Enzyme-Mediated Resistance to Antibiotics
Mechanisms, Dissemination, and Prospects for Inhibition
Enzyme-Mediated Resistance to Antibiotics
Mechanisms, Dissemination, and Prospects for Inhibition

Editors

Robert A. Bonomo
Section of Infectious Diseases
Louis Stokes Cleveland Department of Veterans Affairs
Medical Center
Cleveland, OH 44106

Marcelo Tolmasky
Department of Biological Science
California State University-Fullerton
Fullerton, CA 92831
To Rita, to whom I owe everything
—R.A.B.

To Liliana and Ryan
—M.E.T.
Contents

Contributors ix
Preface xv

A Enzymes in Defense of the Bacterial Ribosome
1 Overview of Aminoglycosides and Enzyme-Mediated Bacterial Resistance: Clinical Implications 3
Robert A. Bonomo

2 Aminoglycoside Antibiotics 7
Kanchana Majumder, Lianhu Wei, Subhash C. Annedi, and Lakshmi P. Kotra

3 Structural Aspects of Aminoglycoside-Modifying Enzymes 21
Gerard D. Wright and Albert M. Berghuis

4 Aminoglycoside-Modifying Enzymes: Characteristics, Localization, and Dissemination 35
Marcelo E. Tolmasky

5 rRNA Methylases and Resistance to Macrolide, Lincosamide, Streptogramin, Ketolide, and Oxazolidinone (MLSKO) Antibiotics 53
Marilyn C. Roberts

B Enzymes in Defense of the Bacterial Cell Wall
6 β-Lactamases: Historical Perspectives 67
Karen Bush and Patricia A. Bradford

7 Resistance Mediated by Penicillin-Binding Proteins 81
Malcolm G. P. Page
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Inhibition of Class A β-Lactamases</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Samy O. Meroueh, Jooyoung Cha, and Shahriar Mobashery</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Class B β-Lactamases</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Gian Maria Rossolini and Jean-Denis Docquier</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Crystal Structures of Class C β-Lactamases: Mechanistic Implications and Perspectives in Drug Design</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>C. Bauvois and J. Wouters</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Class D β-Lactamases</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Franck Danel, Malcolm G. P. Page, and David M. Livermore</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Kinetics of β-Lactamases and Penicillin-Binding Proteins</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Moreno Galleni and Jean-Marie Frère</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Novel Approaches and Future Prospects</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The Pharmaceutical Industry and Inhibitors of Bacterial Enzymes: Implications for Drug Development</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>David M. Shlaes, Lefa Alksne, and Steven J. Projan</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>β-Lactamase Inhibitory Proteins</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Zhen Zhang and Timothy Palzkill</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Active Drug Efflux in Bacteria</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Jürg Dreier</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Dissemination of Antibiotic Resistance and Its Biological Cost</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Marcelo E. Tolmasky</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Conjugative Transposons</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Louis B. Rice</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>The Dissemination of Antibiotic Resistance by Bacterial Conjugation</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Virginia L. Waters</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics</td>
<td>313</td>
</tr>
<tr>
<td>20</td>
<td>Integrons and Superintegrons</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Robert A. Bonomo, Andrea M. Hujer, and Kristine M. Hujer</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>The Biological Cost of Antibiotic Resistance</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Dan I. Andersson, Sophie Maisnier Patin, Anni Ka I. Nilsson, and Elisabeth Kugelberg</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>349</td>
</tr>
</tbody>
</table>
Contributors

LEFA ALKSNE
Wyeth Research, Pearl River, NY 10965

JUAN C. ALONSO
Dept. of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC,
Darwin 3, 28049 Madrid, Spain

DAN I. ANDERSSON
Dept. of Medical Biochemistry and Microbiology, Uppsala University, S-751 23
Uppsala, Sweden

SUBHASH C. ANNEDI
Dept. of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario
M5G 1L7, Canada

DOLORS BALSA
Department of Pharmacological Biochemistry, Laboratorios SALVAT S.A.,
Barcelona, Spain

C. BAUVOIS
Institut de Recherches Microbiologiques Wiame, Campus Ceria, 1 Ave. E. Gryzon,
B-1070 Brussels, Belgium

ALBERT M. BERGHIUS
Dept. of Biochemistry and Dept. of Microbiology & Immunology, McGill University,
Montreal, Quebec H3A 2B4 Canada

ROBERT A. BONOMO
Section of Infectious Diseases, Louis Stokes Cleveland Department of Veterans
Affairs Medical Center, and School of Medicine, Case Western Reserve University,
Cleveland, OH 44106
Contributors

Patricia A. Bradford
Wyeth Research, 401 Middletown Rd., Pearl River, NY 10965-1251

Karen Bush
Johnson & Johnson Pharmaceutical Research & Development, 1000 Route 202, Box 300, Raritan, NJ 08869-0602

Jooyoung Cha
Dept. of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Itzhack Cherny
Dept. of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Susanne K. Christensen
Dept. of Biochemistry and Molecular Biology, South Denmark University, Odense M, Denmark

Franck Danel
Basilea Pharmaceutica AG, Grenzacherstrasse 487, CH-4005 Basel, Switzerland

Jean-Denis Docquier
Centre d’Ingénierie des Protéines & Laboratoire d’Enzymologie, Université de Liège, Liège, B-4000, Belgium

Jürg Dreier
Basilea Pharmaceutica AG, Grenzacherstrasse 487, CH-4005 Basel, Switzerland

Manuel Espinosa
Dept. of Protein Science, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040-Madrid, Spain

Djordje Francuski
Institute for Chemistry and Biochemistry/Crystallography, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany

Jean-Marie Frère
Center for Protein Engineering, University of Liège, Institut de Chimie B6, Sart Tilman, B-4000 Liège, Belgium

Moreno Galleni
Center for Protein Engineering, University of Liège, Institut de Chimie B6, Sart Tilman, B-4000 Liège, Belgium

Ehud Gazit
Dept. of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Kenn Gerdes
Dept. of Biochemistry and Molecular Biology, South Denmark University, Odense M, Denmark

Ed Hitchin
Institute of Food Research, Norwich Research Park, Norwich, United Kingdom

Andrea M. Hujer
Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
Contributors

Kristine M. Hujer
Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106

Lakshmi P. Kotra
Center for Molecular Design and Preformulations (CMDP), Toronto General Research Institute, University Health Network, and University of Toronto, MaRS Center, TMDT 5-356, 101 College St., Toronto, Ontario M5G 1L7 Canada

Elisabeth Kugelberg
Dept. of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Stockholm, and Microbiology, Tumour and Cell Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden

David M. Livermore
Antibiotic Resistance Monitoring & Reference Laboratory, Centre for Infections, Health Protection Agency, 61 Colindale Ave., London NW9 5EQ, United Kingdom

Kanchana Majumder
Dept. of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5G 1L7, Canada

M. Teresa Martín
Dept. of Microbial Biotechnology, Centro Nacional de Biotecnologia, CSIC, Darwin 3, 28049 Madrid, Spain

Samy O. Meroueh
Dept. of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Shahriar Mobashery
Dept. of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Concepción Nieto
Dept. of Protein Science, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040-Madrid, Spain

Annika I. Nilsson
Dept. of Medical Biochemistry and Microbiology, Uppsala University, S-751 23, Uppsala, Sweden

Karin Overweg
Institute of Food Research, Norwich Research Park, Norwich, United Kingdom

Malcolm G. P. Page
Basilea Pharmaceutica AG, Grenzacherstrasse 487, CH-4005 Basel, Switzerland

Timothy Palzkill
Dept. of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

Sophie Maisnier Patin
Dept. of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Stockholm, and Microbiology, Tumour and Cell Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden
Contributors

Teresa Pellicer
Dept. of Pharmacological Biochemistry, Laboratorios SALVAT S.A., Barcelona, Spain

Steven J. Projan
Biological Technologies, Wyeth Research, Cambridge, MA 02140

Louis B. Rice
Louis Stokes Cleveland Dept. of Veterans Affairs Medical Center and Case Western Reserve University, Cleveland, OH 44106

Marilyn C. Roberts
Dept. of Pathobiology and Dept. of Environmental & Occupational Health Sciences, Box 357238, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195

Gian Maria Rossolini
Dipartimento di Biologia Molecolare, Università di Siena, Siena, I-53100, Italy

Wolfram Saenger
Institute for Chemistry and Biochemistry/Crystallography, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany

David M. Shlaes
Anti-infectives Consulting, 219 Montauk Ave., Stonington, CT 06378

Marcelo E. Tolmasky
Dept. of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd., Fullerton, CA 92831-3599

Virginia L. Waters
Dept. of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093-0640

Lianhu Wei
Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network and Dept. of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5G 1L7, Canada

Heinz Welfle
Max Delbrück Center for Molecular Medicine Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany

Karin Welfle
Max Delbrück Center for Molecular Medicine Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany

Jerry Wells
Swammerdam Institute for Life Sciences, University of Amsterdam, 1018 WV, Amsterdam, The Netherlands

J. Wouters
Dept. of Chemistry, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
CONTRIBUTORS

GERARD D. WRIGHT
Antimicrobial Research Centre, Dept. of Biochemistry, McMaster University,
1200 Main St. W, Hamilton, Ontario L8N 3Z5 Canada

ZHENG ZHANG
Structural & Computational Biology and Molecular Biophysics, Baylor College of
Medicine, One Baylor Plaza, Houston, TX 77030
AT THE PRECIPICE

A quick look at contemporary newspapers and journals will reveal startling reports about antibiotic-resistant bacteria, “superbugs.” A large number of common infectious diseases caused by bacteria were once easily treatable with antibiotics. Now many pathogens have become increasingly deadly due to antibiotic resistance. At the present time, vancomycin-resistant *Staphylococcus aureus* (VRSA), community-acquired methicillin-resistant *S. aureus* (CA-MRSA), hospital-acquired MRSA, vancomycin-resistant enterococci (VRE), penicillin-resistant *Streptococcus pneumoniae*, and multidrug-resistant (MDR) *Mycobacterium tuberculosis*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, and *Acinetobacter baumannii* represent a highly significant threat to children, hospitalized patients, immune-compromised individuals, and nursing home elderly. They are, in fact, a threat to us all. A recent commentary in *Nature* describes MDR *A. baumannii* as “a real danger” (1). Alarming drug resistance phenotypes in gram-negative bacteria like *P. aeruginosa* and *A. baumannii* include resistance to penicillins (piperacillin and ampicillin), extended-spectrum cephalosporins (ceftazidime and cefepime), β-lactam β-lactamase inhibitors (ampicillin/sulbactam, amoxicillin/clavulanate, and piperacillin/tazobactam), and carbapenems (meropenem and imipenem). Even resistance to colistin, a polymyxin-class antibiotic, has emerged. It is highly disturbing to the clinician to be faced with pathogens that have become resistant to all antibiotics. It is like being at the precipice...

The history of our most trusted antibiotic, penicillin, began in 1929 when Alexander Fleming published his seminal paper in the *British Journal of Experimental Pathology* on the “mold extract” from *Penicillium* as a germ-killing compound (8). This serendipitous discovery was further developed by Howard Florey, Ernst Chain, and Norman Heatley at Oxford University. Realizing the potential of Fleming’s discovery, this team developed methods for growing, extracting, and purifying enough penicillin to demonstrate its power against streptococcal and staphylococcal...
infections. The success of the utilization of penicillin was so spectacular that it received the appellation of “miracle drug.” This early work was published in two landmark papers in *Lancet* in 1940 and 1941 (3, 5). Among the first fortunate patients to receive this “miracle” drug were the victims of the devastating Cocoanut Grove fire in Boston in November 1942 (6, 9). The high mortality of infections due to wounds sustained in battle (gangrene) and the burgeoning problem of gonorrhea and syphilis in World War II veterans also enhanced interest in the curative powers of penicillin.

Before this period of amazing discovery, E. P. Abraham and Ernst Chain reported in *Nature* (1940) the presence of an enzyme in *Bacillus (Escherichia) coli* able to inactivate penicillin (2). This significance of this report was not immediately realized. After the beginning of penicillin’s use to combat infections, *S. aureus* was among the first bacteria known to become resistant to penicillin. The clinical impact of this development was staggering. This pathogen not only caused serious illness (such as pneumonia, endocarditis, osteomyelitis, and toxic shock syndrome) but was also once more untreatable. The development of semisynthetic penicillins and the discovery of other natural products stemmed this threat, but our stay was only temporary.

In 1943 Selman Waksman and his group isolated streptomycin from the soil bacterium *Streptomyces griseus* (10). Streptomycin was first tested to be effective against *M. tuberculosis*, the scourge of ancient civilizations. The use of streptomycin and other antitubercular compounds led to a significant reduction of mortality due to tuberculosis in the United States, from 39.9 deaths per 100,000 population in 1945 to 9.1 per 100,000 in 1955 (4). Waksman and his group also created the concept of systematic screening of microbial culture products, developing a technology that has provided the foundation of the early antibiotic industry. Soon, new antibiotics were discovered that provided physicians with a large number of “weapons” to combat bacterial diseases.

In spite of more than half a century of tremendous commercial and scientific investment, bacterial infectious diseases were not completely eradicated by the use of antibiotics (7). Paradoxically, several diseases re-emerged, and many of the bacterial pathogens are becoming more and more resistant to treatment with antibiotics.

The central problem is that the use of antibiotics has contributed to the inexorable rise of antibiotic-resistant bacteria. A large number of factors, including human and nonhuman use of antibiotics, have contributed to the emergence, acquisition, and spread of resistance. These factors include the use of antibiotics in food-producing animals, which leads to the development of resistance in bacteria that find their way into the human food chain; the misuse and overuse of antibiotics in humans; the demand for antibiotics by patients when they are not appropriate; noncompliance by patients who often fail to finish the antibiotic prescription; and the over-the-counter availability of antibiotics in a large number of countries. The World Health Organization has estimated that bacteria resistant to antibiotics now account for about 60% of nosocomial infections. The Centers for Disease Control and Prevention estimate that of about 60,000 deaths that occur in the United States every year due to nosocomial infections, 14,000 are the result of antibiotic-resistant bacteria. The number of deaths related to antibiotic-resistant community-acquired infections is also growing.

Years of research demonstrated that bacteria have evolved a wealth of different ways to resist the action of antibiotics as well as to transfer these capabilities. Antibiotic resistance mechanisms include (i) changes in permeability that interfere with the penetration of the antibiotic into the cell; (ii) the presence of efflux mechanisms that expel the antibiotic; (iii) modification or substitution of the target of antibiotic action; and (iv) chemical modification of the antibiotic molecule. In addition, besides vertical transmission, once the resistance trait is acquired there
are several mechanisms of horizontal transfer that accelerate the dissemination of resistance.

An important component of the antibiotic resistance problem is represented by mechanisms mediated by enzymatic processes. Chemical modification of aminoglycosides and β-lactams is of great relevance in the clinical setting and is mediated by a large number of enzymes. These enzymes tend to be coded for by genes that are present in mobile elements (transposons, plasmids, etc.) that favor their quick dissemination. In this book we highlight the enzymatic capabilities of microorganisms to introduce chemical modifications that negate the biological activity of β-lactams (β-lactamases) or aminoglycoside antibiotics (aminoglycoside-modifying enzymes). These chemical modifications include destroying the β-lactam ring of β-lactam antibiotics and introducing acetyl, nucleotidyl, or phosphate groups at different locations of the aminoglycoside molecules. We hope that the chapters describing different aspects and kinds of β-lactamases and aminoglycoside-modifying enzymes will provide the reader with a complete picture of the present state of knowledge about these important mechanisms of resistance. As an example of the existence of other enzymatic mechanisms that result in resistance, we have included a chapter on RNA methylases and resistance to erythromycin. We will illustrate the variety of scientific approaches important to their characterization and, we hope, inspire researchers to take up the still many unknowns that need to be clarified.

To complement this compilation, we will also illustrate the different ways bacteria share resistance determinants. Horizontal transfer is a big part of the problem of antibiotic resistance, and in our view, different mechanisms for dissemination of antibiotic resistance genes need to be included. In some cases, such as “transposable elements” or “plasmids,” the fields have become extremely big and a chapter would not do justice to all the material that needed to be included. Recent books have been entirely devoted to these elements. Therefore, this discussion has not been included here. However, some aspects of these elements can be found through chapters in the section “Dissemination of Antibiotic Resistance and Its Biological Cost” as well as in chapters in other sections of the book. The collection included here will permit the reader to acquire information about the history and recent developments in other areas such as dissemination at the cellular level and integrons. Since the acquisition of resistance does not come free to the bacterial cell, a chapter dealing with the biological cost of resistance has been included.

Finally, one might ask, “Why catalogue these enzymatic resistance mechanisms?” Clearly, rational approaches are needed to control the dissemination of resistance genes and to combat the highly versatile inactivating enzymes. A wide variety of methods are under development, as discussed in the section “Novel Approaches and Future Prospects.” It is our hope that the material included herein will inspire students of enzymology and antibiotic resistance to save us from falling over the edge.

Robert A. Bonomo
Marcelo Tolmasky

REFERENCES

Index

A
AACs (aminoglycoside N-acetyltransferases)
- action of, 12–13, 39
- distribution of, 12
- genes of, 39–42
- inhibition of, 16
- location of, 43
- modification of, 40–42
- naming of, 36
- structures of, 12–13, 27–30, 39–40
- subclasses of, 40–41

ABC transporters, 236, 237, 247–248

Acceptors, in enzyme kinetics, 205–206

AcrAB, in efflux system, 242–247

AcrAB-TolC, as efflux systems, 250

Acinetobacter
- β-lactamases of
 - clinical relevance of, 133–134, 190
 - detection of, 167
 - epidemiology of, 164–167
 - geographic distribution of, 72–74
 - integrins of, 336
 - penicillin-binding proteins of, 84, 86

Acinetobacter baumannii
- β-lactamases of
 - epidemiology of, 164–166
 - integron structure of, 124–125
 - substrate specificity of, 190
 - efflux system of, 250, 252–253
 - resistance of, transformation in, 291

Acinetobacter calcoaceticus, penicillin-binding proteins of, 84, 86

Acinetobacter haemolyticus, AAC enzyme of, 42

Actinobacteria
- Acinetobacter, AAC enzyme of, 42
- AcrAB, in efflux system, 242–247
- ACT-1 enzyme, 146

Actinobacillus pleuropneumoniae, erm genes of, 57

Actinomyces, aminoglycoside resistance in, 11

Active drug efflux, see Efflux systems

Acylation of β-lactamases, 176, 228

- of penicillin-binding proteins, 199–202
- Aeromonas, β-lactamases of, 115, 132–133
- Aeromonas hydrophila, β-lactamases of, 166
genes of, 116, 118

- substrate specificity of, 185, 187
- Aeromonas jandaei, β-lactamases of, 164, 165
- Agrobacterium tumefaciens, conjugation in, 296–299, 302, 307

Alcaligenes xylosoxidans, integrins of, 336

Amikacin
- AAC enzyme of, 40–42
- ANT enzyme of, 26
- in enzyme inhibition, 16
- resistance to, 46
effect of, 11
- epidemiology of, 16
- molecular mechanisms in, 11

Aminoglycoside(s), see also specific aminoglycosides
- antibiotic effects of, 8
- biochemical properties of, 8
- clinical uses of, 16–17, 21, 35
- in combination therapy, 4–5
discovery of, 7, 35–36
- list of, 3
- mechanism of action of, 4–5, 9–10, 36
- overview of, 3–5
- pharmacodynamics of, 35
- resistance to enzymatic, see Aminoglycoside-modifying enzymes; specific enzymes
- epidemiology of, 15–16
- mechanisms of, 10–11, 23–24, 36
- nonenzymatic, 14–15
- overview of, 23–24
- semisynthetic, 36
- spectrum of activity of, 3–4
- structures of, 7–8, 21–23
toxicity of, 9

Aminoglycoside adenyllyltransferases,
- see ANTs (aminoglycoside nucleotidyltransferases)

Aminoglycoside-modifying enzymes
- AAC group, see AACs (aminoglycoside N-acetyltransferases)
- ANT group, see ANTs (aminoglycoside nucleotidyltransferases)
- APH group, see APHs (aminoglycoside phosphotransferases)
classification of, 11
detection of, 16
genes of, 43–46
inhibition of, 16, 46–47
integrins and, 335
location of, 43
overview of, 36
structures of, 24–30
subcellular location of, 43
terminology of, 36

m-Aminophenylboronic acid, β-lactamase complex with, 154

Amoxicillin, β-lactamases of, 184, 188

AmpC β-lactamases
- boronic acid inhibition of, 154–156
discovery of, 145
- extended-spectrum, 149–151
- noncovalent inhibitors of, 156–157
- structures of
AmpC β-lactamases (Continued)
active sites, 149–153
drug design based on, 153–159
three-dimensional, 146–149
variants of, 146
ampD gene, mutations of, biologic costs of, 342
Ampicillin, β-lactamases of, 179–182, 184, 188, 189
Anaerobic organisms, erm genes of, 57
Antibiotic paradox, 289
Antimicrobial peptides, as novel agents, 289
Antisense oligonucleotides, in
Antimicrobial peptides, as novel agents, 289
Antitoxins, see
Antiseptics, efflux systems for, 251
Aztreonam, -lactamases of, 184, 188, 189
carbenapenem resistance, 70
chromosomally encoded, 70, 71
class A, see Class A -lactamases
class B, see Class B -lactamases
class C, see Class C -lactamases
class D, see Class D -lactamases
classification of, 67–68, 163
coupling in, 300
distribution of, 11
DNA processing in, 296–298
detection of, 134–136
epidemiology of, 164, 166–167
carbenapemases, 101
active against methicillin-resistant
Staphylococcus aureus, 91, 93
resistance to, 167
Carbenicillin, β-lactamases of, 179, 181–182, 184, 188, 189
Cashew product, for resistant staphylococci, 92
Catalytic constant (k_cat), 196, 197, 202–203
CAU-1 enzyme, 127
Caulobacter vibrioides, β-lactamases of, genes of, 116
CBBLs, see Class B -lactamases
CcDA-CcDB system
biophysical analysis of, 316–317
description of, 313–314
mechanisms of, 316
structures of, 314, 318–320
targets of, 319–320
Cefazolin, β-lactamases of, 188
Cefepime, β-lactamases of, 184, 188, 189
Cefotaxime, β-lactamases of, 177, 179, 180, 184, 188, 189
Cefotaxime, resistance to, conjugative transposons in, 273
Cefoxitin, β-lactamases of, 179, 181–182
Cephradine, β-lactamases of, 184, 188, 189
Ceftriaxone, β-lactamases of, 177, 179, 180, 184, 188, 189
Cefuroxime, β-lactamases of, 179, 180, 188, 189
Cephalomedin, β-lactamases of, 179, 180, 184, 189
Cephalosporin(s)
active against methicillin-resistant
Staphylococcus aureus, 90, 93
Drug efflux systems, see Efflux systems

E

Efflux systems, 235–264
ABC transporters, 236, 237, 247–248
in antiseptics, 251
bacterial conjugation in, 295
in biodotes, 251
biofilm formation and, 251–252
classification of, 235–236
clinical relevance of, 249–253
conjugative transposition in, 286–287
detection of, 238–239
epidemiology of, 236, 238
examples of, 237
MATE family, 236, 237, 247
MFS family, 235, 237, 239–241, 249–250
multidrug, 248–249
overcoming, 252–253
regulation of, 236
RND family, 236, 237, 241–247
SMR family, 236, 237, 241
EmRE, in efflux system, 241

Enterobacter, resistance of, 287

Enterobacter aerogenes
β-lactamases of, 72–73
efflux system of, 253

Enterobacter cloacae
β-lactamases of, 69
AmpC, 146, 147, 149, 150, 152
genes of, 122
genealogrophic distribution of, 72–74
integron structure of, 126
resistance of, biologic costs of, 342

Enterobacteriaceae
AAC enzymes of, 42
APH enzymes of, 38
β-lactamases of, 69, 119, 120, 122
AmpC, 146
clinical relevance of, 133–134, 190
detection of, 134–136
epidemiology of, 164
conjugative transposons of, 272, 274, 278, 280–281
efflux system of, 250

Enterococcus
APH enzyme of, 37
erm genes of, 57
penicillin-binding proteins of, 82
resistance of, 53, 288

Enterococcus faecalis
AAC enzyme of, 41
conjugative transposons of, 272–273
drug targets in, 218
efflux system of, 233
erm genes of, 58
penicillin-binding proteins of, 81, 83, 87

Enterococcus faecium
AAC enzyme of, 27–28
Axe-Txe system, see Axe-Txe system
penicillin-binding proteins of, 87–89
resistance to, conjugative transposons in, 273

YeM-YoEB system of, 313, 315, 317–318

Enterococcus hirae

Enterococcus raffinosus

Enterococcus raffinosus

Erythromycin, 25, 29, 107–108
Ertapenem, 107–108

erm genes, 60
genes, 59

5-Epi-gentamicin, in enzyme inhibition, 16

Flavonoids, for resistant staphylococci, 92

Floraunolones, resistance to, biologic costs of, 341, 344

Fosfomycin, resistance to, 346

FRET (fluorescence resonance energy transfer) assay, 222, 324–325

Fritillaria verticillata extract, in sortase inhibition, 222

FtsZ protein, ZipA protein interactions with, 220

Fusidic acid, resistance to, 341–343

Fusobacterium nucleatum, β-lactamases of, 177

G

Genes
as drug targets, 218–219
exchange of, see Bacterial conjugation;
Conjugative transposons
"Genetic addiction,“ 267, see also Toxin-antitoxin systems

Gentamicin
AAC enzyme of, 40–41
ANT enzyme of, 26
mechanism of action of, 9–10
resistance to biologic costs of, 341
conjugative transposons in, 273
enzymatic, 12
molecular mechanisms in, 11
structure of, 8, 10, 22

Gentamicin B
APH enzyme of, 13
in enzyme inhibition, 16

Geraniol, for resistant staphylococci, 92

Glycylcyclines, efficay of, 252

H

Haemophilus
penicillin-binding proteins of, 86

Haemophilus influenzae
β-lactamases of, 68
efflux system of, 249, 250, 253
penicillin-binding proteins of, 89
resistance of history of, 285
mechanisms of, 286, 287
transformation in, 291

Hanes-Woolf equation, 196

Helicobacter pylori
efflux system of, 251
penicillin-binding proteins of, 86, 88, 89
Integrases
Int proteins, in conjugation, 275–277
Insertion sequence common regions, 335–336
Inc groups, of plasmids, 278, 280–281, 292–293
IMP enzymes
Imipenem, 107–108
ICEs (integrative and conjugative elements),
Holliday junctions, 332
Hydrolase, of β-lactams, 197
α-Hydroxyisopropylpenicillanate, 173
7-Hydroxytropolone, in enzyme inhibition, 16
Hygromycin
APH enzyme of, 38
resistance to, in ribosome defects, 15
I
ICEs (integrative and conjugative elements), 268, 271
Impenem, 107–108
β-lactamases of, 179–182
AmpC, 149
kinetic parameters of, 184, 188, 189
penicillin-binding protein susceptibility to, 84
IMP enzymes
clinical relevance of, 133–134
distribution of, 118, 120
kinetic parameters of, 127, 129
Inc groups, of plasmids, 278, 280–281, 292–293
Insertion sequence common regions, 335–336
Insertion sequence element, 335
Int proteins, in conjugation, 275–277
Integrase
action of, 332–333
class 1, 334–336
class 2, 336
class 3, 336
structures of, 337
Integrative and conjugative elements, 268, 271
Integrons, 331–338; see also Integrase
in aminoglycoside-modifying enzymes, 44
aminoglycoside-modifying enzymes and, 335
of β-lactamases, 124–126, 164–166, 335
class 2, 336
class 3, 336
classes of, 334–337
discovery of, 268
genetics of, 331–334
insertion sequence common regions and, 335–336
overview of, 331
very large (superintegrons), 331, 336–337
Isepamin, in enzyme inhibition, 16
Isoelectric focusing method, for β-lactamase detection, 69
Isoniazid, resistance to, biologic costs of, 341, 343
K
Kanamycin
AAC enzyme of, 40–42
ANT enzyme of, 26
APH enzyme of, 13–14, 24, 37
in enzyme inhibition, 16
resistance to
conjugative transposons in, 272
enzymatic, 11, 12
molecular mechanisms in, 11
structure of, 8
Kanamycin A, AAC enzyme of, 13
Kanamycin nucleotidytransferase, action of, 11–12
kcat (catalytic constant), 195, 202–203
Ketolides, see MLSKO antibiotic group
Kid toxin, see Kis-Kid system
Kinases, aminoglycoside, see APHs
(aminoglycoside phosphotransferases)
Kinetics
of β-lactamases
activity of, 202–205
branched pathways in, 205–209
class B, 127–129, 209–210
class D, 184, 188, 189, 208–209
clavulanic acid and, 207–208
in conformational change, 208
linear models of, 197–199
order of reactions and, 210–211
principles of, 195–197, 210–211
suicide substrates in, 207
zinc and, 210
of penicillin-binding proteins, 88
acylation in, 199–202
branched pathways in, 205–209
kcat/km ratio in, 203–205
linear models of, 197–199
order of reactions and, 210–211
principles of, 195–197, 210–211
Kis-Kid system
description of, 314–315
structures of, 315, 318–320
targets of, 319–320
Klebsiella, resistance of, 287
Klebsiella oxytoca, β-lactamases of, 72
Klebsiella pneumonae
aminoglycoside-modifying enzymes of, 44
β-lactamases of
epidemiology of, 164, 165
genes of, 122
geographic distribution of, 72–74
integer structure of, 124
measurement of, 68
substrate specificity of, 184
conjugation in, 300
integrons of, 336
Km (Michaelis constant), 196, 197, 202–203
L
L1 enzyme, Stenotrophomonas maltophilia, 132
Lactamase, beta-, see β-Lactamase(s)
Lactococcus lactis, efflux system of, 247
Lactose permease (LacY), in efflux system, 240
Lcr-1 β-lactamase, 176, 177
Legionella gormanii, β-lactamases of, 164, 165
Legionella pneumophila, β-lactamases of, 164, 166
Levofoxacin, efflux inhibition in, 252–253
Libraries, for drug development, 217–218, 323
Licoridicin, for resistant staphylococci, 92
Lincosycin, see MLSKO antibiotic group
Lincomamide, see MLSKO antibiotic group
Linezolid, see MLSKO antibiotic group
Linproteins, in conjugation, 275–277
bioconjugation, 272
molecular mechanisms, 11
structure of, 8
Linear models of, 197–199
order of reactions and, 210–211
Lipinsky rules, 217–218, 323
Listeria monocytogenes
conjugative transposons of, 275
penicillin-binding proteins of, 86
resistance of, biologic costs of, 341
sortase of, 220
Lividomycin
AAC enzyme of, 40
APH enzyme of, 13
LmrA, in efflux system, 247–248
LPXT-Gase, 223
Lys-XXX-Gly element, of β-lactamases, 178
M
M protein, in antibiotic susceptibility, 286–287
MacB, in efflux system, 248
Macrolides, see also MLSKO antibiotic group;
specific macrolides
efflux systems for, 238, 249–250; see also mef genes
overview of, 5
resistance to, 287
Major facilitator superfamily (MFS), 235, 237, 239–241, 249–250
Mar, in efflux system, 231
MATE (multidrug and toxic compound extrusion) family efflux system, 236, 237, 247
Mating (membrane) bridge, in DNA transfer, 292, 296, 306–307
Maveyraud classification, of β-lactamases, class D, 168
MazEF (ChpAIK) system, 315, 320
MbeA protein, in conjugation, 275
MBLs (metallo-β-lactamases), see Class B - lactamases
MDR/ABCB1, in efflux system, 247
Mecillinam, penicillin-binding protein susceptibility to, 84
mef genes
clinical relevance of, 249
conjugative transposition of, 286–287
detection of, 239
epidemiology of, 238
in MLSKO antibiotic resistance, 55
mef gene, in MLSKO antibiotic resistance, 55
Membrane bridge, in DNA transfer, 292, 296, 306–307
Mep proteins, in efflux system, 252
Mercury, resistance to, conjugative transposons in, 272–273
Meropenem, 107–108
β-lactamases of, 179, 180, 189
penicillin-binding protein susceptibility to, 84
Metallo-β-lactamases, see Class B β-lactamases
Methanococcus jannaschii, RelBE2 system of, 315
Methicillin
β-lactamases of, 181–182, 184, 188
for penicillin-resistant organisms, 289
Methylenedine penems, 108, 151–153, 157, 159
Mex proteins, in efflux system, 242–247, 251–252
MFS (major facilitator superfamily) efflux system, 235, 237, 239–241, 249–250
Michaelis constant (Km), 196, 197, 202–203
Microarray analysis, for erm genes, 60
Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), 220–222
Microbiological assays, for β-lactamases, 68
Microdilution test, for β-lactamases, 135
Minimum inhibitory concentration, measurement of, in efflux detection, 239
Minocycline, resistance to, conjugal transposons in, 272–273
MLSKO antibiotic group, 53–63
clinical uses of, 53–54
efficacy of, 252
mechanisms of action of, 54–55
resistance to biologic costs of, 341, 343
detection of, 59–60
evolutionary aspects of, 58
geographic distribution of, 55–57
mechanisms of, 55
mobile elements in, 57–58
molecular mechanisms of, 58–59
Mobile elements, in MLSKO resistance, 57–58
Monobactams, 108–109
Moraxella catarrhalis, efflux system of, 249
MreA, in efflux system, 249–250
MasA, in efflux system, 247–248
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), 220–222
msr genes and proteins in efflux system, 250
in MLSKO antibiotic resistance, 55
Multidrug and toxic compound extrusion (MATE) family efflux system, 236, 237, 247
Multidrug binding sites, 248–249
Multiple drug resistance, 250–251
bacterial conjugation in, 295
detection of, 285–289
integrons and, 333–334
Mutation vs. conjugation, 295
da resistance, in dissemination, 290–291
Mycobacterium penicillin-binding proteins of, 87
rRNA methylase of, 55
Mycobacterium bovis, resistance of, 342
Mycobacterium leprae, AAC enzyme of, 40
Mycobacterium smegmatis AAC enzyme of, 40
resistance of, mechanisms of, 288
Mycobacterium tuberculosis AAC enzyme of, 28–29, 39–40
efflux system of, 251
resistance of biologic costs of, 340–345
mechanisms of, 287–288
N
Nalidixic acid, resistance to, biologic costs of, 341, 343
Natural transformation, 291
drug target, 289–290
Streptococcus pyogenes, 286
NBU (nonreplicating bacteroides unit), 303
Neisseria erm genes of, 57
resistance of, transformation in, 291
Neisseria cinerea, penicillin-binding proteins of, 84
Neisseria denitrificans, penicillin-binding proteins of, 84
Neisseria flavescens, penicillin-binding proteins of, 84
Neisseria gonorrhoeae conjugation in, 299
erm genes of, 58
penicillin-binding proteins of, 84
resistance of history of, 285
mechanisms of, 286
Neisseria lactamica, penicillin-binding proteins of, 84
Neisseria meningitidis erm genes of, 58
penicillin-binding proteins of, 84, 89
resistance of biologic costs of, 341, 343
history of, 285
Neomycin
AAC enzyme of, 40
APH enzyme of, 13–14, 24
resistance to, enzymatic, 12
structure of, 8
Netilmicin
AAC enzyme of, 40–42
in enzyme inhibition, 16
resistance to, 46
Nick sites, of plasmids, in bacterial conjugation, 296–297, 301–302
Nitrocefin in acylation studies, 199–200
in assay for β-lactamase detection, 68–69
β-lactamases of, 188
hydrolysis of, 209–210
NMC-A (non metallo-carbapenemase A), 108
Non metallo-carbapenemase A (NMC-A), 108
Nonreplicating bacteroides unit (NBU), 303
Nonretractable pili, in conjugation, 307
NorA, in efflux system, 250, 253
NorM, in efflux system, 247
Nucleophiles, transition-state analogs action against, 109–111
Nucleotide-binding domain, in ABC transporters, 247–248
O
ω-c-ζ system
biophysical analysis of, 318
description of, 313–314
mechanisms of, 316
structures of, 320–321
Open reading frames in Bacteroides conjugative transposons, 278
in integrons, 331, 335
of Tn916 transposon, 275–277
Opr proteins, in efflux system, 243–247, 252
OXA enzymes, see Class D β-lactamases
Oxacillin, β-lactamases of, 178–182, 184, 188, 189
Oxacillinases, see Class D β-lactamases
Oxalate transporter (OxlT), 240
Oxaloacetate formigenes, efflux system of, 240
Oxazolidinones, see MLSKO antibiotic group
P
Pandoraeae pnomenusa, β-lactamases of, 166
ParD-ParE system, 314, 317
Paromomycin
AAC enzyme of, 40
APH enzyme of, 13–14
clinical use of, 9
mechanism of action of, 9–10
resistance to, in ribosome defects, 15
structure of, 8, 10, 21–22
PasA-PasB system, 314
PBPs, see Penicillin-binding proteins
PenMK system, 313, 315
Penam sulfones, 103–106
Penicillanic acid derivatives, 103–106
Penicillin, resistance to, 340
biologic costs of, 341
conjugative transposons in, 272
history of, 285–286
mechanisms of, 286
Penicillin-binding proteins, 81–99
actions of, 81
acylation of, 199–202
antibiotic susceptibility of, 84
clinical relevance of, 82, 84–87
detection of, 87
epidemiology of, 82, 84–87
inhibition of, new products for, 90–92
kinetics of, see under Kinetics molecular mechanisms of kinetic, 87–88
resistant mutants and, 88, 89, 91–92
nomenclature of, 81–82
non-penicillin-binding domains of, 81
in resistance, 82, 83
structures of, 88, 89
Pernot classification, of β-lactamases, 168
PhD-Doc system, 313–314, 317
Phenorhazines, for resistant staphylococci, 92
Phosphonate transition-state analogs, 91–92
Pili, in bacterial conjugation, 299, 304–307
Piperacillin β-lactamases of, 179, 180, 184, 188, 189
penicillin-binding protein susceptibility to, 84
Plasmid(s)
in conjugative transfer, see Bacterial conjugation
discovery of, 267
replication-specific incompatibility of, 292–293
toxin-antitoxin systems of, see
Toxin-antitoxin systems types of, 292–293
“Plasmid addiction,” 267; see also Toxin-antitoxin systems
Plasmid F in bacterial conjugation, 295–296, 306–307
CcdA-CcdB system of, see CcdA-CcdB system
Plasmid pPC221, replication in, 302
Plasmid R27, in conjugative transfer, 293
Plasmid R1162, replication in, 302
Plasmid R27, in conjugative transfer, 301–302
Plasmid RPA, in conjugative transfer, 293
Plasmid Rts1, HigA-HigB system of, 314
Pneumococci, see Streptococcus pneumoniae
Polymerase chain reaction for β-lactamases, 136
for efflux detection, 238
for erm genes, 59
for resistance enzyme detection, 16
Pre-steady state, in enzyme kinetics, 196–197
prFC gene, in conjugation, 280
INDEX

Primases, in bacterial conjugation, 298
Prophage P1, Phd-Doc system of, 313–314, 317
Protein(s)
interactions between, 219–220, 229–230
synthesis of, inhibition of, MLSKO antibiotics in, 54–55
Proteus mirabilis
β-lactamases of, 72–73, 164
cillin-binding proteins of, 86
Proteus rettgeri
conjugative transposons of, 272, 274
Inc-J family elements of, 278, 280–281
Proteus vulgaris
proteins of, in conjugation, 280
Primases, in bacterial conjugation, 298
Pseudomonas aeruginosa
AAC enzyme of, 40
aminoglycoside resistance in, 11, 13
β-lactamases of, 69–70, 119–122
ampC, 145–146
clinical relevance of, 133, 190
detection of, 136, 167
epidemiology of, 164–166
gene expression of, 136–138
geographic distribution of, 72–74
integron structure of, 124–126
substrate specificity of, 180, 183–185, 190
conjugation in, 299
conjugative transposons of, 304
drug targets in, 218
efflux system of, 244–247, 250–253
integrins of, 335, 336
penicillin-binding proteins of, 83, 84
resistance of
biologic costs of, 341, 343
transformation in, 291
Pseudomonas alcaligenes superintegron of, 337–338
Pseudomonas fluorescens
AAC enzyme of, 41
efflux system of, 249
resistance of, biologic costs of, 341
Pseudomonas putida
β-lactamases of, 72–74, 124–125
integrins of, 336
resistance of, biologic costs of, 341
Psychrobacter immobilis, β-lactamases of, 146, 149
Q
qac genes, in integrons, 333
Qac proteins, in efflux system, 249, 253
R
“R factors,” 267
R391 mobile element, 278, 280–281
R997 mobile element, 280
Ralstonia pickettii, β-lactamases of, 164–166, 190
RecA protein, in bacterial conjugation, 298
Recombinases, types of, 332
Relaxes, in bacterial conjugation, 296–297
Relaxosomes, 296–298, 300
RelB2 system, 313, 315, 316
Release factor 1, in toxin-antitoxin action, 316
Reporter constructs, in drug screening, 218
Reporter substrate method, 201–202
Reserpine
efflux detection, 219
for resistant staphylococci, 92
Resistance integrons
Class 1, 334–336
genetics of, 331–334
vs. superintegrions, 331
Resistance nodulation cell division (RND) family, 236, 237, 241–247
Resolvase, 44
Resonance energy transfer techniques, 222, 324–325
Retractable pilus, in conjugation, 307
Retrotransfer, in conjugation, 293
Ribosomes
defects of, aminoglycoside resistance in, 14–15
function of, aminoglycoside effects on, 9–10
Ribostamycin
AAC enzyme of, 30, 40
APH enzyme of, 13
Rifampicin, resistance to, 341–343
RmtA protein, in aminoglycoside resistance, 14–15
RND (resistance nodulation cell division) family efflux system, 236, 237, 241–247
inner membrane transporter of, 241–242
outer membrane factor of, 243–244
periplasmic adaptor protein of, 242–243
tripartite, 244–247
Rolling-circle replication, in bacterial conjugation, 296, 301–302
Roxithromycin, see MLSKO antibiotic group
tpoB gene, mutations of, biologic costs of, 342
rps genes
in aminoglycoside resistance, 14–15
mutations of, biologic costs of, 342–343
rRNA methylases
antibiotics targeting, 54–55
genes of
alterations of, 55
evolution of, 58
gene expression of, 55–57
laboratory detection of, 59–60
mobile elements in, 57–58
molecular mechanisms of, 58–59
Rte proteins, in conjugation, 278
RtsI plasmid, HigA-HigB system of, 314
Reserpine
AAC enzyme of, 13, 40–41
in enzyme inhibition, 16
Small multidrug resistance (SMR) family efflux system, 236, 237, 241
SM(2)I β-lactamases, BLIP inhibition of, 232
SMR (small multidrug resistance) family efflux system, 236, 237, 241
Sortase, 220–222
Sox, in efflux system, 251
Spectinomycin
APH enzyme of, 38
resistance to, 14–15, 335
structure of, 21
Spectrophotometry, for β-lactamases, 135–136
SPM enzymes, 120–121, 134
Staphylococcus
erm genes of, 57
penicillin-binding proteins of, 82
resistance in, inhibition of, 92, 93
Staphylococcus aureus
ANT enzyme of, 26–27, 39
β-lactamases of, 68, 147
efflux system of, 247, 249, 250, 252, 253
mecillinam-resistant
carbenemases for, 91
cephalosporins for, 90
penicillin-binding proteins of, 83, 84, 86
kinetics of, 87–88
structure of, 58, 89
resistance of, 322
biologic costs of, 341, 342, 345
history of, 285
mechanisms of, 286, 287
in MLSKO antibiotics, 53
transduction in, 292
torsate of, 220–222
Streptococcus mitis, efflux system of, 250
Steany-state conditions, in enzyme kinetics, 195–197, 202–203
Stenotrophomonas maltophilia β-lactamases of, 132
efflux system of, 250–253
integrons of, 335–336
Streptococcus
APH enzyme of, 37
conjugative transposons of, 303
Streptococcus faecalis
resistance of, history of, 285
Streptococcus gordoni, sortase of, 220
Streptococcus mitis, penicillin-binding proteins of, 87
Streptococcus pneumoniae
conjugation in, 299
conjugative transposition in, 272–273, 286–287
drug targets in, 218
efflux system of, 238, 249, 250, 253
erm genes of, 57, 58–59
penicillin-binding proteins of, 83, 87
kinetics of, 87–88
mutants of, 88, 89, 91, 93
structure of, 88, 89, 91
RelBE system of, 313, 315, 316
resistance of, 322–323, 340
biologic costs of, 341
history of, 285, 286
in macrolides, 55
mechanisms of, 287
transformation in, 291
YefM-YoeB system of, 313, 315, 317–318
Streptococcus pyogenes
conjugative transposition in, 286–287
efflux system of, 238
erm genes of, 58–59
ω-ε-ζ system of, see ω-ε-ζ system
resistance of, history of, 285–286
to macrolides, 54
transduction in, 292
sortase of, 222
Streptomycin, see MLSKO antibiotic group
Streptomyces
in macrolide production, 55
methylnases of, 58
Streptomyces clavuligerus, β-lactamase inhibitors of, 228–229
Streptomyces exfoliatus, β-lactamase inhibitors of, 229
Streptomyces griseus
AAC enzyme of, 40
APH enzyme of, 37
Streptomycin
discovery of, 35–36
resistance to, 335
biologic costs of, 341, 343
conjugative transposons in, 272, 273
in ribosome defects, 14–15
structure of, 8, 21
STX mobile element, 278, 280–281
sal genes, in integrons, 333
Salbactam, 103–104
action of, 228
β-lactamases of, 181–182
Salmonella enterica, efflux system of, 248
Sulfonamide, resistance to biologic costs of, 341, 343
control of, 346
Superintegrons, 268
SYN-1012 (methylene penem), 108
Steady-state conditions, in enzyme kinetics, 195–197, 202–203
Staphylococcus lentus
Streptogramin, 103–104
Streptomyces clavuligerus
Streptomyces
Streptomyces exfoliatus
Sulfolobus solfataricus, efflux system of, 248
T
Tazoabactam, 103–106, 181–182
Tea extracts, for resistant staphylococci, 92
Tellimagrandin I, for resistant staphylococci, 92
TEM β-lactamases, 101
BLIP interactions with, 230–233
functions of, 227–228
inhibitor resistant (IRTs), 103
structures of, 227–228
tet genes
clinical relevance of, 249
epidemiology of, 236, 238
in MF superfamily, 239–240
mutations of, 252
transposons and, 272–273
Bacteroides, 278
Tn916 family, 275–277
Tetracycline
efflux systems for, 236, 238
clinical relevance of, 249
MF superfamily, 239–240
resistance to, conjugative transposons in, 272–273, 278
Theta replicating DNA, 301
Thienamycin, 106
Ticarcillin,
Thienamycin, 106
Tellimagrandin I, for resistant staphylococci, 92
TnpX recombinase, in conjugation, 281–282
TndX recombinase, in conjugation, 281–282
Tn5382 transposon, 273
Tn5382 recombinase, 272–273
Tn5384 transposon, 273
Tn5385 transposon, 273
Tn5397 transposon, 271
Tn5398 transposon, 274–275
Tn4532 transposon, 281–282
Tn4536 transposon, 281
Tnp genes, 44
TnpX recombinase, in conjugation, 281–282
Tobramycin
AAC enzyme of, 13, 40–42
ANT enzyme of, 26
clinical use of, 9
TolC, in efflux system, 243–247, 253
Toxin(s), encoded by mobile genetic elements, 292
Toxin-antitoxin systems, 313–329
discovery of, 313–316
inhibitors of identification of, 323–325
potential targets for, 321–323
mechanisms of, 316
regulation of, 314
structures of, 314–315, 318–321
Tra proteins, in bacterial conjugation, 297, 300
Transduction, in resistance dissemination, 291–292
Transfer replication, DNA, 300–301
Transformation, natural, 291
as drug target, 289–290
Streptococcus pyogenes, 286
Transient-state conditions, in enzyme kinetics, 196–198
Transition-state analogs, 109–111
Transmembrane domain, in ABC transporters, 247–248
Transposase, 44
Transposons in aminoglycoside-modifying enzymes, 44–46
conjugative, see Conjugative transposons nonreplicative, 303
types of, 268
Treponema denticola, erm genes of, 57
Triclosan, efflux systems for, 251
Trimethoprim, resistance to, conjugative transposons in, 272
Tuberculosis, see Mycobacterium tuberculosis
Type IV secretion systems, 296, 298–299, 307
Tyrosine recombinases, 332; see also Integrase
VIM enzymes, 122
 clinical relevance of, 133, 134
 distribution of, 120
 kinetic parameters of, 127, 129
 Virginiamycin, 54
 Virulence
 efflux systems and, 251–252
 inhibitors of, 220–223

X
 Xis proteins, in conjugation, 276–277
 X-nan Huangqin product, for resistant staphylococci, 92

Y
 YdhE, in efflux system, 247
 YefM-YoeB system, 313, 315, 317–318

Z
 Zinc center, of β-lactamases, 130–132, 210
 ZipA protein, FtsZ protein interactions with, 220
 Zymomonas mobilis, penicillin-binding proteins of, 84