyl proteins, in aerial hypha formation and secondary metabolism, 94–95
Tylisin
in aerial hypha formation and secondary metabolism, 94–95
production of, 366
Tyrosol, in quorum sensing, 446–448
Vibrio, quorum sensing in, 240–242
V. fischeri, 240
Undecylprodigiosin, 95
Ustilago maydis, quorum sensing in, 444
Van proteins, in quorum sensing
acyl-homoserine lactone synthesis and, 276
Vibrio anguillarum, 261–262
Vibrio fischeri, 240
Var proteins, in quorum sensing, 150, 152, 325–327
Variovorax paradoxus, quorum sensing in, 224–225
inhibitors of, 405–406
quenching of, 386
Veillonella atypica, secondary metabolites of, 316
Vesicles, membrane, see Membrane vesicles
Vfr protein, in quorum sensing, 136
Vibrio, quorum sensing in, 254, 256, 397
Vibrio anguillarum
quorum sensing in, 239–240, 261–264, 421–422
quorum-sensing inhibitors of, 407
Vibrio cholerae, 145–160
in aquatic environment, 145–146, 155–157
in biofilms, 110, 146, 152–157
characteristics of, 145
as human pathogen, 145–146, 156–157
life cycle of, 155–157
phenotypes of, 150–155
quorum sensing in, 323, 325–330
inhibitors of, 407
life cycle and, 155–157
mechanisms of, 147–150
phenotypes and, 150–155

Vibrio fischeri
acyl-homoserine lactone of, 276
Euprymna scolopes communication with, 235, 241–244, 424
luminescence of, 134, 138, 235, 241–244, 424
quorum sensing in, 185, 233–250, 261, 312–313, 314
environmental control of, 243–244
in ES114 strain, 234–237
inhibitors of, 403–404
in light-organ symbiosis, 241–243
mechanistic model for, 237–241
in MJ1 strain, 234–237
models for, 251–252
parameters for, 252–253

Vibrio harveyi
acyl-homoserine lactone synthase of, 276
inhibitors of, 407
models for, 252

Vibrio parahaemolyticus, quorum sensing in, 323

Vibrio polysaccharide, in quorum sensing, 152–154

Vibrio vulnificus, quorum sensing in, 261
inhibitors of, 407

Vir proteins, in crown gall disease, 292, 301–302

Virginiamycin, production of, 366
VirR protein, in quorum sensing, 190–192
Virulence factors
in biofilms, 394
Enormia carotovora, 189–193
pCF10 plasmid, 45–46
Pseudomonas aeruginosa, 118–119, 133, 135
salicylic acid, 118–119
Staphylococcus aureus, 161–183

Vibrio cholerae, 146–147

Vpr proteins, in quorum sensing, 152–154
Vps proteins, in quorum sensing, 327
VqmA protein, in quorum sensing, 150

Wce proteins, in quorum sensing, 205–207

Worker inhibitory pheromone, in regulation of labor in honeybees, 465

Wts proteins, in quorum sensing, 201

Wyx proteins, in quorum sensing, 206–207

Wyz proteins, in quorum sensing, 206–207

Wzx proteins, in quorum sensing, 207

Yap1 protein, in dimorphic transition, 118

YceP protein, in biofilm formation, 114

Yeast, rhomboids in, 438–439

Yersinia pestis, in biofilms, 109–110

Yersinia pseudotuberculosis, quorum-sensing inhibitors of, 404

Yfp protein, in sporulation, 4–5

YihH protein, in biofilm formation, 114

Zoospores, Ulva, signaling mechanisms of, 262–265, 421–422