HIV and the Pathogenesis of AIDS

THIRD EDITION
To Sharon, for her continual support and encouragement.
Contents

Preface xi

1 Discovery, Structure, Heterogeneity, and Origins of HIV 1
 I. Discovery of the AIDS Viruses 2
 II. The HIV Virion 8
 III. Virus Heterogeneity 12
 IV. Origin of HIV 20

2 Features of HIV Transmission 27
 I. HIV in Blood 28
 II. HIV in Genital Fluids 32
 III. HIV in Milk, Saliva, and Other Body Fluids 37
 IV. HIV Transmission by Blood and Blood Products 39
 V. Sexual Transmission of HIV 40
 VI. Mother-Child Transmission of HIV 49

3 Steps Involved in HIV:Cell Interaction and Virus Entry 55
 I. CD4 Receptor 55
 II. Postbinding Steps in Virus Entry into CD4+ Cells 57
 III. Virus:CD4+ Cell Fusion 66
 IV. Other Potential HIV:Cell Surface Interactions Involved in Virus Entry into CD4+ Cells 67
 V. Down-Modulation of the CD4 Protein 68
 VI. Infection of Cells Lacking CD4 Expression 69
 VII. Other Possible HIV:Cell Surface Interactions 70
 VIII. Other Possible Mechanisms Involved in Virus Entry 72
 IX. Cell-to-Cell Transfer of HIV 73
 X. Overview of Early Steps in HIV Infection 75
4 Acute HIV Infection and Cells Susceptible to HIV Infection 79
 I. Acute HIV Infection 79
 II. Cells and Tissues Infected by HIV 87
 III. Differences in Cellular Host Range among HIV Isolates 99
 IV. Superinfection 102
 V. Recombination 105

5 Intracellular Control of HIV Replication 109
 I. Early Intracellular Events in HIV Infection 109
 II. Natural Intracellular Resistance to HIV Replication 117
 III. Interaction of Cytokines and Viral Proteins with Cellular Factors 122
 IV. Virus Infection of Quiescent Cells 123
 V. Latency 127

6 Cytopathic Properties of HIV 133
 I. HIV Induction of Cell:Cell Fusion 134
 II. Accumulation of Extrachromosomal Viral DNA and Cell Death 136
 III. Direct Cellular Toxicity of HIV and Viral Proteins 137
 IV. Apoptosis 138
 V. Activation 146
 VI. Role of Superantigens 147

7 Viral Proteins Determining Biologic Features of HIV 149
 I. Envelope Region and Cell Tropism 149
 II. Influence of Accessory Proteins on HIV Replication 153
 III. Envelope Region and Cytopathicity, CD4 Protein Modulation, and Soluble CD4 Neutralization 162
 IV. Conclusions 163

8 Effect of HIV on Various Tissues and Organ Systems in the Host 165
 I. Hematopoietic System 165
 II. Induction of Cytokines and Their Effect on Immune Function and HIV Replication 179
 III. Central Nervous System 183
 IV. Gastrointestinal System 200
 V. HIV-Associated Nephropathy 204
 VI. Heart 205
 VII. Other Organ Systems 206

9 Innate Immune Responses in HIV Infection 209
 I. Introduction 209
 II. Characteristics of Innate Immunity 210
 III. Dendritic Cells 213
Preface

It hardly seems possible that nearly 10 years have passed since the second edition of this book was written. It is fitting to complete this third edition on the 25th anniversary of the recognition of AIDS in the world (1981). It has been quite a task, but also a pleasure, to cover the past decade of scientific articles in many different areas of HIV/AIDS research and to select those that have contributed the most notable new information to the field. Most of the new knowledge has added incrementally to the past information that was established in the first 15 years of research on this major human epidemic and was covered in the second edition. For this reason, several of the early quite definitive original articles in each topic remain cited in the book, but subsequent articles confirming the findings without adding much new information were deleted. They can be found in the first or second editions of this book.

New knowledge in basic and clinical research, as well as epidemiology and social science, has helped improve our understanding of HIV/AIDS and has provided novel approaches in prevention and treatment. The most recent contributions to these fields are cited in each chapter. Features of AIDS pathogenesis, including aspects of the HIV-1 and HIV-2 isolates involved; the cells infected; the consequences of this infection; and the host immune response to HIV are discussed in this book. Moreover, potential approaches for therapy and a vaccine for the prevention of HIV infection and AIDS are considered. Because of the interactions among the various chapters, readers are directed in the text to various sections in the book that cover the topic in greater detail. As an example, R5 and X4 subtypes are introduced very early in the book, before their definition in the text (Chapter 4). The term HIV is used generically to indicate observations with HIV-1 and HIV-2.

The Pioneers in HIV Research cited in the book are individuals who were actively involved in HIV research from the early 1980s (1981-83) and who continued to contribute to the field. Many of them have served as mentors to a large number of currently active HIV/AIDS investigators.

Among the major additions to our knowledge of HIV over the past decade has been the elucidation of intracellular controls of HIV replication that have
been identified by genetic studies. APOBEC3G and TRIM5a, which block HIV replication, provide approaches for novel antiviral therapies (Chapter 5). The identification of genetic markers for susceptibility to HIV infection and determinants of the clinical course has been greatly expanded (Chapter 13). Moreover, for therapy, the development of decoys for cell surface proteins, including chemokine coreceptors used for entry, has resulted in an emphasis on entry inhibitors along with virus fusion inhibitors that can serve as new targets for the anti-HIV drug armamentarium (Chapter 14).

Clinical trials have clarified to some extent what drugs to use in initiating therapy and take into consideration the potential toxicities of the treatments. In many cases, protease inhibitors are now avoided because of the clinical disorders particularly linked to these drugs. The use of combination therapy with one pill taken once daily has certainly enhanced the adherence of individuals on drug therapy and hopefully will limit development of virus resistance (Chapter 14). In this regard, the timing for the initiation of drug administration in chronically infected people is now better appreciated. The threshold for beginning highly active antiretroviral therapy (HAART) has been raised so that individuals who are healthy but have CD4+ cell counts of >250 cells/ml may not need therapy; viral loads are not as important in the decision for treatment (see Table 14.3). At the same time, the initiation of therapy in primary infection still requires further evaluation. Some results have suggested that treatment prior to seroconversion can be of clinical benefit to the HIV-infected individual (Chapters 4 and 14). Currently, ongoing studies are evaluating if and when one could stop HAART (i.e., structured treatment interruption [STI]) and permit the patient to be treatment-free for a while. STI for chronic infection has thus far not been encouraging, but in patients treated during acute infection, the procedure may be possible (Chapter 14).

Whereas 10 years ago I was surprised that viral latency was not as well researched as it had been in the first 5 years of this epidemic, more recently this topic has received further attention (Chapters 5 and 14). The interest stems from the discovery of residual virus-infected cells that remain in individuals who are on very effective anti-HIV therapy. Not surprising to those working with retroviruses, an agent like HIV, which becomes part of the genetic machinery of the cell, cannot be eliminated with the drugs currently available. Although the present anti-HIV treatments can make progeny viruses noninfectious (protease inhibitors) or not replicative competent (reverse transcriptase inhibitors), they still leave cellular reservoirs of the virus, even at low numbers, that can rebegin the infectious cycle and give rise to resistant strains (Chapter 4). Thus, approaches targeting a variety of cellular reservoirs need to be given continued attention (Chapters 5 and 14).

Also very important over the last 5 years has been the appreciation of the importance of innate immunity both as the first response to HIV (Chapter 9) and for its likely role in preventing infection in exposed seronegative individuals (Chapter 13). This arm of the immune system certainly plays a role, along with adaptive immunity, in maintaining virus control in several untreated healthy individuals infected for more than 25 years. This feature is dramatically illustrated in long-term survivors or long-term nonprogressors (Chapter 13). More knowledge of the immune system has led to further, though not sufficient, attention to immune system-based therapies, particularly using cytokines (e.g., interleukin-2 and interferon α) and dendritic cell approaches (Chapter 14).
Vaccine development has received greater emphasis over the past 10 years but has not yet revealed an approach for effective prevention of HIV transmission (Chapter 15). Completion of the first phase III trials provided important information on various legal, social, and public health issues and procedures that are needed to establish an effective vaccine trial, although they did not show efficacy. Other phase III and phase II trials are in progress, keeping this important topic in the forefront of clinical studies. Nevertheless, it is obvious to most investigators that a vaccine will not be available in the very near future. Thus, education on how to prevent the infection as well as the use of antiretroviral drugs in low-resource countries should help limit transmission (Chapter 3) and reduce the spread of the epidemic.

Other advances since 1997 that have improved our understanding of HIV pathogenesis and treatment include the following:

1. Additional HIV-1 clades have been identified in the M (main) group of HIV-1 (K and L), and clades E and I have now been recognized as recombinant viruses (Chapter 1). In addition, the O (outlier) clade has been found to have many representatives. The past decade has also revealed a new group (N [non-M, non-O]) that has had very few isolates in human populations; they most resemble the chimpanzee isolate. Thus, HIV as a zoonotic infection has been further emphasized (Chapter 1). Importantly, HIV appears to be continually evolving perhaps with founder viruses entering human populations with specific genetic features and immune responses (Chapters 1, 7, 8, and 13).

2. Several HIV-2 isolates have been found, and more extensive classification of this subtype has been established, with five new groups (notably not clades) recognized (Chapter 1).

3. The increasing incidence of recombinant viruses indicates that dual infection and superinfection can occur (Chapter 4). Recombination brings new types of viruses to human populations. Some of these may carry resistance to anti-HIV immune responses and therapies. For that reason, this ongoing viral process must be considered in curtailing the epidemic.

4. The role of immune activation in HIV pathogenesis has received much more appreciation, particularly in its induction of cell loss by cytokine-induced apoptosis (Chapters 5 and 13).

5. The field of HIV research has helped to redefine subsets of CD4+ and CD8+ T cells which reflect their naïve, or memory, status, whether activated or resting (Chapters 4, 8, and 11). The varying abilities of R5 and X4 viruses to infect subsets of cells have been shown to influence the pathogenic pathway (Chapters 4 and 13). It has become evident that HIV can infect resting T cells through cytokine exposure or the nature of the particular resting cell subset. The virus infects, integrates, and then can become latent in these cells.

6. Novel new functions of viral accessory genes are now highlighted (Chapter 7). The vast number of intracellular activities seems too large to be attributed solely to each of the viral proteins, but these pleiotropic functions are impressive. Targeting these viral gene products or the cellular proteins involved in their function offers new directions for therapy.

7. As noted above, great progress has been made in identifying genetic factors that are associated with the susceptibility of individuals to infection and a clinical course, reflecting either very rapid progression or long-term survival (Chap-
These observations give further support to the importance of both innate and adaptive immunity as targets for approaches to control HIV infection.

8. In the field of adaptive immunity, various different functioning subsets of cytotoxic T cells can now be distinguished, which helps to explain why tetramer-positive or HIV-specific CD4+ and CD8+ cells may be detected (e.g., by Elispot or intracellular cytokine production) but may not function as cytotoxic cells (e.g., lack perforin) (Chapters 11 and 13).

9. Some new information has been obtained in our understanding of neutralizing versus enhancing antibodies. Monoclonal antibodies with exquisite epitope selectivity have helped define regions in the viral envelope that can elicit broadly reactive humoral responses. The recognition that the removal of certain regions of the viral envelope (e.g., V2) may increase sensitivity of viruses to neutralization and help in the induction of neutralizing antibodies may provide novel approaches for vaccines (Chapter 10). Nevertheless, some broadly reactive antibodies have been found to cross-react with normal cellular proteins. Thus, how to induce virus-specific antibodies with strong neutralizing activity against a variety of diverse HIV groups and clades remains a challenge.

10. HIV neuropathogenesis has been further explored. Although new observations are limited, there is a greater acceptance of other cell types (e.g., astrocytes or oligodendrocytes) besides macrophages/microglia that can be infected by HIV and contribute to central nervous system disorders (Chapter 8).

11. The field of HIV enteropathy is better appreciated than it was 10 years ago, with the recognition of massive CD4+ cell infection and destruction in the gastrointestinal tract early in infection (Chapters 4 and 8). Infection of other organs such as the kidney and the compartmentalization of viruses in various tissues (e.g., the brain or testes) where they can undergo independent evolution have been noted (Chapters 4 and 8). Thus, having an absence of detectable virus in the blood does not necessarily indicate that there is no infectious virus elsewhere in the body, particularly in the gastrointestinal tract and genital fluids (Chapters 2 and 3).

12. In HIV-related cancers (Chapter 12), greater knowledge has been gained on the viruses associated with the malignancies (e.g., KSHV/HHV8, EBV, HPV) and HAART has reduced the incidence of most of these cancers. Several important steps, from infection to tumor development, remain to be elucidated.

13. Microbicides have been emphasized for prevention of HIV infection (Chapters 2 and 3). The progress in this field has not been dramatic, although clinical trials of diaphragms to block transmission via the cervical canal may provide encouraging results. Currently, it appears that microbicides that cover the vaginal wall and prevent contact with HIV-infected cells and the free virus would be the best approach. In this way, the antiviral compounds will not induce lesions in the vaginal and anal canals that could enhance virus infection.

14. In vaccines, the use of DNA as a vaccine approach has been less encouraging because it does not induce good humoral immunity and induces only limited cellular immunity. Prime/boost approaches continue to show promise, although the use of two different modalities has not been as popular as it was several years ago (Chapter 15).

15. Within the past 3 years, a greater emphasis has been given to the development of an AIDS vaccine through funding from the Bill and Melinda Gates Foundation, the National Institutes of Health, the International Agency for Vac-
cine Initiative (IAVI), and other international organizations. With this new support, one can hope for advancements and development of an effective vaccine in the very near future. In addition, further attention to the immune system and treatment strategies to harness immune responses against HIV should receive even greater emphasis.

Since 1998, the pandemic of HIV infection has continued to increase, with several additional countries (e.g., India, China, Nigeria, and Russia) experiencing the speed with which this infection can spread (Table A). The factors that are associated with the emergence and spread of the AIDS epidemic remain the same (Table B). Fears of similar large epidemics in countries such as Indonesia are surfacing. Education is the immediate approach available, and a vaccine is a vital necessity. It can be estimated that a new infection takes place in the world every 7 seconds and a death from HIV infection occurs every 10 seconds. In 1996, it was projected that by the year 2000, over 100 million individuals would be infected by HIV-1 or HIV-2 (2794). Because of the introduction of HAART, the number is now estimated to be about 40 million people infected with HIV worldwide (http://www.unaids.org) (Figure A) (Table A), and 22 million persons have died.

In the United States 40,000 new cases were reported in 2005. In 2006, 1 million people in the United States were living with HIV/AIDS (660). In the first edition of this book, 1 in 250 Americans was estimated to be infected by HIV.

<table>
<thead>
<tr>
<th>Country</th>
<th>No. of infected persons (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>6.5</td>
</tr>
<tr>
<td>South Africa</td>
<td>5.5</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>4.1</td>
</tr>
<tr>
<td>Nigeria</td>
<td>3.6</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1.8</td>
</tr>
<tr>
<td>Kenya</td>
<td>1.7</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>1.7</td>
</tr>
<tr>
<td>USA</td>
<td>1.3</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>1.0</td>
</tr>
<tr>
<td>China</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table A Number of HIV-infected persons (2006)*

Table B Factors conducive to the emergence of the AIDS epidemic

- Migration of carriers into cities – increased interpersonal contacts
- Poverty, prostitution
- International travel
- Sexual behavior
- Intravenous drug use
- Receipt of blood and blood products
including 1 in 100 males and 1 in 800 females. That number has not changed appreciably, indicating that either the prediction in 1993 was too high or the rate of new infections has stabilized. Nevertheless, the total number of U.S. cases of HIV infection since AIDS was recognized in 1981 has now reached nearly 2 million. More than 500,000 Americans have died from the disease. It is estimated that 275,000 people in the United States are HIV infected but have not been tested and identified. Until 1996, AIDS in the United States was the leading cause of death among young people, both male and female, between 25 and 44 years of age. Death from AIDS has now decreased because of the success of the antiviral therapies (Chapter 14). However, since 1992, non-Hispanic blacks, Hispanics, and women have accounted for increased proportions of AIDS cases. In 2005, women represented 25% of all U.S. adult cases reported. Currently, less than half of the new AIDS cases in the United States result from transmission by homosexual and bisexual men (45%) (660).

Papers published on HIV and AIDS have increased at a rapid rate. As of December 2006 (2952), a total of about 250,000 articles have been written on this subject since the initial report on AIDS in 1981 (652). The number of papers published on HIV and AIDS peaked at 19,721 in 1996. For this edition, about 5,000 have been cited.

To gain a perspective on the changes in our knowledge of HIV/AIDS and emphasis in research, readers are recommended to read the Prefaces to the first and second editions of this text. Criteria for AIDS as defined by the Centers for Disease Control are found in Appendices I and IV. The well-known relationship of CD4+ cell number to the risk of opportunistic infections and cancer is shown in Appendix V. The research conducted by my co-workers and myself was supported by grants from the National Institutes of Health, the California State
Universitywide Task Force on AIDS, the American Foundation for AIDS Research, the Campbell Foundation, and the James B. Pendleton Charitable Trust. In addition to my gratitude to those who provided helpful suggestions and advice on the initial text in *Microbiological Reviews* and the other editions of this book, I want to thank the following individuals for their assistance with the present edition: Lena Al-Harthi, Marcus Altfeld, Brigitte Autran, Edward Barker, David Blackbourn, Susan Buchbinder, Rick Bushman, Dennis Burton, Michael Busch, Andrew Carr, Mary Carrington, Cecilia Cheng-Mayer, Mario Clerici, Deborah Cohan, Suzanne Crowe, Tony Cunningham, Andrew Davison, Steven Deeks, Lisa Demeter, Josef Eberle, Lawrence Fong, Donald Forthal, Donald Francis, Robert Garry, Stephen Goff, Marie-Lise Gougeon, Carl Grunfeld, Phalguni Gupta, Ashley Haase, Beatrice Hahn, Marc Hellerstein, Walid Heneine, James Hoxie, Shiu-lik Hu, Rachel Kaplan, Paul Klotman, Bette Korber, Donald Kotler, Alan Landay, Nathaniel Landau, Michael Lederman, Alexandra Levine, Paul Luciw, Francine McCutchan, Preston Marx, Susan Moir, Laura Napolitano, Philip Norris, Jorge Oksenberg, Nancy Padian, Joel Palefsky, Tristram Parslow, David Pauza, Matija Peterlin, John Phair, Vicente Planes, Lynn Pulliam, Jacqueline Reeves, Edward Robinson, Mario Roederer, Robert Seder, Haynes Sheppard, Robert Siliciano, Gregory Spear, Leonidas Stamatatos, Ralph Steinman, Jeffrey Ulmer, Eric Verdin, Robert Winchester, and John Zaunders. I thank Julie Winters and Pamela Lacey for their help in editing and production, Krista Preckel for her assistance, Ann Murai for her excellent help with the manuscript, and particularly Kaylynn Peter for her close attention and overall handling of this book.

I hope this newly revised text will continue to be a helpful resource for researchers, clinicians, health care providers and students, who are all part of the important group dedicated to finding a solution to this devastating epidemic.
Index

Abacavir, hypersensitivity to, 372
Abrams, Donald I., 213f
Activation, 146–147, 175, 269, 346
Acute HIV infection, 79–87
antibody production in, 86
CD4+ cell count in, 433
CD8+ cell response in, 272–273
cellular immune response in, 84–86, 84f
cerebrospinal fluid viral load in, 187
clinical manifestations of, 80–81, 80t
definition of, 81
immunologic findings in, 80t, 82–83
laboratory findings in, 80t, 81–82, 82t
natural killer cells in, 229
postinfection immunization for, 390
rapid course of, 80
seroconversion in, 85f, 86
structured interrupted drug therapy for, 393
treatment of, 373–375
viral characteristics and levels in, 83–84, 296
Acute retroviral syndrome, 79–80, 80t; see Acute HIV infection
Adaptive immune system, see also Immune system
components of, 210t, see also specific components
vs. innate immune system, 210, 210t, 211f
in vaccine response, 398–399
Adefovir dipivoxil, 366
Adenovirus, in vaccine development, 409–410, 424
Adhesion molecules
in neutralizing antibody sensitivity, 244–245
in viral entry, 71–72, 71t
Adjuvants, for vaccines, 418–420, 418t
Adrenal gland, HIV infection of, 306
Age as a factor, 338–339
Aging, see Telomere
AIDS viruses, discovery of, 1–5, 3t
Alloimmunogens, as vaccine adjuvants, 420
Aluminum phosphate, as vaccine adjuvant, 419
Aluminum sulfate, as vaccine adjuvant, 419
Amman, Arthur J., 252f
Amniotic fluid, viral load in, 28t, 39
Amprenavir, resistance to, 378
Amyloid deposition, 183–184
Anal carcinoma, 310–312, 311f–313f, 311t
Antagonism, T cell receptor, 422
Antibody(ies)
antilymphocyte, 175
detune assay, 81
in autoimmunity, see Autoimmunity
HIV, 6, 6f, 8
in acute infection, 80t, 81–82, 82t, 86
antibody-dependent cell-mediated toxicity and, 227, 251–253
in breast milk, 38
vs. clinical stage, 237–238
complement-fixing, 253
detection of, 237–238
enhancing, 247–251, 247f–251f, 421
isotypes of, 238
neutralizing, see Neutralizing antibodies
for passive immunotherapy, 390–391
HIV type 2, type 2, 6, 6f, 8
in saliva, 81
Tat protein, 231
in vaginal fluids, 42
Antibody-dependent cell-mediated toxicity (ADCC), 227, 251–253
Antibody-dependent cytotoxicity (ADC), 253
Antibody-dependent enhancement (ADE), 247–251, 247f, 421
clinical relevance of, 250–251
vs. clinical stage, 247–248, 248f
mechanisms of, 248–249
vs. neutralizing antibodies, 248f, 251
in non-HIV viral infections, 250–251
in vaccine development, 421
viral epitope determinants of, 249–250, 249f–251f

Note: Page numbers followed by f indicate illustrations; those followed by t indicate tables.
Bronchoalveolar lavage fluid, viral load in, 28, 39
Budding, 110f, 112
Burkitt’s lymphoma, 305
Bystander effect, 139, 146, 148, 174, 206, 231
CA protein, in replication, 121 see also Gag
Canarypox, in vaccine development, 407–409, 407t, 408t, 422–424, 423t, 424f
Cancer, 293–316
CD4+ cells, 263–269
CD4+ cells, count of, 166, 168–171, 170t, 171t
chemokines on, 90–91, 90t
CD4 protein, see also p24 protein and Gag
Carbohydrate moieties, in neutralizing antibody sensitivity, 244
Cardiac disorders, 205–206
Caspases, in apoptosis, 139, 141
Cat, feline immunodeficiency virus in, 2t, 402, 421
CCR5 receptor
antibodies to, 416
on CD4+ cells, 90–91, 90t
cells containing, 61t
cytokine effects on, 64–65, 64t
discovery of, 60
in gastrointestinal cells, 98
in HIV-2 infection, 7
mutant studies of, 63–64, 63t
numbers on cells, 65
viral interactions with, 62
CD4+ cells, 263–269
activation of, 146–147
antibodies to, 175
antigen presentation to, 260–261
in brain, 191t
in breast milk, 37–38
CCR5 receptor on, 60
chemokines on, 90–91, 90t
count of, 166, 168–171, 170t, 171t
in acute infection, 82–83
vs. AIDS-defining conditions, 2t
anti-HIV therapy effects on, 389
categories of, 439
vs. clinical stage, 31, 433
HAART effects on, 374
in HIV-2 infection, 7
in structured interrupted drug therapy, 392–393
vs. viral titer, 29t
cytokines of, 179–183
cytotoxic, 268–269
death of, 133–134, 136
in apoptosis, 138–146
CD8+ cells causing, 174, 278, 278t
superantigens in, 147
depletion of, in lymphoid tissue, 96
drug therapy effects on, 384, 385, 387
half-lives of, 169–171, 170t
helper
classification of, 263–266, 264t, 266f, 267f
responses of, 266–267, 265t, 268
HIV cytopathic effects on, 166–174, 169t
bystander effect, 174
cytokine production abnormalities, 173
functional, 172, 172f
in lymphoid tissue, 175–177
numbers of, 166, 168–171, 170t, 171t, see also CD4+ cells, count of
proliferation and, 171–172
signal transduction disturbance, 174
in thymus, 177–178
viral proteins in, 173–174
HIV infection of acute, 85–86
gastrointestinal, 98, 168–169, 201–203
latent, 127–131, 380–381
number of, 94–95
susceptibility to, 89–92, 90t, 93f, 93t
HTLV effects on, 3
interferon effects on, 224
measurement of, 261, 263, 263t
naive, 259, 263t
natural killer cells and, 225
proliferation of, 171–172
receptors, see Receptor regulatory, 290–292, 290t
repertoires of, 261, 262f, see also Repertoire
resting, in replication, 123–127, 126f, 127t
in thymus, 177–178
types of, 259–261
CD4+ cells, viral entry into, 69–70, 69t
CD4 protein, see also CD4+ cells
antibody binding site on, 242, 243
conformational changes in, 56
on dendritic cells, 222–223
down-modulation of, 68–69, 68t, 101
Nef protein in, 157–158
Vpu protein in, 161–162
in fusion, 66–67, 67f, 135
on gamma-delta T cells, 231
on natural killer T cells, 229
neutralization of, 163
numbers of, on T cells, 65
soluble, 57, 163
structure of, 55–56, 56f
therapeutic use of, 370
in vaccine development, 406
in viral attachment, 55–57, 56f, 59f, 65
CD8+ cells, 269–275
activation of, 146–147
antibodies to, 175
antigen presentation to, 260–261
apoptosis of, 141–143, 142t
cell antiviral factor of, 284–285, 284f, 285t
chemokines of, 286–289
count of
in acute infection, 82
anti-HIV therapy effects on, 374, 389–390
in structured interrupted drug therapy, 392
for treatment decisions, 376, 376t
cytokines of, 180–181
unrelated to cell antiviral factor, 285–286, 287t
cytotoxic clinical relevance of, 275
vs. clinical state, 274–275
detrimental effects of, 278, 278t
HIV resistance to, 275–278, 276t
HIV-specific response of, 272–274
overview of, 271–272, 271t
in diffuse infiltrative lymphocytosis syndrome, 278–279
drug therapy effects on, 385
escape mutants of, 276–277, 276t
half-lives of, 169–171, 170t
HIV effects on, 166, 169t, 174–175, 177–178
HIV-2 effects on, 7–8
HIV infection of, 85–86, 94
measurement of, 261, 263, 263t
naive, 269, 270t
noncytotoxic response of, 279–290
clinical relevance of, 281
description of, 279–281, 279t, 280f
factors influencing, 282–283, 282f–284f
CD8+ cells (continued)

HIV-2, 285
in non-HIV viral infections, 283–284
in superinfection, 282–283, 282f–283f
regulatory, 291–292
repertoires of, 261, 262f
subsets of, 269, 270t, 271, 271t
in thymus, 177–178
types of, 259–261

CD25+ cells
CD16, in natural killer cell subsets,
see also specific cells
Cell(s), CD107, staining of, 263t

CD95/CD95L pathway, in apoptosis,
CD38, in cell activation, 146

CD28, on CD8+ cells, 269, 282, 283f, 284f
CD34+ cells, HIV infection of,
Cellular immunity, see also specific
cells, e.g., T cells

Cell tropism, 149–153
Cell surface ligands, as vaccine adjuvants,
Cell culture, in infectivity evaluation, 102
Cell cultures
Cell surface ligands, as vaccine adjuvants, 420
Cell tropism, 149–153
brain-derived, 151–152, 189–191, 190t, 191f, 191t, 192f, 196, 196t
CD4-independent, 152
dendritic, 221–222
envelope conformation in,
152–153, 152t
heterogeneity, HIV isolates, 99–102, 100t
macrophage, 150, 150f, 151t
T-cell, 150–151, 151t
V3 loop in, 150f, 151, 151t, 152
Cellular immunity, see also specific
cells, e.g., T cells
in acute HIV infection, 84–86, 84f

Cellular latency, 127–130, 128t, 129f, 129t, 158–159
Central memory T cells, 175
CD4+, 259–260, 260f, 268
CD8+, 269, 270t
Central nervous system, see Brain
Cerebrospinal fluid analysis of, 184
viral load in, 28t, 39, 187
in acute infection, 84
HAART effects on, 373

Cervix
carcinoma of, 312, 314–315, 314f

Chemokines, see also individual chemokines
antagonists of, 370
antibodies to, in vaccines, 416
antiviral activity of, 286–289, 287t
in apoptosis, 143
on CD4+ cells, 90–91, 90t
on dendritic cells, 48, 219t
in HIV-2 infection, 7
on macrophages, 63, 65
in mother-child transmission, 50
in replication, 183
in viral entry, 59–65, 59t–64t
viral subtypes and, 62–63, 62t
Chermann, Jean Claude, 4f
Circulating recombinant forms, 16, 16f
Circumcision, HIV transmission and,
Clade(s), 14–18, 15f–19f, 17t
Clade(s), 14–18, 15f–19f, 17t
biologic differences, 18–19
of HIV-2, 18, 20f
long terminal repeats in, 153–155, 154f
neutralizing antibody sensitivity and, 243–244
in recombination, 106
Clinical manifestations, of acute HIV infection, 80–81, 80t
Clinical outcome, 339–341
vs. SIV, 345–346
Clustering factor, HIV in, 40
CLRs (C-type lectin-like receptors), 211, 218, 219t, 220–221, 225
Cofactors, 317–324, 318t, 319t, 320t,
324t
Complement
antiviral antibodies, with, 253
in antibody-dependent enhancement, 247–251, 247f
in immune response, 231–232, 232t, 253
in neuropathogenesis, 232–233, 233t
receptors for, in viral entry, 72
Conant, Marcus A., 303f
Condoms, for prevention, 48
Conformation, envelope, tropism and, 152–153, 152t
Contraceptive use, infection risk in, 44–45
Cooper, David A., 91f
Coronary artery disease, 206
C-type lectin-like receptors (CLRs),
211, 218, 219, 220–221, 225
Curran, James W., 83f
CXCR4 receptor
in apoptosis, 143
on CD4+ cells, 90–91, 90t
on macrophages, 93
in viral entry, 59–60, 61t, 63–65, 64t
Cyclophilins, in replication, 109–112, 121
Cyclosporine, 371
Cytochrome c, in apoptosis, 141
Cytokines, see also specific cytokines
anti-HIV, 282–286, 282f, 287t
in acute HIV infection, 82
in apoptosis, 142, 142t
in autoimmune, 254–255
in B-cell lymphoma etiology, 304
in brain, 194–196, 194t, 195f, 195t
in CD8+ cell noncytotoxic response, 282, 282f
drom dendritic cells, 215
gastrointestinal system, 203
HIV effects on, 179–183, 180t, 181f, 182t
in kidney, 205
for latent infection elimination, 381
in lymphomas, 307, 308
from macrophages, 93
measurement of, flow cytometry in,
261, 263t
from natural killer cells, 225
in pathogenesis, 322
in HIV replication, 93, 122
therapeutic, 386–388
in thymus, 90
in vaccine enhancement, 415
in viral entry, 64–65, 64t

Cytomegalovirus (CMV)

CD8+ cell response to, 284
as cofactor, 122, 169t, 189, 318–319, 329t, 320t
with antiretroviral therapy, 384, 388
opportunistic infection, 2t
Cytopathic effects, 133–148, 134t
apoptosis, see apoptosis
in brain, 191–194, 193t, 194t
cell activation and, 146–147
cell membrane disturbances,
Gag proteins, see also specific proteins, e.g., p24 protein
amino acid components of, 13f
capsid of, 8, 10t
CD8+ cell interactions with, 272
cytopathic effects of, 137
differences of, 8, 10t
HIV type 2 vs. type 1, 6, 6f
in apoptosis, 142
in autoimmunity, 256–257
in B cell activation, 178
cytopathic effects of, 135–137, 142, 173, 193–194
function of, 9, 10t, 11
in fusion, 135–136
gp120 displacement from, 57, 58f
in replication, 112
location of, 10f
in type 1 vs. type 2, 6f
in viral entry, 66–67
Gottlieb, Michael D., 21f
gp41 protein
antibody target sites on, 241–243
in apoptosis, 142
in autoimmunity, 256–257
in B cell activation, 178
cytopathic effects of, 135–137, 142, 173, 193–194
function of, 9, 10t, 11
in fusion, 135–136
gp120 displacement from, 57, 58f
in replication, 112
location of, 10f
in type 1 vs. type 2, 6f
in viral entry, 66–67
HAART (highly active antiretroviral therapy)
for acute HIV infection, 373–375
for HIV infection, 368–369
failure of, 379
gamma-delta T cells and, 231
immune system effects of, 383–385
immune system restoration with, 375, 388–390
interleukin-1 with, 386–387
lymphoma development and, 308, 309
nutrition supplements with, 371–372
postexposure, in sexual contact, 48
resistance to, 377–379
side effects of, 381–383, 382t
structured treatment interruption with, 391–393
T-cell count after, 170–171, 203
tissue distribution of, 372–373
transmission reduction due to, 379
Half-life, HIV, 29–30
CD4+/CD8+ cells, 169–171, 170t
Heart
disorders of, in drug therapy, 383
HIV infection of, 205–206
Heat shock proteins, in cellular latency, 130
Helper cells, see CD4+ cells
Hematopoietic system, see also specific components
overview of, 166, 167f, 168t
Hemophiliacs
AIDS in, 3
Kaposi's sarcoma in, 297
transmission to, 39–40
Hepatitis B virus
CD8+ cell response to, 284
HAART effects on, 384–385
in vaccine development, 409
Hepatitis C virus, HAART effects on, 384–385
Herpes simplex virus
CD8+ cell response to, 284
as cofactor, 318–319, 319t, 320t
Herpesvirus(es), see also Human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus), Herpes simplex virus (HSV)
as cofactors in HIV infection, 318–320, 319t, 320t
considered in search for AIDS virus, 2
in dual infections, brain cytopathy in, 198
phenotypic mixing with, 73
phylogeny of, 299–300, 299f
Herpesvirus saimiri-transformed
CD8+ cells, soluble factor from,
antiviral activity of, 285
Heteroduplex tracking assays, in acute
HIV infection, 84
Heterogeneity, of HIV, 12–19,
353–357, 353t,
in acute infection, 83–84
antiretroviral therapy response and,
372
in brain isolates, 353–354
biological differences among, 18–19
in bowel isolates, 354
in CD4 protein down-modulation,
162–163
cell tropism and, 149–153, 150f,
in CD4+ protein down-modulation,
162–163
cellular host range and, 99–102,
100t
clades in, see Clade(s)
cytopathology and, 162
genetic sequence differences, 14
long terminal repeats in, 153–155,
154f
in mother-child transmission, 52
neutralizing antibody resistance
and, 245–246
neutralizing antibody sensitivity
and, 243–244
in plasma virus 354–355
receptors and, 59, 60t, 62–63, 62t
relation to pathogenesis, 355–357
replication kinetics and, 100, 100t
restriction enzyme sensitivity, 13,
13f, 14f
in sexual transmission, 47–48
soluble CD4 protein solubilization
and, 163
superinfections and, 102–105, 102t
in the thymus, 355
High-risk HIV-exposed seronegative
individuals, 346–349, 347t
Hirsch, Martin S., 72f
HIV-2
antibodies to, 6, 6f, 7–8, 240, 243,
244
in breast milk, 38
CD4 protein down-modulation
and, 101
CD8+ cell response to, 285
cell activation and, 146
cellular susceptibility to, 99
characteristics of, 6, 6f
chemokine receptor interactions
with, 64
cytopathic effects of, 133–134, 162
discovery of, 5f, 6, 6f
dual viral infections, 6, 103–104
envelope proteins of, 160–161
groups, 18, 20f
vs. HIV-1, genome of, 6, 6f
pathogenicity, 7–8, 7t
infection with
apoptosis in, 138
epidemiology of, 6–7, 17f, 17t
HIV-1, 6, 103–104
natural killer cells in, 226
SIV infection with, 104
viral load in, 7
long terminal repeats of, 154–155
origin of, 23–24
pathogenesis of, 7–8, 7t
phenotypic mixing with, 73, 73f, 74f
replication of, 7, 118, 160–161
vs. SIV, 22, 22t
soluble CD4 interactions with, 57
structure of, 8–11
transmission of, 7–8, 7t
vaccines for, 399, 399t, 402, 403,
409, 414, 417
HIVAN (HIV-associated nephropa-thy), 204–205, 205f
HLAs, see Human leukocyte
antigens
Hodgkin's lymphoma, 305t
Hooper, Edward, HIV origin hypothes-is of, 24–25
Horse, autoimmune hemolytic ane-mia, 1, 2t
HTLV, see Human T-cell leukemia
virus (HTLV)
Human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus
in cancer development, 293
in Castleman's disease, 303
discovery of, 299–300, 299f
genesis of, 301, 301f
natural history of, 300, 301f
nonhuman viruses related to,
303–304
pathogenesis of, 300–302, 301f, 302f
in primary effusion lymphoma, 303
serologic studies of, 302
transmission of, 300
Human leukocyte antigen (HLA)
alloimmunogens of, as vaccine a-djuvants, 420
anti-HIV therapy and, 372
in autoimmuneity, 256–257
disease progression and, 273
down-modulation of, protective ef-fect of, 225–226
in neutralizing antibody sensitivity,
245
in pathogenesis, 335t, 337–338,
337t, 344
in replication, 126–127
in transmission, 45
mother-child, 49t, 50
T-cell repertoire and, 261
Human papillomaviruses, in cancer
development, 293
anal, 310–312, 311f–313f, 311t
cervical, 312, 314–315, 314f
Human T-cell leukemia/lymphotropic
virus (HTLV)
characteristics of, 2–4, 3t
as cofactor, 319, 320t
transmission of, 51–52
Humoral immune system, see Anti-body(ies); Autoimmunity
Hydroxyurea, 367
Idiotypes, autoantibodies to, 257
Immune system, see also specific
components
in acute HIV infection, cellular,
84–86, 84f
adaptive
components of, 210t, see also
specific components
vs. innate immune system, 210,
210t, 211f
in vaccine response, 398–399
antiretroviral drug effects on,
383–385, 384t
cellular, see also specific cells, e.g.,
T cells
in acute HIV infection, 84–86,
84f
cytokine effects on, 180–182
disorders of
cancer development in, 293–295,
295f
Kaposi's sarcoma in, 298
humoral, see Antibody(ies); Au-toimmunity
innate
vs. adaptive immune system, 210,
210t, 211f
of brain, 232–234, 232t, 233f,
233t
characteristics of, 210–213, 210t,
211f, 212t
dendritic cells in, see Dendritic
cells
gamma-delta T cells in, 229–231,
230f, 230t
natural killer cells in, 225–229,
225t, 226t, 228f
natural killer T cells in, 229
soluble factors in, 231–232, 232t
in vaccine response, 398–399
mucosal immunity in, 416–418,
416f
Immune system (continued)
overview of, 166, 167f, 168t
restoration of, 375, 388–390
Tat protein in, 156–157
Immune dominance, 245
Immunoglobulin(s), production of, 178–179
Immunoglobulin M, anti-Tat, 231
Immunotherapy, passive, 390–391, 424–425
Indinavir, 368
Indoleamine 2,3-dioxygenase (IDD), 267, 358
Infection with HIV see also individuals
- cells, 77t
cell receptors, 73–74
early steps, 75–77
Innate immune system, see Immune system, innate; specific components
Integrase
inhibitors of, 369
in replication, 110
synthesis of, 12f
Integration
cellular latency and, 129
in replication, 110, 113
Intercellular adhesion molecules, in viral entry, 71–72, 71t
Interferon(s)
in acute HIV infection, 82
in apoptosis, 142, 142t
CD4+ cells, 263–267, 264t, 265t, 268
CD8+ cells, 271–272, 274–275, 283
in cellular latency, 130
from dendritic cells, 216–218, 222–223
HIV effects on, 179–183, 180t, 181f, 182f
in natural killer cell function, 229
therapeutic, 388
for Kaposi's sarcoma, 303
in vaccine enhancement, 415
in viral entry, 64, 64t
Interleukin(s)
in acute HIV infection, 82
in apoptosis, 142, 142t
in autoimmunity, 254
in brain, 195
in CD8+ cell noncytotoxic response, 282, 283f, 284f
CD4+ cells, 263–267, 264t, 267t, 268
CD8+ cells, 269, 271, 273, 282–283, 289
in gastrointestinal system, 203
HIV effects on, 179–183, 180t, 181f, 182t
IL-15, 181, 387
IL-16, 286t, 287, 289
IL-18, 289
from regulatory T cells, 290–291
in replication, 122
therapeutic use of, 386–388
in vaccine enhancement, 415
in viral entry, 64, 64t
Intestine, see Gastrointestinal system
Intracellular events, 109–117
Intravenous drug users, HIV transmission by, 39
Jaffe, Harold W., 35f
Joint(s), HIV infection of, 306
Kaposi's sarcoma, 295–304
- epidemiology of, 296–298, 297t
- etiology of, 298–303, 299f, 301f, 302f
- immune suppression and, 298
- pathology of, 296
- in pediatric patients, 297
- treatment of, 302–303
Kidney, HIV infection of, 204–205, 205f
Kotler, Donald P., 101f
KSHV, see Human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus)
Labor and delivery, HIV transmission in, 49–53, 51t, 83
Lamivudine (3TC), 366
Langerhans cells
distribution of, 213
HIV infection of, 87–89, 221
Langerlin (CD207), 220–221
Latency, 127–131
during antiviral therapy, 380–381
- cellular, 127–130, 128t, 129f, 129t, 158–159
- clinical, 130–131, 130t
- mechanisms of, 129–130, 129t
LAV (lymphadenopathy-associated virus)
considered in search for AIDS virus, 4–5
genetics of, 14
restriction enzyme sensitivity of, 13
Lymphocytes, see B cell(s); T cells
Lymphoid tissue, HIV infection of, 95–97
cytopathic effects of, 175–177
gastrointestinal, 201–202
Lymphomas
B-cell, 304–310, 305t, 306f, 307f, 308t
human herpesvirus-8 in, 303
primary effusion, 303, 305–306
effect of treatment, 308–309
Macrophage(s)
in breast milk, 37
in CD8+ cell noncytotoxic response, 283
chemokines on, 63, 65
Leukocyte function antigen-1, in viral entry, 71–72, 71t
Levine, Alexandra, 202f
Levy, Jay A., 4
Lifestyle, effect of, 322–323
Lipid(s), body, disorders of, in drug therapy, 381–383
Lipids
Listeria monocytogenes, in vaccine development, 411, 411f
Liver, HIV infection of, 98
Long terminal repeats, in replication, 153–155, 154f
Long-term survivors/nonprogressors, 341–342
apoptosis in, 138
CD8+ cell response in, 273, 280, 281, 283, 284f
factors involved in, 342–345
dendritic cells in, 222, 223f
viral latency in, 130–131, 130t
viral levels in, 30
viral recovery in, 5
Lung, HIV infection of, 206
Lymphadenopathy, persistent generalized (PGL), viral recovery in, 2, 4
Lymphadenopathy-associated virus (LAV) considered in search for AIDS virus, 4–5
genetics of, 14
restriction enzyme sensitivity of, 13
Lymphocytes, see B cell(s); T cells
Lymphoid tissue, HIV infection of, 95–97
cytopathic effects of, 175–177
gastrointestinal, 201–202
Lymphomas
B-cell, 304–310, 305t, 306f, 307f, 308t
human herpesvirus-8 in, 303
primary effusion, 303, 305–306
effect of treatment, 308–309
Macrophage(s)
in breast milk, 37
in CD8+ cell noncytotoxic response, 283
chemokines on, 63, 65
cytopathic effects of, in brain, 196, 196t
HIV infection of, 70–71, 222
in brain, 97–98, 184–187, 187f, 196, 196t
cytopathic effects of, 166, 169t, 179, 180, 182t, 196, 196t
in gastrointestinal system, 203
necrosis of, 133
replication in, 113, 115–117, 116t
tropism for, 150, 150f, 151t
virus transfer from, 74
Macrophage colony-stimulating factor
in replication, 93, 116
in viral entry, 64, 64t
Macrophage inflammatory proteins antiviral activity of, 286–288
in viral entry, 60, 61t
Macrophage-derived chemokine, antiviral activity of, 289
Major histocompatibility complex cytopathic effects of, 147
down-modulation of
Nef protein in, 157
protective effect of, 225–226
multimer test with, 263t
T-cell interaction with, 261
viral binding sites on, 55, 71
Malignancy, see Cancer
Mannose receptors, in viral entry, 70–71
Mannose-binding lectin, 231
Martin, Malcolm A., 111f
Marx, Preston, HIV origin hypothesis of, 25
Masur, Henry, 153f
Matrix protein, 135f
function of, 8
inhibition of, 369
MDA-5 (melanoma differentiation associated 5), 210
Membrane-proximal external region, 241–243
Memory T cells, 175
apoptosis of, 142
central
CD4+, 259–260, 260f, 268
CD8+, 269, 270t
effectort
CD4+, 259–260, 260f, 268
CD8+, 269, 270t
HIV infection of, 90, 172, 172f
replication in, 115
resting, 260, 260f
Menstrual cycle, HIV levels and, 36, 43
Merkel cell carcinoma, 295
Microbicides,
for prevention, 48
Microglia
HIV infection of, 97, 190, 195, 197, 197f
tropism for, 151–152
Mildvan, Donna, 173f
Milk, HIV transmission in, 28t, 37–38, 37t, 50, 51t, 52–53
Molecular mimicry, 197–198,
255–257, 255f, 255t
Monkeys, see Primates
Monocytes
differentiation of, replication and,
112–113, 114f, 115–116
HIV infection of
effects of, 179
silent, 128
replication in, 115–117, 116t, 128
virus transfer from, 74, 75t–76f
Montagnier, Luc, 4f
Mother-child transmission, 49–53,
51t, 83
Mucosal immunity, 416–418, 416f
Muscle tissue, HIV infection of, 99
Murr-1, in replication, 122, 122t
Murine leukemia virus, replication of,
112–113, 114f, 115–116
KIR proteins, in pathogenesis, 338
T-cell, 229
Nef protein
characteristics of, 215, 217f, 218t,
219t
HIV infection of, 221–222, 224
Myocytes, cardiac, HIV infection of,
205–206
Nasal vaccines, 417–418
Natural killer cells (NK cells)
characteristics of, 215, 217f, 218t,
219t
HIV infection of, 221–222, 224
Myocytes, cardiac, HIV infection of,
205–206
Necrosis, of cells, 133, 138, 139f
Needlestick assay test, 82–83
Needlestick injuries, HIV transmission by, 40
Nef protein
characteristics of, 215, 217f, 218t,
219t
HIV infection of, 221–222, 224
Myocytes, cardiac, HIV infection of,
205–206
in replication, 111, 157–160, 158t
synthesis of, 12f
Negative factor, see Nef protein
Neonatal transmission, 49–53, 51t, 83
Nephropathy, HIV-associated,
204–205, 205f
Neurons, HIV infection of, 193, 195
Neurotropism, 189–191, 190t, 191f,
191t, 192f
Neutralizing antibodies, 42–43, 50,
237–247
age of virus, 245
vs. antibody-dependent enhance-
ment, 248f, 251
carbohydrate moieties, 244
CD4-induced, 243
clinical relevance of, 246–247
epitopes and, 240–243
factors influencing, 244–245
carbohydrates, 244
nonviral proteins, 244–245
immune dominance, 244
HIV-2, 243
measurement of, 238–239
mechanism of, 239–240
production of, 86
resistance to, 245–246
vs. serologic subtypes, 238
viral sensitivity to, 238, 238t, 239t
CD4 binding site and, 242
factors influencing, 240, 240t
gp1 and, 242–243
relative, 243–244
V1 and V2 regions and, 242
V3 loop and, 241–242
Neutrophils, HIV effects on, 166, 169t
Nevirapine
prophylactic, 52–53
side effects of, 382
Newborns, transmission to, 49–53,
51t, 83
NLRs (nucleotide-binding oligomer-
ization domain protein-like rece-
ptors), 210–211
Nonnucleoside reverse transcriptase inhibitors (NNRTIs), 366–367,
366f, 378
Nonprogressors, see Long-term sur-
vivors/nonprogressors
Nose, vaccine administration to,
417–418
NRTIs (nucleoside reverse transcrip-
tase inhibitors), 366, 366t
Nucleoside reverse transcriptase in-
hibitors (NRTIs), 366, 366t
Nutritional supplements, 371–372
Oleske, James M., 177f
Oral mucosal vaccines, 417
INDEX 639
Origin, of HIV, 20–25, 22t
other viruses considered in, 2–5, 3t
overview of, 20–21
theories on, 20–25, 22t
type 2, 23–24
"Original antigenic sin" concept
in CDB, cell response, 277
in vaccination, 421
in immune dominance, 245
Osteoporosis, in drug therapy, 383
Osteopenia, in drug therapy, 383
in immune dominance, 245
"Original antigenic sin" concept
in animal transmission, 215
in drug therapy, 383

PCR (polymerase chain reaction)
Pattern recognition receptors (PPRs),
Pathogenesis of HIV, 317–361
Pathogen-associated molecular patterns (PAMPs), 210
Papovaviruses, in dual infections,
Purines, in innate immunity, 210
PAMPs (pathogen-associated molecular patterns), 210
Pathogenesis of HIV, 317–361
cofactors, 317–322
features of, 324–332, 325f
early period (phase 1), 325–326
persistent period (phase 2)
326–327
symptomatic period (phase 3)
327–332
HIV-2, 7–8, 7t
relation to HIV heterogeneity,
353–357
relation to HIV changes over time,
357–355
vaccination, effect of, 322
Pattern recognition receptors (PPRs), 210–211
PCR (polymerase chain reaction)
in newborn infections, 49
in HIV vaccine development, 409–410
in viral RNA detection, 29–30, 29t, 30f
in newborn infections, 49
in viral RNA detection, 29–30, 29t, 30f
Polymerase chain reaction
in vaccinated newborns, 49
vaccine for HIV, 322
HIV-2, 7–8, 7t
relation to HIV heterogeneity,
353–357
relation to HIV changes over time,
357–355
vaccination, effect of, 322
Pattern recognition receptors (PPRs), 210–211
PCR (polymerase chain reaction)
in newborn infections, 49
in HIV vaccine development, 409–410
in viral RNA detection, 29–30, 29t, 30f
PD-1 (programmed death 1) protein
(CD279), 277–278
Pediatric patients
drug toxicity in, 383
HIV transmission to, 49–53, 51t, 83
viral levels in, 83
Penny, Ronald, 91f
Perforin, 228–229, 251, 266t, 267t,
269, 270t, 271t, 271–275,
344–345, 357, 390
Perinatal transmission, 49–53, 51t, 83
Perkins, Herbert A., 161f
Phagocytosis, 157, 218t
HIV effects on, 179
Phenotypic mixing, 73, 73f, 74f
Pinching, Anthony J., 124f
Placenta
HIV infection of, 49–52, 49t, 51t, 99
protective function of, 50
Plasma, HIV isolates, 354–355
Plasmacytoid dendritic cells (PDCs)
characteristics of, 215–218, 217f,
218t–220t, 219t
HIV infection of, 221–224, 223f
Platelets, loss of, molecular mimicry
and, 255–256
PMPA (phosphonomethoxypropyl adenine), 366
Pol proteins
amino acid components of, 13f
functions of, 8, 10t
location of, 10f
synthesis of, 11, 12f
type 2 vs. type 1, 6, 6f
Poliovirus
in HIV vaccine development, 409–410
vaccine for HIV contamination of,
24–25
Polymerase chain reaction
in newborn infections, 49
in viral RNA detection, 29–30, 29t, 30f
Polymerase proteins, see Pol proteins
Positive transcription elongation factor b (PTFb), in replication,
122, 123f, 155
Postexposure therapy, 375
Postinfection immunization, 390
Poxviruses, in vaccine development,
type 2 vs. type 1, 6, 6f
Pre-exposure therapy, 422–424, 423t, 424f
PPRs (pattern recognition receptors), 210–211
Pre-exposure therapy, 375
Pregnancy, HIV transmission in,
49–53, 51t, 83
Preintegration complex (PIC), in
replication, 110–111, 161
Prevention, of transmission
in blood transfusion, 39–40
with contraceptives, 44–45, 48
in intravenous drug users, 39
microbicides, 48
mother-child, 52–53
needlestick injury safety programs
for, 40
other approaches 424–425
sexual, 48, 221
Primary effusion lymphoma, 303,
305–306
Primary HIV infection, see Acute HIV infection
Primates
HIV origin in, 20–25
KSHV-related viruses in, 303–304
simian immunodeficiency virus in,
see Simian immunodeficiency virus
T-cell apoptosis in, 144–145
as vaccine models, 399, 399t
Prognosis of HIV infection, 334t
acute infection, 80
cellular genes, 334–338, 335t
HLA in, 337–338, 337t
overview, 332–333
other factors, 338–339
virus characteristics, 333–334
Programmed death 1 (PD-1) protein
(CD279), 277–278
Protease inhibitors, 366t, 367–368,
367f
immune system effects of, 384
resistance to, 378
side effects of, 382–383
Proteases, in viral entry, 58–59, 59f
Protein kinase C, in replication, 115
Prothymosin, antiviral activity of,
285–286
Provirus, 96–97, 127
Quiescent cells, replication in,
123–127, 126f, 127t
Quinolinic acid, in brain, 194, 194t
Race, 338–339
RAs, lipid, in replication, 112
RANTES
antiviral activity of, 286–288
in viral entry, 60, 61t
Receptors
CD4, 55–57, 56f, 59f, 65
CCR5, see CCR5 receptor
chemokine, see Chemokines complement, 72
CXCR5, see CXCR4 receptor
death, in apoptosis, 139, 141
Fc, 72, 247–251, 247f, 421
galactosyl ceramide, 70
genesis in pathogenesis, 334–336,
335t
HIV heterogeneity and, 59, 60t,
62–63, 62t
in innate immunity, 210–213, 212t
mannose, 70–71
natural killer cell, 225, 225t, 226
secondary, in viral entry, 59–65,
59t–64t
T-cell, 261, 422
Toll-like, see Toll-like receptors
(TLRs)
Recombination of two viral genomes,
16, 16f, 105–107, 107f
Rectum
mucosal vaccines administered to,
417–418
secretions from, viral load in, 36–37
SIV inoculation of, 88–89
Ref-1 gene, in replication, 120
Regulator of viral protein expression, see Rev protein
Regulatory T cells, 290–292, 290t
Repertoire (see also T cell), 86, 147, 168t, 261, 262f, 272f, 273, 385
Replication of HIV, 109–131
in bone marrow cells, 165
CD4+ cell proliferation in, 171–172
in CD4+ cells, 89–92, 90t, 93t, 123–127, 126f
cytokines in, 122, 182–183
interferon effects on, 223–224, 224t
intracellular milieu in, 112–113, 114f
kinetics of, 100, 100t
latency in, 127–131
cellular, 127–130, 128t, 129f, 129t, 158–159
clinical, 130–131, 130t
mechanisms of, 129–130, 129t
long terminal repeats (LTR) in, 113
intracellular, 117–122
CD8+ cells and, 281
CCR5 mutants in, 63–64, 63t
APOBEC proteins in, 117–120, 118f, 122t
APOBEC3G effects on, in replication, 119
Vpx protein in, 160–161, 160t
Vpu protein in, 161–162, 162t
Vpx protein in, 160–161
Resistance
of HIV
to CD8+ cell activity, 275–276, 276t
to drugs, 376–379
to HIV
CCR5 mutants in, 63–64, 63t
CD8+ cells and, 281
intracellular, 117–122
replication inhibition in, 117–122
superinfection, 102–103, 102t
Resistance factor 1 (Ref-1), in replication, 119t, 120–122, see also TRIM5α
Resting cells, replication in, 123–127, 126f, 127t
Resting memory T cells, 260, 260f
Restoration, immune system 388–390
Restriction enzymes, sensitivity to, 13, 125–126
mechanisms of, 129–130, 128t, 129f
intracellular milieu in, 112–113, 114f
interferon effects on, 223–224, 224t
cytokines in, 122, 182–183
in bone marrow cells, 165
intracellular, 117–122
CD8+ cells and, 281
CCR5 mutants in, 63–64, 63t
APOBEC proteins in, 117–120, 118f, 122t
APOBEC3G effects on, in replication, 119
Vpx protein in, 160–161, 160t
Vpu protein in, 161–162, 162t
Vpx protein in, 160–161
SDF-1 (stomal cell-derived factor-1), antiviral activity of, 288–289
Selenium supplements, 371
Semen, see also Sexual transmission
viral load in, 28t, 32–36, 33f
in acute infection, 84
antiretroviral therapy effects on, 373
in type 2 vs. type 1, 7
Seroconversion
HIV detection before, 81
superinfection appearance after, 104
timing of, 85f, 86
Sexual transmission of HIV, 40–48
antibody protection in, 42
circumcision and, 41–42, 45, 47
epidemiology of, 40
HIV subtypes in, 84
of insertive partner, 47
at onset of disease, 41
oral-genital, 47
prevention of, 48, 221
to receptive partner, 43–47, 45f, 46f
rectal, 36–37, 45, 46f, 47
risk factors for, 37f, 43–44, 45f
variables in, 41, 42t
viral characteristics in, 47–48
virus-infected cells in, 40–41
of women, 44–45
of Kaposi’s sarcoma-associated herpesvirus, 300
Sexually transmitted diseases, HIV
transmission in, 41, 43–44
Shearer, Gene M., 409f
Siegal, Frederick P., 254f
Signal transducer activator transcription 1 (STAT 1), antiviral activity of, 285
Signal transduction, in CD4+ cells, HIV effects on, 174
Simian immunodeficiency virus, 2t
antibodies to, 6, 6f
antibody-dependent cell-mediated toxicity in, 252
antibody-dependent enhancement and, 250–251
in apoptosis, 144–145
in brain, 188–189
CD8+ cell response to, 283–285
clades of, 22, 22t
clinical course, 345–346
distribution of, 24
in dual primate HIV-2 infection, 104
evolution of, 18, 20f, 22–23
in gastrointestinal system, 202, 204
vs. HIV, 22, 22t
HIV-2 possibly derived from, 6, 18, 20f, 24
immunotherapy for, 391
in lymphoid tissue, 177
as model for vaccine development, 399, 399t, 402–404, 408
neutralizing antibodies to, 246–247
pathogenesis of, 7–8, 22–23
recombination of, 107
rectal inoculation of, 88–89
regulatory T cell effects on, 291
receptor for, 261, 422
regulatory, 290–292, 290t
repertoires of, 261, 262f
replication in, 113, 114f, 115
tropism for, 150–151, 151t
types of, 259–260, 260f
Tat protein
amino acid components of, 13f
antibodies (IgM) to, 231
in apoptosis, 143–144
cytopathic effects of, 137–138,
143–144, 192–193, 194t
functions of, 11, 155–156, 156t
in replication, 111, 113, 122,
155–157, 156t
synthesis of, 12f
in vaccine development, 406
3TC (lamivudine), 366
TCR rearranged excision circles
(TREC), 178
Tears, viral load in, 39
Telomere, 273, 385, 389
Tenofovir, 366
Testes, HIV in, 35
Thalidomide, 388
Therapies, see Anti-HIV therapies
“Threshold effect,” of vaccines, 403,
404f
Thymus
CD4+ cells in, 90
drug therapy effects on, 389
HIV effects on, 97, 166, 169t, 171,
177–178
isolates, HIV, 355
T-cell generation in, 167f
Tipranavir, 368
Toll-like receptors (TLRs), 210–213,
212t
agonists of, as vaccine adjuvants, 420
on dendritic cells, 219, 222–223
on regulatory T cells, 291
Transcytosis, 44, 47, 89, 186t, 187,
347t, 349
Transformation, in cancer development,
293–294, 294f
Transforming growth factor-β
in apoptosis, 142, 142t
in autoimmunity, 254–255
in brain, 196
from CD4+ cells, 264
from regulatory T cells, 290–291
in viral entry, 64, 64t
Transfusions, blood
HIV transmission in, 39–40
Kaposi’s sarcoma and, 296–297
Transmission (HIV), 25–54, see also
Viral entry
by amniotic fluid, 39
by blood, 28–32
antigen levels and, 29–30, 29t, 30f
free infectious virus in, 28–29,
29t
in hemophiliacs, 39–40
in intravenous drug users, 39
in needlestick injuries, 40
viruses-infectected cells in, 30–32, 31t,
32f
by bronchoalveolar lavage fluid, 39
by cerebrospinal fluid, 39
cell to cell, 73–74
clinical manifestations and, 80
factors affecting, 27–28, 28f
by genital fluids, 32–36, 33f, 34t, see
also Sexual transmission
HAART effects on, 379
to hemophiliacs, 39–40
in intravenous drug users, 39
by milk, 28t, 37–38, 37t, 50, 51t,
52–53
mother-child, 49–53, 51t
factors influencing, 49–50
prevalence of, 49
prevention of, 52–53
source of, 50–52, 51t
time of, 50–52, 51t
viral characteristics in, 52
viral levels in, 83
needlestick injuries in, 40
prevention of
in blood transfusion, 39–40
in intravenous drug users, 39
mother-child, 52–53
needlestick injury safety programs
for, 40
sexual, 48
risk estimates for, 37t
by saliva, 39, 47
by blood, 39
by synovial fluid, 39
by tears, 39
type 2, 7–8, 7t
by urine, 39
Treatment, see Anti-HIV therapies
TREM (triggering receptor expressed on myeloid cells), 211
TRIM 5a (Tripartite motif TRIM proteins), 119, 120–122
Trojan exosome hypothesis, in replication, 112
Trophoblasts, HIV infection of, 99
Tsg101 (tumor susceptibility gene 101), 112
Tumor necrosis factor-α (TNF-α) in apoptosis, 143, 144f
in autoimmunity, 254
CD4+ cells, 263, 264t, 265t, 266
CD8+ cells, 272
cytotoxic effects of, 143, 144f, 195, 195t
HIV effects on, 180, 180t, 181f, 182–183, 182t
in replication, 122
Turnover, 169–171, 170t, 171f
Ulcers, genital, HIV transmission in, 44–44
Urine, viral load in, 28t, 39
V3 loop
antibody-dependent enhancement and, 249–250, 249f, 250f
cell tropism and, 150f, 151, 151t, 152
neutralizing antibody sensitivity and, 241–242
Vaccines, 397–428, see also Adjuvants
avenovirus, 409–410
animal models for, 399, 399t
anti-V3 loop monoclonal antibody in, 425
approaches to, 398–400, 398t–400t
CCR5 receptor in, 416
challenges in developing, 400–401, 401t
vs. conventional vaccines, 398, 398t, 400
cytokine-enhanced, 415
DNA, 412, 414–415, 414t, 426
envelope protein, 405–406
examples of, 425, 425t
funding sources for, 427
future, 430, 430t
goals of, 427
human trials of, 422–424, 423t, 424f, 426
ideal properties of, 400–402, 401t, 402t, 425
inactivated whole virus, 401–402
licensed, 427, 427t
lipopeptides, 390, 392
live vectors in, 406–411, 407t, 408t, 411f
mucosal, 416–418, 416f
neutralizing antibodies and, 247
in passive immunotherapy, 424
postinfection immunization, 390
risks resulting from, 420–422
Tat protein in, 406
therapeutic, postinfection, 390
viruses in, 412, 413f
whole attenuated, 402–405, 404f
Vaccinia virus, in vaccine development, 407–409, 407t, 408t, 414, 417
Vagina
as HIV target, 44–45
mucosal immunity in, 416–418, 416f
SIV inoculation of, 88, 89t
Vaginal fluids
neutralizing antibodies in, 247
VaxGen trials, 422–424, 423t
Venezuelan equine encephalitis virus, in vaccine development, 409
Vesicular stomatitis virus, phenotypic mixing with, 73
Vif protein
amino acid components of, 13f
functions of, 8, 10t, 11
in replication, 117–119
synthesis of, 12f
Viral assembly, 112
Viral cores, in vaccines, 412, 413f
Viral entry, 55–78
attachment in, 55–57, 56f, 70–72, 71t, 75–77, 75f–76f, 370
to brain cells, 69, 70–71, 184–187, 186t, 187f
in CD4+ cells, 69–70, 69t
CD4 protein down-modulation in, 68–69, 68t
CD4 protein down-modulation in, 55–57, 56f, 59f, 65
cell surface events in, 66–67
cell-to-cell transfer in, 73–74, 75f
acellular proteins in, 71–72, 71t
chemokine receptors in, 59–65, see also Chemokines
complement receptors in, 72
cytokines in, 64–65, 64t
delayed, 67–68
drug resistance and, 378
Fc receptor in, 72
fusion in, 66–67, 67f
galactosyl ceramide receptor in, 70
inhibitors of, 370
mannose receptor in, 70–71
overview of, 75–77, 77t
phenotypic mixing in, 73, 73f, 74f
pH-independent, 66–67, 67f
postbinding steps in, 57–65
envelope cleavage, 58–59, 59f
evelope displacement, 57, 58f
secondary receptors, 59–65, 59–64
virus subtypes and, 62–63, 62t
Viral load, see also Viremia
in acute HIV infection, 83–84
in amniotic fluid, 39
in blood, 28–32
in bronchoalveolar lavage fluid, 28t, 39
in cells, 28t
in cerebrospinal fluid, 28t, 39, 84
in ear secretions, 28t
in feaces, 28t
in genital fluids, 32–36, 33f, 34t, 373
in lymphoid tissue, 176
measurement of in blood, 28–31, 29t, 30f
for treatment decisions, 376, 376f
in milk, 28t, 37–38, 37t, 50, 51t, 52–53
in rectal secretions, 36–37
in saliva, 28t, 39
in semen, 28t, 32–36, 33f
in acute infection, 84
antiretroviral therapy effects on, 373
in structured interrupted drug therapy, 391–393
in sweat, 28t, 39
in synovial fluid, 39
in tears, 28t, 39
vs. transmission risk, 27
in type 2 vs. type 1, 7
in urine, 28t, 39
in vaginal fluids, 28t, 36, 373
Viremia, 28–32, see also Viral load
in acute HIV infection, 83–84
antigen detection in, 29–30, 29t, 30f
B-cell defects in, 178–179
free infectious virus in, 28–29, 29t
infected cells in, 30–32, 31t, 32f
measurement of, 28–31, 29t, 30f
vs. neutralizing antibody level, 246–247
RNA detection in, 29–30, 29t, 30f
undetectable, 83
Virion
cell entry by, see Viral entry
detection of, see Detection, of HIV
coxi genomic organization of, 11–12, 12f
psudotype, 73, 73f, 74f
size of, 8
structure of, 8–11, 9f, 10f, 10t
tropic of, see Cell tropism
INDEX

Virus-like particles, in vaccines, 412, 413f
Vitamin(s), supplements of, 371–372
Vitamin A deficiency, 50
Volberding, Paul, combination, 369f
Vpr protein
 amino acid components of, 13f
 in apoptosis, 143–144
 in CD4 down-regulation, 68–69
 in cellular latency, 130
 cytopathic effects of, 143–144
 functions of, 10t, 11, 160–161,
 160t
 in replication, 160–161, 160t
 synthesis of, 12f
Vpu protein
 amino acid components of, 13f
 in apoptosis, 143–144
 in CD4 down-regulation, 68–69
 in cellular latency, 130
 cytopathic effects of, 143–144
 functions of, 11, 161–162, 162t
 genetics of, 6, 6f
 in replication, 161–162, 162t
 vs. SIV Vpu protein, 22
 synthesis of, 12f
 type 2, 6, 6f
Vpx protein, functions of, 10t,
 160–161
Weiss, Robin A., 118f
Wofsy, Constance, 380f
Zalcitabine (ddC), 366
Zidovudine (AZT), 365–366
 immune system effects of, 383–384
 prophylactic, 52–53, 375
 resistance to, 378
 side effects of, 382
 viral subtypes and, 372
Zinc supplements, 371–372
Zolla-Pazner, Susan, 76f