To Sharon, for her continual support and encouragement.
Contents

Preface xi

1 Discovery, Structure, Heterogeneity, and Origins of HIV 1
 I. Discovery of the AIDS Viruses 2
 II. The HIV Virion 8
 III. Virus Heterogeneity 12
 IV. Origin of HIV 20

2 Features of HIV Transmission 27
 I. HIV in Blood 28
 II. HIV in Genital Fluids 32
 III. HIV in Milk, Saliva, and Other Body Fluids 37
 IV. HIV Transmission by Blood and Blood Products 39
 V. Sexual Transmission of HIV 40
 VI. Mother-Child Transmission of HIV 49

3 Steps Involved in HIV:Cell Interaction and Virus Entry 55
 I. CD4 Receptor 55
 II. Postbinding Steps in Virus Entry into CD4+ Cells 57
 III. Virus:CD4+ Cell Fusion 66
 IV. Other Potential HIV:Cell Surface Interactions Involved in Virus Entry into CD4+ Cells 67
 V. Down-Modulation of the CD4 Protein 68
 VI. Infection of Cells Lacking CD4 Expression 69
 VII. Other Possible HIV:Cell Surface Interactions 70
 VIII. Other Possible Mechanisms Involved in Virus Entry 72
 IX. Cell-to-Cell Transfer of HIV 73
 X. Overview of Early Steps in HIV Infection 75
4 Acute HIV Infection and Cells Susceptible to HIV Infection 79
 I. Acute HIV Infection 79
 II. Cells and Tissues Infected by HIV 87
 III. Differences in Cellular Host Range among HIV Isolates 99
 IV. Superinfection 102
 V. Recombination 105

5 Intracellular Control of HIV Replication 109
 I. Early Intracellular Events in HIV Infection 109
 II. Natural Intracellular Resistance to HIV Replication 117
 III. Interaction of Cytokines and Viral Proteins with Cellular Factors 122
 IV. Virus Infection of Quiescent Cells 123
 V. Latency 127

6 Cytopathic Properties of HIV 133
 I. HIV Induction of Cell:Cell Fusion 134
 II. Accumulation of Extrachromosomal Viral DNA and Cell Death 136
 III. Direct Cellular Toxicity of HIV and Viral Proteins 137
 IV. Apoptosis 138
 V. Activation 146
 VI. Role of Superantigens 147

7 Viral Proteins Determining Biologic Features of HIV 149
 I. Envelope Region and Cell Tropism 149
 II. Influence of Accessory Proteins on HIV Replication 153
 III. Envelope Region and Cytopathicity, CD4 Protein Modulation, and Soluble CD4 Neutralization 162
 IV. Conclusions 163

8 Effect of HIV on Various Tissues and Organ Systems in the Host 165
 I. Hematopoietic System 165
 II. Induction of Cytokines and Their Effect on Immune Function and HIV Replication 179
 III. Central Nervous System 183
 IV. Gastrointestinal System 200
 V. HIV-Associated Nephropathy 204
 VI. Heart 205
 VII. Other Organ Systems 206

9 Innate Immune Responses in HIV Infection 209
 I. Introduction 209
 II. Characteristics of Innate Immunity 210
 III. Dendritic Cells 213
IV. Other Cellular Components of the Innate Immune System 225
V. Soluble Innate Factors 231
VI. Conclusions 232

10 Humoral Immune Responses to HIV Infection 237
I. Detection of Anti-HIV Antibodies 237
II. Neutralizing Antibodies 238
III. Enhancing Antibodies 247
IV. Antibody-Dependent Cellular Cytotoxicity (ADCC) and Antibody-Dependent Cytotoxicity (ADC) 251
V. Complement-Fixing Antiviral Antibodies 253
VI. Autoimmunity 253

11 T-Lymphocyte Immune Responses in HIV Infection 259
I. Introduction 259
II. T Lymphocyte Anti-HIV Activities 259
III. Diffuse Infiltrative Lymphocytosis Syndrome 278
IV. CD8+ Cell Noncytotoxic Anti-HIV Response 279
V. T Regulatory Cells 290

12 HIV Infection and Development of Cancer 293
I. Introduction 293
II. Kaposi's Sarcoma 295
III. B-Cell Lymphomas 304
IV. Anal Carcinoma 310
V. Cervical Carcinoma 312
VI. Summary 315

13 Overall Features of HIV Pathogenesis: Prognosis for Long-Term Survival 317
I. Cofactors in HIV Infection and Disease Progression 317
II. Features of HIV Pathogenesis 324
III. Prognosis 332
IV. Differences in Clinical Outcome 339
V. Factors Involved in Long-Term Survival 342
VI. Differences in Clinical Course in SIV Infection 345
VII. High-Risk HIV-Exposed Seronegative Individuals 346
VIII. Diversity of Viruses Involved in Transmission and Infection 349
IX. Relationship of HIV Heterogeneity to Pathogenesis in Specific Tissues 353
X. Conclusions: Viral and Immunologic Features of HIV Pathogenesis 357

14 Antiviral Therapies 363
I. Introduction 363
II. Anti-HIV Therapies 365
It hardly seems possible that nearly 10 years have passed since the second edition of this book was written. It is fitting to complete this third edition on the 25th anniversary of the recognition of AIDS in the world (1576). It has been quite a task, but also a pleasure, to cover the past decade of scientific articles in many different areas of HIV/AIDS research and to select those that have contributed the most notable new information to the field. Most of the new knowledge has added incrementally to the past information that was established in the first 15 years of research on this major human epidemic and was covered in the second edition. For this reason, several of the early quite definitive original articles in each topic remain cited in the book, but subsequent articles confirming the findings without adding much new information were deleted. They can be found in the first or second editions of this book.

New knowledge in basic and clinical research, as well as epidemiology and social science, has helped improve our understanding of HIV/AIDS and has provided novel approaches in prevention and treatment. The most recent contributions to these fields are cited in each chapter. Features of AIDS pathogenesis, including aspects of the HIV-1 and HIV-2 isolates involved; the cells infected; the consequences of this infection; and the host immune response to HIV are discussed in this book. Moreover, potential approaches for therapy and a vaccine for the prevention of HIV infection and AIDS are considered. Because of the interactions among the various chapters, readers are directed in the text to various sections in the book that cover the topic in greater detail. As an example, R5 and X4 subtypes are introduced very early in the book, before their definition in the text (Chapter 4). The term HIV is used generically to indicate observations with HIV-1 and HIV-2.

The Pioneers in HIV Research cited in the book are individuals who were actively involved in HIV research from the early 1980s (1981-83) and who continued to contribute to the field. Many of them have served as mentors to a large number of currently active HIV/AIDS investigators.

Among the major additions to our knowledge of HIV over the past decade has been the elucidation of intracellular controls of HIV replication that have
been identified by genetic studies. APOBEC3G and TRIM5a, which block HIV replication, provide approaches for novel antiviral therapies (Chapter 5). The identification of genetic markers for susceptibility to HIV infection and determinants of the clinical course has been greatly expanded (Chapter 13). Moreover, for therapy, the development of decoys for cell surface proteins, including chemokine coreceptors used for entry, has resulted in an emphasis on entry inhibitors along with virus fusion inhibitors that can serve as new targets for the anti-HIV drug armamentarium (Chapter 14).

Clinical trials have clarified to some extent what drugs to use in initiating therapy and take into consideration the potential toxicities of the treatments. In many cases, protease inhibitors are now avoided because of the clinical disorders particularly linked to these drugs. The use of combination therapy with one pill taken once daily has certainly enhanced the adherence of individuals on drug therapy and hopefully will limit development of virus resistance (Chapter 14). In this regard, the timing for the initiation of drug administration in chronically infected people is now better appreciated. The threshold for beginning highly active antiretroviral therapy (HAART) has been raised so that individuals who are healthy but have CD4+ cell counts of >250 cells/ml may not need therapy; viral loads are not as important in the decision for treatment (see Table 14.3). At the same time, the initiation of therapy in primary infection still requires further evaluation. Some results have suggested that treatment prior to seroconversion can be of clinical benefit to the HIV-infected individual (Chapters 4 and 14). Currently, ongoing studies are evaluating if and when one could stop HAART (i.e., structured treatment interruption [STI]) and permit the patient to be treatment-free for a while. STI for chronic infection has thus far not been encouraging, but in patients treated during acute infection, the procedure may be possible (Chapter 14).

Whereas 10 years ago I was surprised that viral latency was not as well researched as it had been in the first 5 years of this epidemic, more recently this topic has received further attention (Chapters 5 and 14). The interest stems from the discovery of residual virus-infected cells that remain in individuals who are on very effective anti-HIV therapy. Not surprising to those working with retroviruses, an agent like HIV, which becomes part of the genetic machinery of the cell, cannot be eliminated with the drugs currently available. Although the present anti-HIV treatments can make progeny viruses noninfectious (protease inhibitors) or not replicative competent (reverse transcriptase inhibitors), they still leave cellular reservoirs of the virus, even at low numbers, that can rebegin the infectious cycle and give rise to resistant strains (Chapter 4). Thus, approaches targeting a variety of cellular reservoirs need to be given continued attention (Chapters 5 and 14).

Also very important over the last 5 years has been the appreciation of the importance of innate immunity both as the first response to HIV (Chapter 9) and for its likely role in preventing infection in exposed seronegative individuals (Chapter 13). This arm of the immune system certainly plays a role, along with adaptive immunity, in maintaining virus control in several untreated healthy individuals infected for more than 25 years. This feature is dramatically illustrated in long-term survivors or long-term nonprogressors (Chapter 13). More knowledge of the immune system has led to further, though not sufficient, attention to immune system-based therapies, particularly using cytokines (e.g., interleukin-2 and interferon α) and dendritic cell approaches (Chapter 14).
Vaccine development has received greater emphasis over the past 10 years but has not yet revealed an approach for effective prevention of HIV transmission (Chapter 15). Completion of the first phase III trials provided important information on various legal, social, and public health issues and procedures that are needed to establish an effective vaccine trial, although they did not show efficacy. Other phase III and phase II trials are in progress, keeping this important topic in the forefront of clinical studies. Nevertheless, it is obvious to most investigators that a vaccine will not be available in the very near future. Thus, education on how to prevent the infection as well as the use of antiretroviral drugs in low-resource countries should help limit transmission (Chapter 3) and reduce the spread of the epidemic.

Other advances since 1997 that have improved our understanding of HIV pathogenesis and treatment include the following:

1. Additional HIV-1 clades have been identified in the M (main) group of HIV-1 (K and L), and clades E and I have now been recognized as recombinant viruses (Chapter 1). In addition, the O (or outlier) clade has been found to have many representatives. The past decade has also revealed a new group (N [non-M, non-O]) that has had very few isolates in human populations; they most resemble the chimpanzee isolate. Thus, HIV as a zoonotic infection has been further emphasized (Chapter 1). Importantly, HIV appears to be continually evolving perhaps with founder viruses entering human populations with specific genetic features and immune responses (Chapters 1, 7, 8, and 13).

2. Several HIV-2 isolates have been found, and more extensive classification of this subtype has been established, with five new groups (notably not clades) recognized (Chapter 1).

3. The increasing incidence of recombinant viruses indicates that dual infection and superinfection can occur (Chapter 4). Recombination brings new types of viruses to human populations. Some of these may carry resistance to anti-HIV immune responses and therapies. For that reason, this ongoing viral process must be considered in curtailing the epidemic.

4. The role of immune activation in HIV pathogenesis has received much more appreciation, particularly in its induction of cell loss by cytokine-induced apoptosis (Chapters 5 and 13).

5. The field of HIV research has helped to redefine subsets of CD4+ and CD8+ T cells which reflect their naïve, or memory, status, whether activated or resting (Chapters 4, 8, and 11). The varying abilities of R5 and X4 viruses to infect subsets of cells have been shown to influence the pathogenic pathway (Chapters 4 and 13). It has become evident that HIV can infect resting T cells through cytokine exposure or the nature of the particular resting cell subset. The virus infects, integrates, and then can become latent in these cells.

6. Novel new functions of viral accessory genes are now highlighted (Chapter 7). The vast number of intracellular activities seems too large to be attributed solely to each of the viral proteins, but these pleiotropic functions are impressive. Targeting these viral gene products or the cellular proteins involved in their function offers new directions for therapy.

7. As noted above, great progress has been made in identifying genetic factors that are associated with the susceptibility of individuals to infection and a clinical course, reflecting either very rapid progression or long-term survival (Chap-
ter 13). These observations give further support to the importance of both innate and adaptive immunity as targets for approaches to control HIV infection.

8. In the field of adaptive immunity, various different functioning subsets of cytotoxic T cells can now be distinguished, which helps to explain why tetramer-positive or HIV-specific CD4+ and CD8+ cells may be detected (e.g., by Elispot or intracellular cytokine production) but may not function as cytotoxic cells (e.g., lack perforin) (Chapters 11 and 13).

9. Some new information has been obtained in our understanding of neutralizing versus enhancing antibodies. Monoclonal antibodies with exquisite epitope selectivity have helped define regions in the viral envelope that can elicit broadly reactive humoral responses. The recognition that the removal of certain regions of the viral envelope (e.g., V2) may increase sensitivity of viruses to neutralization and help in the induction of neutralizing antibodies may provide novel approaches for vaccines (Chapter 10). Nevertheless, some broadly reactive antibodies have been found to cross-react with normal cellular proteins. Thus, how to induce virus-specific antibodies with strong neutralizing activity against a variety of diverse HIV groups and clades remains a challenge.

10. HIV neuropathogenesis has been further explored. Although new observations are limited, there is a greater acceptance of other cell types (e.g., astrocytes or oligodendrocytes) besides macrophages/microglia that can be infected by HIV and contribute to central nervous system disorders (Chapter 8).

11. The field of HIV enteropathy is better appreciated than it was 10 years ago, with the recognition of massive CD4+ cell infection and destruction in the gastrointestinal tract early in infection (Chapters 4 and 8). Infection of other organs such as the kidney and the compartmentalization of viruses in various tissues (e.g., the brain or testes) where they can undergo independent evolution have been noted (Chapters 4 and 8). Thus, having an absence of detectable virus in the blood does not necessarily indicate that there is no infectious virus elsewhere in the body, particularly in the gastrointestinal tract and genital fluids (Chapters 2 and 3).

12. In HIV-related cancers (Chapter 12), greater knowledge has been gained on the viruses associated with the malignancies (e.g., KSHV/HHV8, EBV, HPV) and HAART has reduced the incidence of most of these cancers. Several important steps, from infection to tumor development, remain to be elucidated.

13. Microbicides have been emphasized for prevention of HIV infection (Chapters 2 and 3). The progress in this field has not been dramatic, although clinical trials of diaphragms to block transmission via the cervical canal may provide encouraging results. Currently, it appears that microbicides that cover the vaginal wall and prevent contact with HIV-infected cells and the free virus would be the best approach. In this way, the antiviral compounds will not induce lesions in the vaginal and anal canals that could enhance virus infection.

14. In vaccines, the use of DNA as a vaccine approach has been less encouraging because it does not induce good humoral immunity and induces only limited cellular immunity. Prime/boost approaches continue to show promise, although the use of two different modalities has not been as popular as it was several years ago (Chapter 15).

15. Within the past 3 years, a greater emphasis has been given to the development of an AIDS vaccine through funding from the Bill and Melinda Gates Foundation, the National Institutes of Health, the International Agency for Vac-
cine Initiative (IAVI), and other international organizations. With this new support, one can hope for advancements and development of an effective vaccine in the very near future. In addition, further attention to the immune system and treatment strategies to harness immune responses against HIV should receive even greater emphasis.

Since 1998, the pandemic of HIV infection has continued to increase, with several additional countries (e.g., India, China, Nigeria, and Russia) experiencing the speed with which this infection can spread (Table A). The factors that are associated with the emergence and spread of the AIDS epidemic remain the same (Table B). Fears of similar large epidemics in countries such as Indonesia are surfacing. Education is the immediate approach available, and a vaccine is a vital necessity. It can be estimated that a new infection takes place in the world every 7 seconds and a death from HIV infection occurs every 10 seconds. In 1996, it was projected that by the year 2000, over 100 million individuals would be infected by HIV-1 or HIV-2 (2794). Because of the introduction of HAART, the number is now estimated to be about 40 million people infected with HIV worldwide (http://www.unaids.org) (Figure A) (Table A), and 22 million persons have died.

In the United States 40,000 new cases were reported in 2005. In 2006, 1 million people in the United States were living with HIV/AIDS (660). In the first edition of this book, 1 in 250 Americans was estimated to be infected by HIV,
including 1 in 100 males and 1 in 800 females. That number has not changed appreciably, indicating that either the prediction in 1993 was too high or the rate of new infections has stabilized. Nevertheless, the total number of U.S. cases of HIV infection since AIDS was recognized in 1981 has now reached nearly 2 million. More than 500,000 Americans have died from the disease. It is estimated that 275,000 people in the United States are HIV infected but have not been tested and identified. Until 1996, AIDS in the United States was the leading cause of death among young people, both male and female, between 25 and 44 years of age. Death from AIDS has now decreased because of the success of the antiviral therapies (Chapter 14). However, since 1992, non-Hispanic blacks, Hispanics, and women have accounted for increased proportions of AIDS cases. In 2005, women represented 25% of all U.S. adult cases reported. Currently, less than half of the new AIDS cases in the United States result from transmission by homosexual and bisexual men (45%) (660).

Papers published on HIV and AIDS have increased at a rapid rate. As of December 2006 (2952), a total of about 250,000 articles have been written on this subject since the initial report on AIDS in 1981 (652). The number of papers published on HIV and AIDS peaked at 19,721 in 1996. For this edition, about 5,000 have been cited.

To gain a perspective on the changes in our knowledge of HIV/AIDS and emphasis in research, readers are recommended to read the Prefaces to the first and second editions of this text. Criteria for AIDS as defined by the Centers for Disease Control are found in Appendices I and IV. The well-known relationship of CD4+ cell number to the risk of opportunistic infections and cancer is shown in Appendix V. The research conducted by my co-workers and myself was supported by grants from the National Institutes of Health, the California State

Figure A The global HIV/AIDS epidemic. Estimated number of persons living with HIV infection or AIDS by region at the end of 2005. (Source, http://www.unaids.org; accessed 6/15/2006.)

Total: 38.6 (33.4 – 46.0) million
Universitywide Task Force on AIDS, the American Foundation for AIDS Research, the Campbell Foundation, and the James B. Pendleton Charitable Trust. In addition to my gratitude to those who provided helpful suggestions and advice on the initial text in Microbiological Reviews and the other editions of this book, I want to thank the following individuals for their assistance with the present edition: Lena Al-Harthi, Marcus Altfeld, Brigitte Autran, Edward Barker, David Blackbourn, Susan Buchbinder, Rick Busman, Dennis Burton, Michael Busch, Andrew Carr, Mary Carrington, Cecilia Cheng-Mayer, Mario Clerici, Deborah Cohan, Suzanne Crowe, Tony Cunningham, Andrew Davison, Steven Deeks, Lisa Demeter, Josef Eberle, Lawrence Fong, Donald Forthal, Donald Francis, Robert Garry, Stephen Goff, Marie-Lise Gougeon, Carl Grunfeld, Phalguni Gupta, Ashley Haase, Beatrice Hahn, Marc Hellerstein, Walid Heneine, James Hoxie, Shiu-lok Hu, Rachel Kaplan, Paul Klotman, Bette Korber, Donald Kotler, Alan Landay, Nathaniel Landau, Michael Lederman, Alexandra Levine, Paul Luciw, Francine McCutchan, Preston Marx, Susan Moir, Laura Napolitano, Philip Norris, Jorge Oksenberg, Nancy Padian, Joel Palefsky, Tristram Parslow, David Pauza, Matija Peterlin, John Phair, Vicente Planes, Lynn Pulliam, Jacqueline Reeves, Edward Robinson, Mario Roederer, Robert Seder, Haynes Sheppard, Robert Siliciano, Gregory Spear, Leonidas Stamatatos, Ralph Steinman, Jeffrey Ulmer, Eric Verdin, Robert Winchester, and John Zaunders. I thank Julie Winters and Pamela Lacey for their help in editing and production, Krista Preckel for her assistance, Ann Murai for her excellent help with the manuscript, and particularly Kaylynn Peter for her close attention and overall handling of this book.

I hope this newly revised text will continue to be a helpful resource for researchers, clinicians, health care providers and students, who are all part of the important group dedicated to finding a solution to this devastating epidemic.
Abacavir, hypersensitivity to, 372
Abrams, Donald I., 213f
Activation, 146–147, 175, 269, 346
Acute HIV infection, 79–87
antibody production in, 86
CD4+ cell count in, 433
CD8+ cell response in, 272–273
cellular immune response in, 84–86, 84f
cerebrospinal fluid viral load in, 187
clinical manifestations of, 80–81, 80t
definition of, 81
immunologic findings in, 80t, 82–83
laboratory findings in, 80t, 81–82, 82t
natural killer cells in, 229
postinfection immunization for, 390
rapid course of, 80
seroconversion in, 85f, 86
structured interrupted drug therapy for, 393
treatment of, 373–375
viral characteristics and levels in, 83–84, 296
Acute retroviral syndrome, 79–80, 80t; see Acute HIV infection
Adaptive immune system, see also Immune system
components of, 210t, see also specific components
vs. innate immune system, 210, 210t, 211f
in vaccine response, 398–399
Adefovir dipivoxil, 366
Adenovirus, in vaccine development, 409–410, 424
Adhesion molecules
in neutralizing antibody sensitivity, 244–245
in viral entry, 71–72, 71t
Adjuvants, for vaccines, 418–420, 418t
Adrenal gland, HIV infection of, 306
Aging, see Telomere
AIDS viruses, discovery of, 1–5, 3t
Alloimmunogens, as vaccine adjuvants, 420
Aluminum phosphate, as vaccine adjuvant, 419
Aluminum sulfate, as vaccine adjuvant, 419
Amman, Arthur J., 252f
Amniotic fluid, viral load in, 28t, 39
Amprenavir, resistance to, 378
Amyloid deposition, 183–184
Anal carcinoma, 310–312, 311f–313f, 311t
Antagonism, T cell receptor, 422
Antibody(ies)
antilymphocyte, 175
detune assay, 81
in autoimmunity, see Autoimmunity
HIV, 6, 6f, 8
in acute infection, 80t, 81–82, 82t, 86
antibody-dependent cell-mediated toxicity and, 227, 251–253
in breast milk, 38
vs. clinical stage, 237–238
complement-fixing, 253
detection of, 237–238
enhancing, 247–251, 247f–251f, 421
isotypes of, 238
neutralizing, see Neutralizing antibodies
for passive immunotherapy, 390–391
HIV type 2, type 2, 6, 6f, 8
in saliva, 81
Tat protein, 231
in vaginal fluids, 42
Antibody-dependent cell-mediated toxicity (ADCC), 227, 251–253
Antibody-dependent cytotoxicity (ADC), 253
Antibody-dependent enhancement (ADE), 247–251, 247f, 421
clinical relevance of, 250–251
vs. clinical stage, 247–248, 248f
mechanisms of, 248–249
vs. neutralizing antibodies, 248f, 251
in non-HIV viral infections, 250–251
in vaccine development, 421
viral epitope determinants of, 249–250, 249f–251f

Note: Page numbers followed by f indicate illustrations; those followed by t indicate tables.
Antigen(s), see also Human leukocyte antigens
in blood, 29–30, 29t, 30f
CD4+ cell response to, 172, 172f
superantigens as, 147–148
Antigen-presenting cells
dendritic cells as, 213, 215, 216f
HIV effects on, 169t, 179
T-cell interaction with, 260–261
Anti-HIV therapies, 363–396
for acute infection, 373–375
approaches to, 363, 364t
approved list of, 366
surface and entry inhibitors, 370
cellular reservoirs during, 380–381
for children, 383
combination of, 368–369, 376,
see also HAART (highly active antiretroviral therapy)
development of, 363, 365f
efficacy of, vs. tissue distribution, 369–369, 372–373, 379
factors affecting, 394, 394t
gene factors in, 372
immune restoration and, 375, 388–390
immune system effects of, 383–385, 384t
immune system-based, 385–388, 386t
latently infected cells in, 380–381
nutritional supplements, 371–372
passive immunotherapy, 390–391
postexposure, 48, 375
postinfection immunization, 390
pre-exposure, 375
for primary infection, 373–375
protease inhibitors, 366, 367–368, 367f
protein-targeted, 369–370
recommendations for, 376, 376t
resistance to, 376–379
reverse transcriptase inhibitors, 365–367, 366, 378
structured treatment interruption approach, 391–393
T-cell count after, 170–171, 203
tissue distribution of, 372–373
toxicity of, 381–383, 382t
transmission reduction due to, 379
viral subtype selection and, 372
Anti-idiotypic antibodies, 257
Antilymphocyte antibodies, 175
Antisense RNAs, 370
Antiviral therapies, see Anti-HIV therapies
Anus, carcinoma of, 310–312, 311f–313f, 311t
APOBEC proteins, 117–120, 119t, 122t
discovery of, 117
functions of, 117–120
in non-human viruses, 118–120, 119t
Apoptosis, 138–146
activation and, 145–146
cell subsets and, 141–142, 142t
cytokines in, 142, 142t
evelope proteins in, 142–144, 144f, 160
mechanisms of, 139, 140f, 141, 141t
in primates, 144–145
superantigens in, 147–148
viral proteins in, 143–144
Artificial insemination, HIV transmission in, 45
Assembly, viral, 112
Astrocytes
functions of, 199t
HIV infection of, 97, 159, 184, 185f, 189–190
cytopathic effects on, 192, 193, 195, 197, 197f
Asymptomatic individuals
CD4+ cells in, 171, 433
CD8+ cells in, 273, 283, 284f
dendritic cells in, 222
helper T cells in, 266
HIV levels in, 5, 29f, 30, 95–96, 238
HIV recovery in, 5
lymphoid pathology in, 176
noninfectious HIV form in, 125, 126f
Atherosclerosis, in drug therapy, 383
Attachment, in viral entry, 55–57, 56f, 70–72, 71t, 75–77, 75f–76f
inhibitors of, 370
Autoimmunity, 253–257
anti-idiotypic antibodies in, 257
B-cell proliferation in, 254–255
brain cytokopathy in, 197–198
in HIV vaccination, 401, 402t
mechanisms of, 254, 254t, 256f, 257
molecular mimicry in, 255–257, 255f, 255t
overview of, 253–254, 253t, 254t
B cell(s)
cytokines of, 180, 180t, 181f
gp120 binding to, 147
HIV effects on, 166, 169t, 178–179
HIV infection of, 94
proliferation of, in autoimmunity, 254–255
B-cell lymphomas, 304–310, 305t, 306f, 307f, 308t
characteristics of, 304–306, 305t, 306f, 307f
classification of, 305, 305t
clinical features of, 308–309
epidemiology of, 304–306, 305t
pathogenesis of, 306–308, 308t
polyclonal vs. monoclonal, 397
Balloon degeneration, of infected cells, 134–135, 134f
Barré-Sinoussi, Françoise, 4f
β-chemokines, 7t, 60–64, 61t, 64t, 156t, 195f, 218t, 225, 285, 286–288, 287t, 319f,
Bcl-2 proteins, in apoptosis, 141
Bites, human, viral transmission in, 28, 39
Blood
antigen levels in, 29–30, 29t, 30f
HIV levels in, see Viremia
HIV transmission by, 28–32, 39–40
HIV-infected cells in, 30–32, 31t, 32f
Blood-brain barrier, HIV penetration of, 187–189, 187f, 188f, 198, 199f
Bone disorders, therapy 383
Bone marrow cells, HIV infection of, 94, 165–166
Bowel, see Gastrointestinal system
Brain, 183–200; see also Neurons, Neurotropism
HIV cytopathic effects on autoimmunity, 197–198
cell membrane damage in, 138
cells susceptible to, 191t
entry, HIV, 184–189
isolates, HIV, 353–354
pathology, 183–184, 191–200
toxic cellular factors, 194–197
194t–196t, 195f, 197f
toxic viral proteins, 191–194, 193t, 194t
HIV infection of, 88t, 97–98
blood-brain barrier penetration, 187–189, 187f, 188f, 198, 199f
copathogens in, 198
immune response in, 232–234, 232t, 233f, 233t
lymphoma in, 306
manifestations of, 183–184, 183t
neurotropism for, 151–152, 189–191, 190f, 191f, 192f
steps in, 184, 185t
viral entry in, 69, 70–71, 184–187, 186f, 187f
Breast milk
HIV transmission in, 37–38, 37f, 50, 52–53
viral load in, 28t, 37–38, 30, 51t, 52–53
INDEX 633

Bronchoalveolar lavage fluid, viral load in, 28t, 39
Budding, 110f, 112
Burkitt's lymphoma, 305
Bystander effect, 139, 146, 148, 174, 206, 231
CA protein, in replication, 121 see also Gag
Canarypox, in vaccine development, 407–409, 407t, 408t, 422–424, 423t, 424f
Canine, 316
Cancer, 293–316
CD4+ cells, 263–269
CD4– cells, viral entry into, 69–70, 69t
CD4 protein, see also p24
CD4– cells, 263–269
cytokine effects on, 224
measurement of, 261, 263, 263t
naive, 259, 265t
natural killer cell and, 225
proliferation of, 171–172
 receptors, se Receptor
regulatory, 290–292, 290t
repertoires of, 261, 262f, see also Repertoire
resting, in replication, 123–127, 126f, 127t
in thymus, 177–178
types of, 259–261
CD4+ cells, viral entry into, 69–70, 69t
CD4 protein, see also CD4+ cells
antibody binding site on, 242, 243
count of, 166, 168–171, 170t, 171t
vs. viral titer, 29t
cytokines of, 179–183
death of, 133–134, 136
in apoptosis, 138–146
CD8+ cells causing, 174, 278, 278t
superantigens in, 147
depletion of, in lymphoid tissue, 96
drug therapy effects on, 384, 385, 387
half-lives of, 169–171, 170t
helper classification of, 263–266, 264t, 266f, 267f
responses of, 266–267, 265t, 268
HIV cytopathic effects on, 166–174, 169t
bystander effect, 174
cytokine production abnormalities, 173
functional, 172, 172f
in lymphoid tissue, 175–177
numbers of, 166, 168–171, 170t, 171t, see also CD4+ cells, count of
proliferation and, 171–172
signal transduction disturbance, 174
in thymus, 177–178
viral proteins in, 173–174
HIV infection of acute, 85–86
gastrointestinal, 98, 168–169, 201–203
latent, 127–131, 380–381
number of, 94–95
susceptibility to, 89–92, 90t, 93f, 93t
HTLV effects on, 3
interferon effects on, 224
measurement of, 261, 263, 263t
naive, 259, 265t
natural killer cell and, 225
proliferation of, 171–172
receptors, se Receptor
regulatory, 290–292, 290t
repertoires of, 261, 262f, see also Repertoire
resting, in replication, 123–127, 126f, 127t
in thymus, 177–178
types of, 259–261
CD4+ cells, viral entry into, 69–70, 69t
CD4 protein, see also CD4+ cells
antibody binding site on, 242, 243
count of in acute infection, 82
anti-HIV therapy effects on, 374, 389–390
in structured interrupted drug therapy, 392–393
vs. viral titer, 29t
cytokines of, 179–183
down-modulation of, 68–69, 68t, 101
Nef protein in, 157–158
Vpu protein in, 161–162
in fusion, 66–67, 67f, 135
on gamma-delta T cells, 231
on natural killer T cells, 229
neutralization of, 163
numbers of, on T cells, 65
soluble, 57, 163
structure of, 55–56, 56f
therapeutic use of, 370
in vaccine development, 406
in viral attachment, 55–57, 56f, 59f, 65
CD8+ cells, 269–275
activation of, 146–147
antibodies to, 175
antigen presentation to, 260–261
apoptosis of, 141–143, 142t
cell antiviral factor of, 284–285, 284f, 285t
chemokines of, 286–289
count of
in acute infection, 82
anti-HIV therapy effects on, 374, 389–390
in structured interrupted drug therapy, 392
for treatment decisions, 376, 376t
cytokines of, 180–181
unrelated to cell antiviral factor, 285–286, 287t
cytotoxic clinical relevance of, 275
vs. clinical state, 274–275
detrimental effects of, 278, 278t
HIV resistance to, 275–278, 276t
HIV-specific response of, 272–274
overview of, 271–272, 271t
in diffuse infiltrative lymphocytosis syndrome, 278–279
drug therapy effects on, 385
escape mutants of, 276–277, 276t
half-lives of, 169–171, 170t
HIV effects on, 166, 169t, 174–175, 177–178
HIV-2 effects on, 7–8
HIV infection of, 85–86, 94
measurement of, 261, 263, 263t
naive, 259, 265t
noncytotoxic response of, 279–290
clinical relevance of, 281
description of, 279–281, 279t, 280f
factors influencing, 282–283, 282f–284f

Downloaded from www.asmscience.org by
IP: 54.70.40.11
CD8+ cells (continued)
HIV-2, 285
in non-HIV viral infections, 283–284
in superinfection, 282–283, 282f–283f
regulatory, 291–292
repertoires of, 261, 262f
subsets of, 269, 270t, 271, 271t
in thymus, 177–178
types of, 259–261
CD16, in natural killer cell subsets, 229
CD25+ cells
regulatory, 290–291
in replication, 124–125
CD28, on CD8+ cells, 269, 282, 283f, 284f
CD34+ cells, HIV infection of,
see also specific
Cellular immunity, 81–84
Cell tropism, 149–153
Cell surface ligands, as vaccine adjuvants, 240
Cell tropism, 149–153
brain-derived, 151–152, 189–191, 190t, 191f, 191t, 192f, 196, 196t
CD4-independent, 152
dendritic, 221–222
envelope conformation in,
152–153, 152t
heterogeneity, HIV isolates, 99–102, 100t
macrophage, 150, 150f, 151t
T-cell, 150–151, 151t
V3 loop in, 150f, 151, 151t, 152
Cellular immunity, see also specific
cells, e.g., T cells
in acute HIV infection, 84–86, 84f
CD8+ cells (continued)
HIV-2, 285
in non-HIV viral infections, 283–284
in superinfection, 282–283, 282f–283f
regulatory, 291–292
repertoires of, 261, 262f
subsets of, 269, 270t, 271, 271t
in thymus, 177–178
types of, 259–261
CD16, in natural killer cell subsets, 229
CD25+ cells
regulatory, 290–291
in replication, 124–125
CD28, on CD8+ cells, 269, 282, 283f, 284f
CD34+ cells, HIV infection of,
see also specific
Cellular immunity, 81–84
Cell tropism, 149–153
Cell surface ligands, as vaccine adjuvants, 240
Cell tropism, 149–153
brain-derived, 151–152, 189–191, 190t, 191f, 191t, 192f, 196, 196t
CD4-independent, 152
dendritic, 221–222
envelope conformation in,
152–153, 152t
heterogeneity, HIV isolates, 99–102, 100t
macrophage, 150, 150f, 151t
T-cell, 150–151, 151t
V3 loop in, 150f, 151, 151t, 152
Cellular immunity, see also specific
cells, e.g., T cells
in acute HIV infection, 84–86, 84f
Cellular latency, 127–130, 128t, 129f, 129t, 158–159
Central memory T cells, 175
CD4+, 259–260, 260f, 268
CD8+, 269, 270t
Central nervous system, see Brain
Cerebrospinal fluid
analysis of, 184
viral load in, 28t, 39, 187
in acute infection, 84
HAART effects on, 373
Cervix
carcinoma of, 312, 314–315, 314f
CD8+, 269, 270t
CD4+, 259–260, 260f, 268
CD28, on CD8+ cells, 269, 282, 283f, 284f
CD34+ cells, HIV infection of,
see also specific
Cell lines
Cell death of,
see also individual
Cell membrane, damage to, 135f, 137–138
fusion of, 134–136, 134f, 135f, 135t
CD8+, 269, 270t
CD4+, 259–260, 260f, 268
Central nervous system, see Brain
Cerebrospinal fluid
analysis of, 184
viral load in, 28t, 39, 187
in acute infection, 84
HAART effects on, 373
Cellular latency, 127–130, 128t, 129f, 129t, 158–159
Central memory T cells, 175
CD4+, 259–260, 260f, 268
CD8+, 269, 270t
Central nervous system, see Brain
Cerebrospinal fluid
analysis of, 184
viral load in, 28t, 39, 187
in acute infection, 84
HAART effects on, 373
Cervix
carcinoma of, 312, 314–315, 314f
as HIV target, 44–45
Chemokines, see also individual chemokines
antagonists of, 370
antibodies to, in vaccines, 416
antiviral activity of, 286–289, 289t
in apoptosis, 143
on CD4+ cells, 90–91, 90t
on dendritic cells, 48, 219t
in HIV-2 infection, 7
on macrophages, 63, 65
in mother-child transmission, 50
in replication, 183
in viral entry, 59–65, 59t–64t
viral subtypes and, 62–63, 62t
Chermann, Jean Claude, 4f
Circulating recombinant forms, 16, 16f
Circumcision, HIV transmission and,
41–42, 45, 47
Clade(s), 14–18, 15f–19f, 17t
biologic differences, 18–19
of HIV-2, 18, 20f
long terminal repeats in, 153–155, 154f
neutralizing antibody sensitivity and, 243–244
in recombination, 106
Clinical manifestations, of acute HIV
infection, 80–81, 80t
Clinical outcome, 339–341
vs. SIV, 345–346
Clotting factor, HIV in, 40
CLRs (C-type lectin-like receptors),
211, 218, 219t, 220–221, 225
Cofactors, 317–324, 318t, 319t, 320t, 324t
Complement
antiviral antibodies, with, 253
in antibody-dependent enhancement,
247–251, 247f
in immune response, 231–232, 232t, 253
in neuropathogenesis, 232–233, 233t
receptors for, in viral entry, 72
Conant, Marcus A., 303f
Condoms, for prevention, 48
Conformation, envelope, tropism
and, 152–153, 152t
Contraceptive use, infection risk in,
44–45
Cooper, David A., 91f
Coronary artery disease, 206
C-type lectin-like receptors (CLRs),
211, 218, 219f, 220–221, 225
Curran, James W., 83f
CXCR4 receptor
in apoptosis, 143
on CD4+ cells, 90–91, 90t
on macrophages, 93
in viral entry, 59–60, 61t, 63–65, 64t
Cyclophilins, in replication, 109–112, 121
Cyclosporine, 371
Cytochrome c, in apoptosis, 141
Cytokines, see also specific cytokines
anti-HIV, 282–286, 282f, 287t
in acute HIV infection, 82
in apoptosis, 142, 142t
in autoimmune, 254–255
in B-cell lymphoma etiology, 304
in brain, 194–196, 194t, 195f, 195t
in CD8+ cell noncytotoxic response,
282, 282f
from dendritic cells, 215
in gastrointestinal system, 203
HIV effects on, 179–183, 180t, 181f, 182t
in kidney, 205
for latent infection elimination, 381
in lymphomas, 307, 308
from macrophages, 93
measurement of, flow cytometry in,
261, 263t
from natural killer cells, 225
in pathogenesis, 322
in HIV replication, 93, 122
therapeutic, 386–388
in thymus, 90
in vaccine enhancement, 415
in viral entry, 64–65, 64t
Cytomegalovirus (CMV)
CD8+ cell response to, 284
as cofactor, 122, 169t, 189, 318–319, 329t, 320t
with antiretroviral therapy, 384, 388
opportunistic infection, 2t
Cytopathic effects, 133–148, 134t
apoptosis, see Apoptosis
in brain, 191–194, 193t, 194t
in cell activation and, 146–147
cell membrane disturbances,
137–138
Gag proteins, see also specific proteins, e.g., p24 protein

amino acid components of, 13f
capsid of, 8, 10t
CD8+ cell interactions with, 272
cytopathic effects of, 137
functions of, 8, 10t
HIV type 2 vs. type 1, 6, 6f
in replication, 111, 112
synthesis of, 11
in vaccine development, 409–410
in viral entry, 68
Galactosyl ceramide receptor, in viral entry, 70
Gallo, Robert C, 24f

gene therapy, 370

Genetics, see also Human leukocyte antigen

of anti-HIV therapy, 372
of HIV, 6, 6f, 11–12, 12f
clades, see Clade(s)
overview, 149–152
differences in, 14
recombination, 105–107, 107f
restriction enzymes and, 13, 13f, 14f
type 2, 6, 6f
of HTLV type III, 14
of LA, 14
of lymphadenopathy-associated virus, 14
Genital fluids

HIV transmission in, see Sexual transmission

newborn infection from, 51
viral load in, 32–36, 33, 34f, 37, 373
Glial cells, HIV infection of, 189–190
Glycosylation

cellular host range and, 100–101
of gp120 protein, 57, 152–153, 162
neutralizing antibody sensitivity and, 244
Gottlieb, Michael D, 21f
gp120 protein
antibody target sites on, 241–243
in apoptosis, 142
in autoimmune immunity, 256–257
in B cell activation, 178
cytopathic effects of, 135–137, 142, 173, 193–194
function of, 9, 10t, 11
in fusion, 135–136
gp120 displacement from, 57, 58f
location of, 10f
in replication, 112
synthesis of, 11
in type 1 vs. type 2, 6f
in viral entry, 66–67

gp120 protein
antibody target sites on, 241, 242
in antibody-dependent enhancement, 249–250, 249f–251f
in apoptosis, 142
B-cell binding to, 147
bone marrow cell effects of, 166
CD4 binding to, 55–57, 56f, 174, 242, 243
cell surface receptor affinity of, 7
clavage of, 58–59, 59f
cytopathic effects of, 135, 137, 142, 162, 173
in brain, 191–192, 193t
in gastrointestinal system, 203–204
displacement of, 57, 58f
function of, 10–11, 10f
glycosylation of, 57, 152–153, 162
location of, 11, 11f
in replication, 112
structure of, 240–241
synthesis of, 11
in type 1 vs. type 2, 6f
V1 and V2 regions of, 424
in vaccine development, 405–406, 422–424

gp160 protein
clavage of, 11, 12f
in HIV type 1 vs. HIV type 2, 6f
in vaccine development, 422
Granulocyte colony-stimulating factor

HAART with, 388
in viral entry, 64, 64t
Granulocyte-macrophage colony-stimulating factor, in replication, 93, 116, 116t
Greenspan, Deborah F., 227f
Greenspan, John S., 227f
Gut-associated lymphoid tissue (GALT), HIV infection of, 201–202

HAART (highly active antiretroviral therapy)

for acute HIV infection, 373–375
efficacy of, 368–369
failure of, 379
gamma-delta T cells and, 231
immune system effects of, 383–385
immune system restoration with, 375, 388–390
interleukin-1 with, 386–387
latently infected cells remaining in, 380–381
lymphoma development and, 308, 309
nutritional supplements with, 371–372
postexposure, in sexual contact, 48
resistance to, 377–379
side effects of, 381–383, 382t
structured treatment interruption with, 391–393
T-cell count after, 170–171, 203
tissue distribution of, 372–373
transmission reduction due to, 379
Half-life, HIV, 29–30
CD4+/CD8+ cells, 169–171, 170t
Heart
disorders of, in drug therapy, 383
HIV infection of, 205–206
Heat shock proteins, in cellular latency, 130
Helper cells, see CD4+ cells

Hematopoietic system, see also specific components

overview of, 166, 167f, 168t

Hemophilia

AIDS in, 3
Kaposi’s sarcoma in, 297
transmission to, 39–40

Hepatitis B virus

CD8+ cell response to, 284
HAART effects on, 384–385
in vaccine development, 409

Hepatitis C virus, HAART effects on, 384–385

Herpes simplex virus

CD8+ cell response to, 284
as cofactor, 318–319, 319t, 320t
Herpesvirus(es), see also Human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus), Herpes simplex virus (HSV)
as cofactors in HIV infection, 318–320, 319f, 320t
considered in search for AIDS virus, 2
in dual infections, brain cytopathy in, 198
phenotypic mixing with, 73
phylogeny of, 299–300, 299f
Herpesvirus saimiri-transformed
CD8+ cells, soluble factor from, antiviral activity of, 285
Heteroduplex tracking assays, in acute HIV infection, 84
Heterogeneity, of HIV, 12–19,
353–357, 357t,
in acute infection, 83–84
antiretroviral therapy response and, 372
in brain isolates, 353–354
biological differences among, 18–19
in bowel isolates, 354
in CD4 protein down-modulation, 162–163
cell tropism and, 149–153, 150f,
in CD4 protein down-modulation, 162–163
cell tropism and, 149–153, 150f,
in breast milk, 38
CD4 protein down-modulation
and, 101
CD8+ cell response to, 285
cell activation and, 146
cellular susceptibility to, 99
characteristics of, 6, 6f
chemokine receptor interactions with, 64
cytopathic effects of, 133–134, 162
discovery of, 5f, 6, 6f
dual viral infections, 6, 103–104
envelope proteins of, 160–161
groups, 18, 20f
vs. HIV-1, genome of, 6, 6f
pathogenicity, 7–8, 7t
infection with
apoptosis in, 138
epidemiology of, 6–7, 17f, 17t
HIV-1, 6, 103–104
natural killer cells in, 226
SIV infection with, 104
viral load in, 7
long terminal repeats of, 154–155
origin of, 23–24
pathogenesis of, 7–8, 7t
phenotypic mixing with, 73, 73f, 74f
replication of, 7, 118, 160–161
vs. SIV, 22, 22t
soluble CD4 interactions with, 57
structure of, 8–11
transmission of, 7–8, 7t
vaccines for, 399, 399t, 402, 403,
409, 414, 417
HIVAN (HIV-associated nephropa-thy), 204–205, 205f
HLAs, see Human leukocyte antigens
Hodgkin's lymphoma, 305t
Hooper, Edward, HIV origin hypothesis of, 24–25
Horse, autoimmune hemolytic anemia, 1, 2t
HTLV, see Human T-cell leukemia virus (HTLV)
Human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus in cancer development, 293
in Castleman's disease, 303
discovery of, 299–300, 299f
genes of, 301, 301f
natural history of, 300, 301f
nonhuman viruses related to, 303–304
pathogenesis of, 300–302, 301f, 302f
in primary effusion lymphoma, 303
serologic studies of, 302
transmission of, 300
Human leukocyte antigen (HLA) alloimmunogens of, as vaccine adjuvants, 420
anti-HIV therapy and, 372
in autoimmunity, 256–257
disease progression and, 273
down-modulation of, protective effect of, 225–226
in neutralizing antibody sensitivity, 245
in pathogenesis, 335t, 337–338,
337t, 344
in replication, 126–127
in transmission, 45
mother-child, 49t, 50
T-cell repertoire and, 261
Human papillomaviruses, in cancer development, 293
anal, 310–312, 311f–313f, 311t
cervical, 312, 314–315, 314f
Human T-cell leukemia/lymphotropic virus (HTLV) characteristics of, 2–4, 3t
as cofactor, 319, 320t
transmission of, 51–52
Humoral immune system, see Antibody(ies); Autoimmunity
Hydroxyurea, 367
Idiotypes, autoantibodies to, 257
Immune system, see also specific components
in acute HIV infection, cellular, 84–86, 84f
adaptive
components of, 210t, see also specific components
vs. innate immune system, 210, 210t, 211f
in vaccine response, 398–399
antiretroviral drug effects on, 383–385, 384t
cellular, see also specific cells, e.g., T cells
in acute HIV infection, 84–86, 84f
cytokine effects on, 180–182
disorders of
cancer development in, 293–295, 295f
Kaposi's sarcoma in, 298
humoral, see Antibody(ies); Autoimmunity
innate
vs. adaptive immune system, 210, 210t, 211f
of brain, 232–234, 232t, 233f, 233t
characteristics of, 210–213, 210t,
211f, 212t
dendritic cells in, see Dendritic cells
gamma-delta T cells in, 229–231, 230f, 230t
natural killer cells in, 225–229,
225t, 226t, 228f
natural killer T cells in, 229
soluble factors in, 231–232, 232t
in vaccine response, 398–399
mucosal immunity in, 416–418, 416f
Immune system (continued)
overview of, 166, 167f, 168t
restoration of, 375, 388–390
Tat protein in, 156–157
Immune dominance, 245
Immunoglobulin(s), production of, 178–179
Immunoglobulin M, anti-Tat, 231
Immunotherapy, passive, 390–391, 424–425
Indinavir, 368
Indoleamine 2,3-dioxygenase (IDD), 267, 358
Infection with HIV see also individuals cells, 77t
cell receptors, 73–74
eyearly steps, 75–77
Innate immune system, see Immune system, innate; specific components
Integrase
inhibitors of, 369
in replication, 110
synthesis of, 12f
Integrate
cellular latency and, 129
in replication, 110, 113
Intercellular adhesion molecules, in viral entry, 71–72, 71t
Interferon(s)
in acute HIV infection, 82
in apoptosis, 142, 142t
CD4+ cells, 263–267, 264t, 265t, 268
CD8+ cells, 271–272, 274–275, 283
in cellular latency, 130
from dendritic cells, 216–218, 222–223
HIV effects on, 179–183, 180t, 181f, 182t
in natural killer cell function, 229 therapeutic, 388
for Kaposi’s sarcoma, 303
in vaccine enhancement, 415 in viral entry, 64, 64t
Interleukin(s)
in acute HIV infection, 82
in apoptosis, 142, 142t
in autoimmunity, 254
in brain, 195
in CD8+ cell noncytotoxic response, 282, 283f, 284f
CD4+ cells, 263–267, 264t, 267t, 268
CD8+ cells, 269, 271, 273, 282–283, 289
in gastrointestinal system, 203
HIV effects on, 179–183, 180t, 181f, 182t
IL-15, 181, 387
IL-16, 286t, 287, 289
IL-18, 289
from regulatory T cells, 290–291
in replication, 122
therapeutic use of, 386–388
in vaccine enhancement, 415
in viral entry, 64, 64t
Intestine, see Gastrointestinal system
Intracellular events, 109–117
Intravenous drug users, HIV transmission by, 39
Jaffe, Harold W., 35f
Joint(s), HIV infection of, 306
Kaposi’s sarcoma, 295–304
epidemiology of, 296–298, 297t
etiology of, 298–303, 299f, 301f, 302f
immune suppression and, 298
pathology of, 296
in pediatric patients, 297
in viral entry, 64, 64t
Kidney, HIV infection of, 204–205, 205f
Kotler, Donald P., 101f
KSHV, see Human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus)
Labor and delivery, HIV transmission in, 49–53, 51t, 83
Lamivudine (3TC), 366
Langerhans cells
distribution of, 213
HIV infection of, 87–89, 221
Langerlin (CD207), 220–221
Latency, 127–131
during antiviral therapy, 380–381
HIV infection of, 87–89, 221
cellular, 127–130, 128t, 129f, 129t, 158–159
clinical, 130–131, 130t
mechanisms of, 129–130, 129t
LAV (lymphadenopathy-associated virus)
considered in search for AIDS virus, 4–5
considered in search for AIDS virus, 4–5
considered in search for AIDS virus, 4–5
genetics of, 14
restriction enzyme sensitivity of, 13
Lymphocytes, see B cell(s); T cells
Lymphoid tissue, HIV infection of, 95–97
cytopathic effects of, 175–177
gastrointestinal, 201–202
Lymphomas
B-cell, 304–310, 305t, 306f, 307f, 308t
human herpesvirus-8 in, 303
primary effusion, 303, 305–306
effect of treatment, 308–309
Macrophage(s)
in breast milk, 37
in CD8+ cell noncytotoxic response, 283
chemokines on, 63, 65
Leukocyte function antigen-1, in viral entry, 71–72, 71t
Levine, Alexandra, 202f
Levy, Jay A., 4
Lifestyle, effect of, 322–323
Lipid(s), body, disorders of, 381–383
Lipids
Listeria monocytogenes, in vaccine development, 411, 411f
Liver, HIV infection of, 98
Long terminal repeats, in replication, 153–155, 154f
Long-term survivors/nonprogressors, 341–342
apoptosis in, 138
CD8+ cell response in, 273, 280, 281, 283, 284f
factors involved in, 342–345
dendritic cells in, 222, 223f
viral latency in, 130–131, 130t
viral levels in, 30
viral recovery in, 5
Lung, HIV infection of, 206
Lymphadenopathy, persistent generalized (PGL), viral recovery in, 2, 4
Lymphadenopathy-associated virus (LAV)
considered in search for AIDS virus, 4–5
genetics of, 14
restriction enzyme sensitivity of, 13
Lymphocytes, see B cell(s); T cells
Lymphoid tissue, HIV infection of, 95–97
cytopathic effects of, 175–177
gastrointestinal, 201–202
Lymphomas
B-cell, 304–310, 305t, 306f, 307f, 308t
human herpesvirus-8 in, 303
primary effusion, 303, 305–306
effect of treatment, 308–309
Macrophage(s)
in breast milk, 37
in CD8+ cell noncytotoxic response, 283
chemokines on, 63, 65
cytopathic effects of, in brain, 196, 196t
HIV infection of, 70–71, 222
in brain, 97–98, 184–187, 187f, 196, 196t
cytopathic effects of, 166, 169t, 179, 180, 182t, 196, 196t
in gastrointestinal system, 203
necrosis of, 133
replication in, 113, 115–117, 116t
tropism for, 150, 150f, 151t
virus transfer from, 74

Macrophase colony-stimulating factor
in replication, 93, 116
in viral entry, 64, 64t
Macrophase inflammatory proteins
antiviral activity of, 286–288
in viral entry, 60, 61t
Macrophase-derived chemokine, antiviral activity of, 289

Major histocompatibility complex
cytopathic effects of, 147
down-modulation of Nef protein in, 157
protective effect of, 225–226
multimer test with, 263t
T-cell interaction with, 261
viral binding sites on, 55, 71
Malignancy, see Cancer
Mannose receptors, in viral entry, 70–71
Mannose-binding lectin, 231
Martin, Malcolm A., 111f
Marx, Preston, HIV origin hypothesis of, 25
Masur, Henry, 153f
Matrix protein,
function of, 8
inhibition of, 369
MDA-5 (melanoma differentiation associated 5), 210
Membrane-proximal external region, 241–243
Memory T cells, 175
apoptosis of, 142
central CD4+, 259–260, 260f, 268
effector CD4+, 259–260, 260f, 268
dCD8+, 269, 270t
HIV infection of, 90, 172, 172f
replication in, 115
resting, 260, 260f
Menstrual cycle, HIV levels and, 36, 43
Merkel cell carcinoma, 295
Microbicides, for prevention, 48
Microglia
HIV infection of, 97, 190, 195, 197, 197f
tropism for, 151–152
Mildvan, Donna, 173f
Milk, HIV transmission in, 28t, 37–38, 37t, 50, 51t, 52–53
Molecular mimicry, 197–198, 255–257, 255f, 255t
Monkeys, see Primates
Monocytes
differentiation of, replication and, 112–113, 114f, 115–116
HIV infection of effects of, 179
silent, 128
replication in, 115–117, 116t, 128
virus transfer from, 74, 75f–76f
Montagnier, Luc, 4f
Mother-child transmission, 49–53, 51t, 83
Mucosal immunity, 416–418, 416t
Mucosal immunity, CD8+, 269, 270t
Mucosal immunity, CD4+, 259–260, 260f, 268
Mucosal immunity, CD8+, 269, 270t
Mucosal immunity, CD4+, 259–260, 260f, 268
Mucosa
characteristics of, 215, 217f, 218t, 219t
HIV infection of, 221–222, 224
Mycocytes, cardiac, HIV infection of, 205–206
Nasal vaccines, 417–418
Natural killer cells (NK cells)
characteristics of, 225, 225t, 226t
Function of in HIV infection, 225–229, 225t, 226t, 228f
HIV infection of, 166, 169t
KIR proteins, in pathogenesis, 338
T-cell, 229
Necrosis, of cells, 133, 138, 139f
Needlestick assay test, 82–83
Needlestick injuries, HIV transmission by, 40
Nef protein
amino acid components of, 13f
in apoptosis, 143–144
CD8+ cell interactions with, 272
in CD4 down-regulation, 68–69
in cellular latency, 130
cytopathic effects of, 138, 143–144, 193–194
functions of, 8, 10t, 11, 157–160, 158t
in replication, 111, 157–160, 158t
synthesis of, 12f
Negative factor, see Nef protein
Neonatal transmission, 49–53, 51t, 83
Nephropathy, HIV-associated, 204–205, 205f
Neurons, HIV infection of, 193, 195
Neurotropism, 189–191, 190t, 191f, 191t, 192f
Neutralizing antibodies, 42–43, 50, 237–247
age of virus, 245
vs. antibody-dependent enhancement, 248f, 251
carbohydrate moieties, 244
CD4-induced, 243
clinical relevance of, 246–247
epitopes and, 240–243
factors influencing, 244–245
carbohydrates, 244	nonviral proteins, 244–245
immune dominance, 244
HIV-2, 243
measurement of, 238–239
mechanism of, 239–240
production of, 86
resistance to, 245–246
vs. serologic subtypes, 238
sensitivities to, 238, 238t, 239t
CD4 binding site and, 242
factors influencing, 240, 240t
gp41 and, 242–243
relative, 243–244
V1 and V2 regions and, 242
V3 loop and, 241–242
Neutrophils, HIV effects on, 166, 169t
Nevirapine
prophylactic, 52–53
side effects of, 382
Newborns, transmission to, 49–53, 51t, 83
NLRs (nucleotide-binding oligomerization domain protein-like receptors), 210–211
Nonnucleoside reverse transcriptase inhibitors (NNRTIs), 366–367, 366t, 378
Nonprogressors, see Long-term survivors/nonprogressors
Nose, vaccine administration to, 417–418
NRTIs (nucleoside reverse transcriptase inhibitors), 366, 366t, 378
Nutritional supplements, 371–372
Oleske, James M., 177f
Oral mucosal vaccines, 417
Origin, of HIV, 20–25, 22t
other viruses considered in, 2–5, 3t
overview of, 20–21
theories on, 20–25, 22t
type 2, 23–24

"Original antigenic sin" concept
in CDB+ cell response, 277
in vaccination, 421
in immune dominance, 245
Osteopenia, in drug therapy, 383

Papovaviruses, in dual infections,

PAMPs (pathogen-associated molecu-

Polarization, of HIV, 317–361
Pathogenesis, of HIV, 317–361
co-factors, 317–322
features of, 324–332, 325f
early period (phase 1), 325–326
persistent period (phase 2)
326–327
symptomatic period (phase 3)
327–332
HIV-2, 7–8, 7t
relation to HIV heterogeneity, 353–357
relation to HIV changes over time, 355–357
vaccination, effect of, 322
Pattern recognition receptors (PPRs), 210–211
PCR (polymerase chain reaction)
in newborn infections, 49
in viral RNA detection, 29–30, 29t, 30f
PD-1 (programmed death 1) protein
(CD279), 277–278
Pediatric patients
drug toxicity in, 383
HIV transmission to, 49–53, 51t, 83
viral levels in, 83
Penny, Ronald, 91f
Perforin, 228–229, 251, 266t, 267t,
269, 270t, 271t, 271–275,
344–345, 357, 390
Perinatal transmission, 49–53, 51t, 83
Perkins, Herbert A., 161f
Phagocytosis, 157, 218t
HIV effects on, 179
Phenotypic mixing, 73, 73f, 74f
Pinching, Anthony J., 124f
Placenta
HIV infection of, 49–52, 49t, 51t, 99
protective function of, 50
Plasma, HIV isolates, 354–355
Plasmacytoid dendritic cells (PDCs)
characteristics of, 215–218, 217f,
218t–220t, 219t
HIV infection of, 221–224, 223f
Platelets, loss of, molecular mimicry
and, 255–256
PMPA (phosphonomethoxypropyl
adenine), 366
Pol proteins
amino acid components of, 13f
functions of, 8, 10t
location of, 10f
synthesis of, 11, 12f
type 2 vs. type 1, 6, 6f
Polyomavirus
in HIV vaccine development,
409–410
vaccine for, HIV contamination of,
24–25
Polymerase chain reaction
in newborn infections, 49
in viral RNA detection, 29–30, 29t, 30f
Polymerase proteins, see Pol proteins
Positive transcription elongation fac-
tor b (PTFb), in replication,
122, 123f, 155
Postexposure therapy, 375
Postinfection immunization, 390
Poxyvirus, in vaccine development,
407–409, 407t, 408t, 414, 418,
422–424, 423t, 424f
PPRs (pattern recognition receptors),
210–211
Pre-exposure therapy, 375
Pregnancy, HIV transmission in,
49–53, 51t, 83
Preintegrase complex (PIC), in
replication, 110–111, 161
Prevention, of transmission
in blood transfusion, 39–40
with contraceptives, 44–45, 48
in intravenous drug users, 39
microbicides, 48
mother-child, 52–53
needlestick injury safety programs
for, 40
other approaches 424–425
sexual, 48, 221
Primary effusion lymphoma, 303,
305–306
Primary HIV infection, see Acute HIV
infection
Primates
HIV origin in, 20–25
KSHV-related viruses in, 303–304
simian immunodeficiency virus in,
see Simian immunodeficiency virus
T-cell apoptosis in, 144–145
as vaccine models, 399, 399t
Prophylaxis, of HIV infection, 334t
acute infection, 80
cellular genes, 334–338, 335t
HLA in, 337–338, 337t
overview, 332–333
other factors, 338–339
virus characteristics, 333–334
Programmed death 1 (PD-1) protein
(CD279), 277–278
Protease inhibitors, 366t, 367–368,
367f
immune system effects of, 384
resistance to, 378
side effects of, 382–383
Proteases, in viral entry, 58–59, 59f
Protein kinase C, in replication, 115
Prothymosin, antiviral activity of,
285–286
Provirus, 96–97, 127
Quiescent cells, replication in,
123–127, 126f, 127t
Quinolinic acid, in brain, 194, 194t
Race, 338–339
Rafts, lipid, in replication, 112
RANTES
antiviral activity of, 286–288
in viral entry, 60, 61t
Receptors
CD4, 55–57, 56f, 59f, 65
CCR5, see CCR5 receptor
chemokine, see Chemokines
complement, 72
CXCR5, see CXCR4 receptor
death, in apoptosis, 139, 141
Fc, 72, 247–251, 247f, 421
galactosyl ceramide, 70
genes in pathogenesis, 334–336,
335t
HIV heterogeneity and, 59, 60t,
62–63, 62t
in innate immunity, 210–213, 212t
mannose, 70–71
natural killer cell, 225, 225t, 226
secondary, in viral entry, 59–65,
59t–64t
T-cell, 261, 422
Toll-like, see Toll-like receptors
(TLRs)
Recombination, of two viral genomes,
16, 16f, 105–107, 107f
Rectum
mucosal vaccines administered to,
417–418
secretions from, viral load in, 36–37
SIV inoculation of, 88–89
INDEX 641

Ref-1 gene, in replication, 120
Regulator of viral protein expression, see Rev protein
Regulatory T cells, 290–292, 290t
Repertoire (see also T cell), 86, 147, 168t, 261, 262f, 272f, 273, 385
Replication of HIV, 109–131
in bone marrow cells, 165
CD4+ cell proliferation in, 171–172
in CD4+ cells, 89–92, 90t, 93t, 123–127, 126f
cytokines in, 122, 182–183
interferon effects on, 223–224, 224t
intracellular milieu in, 112–113, 114f
kinetics of, 100, 100t
latency in, 127–131
cellular, 127–130, 128t, 129f, 129t, 158–159
clinical, 130–131, 130t
mechanisms of, 129–130, 129t
long terminal repeats (LTR) in, 172
in lymphoid tissue, 177
in macrophages, 93, 93f, 93t, 115–117, 116t
mechanisms of, 125–126
in monocytes, 115–117, 116t
Nef protein in, 157–160, 158t
overview of, 109–112, 110f
permisive state of, 113
in quiescent cells, 123–127, 126f, 127t
resistance to, 117–122
APOBEC proteins in, 117–120, 119t, 122t
TRIM proteins in, 120–122, 121f, 122t
Rev protein in, 155
vs. SIV replication, 118–119, 119t
in T cells, 113, 114f, 115
Tat protein in, 155–157, 156t
type 2, 7–8, 7t
viral protein effects on, 122, 123f, 153–163, see also specific proteins
Vpr protein in, 160–161, 160t
Vpu protein in, 161–162, 162t
Vpx protein in, 160–161
Resistance of HIV
to CD8+ cell activity, 275–276, 276t
to drugs, 376–379
to HIV
CCRF5 mutants in, 63–64, 63t
CD8+ cells and, 281
intracellular, 117–122
replication inhibition in, 117–122
superinfection, 102–103, 102t
Resistance factor 1 (Ref-1), in replication, 119f, 120–122, see also TRIM5α
Resting cells, replication in, 123–127, 126f, 127t
Resting memory T cells, 260, 260f
Restoration, immune system 388–390
Rev protein in, 155
resistance to, 117–122
in quiescent cells, 123–127, 126f, 127t
kinetics of, 100, 100t
latency in, 127–131
cellular, 127–130, 128t, 129f, 129t, 158–159
clinical, 130–131, 130t
mechanisms of, 129–130, 129t
long terminal repeats (LTR) in, 153–155, 154f
in lymphoid tissue, 177
in macrophages, 93, 93f, 93t, 115–117, 116t
mechanisms of, 125–126
in monocytes, 115–117, 116t
Nef protein in, 157–160, 158t
overview of, 109–112, 110f
permisive state of, 113
in quiescent cells, 123–127, 126f, 127t
resistance to, 117–122
APOBEC proteins in, 117–120, 119t, 122t
TRIM proteins in, 120–122, 121f, 122t
Rev protein in, 155
vs. SIV replication, 118–119, 119t
in T cells, 113, 114f, 115
Tat protein in, 155–157, 156t
type 2, 7–8, 7t
viral protein effects on, 122, 123f, 153–163, see also specific proteins
Vpr protein in, 160–161, 160t
Vpu protein in, 161–162, 162t
Vpx protein in, 160–161
SDF-1 (stromal cell-derived factor-1), antiviral activity of, 288–289
Selenium supplements, 371
Semen, see also Sexual transmission
viral load in, 28t, 32–36, 33f
in acute infection, 84
antiretroviral therapy effects on, 373
in type 2 vs. type 1, 7
Seroconversion
HIV detection before, 81
superinfection appearance after, 104
timing of, 85f, 86
Sexual transmission of HIV, 40–48
antibody protection in, 42
circumcision and, 41–42, 45, 47
epidemiology of, 40
HIV subtypes in, 84
of insertive partner, 47
at onset of disease, 41
oral-genital, 47
prevention of, 48, 221
to receptive partner, 43–47, 45f, 46f
rectal, 36–37, 45, 46f, 47
risk factors for, 37t, 43–44, 45f
variables in, 41, 42t
viral characteristics in, 47–48
virus-infected cells in, 40–41
of women, 44–45
of Kaposi’s sarcoma-associated herpesvirus, 300
Sexually transmitted diseases, HIV transmission in, 41, 43–44
Shearer, Gene M., 409f
Siegell, Frederick P., 254f
Signal transducer activator transcription 1 (STAT 1), antiviral activity of, 285
Signal transduction, in CD4+ cells, HIV effects on, 174
Simian immunodeficiency virus, 2t
antibodies to, 6, 6f
antibody-dependent cell-mediated toxicity in, 252
antibody-dependent enhancement and, 250–251
in apoptosis, 144–145
in brain, 188–189
CD8+ cell response to, 283–285
clades of, 22, 22t
clinical course, 345–346
distribution of, 24
in dual primate HIV-2 infection, 104
evolution of, 18, 20f, 22–23

Downloaded from www.asmscience.org by IP: 54.70.40.11
TREM (triggering receptor expressed on myeloid cells), 211
TRIM 5α (Tripartite motif TRIM proteins), 119, 120–122
Trojan exosome hypothesis, in replication, 112
Trophoblasts, HIV infection of, 99
Tsg101 (tumor susceptibility gene 101), 112
Tumor necrosis factor-α (TNF-α) in apoptosis, 143, 144f
in autoimmunity, 254
CD4+ cells, 263, 264t, 265t, 266
CD8+ cells, 272
cytopathic effects of, 143, 144f, 195, 195t
HIV effects on, 180, 180t, 181f, 182–183, 182t
in replication, 122
Turnover, 169–171, 170t, 170
Ulcers, genital, HIV transmission in, 43–44
Urinary fluids
viral load in, 28t, 39
V3 loop
live vectors in, 406–411, 407t, 408t, 411f
mucosal, 416–418, 416f
neutralizing antibodies and, 247
in passive immunotherapy, 424
postinfection immunization, 390
risks resulting from, 420–422
Tat protein in, 406
therapeutic, postinfection, 390
Trophoblasts, HIV infection of, 99
tumor necrosis factor-α (TNF-α) in apoptosis, 143, 144f
in autoimmunity, 254
CD4+ cells, 263, 264t, 265t, 266
CD8+ cells, 272
cytopathic effects of, 143, 144f, 195, 195t
HIV effects on, 180, 180t, 181f, 182–183, 182t
in replication, 122
Turnover, 169–171, 170t, 170
Ulcers, genital, HIV transmission in, 43–44
Urinary fluids
viral load in, 28t, 39
V3 loop
antibody-dependent enhancement and, 249–250, 249f, 250f
cell tropism and, 150f, 151, 151t, 152
neutralizing antibody sensitivity and, 241–242
Vaccines, 397–428, see also Adjuvants
adenovirus, 409–410
animal models for, 399, 399t
anti-V3 loop monoclonal antibody in, 425
approaches to, 398–400, 398t–400t
CCR5 receptor in, 416
challenges in developing, 400–401, 401t
vs. conventional vaccines, 398, 398t, 400
cytokine-enhanced, 415
DNA, 412, 414–415, 414t, 426
envelope protein, 405–406
examples of, 425, 425t
funding sources for, 427
future, 430, 430t
goals of, 427
human trials of, 422–424, 423t, 424f, 426
ideal properties of, 400–402, 401t, 402t, 425
inactivated whole virus, 401–402
licensed, 427, 427t
lipopeptides, 390, 392
Vaccines, 397–428, see also Adjuvants
adenovirus, 409–410
animal models for, 399, 399t
anti-V3 loop monoclonal antibody in, 425
approaches to, 398–400, 398t–400t
CCR5 receptor in, 416
challenges in developing, 400–401, 401t
vs. conventional vaccines, 398, 398t, 400
cytokine-enhanced, 415
DNA, 412, 414–415, 414t, 426
envelope protein, 405–406
examples of, 425, 425t
funding sources for, 427
future, 430, 430t
goals of, 427
human trials of, 422–424, 423t, 424f, 426
ideal properties of, 400–402, 401t, 402t, 425
inactivated whole virus, 401–402
licensed, 427, 427t
lipopeptides, 390, 392
live vectors in, 406–411, 407t, 408t, 411f
mucosal, 416–418, 416f
neutralizing antibodies and, 247
in passive immunotherapy, 424
postinfection immunization, 390
risks resulting from, 420–422
Tat protein in, 406
therapeutic, postinfection, 390
VaxGen trials, 422–442, 423t
Venezeulan equine encephalitis virus, in vaccine development, 409
Vesicular stomatitis virus, phenotypic mixing with, 73
Vif protein
amino acid components of, 13f
functions of, 8, 10t, 11
in replication, 117–119
synthesis of, 12f
Viral assembly, 112
Viral cores, in vaccines, 412, 413f
Viral entry, 55–78
attachment in, 55–57, 56f, 70–72, 71t, 75–77, 75f–76f, 370
to brain cells, 69, 70–71, 184–187, 186t, 187f
in CD4+ cells, 69–70, 69t
CD4 protein down-modulation in, 69–70, 69t
CD4 protein down-modulation in, 68–69, 68t
CD4 receptor in, 55–57, 56f, 59f, 65
cell surface events in, 66–67
cell-to-cell transfer in, 73–74, 75f
cellular proteins in, 71–72, 71t
chemokine receptors in, 59–65, see also Chemokines
complement receptors in, 72
cytokines in, 64–65, 64t
delayed, 67–68
drug resistance and, 378
Fc receptor in, 72
fusion in, 66–67, 67f
galactosyl ceramide receptor in, 70
inhibitors of, 370
mannose receptor in, 70–71
overview of, 75–77, 77t
phenotypic mixing in, 73, 73f, 74f
pH-independent, 66–67, 67f
postbinding steps in, 57–65
envelope cleavage, 58–59, 59f
envelope displacement, 57, 58f
delayed, 58–64
virus subtypes and, 62–63, 62t
Viral load, see also Viremia
in acute HIV infection, 83–84
in amniotic fluid, 39
in bone, 28–32
in bronchoalveolar lavage fluid, 28t, 39
in cells, 28t
in cerebrospinal fluid, 28t, 39, 84
in ear secretions, 28t
in feces, 28t
in genital fluids, 32–36, 33f, 34t, 373
in lymphoid tissue, 176
measurement of in blood, 28–31, 29t, 30f
treatment decisions, 376, 376t
in milk, 28t, 37–38, 37t, 50, 51t, 52–53
in rectal secretions, 36–37
in saliva, 28t, 39
in semen, 38–32, 33f
in acute infection, 37
antiretroviral therapy effects on, 373
in structured interrupted drug therapy, 391–393
in sweat, 28t, 39
in synovial fluid, 39
in tears, 28t, 39
vs. transmission risk, 27
in type 2 vs. type 1, 7
in urine, 28t, 39
in vaginal fluids, 28t, 36, 373
Viremia, 28–32, see also Viral load
in acute HIV infection, 83–84
antigen detection in, 29–30, 29t, 30f
B-cell defects in, 178–179
free infectious virus in, 28–29, 29t
infected cells in, 30–32, 31t, 32f
measurement of, 28–31, 29t, 30f
vs. neutralizing antibody level, 246–247
RNA detection in, 29–30, 29t, 30f
undetectable, 83
Virion
cell entry by, see Viral entry
detection of, see Detection, of HIV
genomic organization of, 11–12, 12f
pseudotype, 73, 73f, 74f
size of, 8
structure of, 8–11, 9f, 10f, 10t
tropism of, see Cell tropism
Virus-like particles, in vaccines, 412, 413f
Vitamin(s), supplements of, 371–372
Vitamin A deficiency, 50
Volberding, Paul, combination, 369f
Vpr protein
 amino acid components of, 13f
 in apoptosis, 143–144
 in CD4 down-regulation, 68–69
 in cellular latency, 130
 cytopathic effects of, 143–144
 functions of, 10t, 11, 160–161, 160t
 in replication, 160–161, 160t
 synthesis of, 12f
Vpu protein
 amino acid components of, 13f
 in apoptosis, 143–144
 in CD4 down-regulation, 68–69
 in cellular latency, 130
 cytopathic effects of, 143–144
 functions of, 11, 161–162, 162t
 genetics of, 6, 6f
 in replication, 161–162, 162t
 vs. SIV Vpu protein, 22
 synthesis of, 12f
 type 2, 6, 6f
Vpx protein, functions of, 10t, 160–161
Weiss, Robin A., 118f
Wofsy, Constance, 380f
Zalcitabine (ddC), 366
Zidovudine (AZT), 365–366
 immune system effects of, 383–384
 prophylactic, 52–53, 375
 resistance to, 378
 side effects of, 382
 viral subtypes and, 372
Zinc supplements, 371–372
Zolla-Pazner, Susan, 76f