EVOLUTION OF MICROBIAL PATHOGENS
CONTENTS

Contributors vii
Introduction xi

I. GENERAL CONCEPTS OF MICROBIAL EVOLUTION / 1

1. Part I Overview / 3
 John J. Mekalanos

2. Studying Evolution Using Genome Sequence Data / 11
 Jeffrey G. Lawrence

3. Population Dynamics of Bacterial Pathogens / 35
 Martin C. J. Maiden and Rachel Unwin

4. The Study of Microbial Adaptation by Long-Term Experimental Evolution / 55
 Vaughn S. Cooper

5. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens / 83
 Bianca Hochhut, Ulrich Dobrindt, and Jörg Hacker

 William A. Day and Anthony T. Maurelli

II. ENVIRONMENT AND THE EVOLUTION OF MICROBIAL PATHOGENS / 123

7. Part II Overview / 125
 Roberto Kolter and Deborah A. Hogan
8. Evolution of Pathogens in Soil / 131
 Rachel Muir and Man-Wah Tan

 Margaret J. McFall-Ngai and Jeffrey I. Gordon

10. The Evolution of Bacterial Toxins / 167
 O. Colin Stine and James P. Nataro

11. Function, Evolution, and Classification of Macromolecular Transport Systems / 189
 Paul J. Planet, David H. Figurski, and Rob DeSalle

12. The Evolution of Antibiotic Resistance / 221
 Dean Rowe-Magnus and Didier Mazel

III. EVOLUTION OF SELECTED PATHOGENIC SPECIES AND MECHANISMS / 243

13. Part III Overview / 245
 James B. Kaper

 Sean D. Reid, J. Ross Fitzgerald, Stephen B. Beres, Nicole M. Green, and James M. Musser

15. Evolution of Enteric Pathogens / 273
 Ruiting Lan and Peter R. Reeves

 Alexander S. Pym and Peter M. Small

17. The Evolution of Human Fungal Pathogens / 327
 Judith N. Steenbergen and A. Casadevall

Index / 347
CONTRIBUTORS

Stephen B. Beres
Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

A. Casadevall
Departments of Microbiology and Immunology and of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461

Vaughn S. Cooper
Department of Microbiology, 212 Rudman Hall, University of New Hampshire, Durham, NH 03824

William A. Day
Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702

Rob DeSalle
Molecular Biology Laboratory, American Museum of Natural History, Molecular Laboratories, Central Park West at 79th St., New York, NY 10024

Ulrich Dobrindt
Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany

David H. Figurski
Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th St., New York, NY 10032

J. Ross Fitzgerald
Centre for Infectious Diseases, Medical Microbiology, University of Edinburgh Medical School, Teviot Place, Edinburgh, Scotland, United Kingdom

Jeffrey I. Gordon
Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108

Nicole M. Green
Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
CONTRIBUTORS

Jörg Hacker
Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany

Bianca Hochhut
Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany

Deborah A. Hogan
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755

James B. Kaper
Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201

Roberto Kolter
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115

Ruiting Lan
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia

Jeffrey G. Lawrence
Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260

Martin C. J. Maiden
The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom

Anthony T. Maurelli
Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799

Didier Mazel
Unité Plasticité du Génome Bactérien, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris cedex 15, France

Margaret J. McFall-Ngai
Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706

John J. Mekalanos
Department of Microbiology and Molecular Genetics, Harvard Medical School, Building D1, Room 421, 200 Longwood Ave., Boston, MA 02115

Rachel Muir
Departments of Genetics and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305

James M. Musser
Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030

James P. Nataro
Department of Pediatrics, Department of Medicine, Department of Microbiology and Immunology, and Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201

Paul J. Planet
Molecular Biology Laboratory, American Museum of Natural History, Molecular Laboratories, Central Park West at 79th St., New York, NY 10024
CONTRIBUTORS

Alexander S. Pym
Medical Research Council of South Africa, 491 Ridge Road, P.O. Box 70380, Overport 4067, Durban, South Africa

Sean D. Reid
Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157

Peter R. Reeves
School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia

Dean Rowe-Magnus
Department of Microbiology, Clinical Integrative Biology Division, Sunnybrook & Women’s College Health Sciences Centre, 2075 Bayview Ave., S1–26A, Toronto, Ontario, Canada M4N 3N5

Peter M. Small
Global Health Program, P.O. Box 23350, Seattle, WA 98102

Judith N. Steenbergen
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

O. Colin Stine
Department of Epidemiology and Preventive Medicine and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201

Man-Wah Tan
Departments of Genetics and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305

Rachel Urwin
The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
INTRODUCTION

The 1976 edition of the classic textbook *The Microbial World* by Stanier, Adelberg, and Ingraham (3) relegated the topics “Microbial Pathogenicity” and “Microbial Diseases of Man” to chapters 29 and 30 of a 31-chapter book. Such was the appreciation of microbial pathogenesis in the field of microbiology in the 1970s. More detailed coverage of microbial pathogens is found in the 1978 edition of *Bailey and Scott’s Diagnostic Microbiology* (1), but that book is also a time capsule of the breadth and depth of knowledge in pathogenic microbiology at that time—before the genetics and genomics revolutions of the last 30 years. The sole reference to Legionnaires’ disease makes no mention of *Legionella pneumophila*, which had yet to be discovered. Likewise, although enteropathogenic and enteroxigenic *Escherichia coli* are covered, enterohemorrhagic *E. coli* was not mentioned at all. And of course in 1978 there was no appreciation at all that a microbe, *Helicobacter pylori*, causes human ulcers.

Any active field of study will accumulate new information after nearly 30 years, but in the area of pathogenic microbiology the fruits of research since the 1970s have been quite extraordinary. Not only have new microbial diseases been uncovered, but appreciation about the diversity of mechanisms underlying the way that microbes and hosts interact has also grown. Microbes that have historically been challenging to study in the laboratory have yielded to the ingenuity of researchers who have brought an impressive toolbox of techniques and experimental models to bear on questions of microbial pathogenicity. The 1980s saw the development and application of genetic approaches for uncovering new virulence factors. The 1990s were a time of incredible advances in the study of how microbes exploit or disrupt host cell functions, and the field of “cellular microbiology” was born. Currently we are in the genomic era, with dozens of genomes from pathogenic microbes being mined for new virulence factors and therapeutic targets using bioinformatics and high-throughput approaches and new genome sequences appearing weekly. The quantum leap in knowledge from the field of genomics has also reinvigorated the study of...
microbial physiology, microbial metabolism, and microbial communities in a diverse range of environments. It is the amazing amount of data available from prokaryotic genome sequences which has fueled a renewed interest in the study of the evolution of microbes, and in parallel the study of the evolution of microbial pathogens. It is at this point that we considered the suggestion of assembling a book that could provide central concepts about evolution to the microbiological community in the context of pathogenesis. Given our interest in the subject, as well as the fact that sufficient knowledge to allow a thoughtful approach to it is now available, we decided to take on the project.

Most biologists like to speculate about the evolution of their particular area of focus, but to discuss evolution intelligently requires familiarity with the basic concepts about the subject. Evolutionary biologists have much to teach general physiologists, biochemists, geneticists, and infectious disease specialists, but the concepts and language of this area of study have become sufficiently specialized that there are barriers to a microbiologist who wants to learn more about evolution. This leads to a scenario where microbiologists sometimes make evolutionary arguments that are not well supported by the accepted theories of evolution.

It is often assumed that traits associated with pathogenicity were acquired as a way to improve the fitness of those microbes living in an otherwise hostile host environment. This is a simplistic view of a complicated relationship between microbes and the many environments they encounter. We undoubtedly place too much emphasis on the host and disease in trying to understand selection forces operating on microbes that live in a wide range of environments. Environmental reservoirs, where pathogens spend so much more time relative to that spent in a susceptible host who then becomes sick, may be better places to look for answers to questions of how pathogenicity traits have become fixed in microbial populations.

In this context, disease may simply be a consequence of specific microbial mechanism acting on a host that does not have a long natural history of coevolution with the microbe. A theme that has emerged from recent work on pathogenic microbes challenges even the basic notion of what a pathogen is. Microbes that cause disease in some hosts may be perfectly harmless in others. In turn, mechanisms that have evolved to enable microbes to disrupt the host in a way that causes symptoms and disease can be used by other microbes or in other hosts to establish asymptomatic, long-term associations.

The genomic era has provided new knowledge regarding the evolution of specific pathogenic species, in which some of the common themes, such as pathogenicity islands, are seen in action. Valuable information can be obtained by determining the genome sequence of pathogenic microbes as well as closely related non-pathogenic strains. This has enabled investigators to focus on unique sequences in the pathogenic strains both as a way to design new control strategies, and as a way to better understand the forces that govern evolution of pathogenicity. Why, for example, are some serogroups of a particular species pathogenic whereas others are not? What traits have evolved along with serogroup specificity that contribute to this segregation of specific antigenic types with virulence traits?
As we assembled this book, the topic of bacterial genetics kept cropping up in the majority of the chapters. To understand the process of evolution in bacteria without thinking about the horizontal transmission of genetic material within and between species is like trying to understand a baseball box score without thinking about hits, runs or errors. Rather than offer a basic primer for bacterial genetics (or baseball), we refer readers who are not familiar with the details of genetic processes to the textbook *Molecular Genetics of Bacteria* by Snyder and Champness (2) or any of the wonderful texts that also describe the mechanisms of gene exchange such as transformation, transduction, and conjugation.

Our goal with this book is to offer a current understanding of virulence evolution with the microbiologist in mind. The content is offered from three different perspectives. In the first section, our emphasis is on broad themes and the business of how evolution is studied. Principles that relate not only to pathogenesis, but to evolution in general, are covered in some detail by looking at specific cases. The second section offers examples of how problems common to a number of pathogens have been solved in evolutionary terms. This section also discusses the question of how microbial ecology has played a role in the evolution of pathogenicity. These first two sections discuss model systems that have provided new knowledge relevant to study of many other microbes. In the third section, we focus on a few well-studied classes of pathogens to learn how they may have evolved their disease-causing mechanisms. In this section we see some more specific examples of the themes developed in the first two sections, but the points are more finely drawn. In all chapters we are fortunate to have as collaborators outstanding authors who have made important contributions to the literature regarding their topics. Each section is also introduced and put into broader perspective by an eminent investigator whose own work relates to that section. We have learned a lot about both evolution in general, the evolution of pathogenic systems, and examples from specific microbial pathogens while assembling this book. We hope it will be useful to many who are learning about or studying pathogenic microbes and set the stage for further research into this important area of biology.

HANK S. SEIFERT
VICTOR J. DIRITA

REFERENCES

INDEX

A

ABC transporters, 135
ABC-ATPases, 190–192
Acanthamoeba, 139
Acanthamoeba castellanii, 339–340, 339f
Accidental pathogen, 36–37
Acquired immunodeficiency syndrome, fungal disease and, 328, 331
Actinobacillus actinomycetemcomitans, 172, 194
Actinobacillus pleuropneumoniae, 172
Adaptation, 60–61, 60f
ecological specialization and, 68–70, 69f
mechanisms of, 70–73
in soil, 134–141
Adhesins, 85, 95, 99
Aerobactin, 86
Agrobacterium tumefaciens, 85, 132, 197
Altruism, 59
Ammonium, 228
Amoebae, 139–140
Amycolatopsis mediterranei, 226–227
Analogy, 190
Ang4, 159
Antibiotic resistance, 128–129, 221–239
active efflux in, 223t, 224
antibiotic producer organisms in, 225–227, 226f
bypass mechanism in, 223t, 224
composite transposons in, 234–235
conjugative transposons in, 233–234
DNA conjugation in, 231–232
drug inactivation in, 223t, 224
drug sequestration in, 223t, 225
drug target alteration in, 223t, 224
fitness cost of, 230
genes for, 225–228
historical perspective on, 221–223, 222f
horizontal gene transfer and, 230–231
housekeeping genes in, 225
integrons in, 92, 235–238
mechanism of, 223–225, 223t
mosaic genes in, 227–228
multidrug, 235–238, 237f
mutation in, 228–231
in Mycobacterium tuberculosis, 228–229
in Neisseria, 231
plasmids in, 232–233
reduced permeability in, 223, 223t
in Staphylococcus aureus, 259, 262–263
in Streptococcus, 231, 251
target amplification in, 223t, 224–225
transformation in, 231
Antivirulence genes
Bacillus anthracis adaptation and, 116–117
Burkholderia mallei adaptation and, 117–118
Burkholderia pseudomallei adaptation and, 118
comparative genomic hybridization for,
18–119
identification of, 118–119, 120
microarrays for, 118–119
phenotypic arrays for, 118
Shigella adaptation and, 112, 114–116, 115f
Aphid-Buchnera symbiosis, 150
Arabidopsis, 76
Archaia, 19, 23
arr-2 gene, 226–227
Aspergilosis, 328, 329, 330–332, 333t
Aspergillus fumigatus, 329
Associations. See Symbiosis
Autotransporters, 178–181, 179t, 180f, 198, 199f,
200, 207t
Bacillus anthracis, 36, 110
AtxA in, 117
clonality of, 44
host of, 37
niche of, 111
pathoadaptive mutation in, 116–117
plasmids of, 133

Bacillus cereus, 110, 116–117
niche of, 111, 117
plasmids of, 133

Bacillus subtilis, ecological exclusion in, 58

Bacillus thuringiensis, 133

Bacteriophage(), 19–20
adaptation to, 72
of Mycobacterium tuberculosis, 307
pathogenicity islands and, 85, 88, 88t, 91
resistance to, 63
of Staphylococcus aureus, 264
toxin-converting, 168–169
virulence of, 6–7

Bacteriophage f1s, 74

Bacteroides, recombination in, 22
Bacteroides thetaiotaomicron, genome of, 160
Bacteroides thetaiotaomicron-human/mouse symbiosis, 157–160
Beneficence, 126, 147–162, 148t. See also Virulence consortia and, 151
human/mouse-Bacteroides thetaiotaomicron, 157–160
legume-rhizobia, 152–157
mode of transmission and, 150
molecular characteristics of, 160–163, 161f
phylogeny and, 151
squir-vibrio, 152–157, 154f
symbiont location and, 150–151
Betaine, 136, 137
Biofilms, 142–143
Black holes, 111

Blas tomyces dermatitidis, 333t, 338–339
Blastos mycosis, 330–332, 333t

Bordetella bronchiseptica, 5
Bordetella parapertussis, 292
Bordetella pertussis
adenylate cyclase toxin of, 172
autotransporters of, 180
pathogenicity islands in, 85, 94t
secretion system of, 197
taxonomic status of, 292
toxin of, 169, 170, 197

Borrelia burgdorferi, genome sequence of, 11–12

Botulinum toxin, 175–177

Bouella suis, pathogenicity islands in, 85

Buchnera aphidicola
gene reduction in, 18
genome sequence of, 12
metabolic pathways in, 23

Burkholderia cepacia, 76
Burkholderia mallei, 117–118
taxonomic status of, 292
Burkholderia pseudomallei, 117–118

C

cadA gene, 112, 114, 115f, 119f
Cadaverine, 112, 114, 115f
Campylobacter jejuni
clonality of, 45
genetic diversity of, 38
Candida, 332–333, 333t
codons of, 335
drug-resistant, 334–335, 338
species-specific, 337–338
virulence in, 336–338
CARD15 (NOD2), 161–162
Carnitine, 136, 137
Caulobacter crescentus, 194

Chromosomes
deletions in, 16–18
insertions in, 16–18
inversions of, 15–16, 16f
recombination of, 13–14

Chytridiomycosis, 327

Clade, 191
CLAVATA1, 156

Claviceps purpurea, 324

Clavibacter michiganensis

 Colonization, in symbiosis, 153–155, 154f
Commensal organism, 36, 37
Commensalism, 147–148, 148t. See also Symbiosis
Comparative genomics, 3. See also Genome
Compatible solutes, 136
Contiguous nucleotide sequences, 42

Cryptococcus neoformans, 329, 333t
Cryptococcus neoformans vs. gattii, 329

Cryptococcus neoformans
population structure of, 336
variation in, 335
virulence of, 338–341, 339f, 341t

Cryptococcus neoformans vs. gattii, 329
eg genes, 114, 202–203
Culture
 fitness estimation in, 57–58
techniques of, 56–57
Curli, 114, 202–203

D
 Dichelobacter nodosus, 91
 pathogenicity islands in, 94t, 97
dot/icm genes, 139

E
 Ecological exclusion, 58–59
 Ecological specialization, 68–70, 69f
 Endemic disease, 35
 Endosymbiosis, 148–149
 Energy, conservation of, 58
 Enteric fever, 275–276
 Enterococcus faecalis, 95, 96t
 Epidemic disease, 35
 epsD gene, 194
 Envirowa amylovora, 94t
 Escherichia coli, 246–247, 276–280, 283
 adaptation in, 70–73
 bacteriophage adaptation in, 72
 bacteriophage fl infection of, 74
 coevolutionary processes in, 64–65
 cranberry juice effects on, 142
curli of, 114
databases for, 292
diversity of, 283
d-ribose catabolism in, 69, 69f
ecological exclusion in, 58–59
 ECOR set of, 276, 278, 278f, 288
enteroaggregative, 277, 277t
enterohemorrhagic, 18, 276–278, 277t
 O157:H7, 280, 283, 286–287, 287f, 288
 SPATE proteins of, 178–181, 179t, 180f
enteroinvasive, 277, 277t, 278–280
tenteropathogenic, 276–278, 277t
 pili of, 193
 SPATE proteins of, 178–181, 179t, 180f
enterotoxigenic, 169, 170–171, 170t
 SPATE proteins of, 178–181, 179t, 180f
environmental modification by, 64
expression microarrays in, 71
 fec operon in, 119
 genome of, 286–288, 287f, 290–291
 genomic islands in, 98t
 heat-stable toxins of, 169, 170–171, 170t
 hemolysin of, 171–172
 housekeeping genes of, 276, 279f
 insertions in, 17
 mgl operon of, 71
 mutation rate in, 4, 66–68
 nonpathogenic, 18, 110, 111, 112, 113f
 O157:H7, 280, 283, 286–287, 287f, 288
 OmpT protease in, 114, 116
 osmoregulation in, 136–137
 pathogenicity islands in, 85, 86, 87, 89t–90t, 91–93, 95, 97, 291
 periodic selection in, 65–66, 65f
 phenotypic flexibility in, 69–70
 6-phosphogluconate dehydrogenase in, 59
 population structure of, 276
 recombination in, 13, 76
 Shiga toxin-producing, 168
 SPATE proteins of, 178–181, 179t, 180f
 specialization in, 68–70, 69f
 species vs. clone and, 283–284
 streptomycin resistance in, 73
 surface antigens of, 284–285
temperature adaptation in, 69, 71–72
 uropathogenic
 SPATE proteins of, 178–181, 179t, 180f
 transport system of, 190–193
 veterinary, 95, 97
 virulence of, 85, 86, 277

Experimental evolution, 55–77
 adaptation in, 60–61, 60f, 70–73, 72f
 culture techniques for, 56–57
 ecological exclusion and, 58–59
 in Escherichia coli B, 59–60
 fitness estimation for, 57–58
 future directions in, 75–76
 genetic diversity in, 61–65, 62f, 63f
 genetic trade-offs in, 68–70, 69f, 72
 mutation rate in, 59, 66–68
 periodic selection in, 65–66, 65f
 specialization in, 68–70, 69f
 virulence models in, 73–75

F
 Fibronectin-collagen–T antigen, 254
 Fimbriae, 142
 Fitness
 antagonistic pleiotropy and, 116–118
 antibiotic resistance and, 230
 estimation of, 57–58
 evolution of, 60–61, 62f
 landscape of, 61–65, 63f
 in symbiotic associations, 148, 148t
 Flagella, 142, 195
 Flavonoids, 153
 Francisella tularensis, 74
 Fungal disease. See also Fungi
 body temperature and, 330
 incidence of, 328–329
 pathogenesis of, 330–332
 prevalence of, 329, 330
 resistance to, 329–330
 Fungi, 248–249, 327–341
 classification of, 328
 commensal, 332–333, 336–338
 drug-resistant, 334–335
 environmental survival of, 340, 341t
 generalist, 333–334
Fungi (continued)
 population structure of, 335–336
 saprophytic, 332–333, 338–340, 339f
 specialist, 333–334
 taxonomy of, 330, 331f, 332f
 virulence in, 334–341, 339f, 341t

G
 Gastrointestinal tract, flora of, 126
 Gene decay, 286
 Genetic drift, 70
 Genome
 of Bacteroides thetaiotaomicron, 160
 core gene pool of, 132
 deletions in, 16–18
 diversity within, 42–43
 of Escherichia coli, 286–288, 287f, 290–291
 evolution of, 23
 flexible gene pool of, 132
 gene identification and, 21–22
 of group A Streptococcus, 255–257, 256t
 of Haemophilus, 20–21
 of Helicobacter pylori, 13
 homologous recombinations in, 13–14
 insertions in, 16–18
 inversions in, 15–16
 minimal size of, 22–23
 of Mycobacterium bovis, 316
 of Mycobacterium tuberculosis, 13, 304, 307, 311–313, 315–316
 of Neisseria, 20–21
 nucleotide substitutions in, 12–13
 open reading frames in, 21–22
 phage, 19–20
 phylogeny and, 19–21
 reduction of, 18, 44
 replication slippage in, 14–15, 15f, 22
 of Salmonella, 13, 288–289, 290–291
 signature, 20–21
 of Sinorhizobium meliloti, 160
 of Staphylococcus aureus, 13
 of Streptococcus, 13
 of Yersinia pseudotuberculosis, 290
 Genomic islands
 pathogenicity islands and, 97–98, 98t
 selection criteria for, 98–99
 Glycans, host, 158–159
 Glycopeptide resistance, 226, 226f
 Group A Streptococcus. See Streptococcus (group A) gsp genes, 193

H
 H antigen, 284–285
 Haemophilus influenzae, 36
 autotransporters of, 180–181
 genome of, 11, 20–21
 metabolic pathways in, 23
 replication slippage in, 22
 Hartmannella, 139
 Heat-stable toxins, 170–171, 170t
 Helicobacter pylori
 genetic diversity of, 44–45
 genome of, 13
 microarray analysis of, 4
 pathogenicity islands in, 85, 86, 93, 94t
 pathogenicity islets in, 92
 Hemolysin, 171–172, 190–193
 Histoplasma capsulatum, 329, 333t
 population structure of, 336
 virulence of, 338–339
 Histoplasmosis, 330–332, 333t
 hms genes, 282
 Homology, 190
 Homoplasmy, 190
 Horizontal gene transfer, 16, 18, 21, 38, 44, 110–111, 132, 167–168, 284
 antibiotic resistance and, 230–231
 mechanisms of, 168–169
 in Mycobacterium tuberculosis, 306–307
 phylogenetic incongruence and, 192
 in Shigella, 112
 Host
 colonization of, 141–142
 protozoan, 138–140
 soil-dwelling, 137–141
 Housekeeping genes, 43
 Human/mouse-Bacteroides thetaiotaomicron symbiosis, 157–160

I
 Immune system, 140–141
 conservation of, 140–141
 Implants, biofilms on, 143
 Inflammatory bowel disease, 162
 Injectisome, 195, 196
 Insects, 140–141
 Insertion elements, in Staphylococcus aureus, 263
 Insertion sequences
 in Mycobacterium tuberculosis, 306–307
 in pathogenicity islands, 86, 91–92
 Integrase, 87
 Integrons, 88t, 92
 antibiotic resistance and, 235–238
 Intestine
 Bacteroides thetaiotaomicron-human/mouse symbiosis
 in, 157–160
 flora of, 126
 glycans of, 158–159
 Intimin, 85
 Inversions, 15–16, 16f
 Iron, 85–86, 99
 acquisition of, 134–135
 soil, 134
Isoniazid, resistance to, 225

J
Junk DNA, 19

K
Klebsiella, genomic islands in, 98t

L
Large sequence polymorphisms, in *Mycobacterium tuberculosis*, 310–313, 312f
Legionella pneumophila, 36
Legume-rhizobium symbiosis, 152–157
Leukotoxins, 172–174, 173f–174f
Lipid infusions, 338
Listeria ivanovii, 96t
Listeria monocytogenes, 36–37, 38, 136
Listeria pneumophila, 36
hosts of, 134
pathogenicity islands in, 85, 95
protozoan host of, 138–139
Lymphocytes, 140

M
Malassezia furfur, 332, 333t, 338
Manganese
acquisition of, 135–136
transporters for, 135–136
Manuheimia, 172–173
Mercury, 228
Mesorhizobium loti, 15–16, 16f, 150
Mesorhizobium mellotii, 98t
Metabolic pathways, 23
Methicillin, resistance to, 137, 259, 262–263
Mga regulon, 254
Microarray analysis, 3–4, 13
Mitogen-activated protein kinase, 140–141
MntH transporters, 135–136
Mobility genes, 86
Mouse/human–Bacteroides thetaiotaomicron symbiosis, 157–160
Müller’s ratchet, 70
Multidrug-resistant integrons, 235–238, 237f
Multilocus enzyme electrophoresis, 42
of *Escherichia coli*, 278, 278f
of group A *Streptococcus*, 252
of *Staphylococcus*, 260–261
Multilocus sequence typing, 13, 43
Mupirocin, resistance to, 228
Mutation, 38, 39f, 110
pathoadaptive, 7, 111–117, 113f, 115f, 119–120, 119f
point, 12–13
rate of, 4, 66–68
replication slippage, 14–15, 15f
transposable elements in, 67–68
Mutualism, 147–148, 148t. See also Symbiosis
Mycobacterium, 302–304, 303f, 304t
Mycobacterium avium, 302, 303
Mycobacterium bovis, 315–316
Mycobacterium canettii, 309–310
Mycobacterium leprae, 18, 44, 70, 248, 302
Mycobacterium marinum, 302
Mycobacterium microti, 315
Mycobacterium smegmatis, 248, 304, 304t, 305
Mycobacterium tuberculosis, 36, 248, 301–317
antibiotic resistance in, 225, 228–229
clonal structure of, 44, 313–314, 315f
dnaE2 of, 309
drug-resistant mutations in, 308
gene of, 13, 304, 307, 311–313, 315–316
horizontal gene transfer in, 306–307
host of, 37
insertion sequences of, 306–307
large sequence polymorphisms in, 310–313, 312f
mismatch repair in, 309
mobile genetic elements in, 306–307
mutation in, 308–309
PGRS proteins of, 312–313
population genetics of, 307–317, 312f
population structure of, 313–314
prophages of, 307
single nucleotide polymorphisms in, 307–310
slow growth in, 302–303
strain families of, 314, 315f
transmission of, 38
virulence of, 302, 304–306, 305t
Mycobacterium tuberculosis complex, 315–316
Mycobacterium ulcerans, 302
Mycoplasma genitalium, 18, 22
Mycoplasma genitalium, 18, 22
Myxococcus xanthus, 72

N
Naegleria, 139
Natural selection, 38–39, 40f
Neisseria spp.
databases for, 292
gene of, 20–21
pathogenicity islets in, 92
recombination in, 13
replication slippage in, 22
Neisseria gonorrhoeae
antibiotic resistance in, 231
genetic diversity of, 44–45
pathogenicity islands in, 85, 94t
pili of, 193
Neisseria meningitidis, 36, 37
antibiotic resistance in, 231
genetic diversity of, 38
insertion in, 17, 17f
lav gene of, 180–181
mu operon of, 17, 17f
Nematodes, 140–141
Neurotoxins
botulinum, 175–177, 177f
phylogenetic tree of, 177f
tetanus, 175–177, 177f
Neutral genetic variation, 43
NOD2 (CARD15), 161–162
nod genes, 153
Nonpathogenic organisms, 18, 99, 109–111, 112, 113f
Nram1 transporters, 136
Nuclear polyhedrosis virus, 73, 74–75

O
O antigen, 284–285
Obligate pathogen, 36
OmpT protease, 114, 116
Open reading frames, 21–22
 Opportunistic pathogen, 36
Osmoadaptation, 136–137
Osmoregulated periplasmic glucans, 137
Outer membrane proteins, of Bacteroides thetaiotaomicron, 160

P
Pathogenicity islands, 6, 83–100, 84f, 88t, 89t, 90t, 284
acquisition of, 88, 91
direct repeat DNA and, 86
duplication of, 93
genomic islands and, 97–98, 98t
in gram-negative pathogens, 89t–90t, 91, 92–93, 94t
in gram-positive pathogens, 95, 96t
insertion sequences in, 86, 91–92
instability of, 87–88
intercellular transfer of, 88
mobility genes of, 86
in nonpathogenic organisms, 99
origin of, 88, 88t, 91
in plant pathogens, 95, 97
in Salmonella, 246, 275
selection criteria for, 98–99
in Staphylococcus aureus, 264–265
vs. surface antigens, 284–285
transferability of, 87–88
transposon sequences in, 86
tRNA genes and, 86–87
in veterinary pathogens, 95, 97
virulence-associated genes of, 85–86
Pathogenicity islets, 92
pggL gene, 137
Penicillin, resistance to, 227
Periodic selection, 65–66, 65f
Pharyngitis, streptococcal, 251
Phenazines, 137–138
Pheromones, 233
6-Phosphogluconate dehydrogenase, in Escherichia coli, 59
Phylogenetic tree, 191, 192
Phylogeny, 19–21
Phytoalexins, 156
Pili, 142, 193–194, 197
Pilin, 193–194
Pityriasis versicolor, 333t
Plant pathogens, pathogenicity islands in, 97
Plasmids, 133
antibiotic resistance and, 232–233
gram-negative, 232
gram-positive, 232–233
pathogenicity islands and, 88, 88t, 91
of Staphylococcus aureus, 263
toxin-bearing, 169
pleR gene, 116–117
Pneumocystis jiroveci, 333
Point mutation, 12–13
Population diversity, 38–41, 39f, 40f
Population study, 35–46
clonal model in, 43–46
host dynamics in, 37–38
models in, 43–46
pathogen type in, 36–38
population diversity in, 38–41, 39f, 40f
R₀ in, 37
sampling for, 41–42, 41f
transmission in, 37–38
within-genome diversity in, 42–43
Porphyromonas gingivalis, 135
Predators, soil-dwelling, 137–141
Prisoner’s dilemma, 75
Prophages, 88t, 132–133
of group A Streptococcus, 257–259, 258f
of Mycobacterium tuberculosis, 307
Protozoa, 138–140
Pseudogenes, 18, 44, 292
Pseudomonas aeruginosa
biofilms of, 142
microarray analysis of, 4
pathoadaptive mutations in, 7
pathogenicity islands in, 94t
phenazines of, 137–138
pili of, 193
Pseudomonas denitrificans, 13
Pseudomonas phenazinium, 138
Pseudomonas putida, 98t
Pseudomonas syringae, 94t
Pseudopilins, 193
Quinolone, resistance to, 229–230
R

R0,5,37
Ralstonia eutropha, 60–61
Ralstonia solanacearum, 97
Reactive oxygen species, 156
Recombination, 13–14, 66, 76
in enteric bacteria, 282–283
in group A Streptococcus, 255, 255f, 258–259
in Staphylococcus aureus, 265
Red Queen interaction, 64–65
Replication slippage, 14–15, 15f, 22
Rhizobium-legume symbiosis, 152–157
Rhizobium, symplasmid of, 132
Ribonucleic acid
ribosomal, 167
transfer, 86–87
Rickettsia prowazekii, 18
Rifampin, resistance to, 226–227
Riftia pachyptila, 150, 161
RTX pore-forming toxins, 171–174, 173f–174f
Saccharomyces cerevisiae, 13, 334, 335
Salmonella spp.
bacteriophage adaptation in, 72
gene of, 13
inversions in, 15
pathogenicity islands in, 93
pglL gene of, 137
Salmonella bongori, 246
Salmonella enterica, 13, 36, 246, 273–276, 283
clonality of, 44
databases for, 292
diversity of, 283
fever-causing, 275–276
gene of, 288–289, 290–291
genomic islands in, 98t
host of, 37
host-specific adaptation of, 276
housekeeping genes of, 274
Kaufmann-White serotyping for, 42
nomenclature for, 273–274, 274f
pathogenicity islands in, 85, 87, 90t, 93, 275
pathogenicity islets in, 92
pathogenicity of, 274–276
prophages in, 132, 133
pseudogenes of, 292
recombination in, 22
secretion systems of, 85
serovars of, 273–274, 274f
species vs. clone and, 283–284
surface antigens of, 284–285
Typhus strains of, 288–289
virulence of, 85
Salmonella senftenberg, 98t
Sampling, for population study, 41–42, 41f
sec system, 193, 202
Secretion systems. See Transport systems
Selection, 38–39, 40f
SET proteins, of Staphylococcus aureus, 265–266, 267f
Shiga toxin, 168, 174–175
Shigella, 246–247, 278–280, 279f
antibiotic resistance in, 231–232
comparative genomic hybridization analysis of,
118–119
curli absence in, 114
deletions in, 18
flagella of, 286
gene decay in, 286
gene loss in, 111–116, 115f
horizontal gene transfer in, 112
lysine decarboxylation in, 286
nonpathogenic Escherichia coli and, 110, 112, 113f,
119f
O antigen variation in, 285
pathoadaptive mutation in, 111–116, 113f, 115f,
118–119, 119f
pathogenicity islands in, 91
pseudogenes of, 292
SPATE proteins of, 178–181, 179t, 180f
virulence of, 7, 112
Shigella boydii, 114, 115f
Shigella dysenteriae, 114, 115f, 174–175
Shigella flexneri
cadaverine in, 114, 115f
genomic islands in, 98t
pathogenicity islands in, 87, 90t, 91, 93
SPATE proteins of, 178–181, 179t, 180f
Shigella sonnei, 114, 115f
Ship of Theseus, 21
sic gene, 252–253
Siderophores, 135
Sigma factors, of Bacteroides thetaiotaomicron, 160
Signature genes, 20–21
Single nucleotide polymorphisms, in Mycobacterium
tuberculosis, 307–310
Sinorhizobium fredii, 98t
Sinorhizobium meliloti, 160
SNARE proteins, 176
Soil-dwelling bacteria, 125, 131–143
abiotic factors and, 134–137
adaptations of, 134–141
biofilms of, 142–143
biotic factors and, 137–141
colonization by, 141–142
community behaviors of, 141–143
conjugation in, 133
geneic diversity in, 131–134
insect interaction with, 140–141
iron requirement of, 134–135
manganese requirement of, 135–136
nematode interaction with, 140–141
osmoadaptation of, 136–137
Soil-dwelling bacteria (continued)
protozoa, interaction with, 138–140
transduction in, 132–133
Solemyid clams, 151
Solutes, compatible, 136
SPATE proteins, 178–181, 179t, 180f
Species, 14
Sporothrix schenckii, 333t
Sporotrichosis, 333t
Squid-vibrio symbiosis, 152–157, 154f
Staphylococcal cassette chromosomes, 264
Staphylococcus aureus, 245–246, 259–266
alpha-toxin of, 127
bacteriophages of, 264
clonality of, 45
genome of, 13, 262–265
genomic islands in, 98t
host specificity of, 260–261
insertion elements of, 263
methicillin-resistant, 259, 262–263
microarray analysis of, 261, 261f, 262–263, 265–266, 267f
mobile genetic elements of, 263–265
multiclonal theory of, 262–263
multilocus enzyme electrophoresis of, 260–261
pathogenicity islands in, 95, 96t
phages of, 259
plasmids of, 263
population genetic analysis of, 260–261, 261f
recombination in, 265
SaPi1 elements of, 88
SCCmec of, 264
SET proteins of, 265–266, 267f
single clone theory of, 262
toxin of, 6
transposons of, 263
vSaA island of, 265
vSaB island of, 265
Staphylococcus epidermidis, 143
Starch utilization system, of Bacteroides thetaiotaomicron, 160
Streptococcus (group A), 245, 251–259
antibiotic resistance of, 251
comparative genomics of, 255–256, 256t
complement inhibitor of, 252–253
electrophoretic types of, 252
emm types of, 251
fibronectin-collagen-T antigen region of, 254
genome of, 13
insertion sequences in, 256–257
M1 strains of, 253–254, 255, 256, 256t, 257
M3 strains of, 255–256, 256t, 257, 258, 258f
M6 strains of, 256
M18 strains of, 256, 256t, 257
Mga regulon of, 254
multilocus enzyme electrophoresis of, 252
pathogenesis of, 251
prophages of, 257–259, 258f
recombination in, 255, 255f, 258–259
reemergence of, 252–253
speA variants of, 253
toxins of, 257–259, 258f
virulence genes of, 252–253, 252f
Streptococcus equi, 259
Streptococcus pneumoniae, 36
antibiotic resistance in, 231
clonality of, 45
databases for, 292
pathogenicity islands in, 95, 96t
Streptococcus pyogenes
antibiotic resistance in, 231
pathogenicity islets in, 92
Streptococcus zooepidemicus, 259
Streptomycin, Escherichia coli resistance to, 73
Sulfonamides, resistance to, 227, 229–230
Supergene trees, 20
Superinfection, 75
Superintegrons, 88t, 92, 235–238, 237f
Surface antigens, vs. pathogenicity islands, 284–285
Symbiosis, 147–168, 148t
aphid–Buchnera, 150
binary, 151, 152–160
consortial, 151
developmental programs in, 155–156
evolution and, 148–149
gnotobiotic mouse model of, 157–158
horizontal transmission in, 150
host responses in, 156–157
human/mouse–Bacteroides thetaiotaomicron, 157–160
initiation of, 153, 155
intestinal ecosystem of, 157–160
legume-rhizobium, 152–157
molecular characteristics of, 160–163, 161f
squid-vibrio, 152–157, 154f
symbiont location and, 150–151
theories of, 148–149
vertical transmission in, 150
Synapomorphy, 190

T
tad gene, 194
Tetanus toxin, 175–177
Tetracycline, plasmid resistance to, 73
Toll-like receptors, 140
Toxic shock syndrome, 6, 245–246, 261
Toxic shock syndrome toxin-1 (TSST-1), 6, 245–246, 261
Toxins, 126–127, 167–181
adaptive functions of, 169–170
autotransporter, 178–181, 179t, 180f
botulinum, 175–177
of Corynebacterium diphtheriae, 169
of group A Streptococcus, 257–259, 258f
heat-stable, 170–171, 170t
horizontal gene transfer and, 167–169
host avoidance and, 169
host damage and, 170
RTX pore-forming, 171–174, 173f–174f
Shiga, 174–175
tetanus, 175–177
TSST-1, 6, 245–246, 261
of *Vibrio cholerae*, 169
Transduction, 132–133
Transformation, 133–134
Transmission efficiency, 4–5
Transport systems, 127–128, 189–211
classification of, 206–211, 207t
hybrid classification of, 208–209
phylogenetic classification of, 203–205, 204f,
209–210, 209–211, 210f
single-characteristic classification of, 107t, 206–208
superfamily gene classification of, 205–206
type I (ATP-binding cassette), 190–193, 199f, 207t
type II (main terminal branch), 193–195, 199f,
204f, 207t
type III (contact-dependent), 193–195, 199f, 207t
type IV (conjugation-related), 196–198, 199f, 204f,
207t
type V (autotransport), 198, 199f, 200, 207t
type VI (chaperone/usher), 199f, 200–201, 207t
type VII (alternate chaperone/usher), 199f,
201–202, 207t
type IIX (extracellular nucleation-precipitation),
202–203, 207t
Transposon(s), 86, 88t, 91–92
antibiotic resistance and, 233–235
of *Staphylococcus aureus*, 263
Transposon site hybridization, 119
Treponema pallidum, 36, 37, 38
Trimethoprim, resistance to, 229–230
Tuberculosis. See *Mycobacterium tuberculosis*
Typhoid fever, 38

V
Vaccines, 4–5, 73–74
vanHAX genes, 226, 226f
Vesicular stomatitis virus, 73
Vibrio cholerae, 36
El Tor O1 biotype of, 6
gene duplication in, 168
microarray analysis of, 4
O139 biotype of, 6–7
pathogenicity islands in, 6, 85, 86, 88, 94t
pili of, 193
super-integron of, 235–238, 237f
toxin of, 169, 172, 194
virulence of, 5, 74, 85, 86
Vibrio fischeri, 125
Vibrio fischeri-squid symbiosis, 152–157, 154f
Vibrio mimicus, 88
virB11 gene, 197
Virus, 61
W
Wolbachia, 151
Wrightian landscape, 61–63, 63f

X
Xanthomonas campestris, 94t

Y
Yeasts, 13, 23, 334, 335
Yersinia spp., 246, 280–282
pathogenicity islands in, 6, 86, 87
Yersinia enterocolitica, 247, 280, 281
pathogenicity islands in, 87, 90t
Yersinia pestis, 36, 247, 280, 282, 283–284, 308
clonality of, 44
infection cycle of, 282
pathogenicity islands in, 87, 90t, 93
taxonomic status of, 292
virulence of, 74
Yersinia pseudotuberculosis, 247, 280, 281
genome of, 290
pathogenicity islands in, 87, 90t
pseudogenes of, 292
Yersiniabactin, 86
YopJ, 161