Legionella

STATE OF THE ART 30 YEARS AFTER
ITS RECOGNITION
Legionella

STATE OF THE ART 30 YEARS AFTER ITS RECOGNITION

Edited by

Nicholas P. Cianciotto
Department of Microbiology-Immunology
Northwestern University Medical School
Chicago, Illinois

Yousef Abu Kwaik
Department of Microbiology and Immunology
University of Louisville College of Medicine
Louisville, Kentucky

Paul H. Edelstein
Department of Pathology and Laboratory Medicine
University of Pennsylvania School of Medicine
Philadelphia, Pennsylvania

Barry S. Fields
Respiratory Diseases Branch
Centers for Disease Control and Prevention
Atlanta, Georgia

David F. Geary
D. F. Geary Consultants, LLC
Annapolis, Maryland

Timothy G. Harrison
Respiratory and Systemic Infection Laboratory
Health Protection Agency Centre for Infections
London, United Kingdom

Carol A. Joseph
Respiratory Diseases Department
Health Protection Agency Centre for Infections
London, United Kingdom

Rodney M. Ratcliff
Infectious Diseases Laboratories
Institute of Medical and Veterinary Science
Adelaide, Australia

Janet E. Stout
VA Pittsburgh Healthcare System
Pittsburgh, Pennsylvania

and

Michele S. Swanson
Department of Microbiology and Immunology
University of Michigan Medical School
Ann Arbor, Michigan
CONTENTS

Preface xxi

I. CLINICAL AND DIAGNOSTIC ASPECTS OF LEGIONNAIRES’ DISEASE 1

1. Clinical Features of Legionnaires’ Disease: A Selective Review
 Paul H. Edelstein 3

2. Treatment of Legionnaires’ Disease
 Jorge Roig and Jordi Rello 8

3. Diagnostics and Clinical Disease Treatment: Usefulness of Microbiological Diagnostic Methods for Detection of Legionella Infections
 Paul Christian Lück, Jürgen H. Helbig, Heike von Baum, and Reinhard Marre 15

4. Hospital-and Community-Acquired Legionella Pneumonia: Two Faces of the Same Disease?

6. Trends Observed in Legionnaires’ Disease in a Hospital in Catalonia, Spain, 1983–2005
 28

7. Community-Acquired Pneumonia in Human Immunodeficiency Virus-Infected Patients: Comparative Study of Streptococcus pneumoniae and Legionella pneumophila Serogroup 1
 30

8. Nosocomial Legionella Infection in the County of Copenhagen, 2000–2004
 Jette M. Bangsøborg, Jens Otto Jarlov, and Søren A. Uldum
 33

 Thomas W. Armstrong
 37

10. Severe Legionnaires’ Disease Successfully Treated with Levoﬂoxacin and Azithromycin
 40

11. In Vitro Activities of Various Antibiotics against Legionella pneumophila
 A. Seher Birteksöz, Z. Zeybek, and A. Çotuk
 43

12. Detection of Legionella pneumophila DNA in Serum Samples from Patients with Legionnaires’ Disease
 Bram M. W. Diederen, Caroline M. A. de Jong, Faïcal Marmouk, Jan A. J. W. Kluytmans, Marcel F. Peeters, and Anneke van der Zee
 47

13. Specific Detection of Legionella in Samples from Patients with Community-Acquired Pneumonia by PCR and a Colorimetric Detection System (Reverse Dot Blot)
 Jörn Kircher, Alexander Kirchhoff, and Arndt Rolfs
 51

14. Transcription-Mediated Amplification Assay for Detection of Legionella pneumophila in Samples from Patients with Community-Acquired Pneumonia
 Marie K. Hudspeth, Kathleen Clark-Dickey, Elizabeth M. Marlowe, Laura G. Schindler, Karen Campbell, and James T. Summersgill
 53
15. Detection of *Legionella* spp. and *Legionella pneumophila*-Specific DNA in Respiratory Secretions by PCR-Enzyme-Linked Immunosorbent Assay and Comparison with Conventional Methods
 Diane S. J. Lindsay, William H. Abraham, Alistair W. Brown, and Giles F. S. Edwards
 55

16. Serological versus Sequence-Based Methods for *Legionella* Identification
 B. Baladrón, V. Gil, and C. Pelaz
 58

17. Serologic Study of an Outbreak of Legionnaires’ Disease: Variation of Sensitivity Associated with the Subgroup of *Legionella pneumophila* sg1 Antigen Used and Evidence of Concurrent Reactivity to Other Atypical Pneumonia Agents
 Sverker Bernander, Berndt E. B. Claesson, Eva Hjelm, Nils Svensson, and Martin Hjorth
 63

 Jürgen H. Helbig and Paul Christian Lück
 68

19. Duopath *Legionella*: a New Immunochromatographic Test for Simultaneous Identification of *Legionella pneumophila* and *Legionella* Species
 Jürgen H. Helbig, Paul Christian Lück, Britta Kunz, and Andreas Bubert
 73

20. Antigenic Diversity of a 19-Kilodalton Peptidoglycan-Associated Lipoprotein among *Legionella* Species Determined by Reactivity Patterns to Monoclonal Antibodies
 Jin-Hee Moon, Jin-Ah Yang, Hee-Sun Sim, Dae Won Park, Jang Wook Sohn, Hae Kyung Lee, Mi Yeon Park, and Min Ja Kim
 76

21. Evaluation of a New Rapid Immunochromatographic Test using Peptidoglycan-Associated Lipoprotein for Detection of *Legionella* Antigen in Urine Samples from Adults with Pneumonia
 Jang Wook Sohn, Hee-Sun Sim, Hye Won Jeong, Dae Won Park, Hee Jin Cheong, Woo Ju Kim, Sun Ae Kim, Young Sik Cho, and Min Ja Kim
 79

22. Rapid Identification of *Legionella pneumophila*, *Legionella anisa*, and *Legionella taurinensis* with Latex Agglutination Reagents
 M. Reyrolle, C. Ratat, J. Freney, M. Leportier, S. Jarraud, and J. Etienne
 82
23. Clinical Presentation, Laboratory Diagnosis, and Treatment of Legionnaires’ Disease
David R. Murdoch, Thomas J. Marrie, and Paul H. Edelstein
84

II. EPIDEMIOLOGY AND STRAIN TYPING METHODS
87

Carol A. Joseph and Katherine D. Ricketts
89

25. Typing of Legionella pneumophila and its Role in Elucidating the Epidemiology of Legionnaires’ Disease
Timothy G. Harrison, Norman K. Fry, Baharak Afshar, William Bellamy, Nita Doshi, and Anthony P. Underwood
94

26. Effect of Legionella Testing Patterns on the Apparent Epidemiology of Legionnaires’ Disease in Australia
Graham Tallis, Agnes Tan, and Norbert Ryan
100

27. 25 Years of Surveillance for Legionnaires’ Disease in England and Wales: Why no Improvement?
Katherine D. Ricketts, Carol A. Joseph, Timothy G. Harrison, J.V. Lee, and F.C. Naik
105

28. Epidemiological Surveillance of Seropositive Legionellosis Cases in Korea During 1999–2002
Hae Kyung Lee, Soo Jin Baek, Yong In Ju, Jae June Bae, Man Suck Park, and Mi Yeoun Park
108

29. Prevalence of Legionnaires’ Disease and Investigation on Risk Factors: Results of an Italian Multicentric Study
Paola Borella, Stefania Bocca, Erica Leoni, Franca Zanetti, Isabella Marchesi, Annalisa Bargellini, Maria Teresa Montagna, Daniela Tatò, Sara Montegrosso, Francesca Pennino, Vincenzo Romano-Spica, Giovanna Stancanelli, and Stefania Scaltriti
110

30. Seroprevalence of Antibodies to Legionella pneumophila in Northern Italy
R. Cosentina, S. Malandrini, P. Valentini, E. Sfreddo, L. Pirrotta, O. Mercuri, and O. Di Marino
114

31. A Seroepidemiological Study of Legionella pneumophila Antibodies in Spanish Patients: A 13-Year Retrospective Study
Sebastian Crespi, Albert Torrents, and Miguel A. Castellanos
118
<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Risk Differences of Legionnaires’ Disease Associated with Travel in Spain, 1999 to 2004</td>
<td>Ricardo Casas, Rosa Cano, Carmen Martín, and Salvador Mateo</td>
<td>121</td>
</tr>
<tr>
<td>34</td>
<td>10 Years of Legionella Surveillance: Change of Legionella Subtype Preceded Epidemic of Nosocomial Legionnaires’ Disease</td>
<td>Klaus Weist, Christian Brandt, Paul Christian Lück, Jutta Wagner, Tim Eckmanns, and Henning Rüden</td>
<td>128</td>
</tr>
<tr>
<td>35</td>
<td>Representative Survey of the Scope of Legionnaires’ Disease and of Diagnostic Methods and Transmission Control Practices in Germany</td>
<td>Tim Eckmanns, Mona Poorbizar, Henning Rüden, and Lüder Fritz</td>
<td>132</td>
</tr>
<tr>
<td>36</td>
<td>Distribution of Legionella pneumophila Genotypes in Patients and Environmental Sources</td>
<td>Ed P. F. Yzerman, Jacob P. Bruin, Jeroen W. den Boer, Linda P. Verhoef, and Kim W. van der Zwaluw</td>
<td>135</td>
</tr>
<tr>
<td>37</td>
<td>Molecular Comparison of Isolates from a Recurring Outbreak of Legionnaires’ Disease Spanning 22 Years</td>
<td>Robert F. Benson, Claressa E. Lucas, Ellen W. Brown, Karen D. Cowgill, and Barry S. Fields</td>
<td>139</td>
</tr>
<tr>
<td>38</td>
<td>Sequence-Based Typing of Legionella pneumophila as an Aid in Investigation of Hospital-Acquired Legionnaires’ Disease</td>
<td>Faiz Fendukly and Sverker Bernander</td>
<td>143</td>
</tr>
<tr>
<td>39</td>
<td>Legionnaires’ Disease Associated with Death after Near Drowning in Lake Water</td>
<td>Jaana Kusnetsov, Satu Pastila, Silja Mentula, and Diane S. J. Lindsay</td>
<td>146</td>
</tr>
<tr>
<td>40</td>
<td>Is use of Potting Mix Associated with Legionella longbeachae Infection? Results from a Case Control Study in South Australia</td>
<td>Bridget O’Connor, Judy Carman, Kerena Eckert, and Graeme Tucker</td>
<td>149</td>
</tr>
</tbody>
</table>
41. Epidemiological Typing of *Legionella pneumophila* in the Absence of Isolates
Norman K. Fry, Baharak Afshar, Günther Wewalka, and Timothy G. Harrison
152

42. Online Identification of *Legionella* Species by DNA Sequence Analysis: the Macrophage Infectivity Potentiator Gene as an Example
Norman K. Fry, Baharak Afshar, William Bellamy, Anthony P. Underwood, Rodney M. Ratcliff, and Timothy G. Harrison
156

43. Pulsed-Field Gel Electrophoresis Analysis and Sequence-Based Typing of *Legionella pneumophila* Serogroup 1 Isolates from Japan
Junko Amemura-Maekawa, Fumiaki Kura, Bin Chang, and Haruo Watanabe
159

44. Development of an Online Tool for European Working Group for *Legionella* Infections Sequence-Based Typing, Including Automatic Quality Assessment and Data Submission
Anthony P. Underwood, William Bellamy, Baharak Afshar, Norman K. Fry, and Timothy G. Harrison
163

III. MICROBIOLOGY, PATHOGENESIS, IMMUNOLOGY, AND GENETICS 167

45. Identification of Translocated Substrates of the *Legionella pneumophila* Dot/Icm System without the use of Eukaryotic Host Cells
Ralph R. Isberg and Matthias Machner
169

46. Function of *Legionella* Effectors
Howard A. Shuman, Christopher Pericone, Nadim Shohdy, Karim Suwwan de Felipe, and Margaret Clarke
177

47. The *Legionella pneumophila* Dot/Icm Type IV Secretion System
Carr D. Vincent, Kwang Cheol Jeong, Jessica Sexton, Emily Buford, and Joseph P. Vogel
184

48. Subcellular Localization of the Dot/Icm Type IV Secretion Proteins
Kwang Cheol Jeong, Carr D. Vincent, Emily Buford, and Joseph P. Vogel
192

49. Defining the Translocation Pathway of the *Legionella pneumophila* Type IV Secretion System
Carr D. Vincent, Jonathan R. Friedman, and Joseph P. Vogel
195
50. Loss of a Patatin-Like Phospholipase A Causes Reduced Infectivity of *Legionella Pneumophila* in Amoeba and Macrophage Infection Models
Philipp Aurass, Sangeeta Banerji, and Antje Flieger
199

51. Identification of a Cytotoxic *Legionella pneumophila* LpxB Paralogue in a Multicopy Suppressor Screen using *Acanthamoeba castellanii* as a Selective Host
Urs Albers, Katrin Reus, and Hubert Hilbi
203

52. Type II Protein Secretion and Twin-Arginine Translocation Promote the Pathogenesis of *Legionella pneumophila*
Ombeline Rossier and Nicholas P. Cianciotto
207

53. The Type II Protein Secretion System of *Legionella pneumophila* Is Important for Growth in Iron-Rich Media and Survival in Tap Water at Low Temperatures
Maria A. Söderberg and Nicholas P. Cianciotto
214

54. Identification of Putative Substrates of the *Legionella pneumophila* Tat Secretion Pathway via Two-Dimensional Protein Gel Electrophoresis
E. De Buck, L. Maes, J. Robben, J.-P. Noben, J. Anné, and E. Lammertyn
217

55. Identification of Target Proteins of the Lss Secretion System of *Legionella pneumophila* Corby
Christiane Albert, Sebastian Jacobi, Emmy De Buck, Elke Lammertyn, and Klaus Heuner
221

56. *Legionella pneumophila* Mip: New Function for an Old Protein?
Sruti DebRoy and Nicholas P. Cianciotto
224

57. Phospholipases A of *Legionella pneumophila*: Virulence Factors by Diversity?
Antje Flieger
228

58. Identification and Characterization of *Legionella pneumophila* Phospholipases A
Sangeeta Banerji, Margret Müller, Stefan Stevanovic, and Antje Flieger
232

59. Characterization of GDSL-Hydrolases of the Lung Pathogen *Legionella pneumophila*
Sangeeta Banerji, Elena Rasteu, Björn Hermes, and Antje Flieger
238
60. Genetic and Structural Examination of the Legiobactin Siderophore
Kimberly A. Allard, Domenic Castignetti, David Crumrine, Prakash Sanjeevaiah, and Nicholas P. Cianciotto
242

61. Eukaryotic-Like Proteins of Legionella pneumophila as Potential Virulence Factors
Fiona M. Sansom, Hayley J. Newton, and Elizabeth L. Hartland
246

62. Role of Legionella pneumophila-Specific Genes in Pathogenesis
Hayley J. Newton, Fiona M. Sansom, Vicki Bennett-Wood, and Elizabeth L. Hartland
251

63. The Hsp60 Chaperonin of Legionella pneumophila: an Intriguing Player in Infection of Host Cells
Audrey Chong, Angela Riveroll, David S. Allan, Elizabeth Garduño, and Rafael A. Garduño
255

64. Lipopolysaccharide Architecture of Legionella pneumophila Grown in Broth and Host Cells
Jürgen H. Helbig, Esteban Fernandez-Moreira, Enno Jacobs, Paul Christian Lück, and Martin Witt
261

65. Lag-1 Acetylation of Lipopolysaccharide
Natalie N. Whitfield and Michele S. Swanson
265

66. Immunochemical Analysis of Legionella pneumophila Outer Membrane Vesicles
Jürgen H. Helbig, Esteban Fernandez-Moreira, Paul Christian Lück, Enno Jacobs, and Michele S. Swanson
269

67. Contribution of Legionella’s Surface to the Pregnant Pause Virulence Strategy
Esteban Fernandez-Moreira, Jürgen H. Helbig, and Michele S. Swanson
274

68. New Insights into Pathogenesis of Legionella pneumophila Infection: from Bedside Findings to Animal Models
Kazuhiro Tateda, Soichiro Kimura, Etsu T. Fuse, and Keizo Yamaguchi
278

69. Induction of Apoptosis during Intracellular Replication of Legionella pneumophila in the Lungs of Mice
M. Santic, M. Molmeret, S. Jones, R. Asare, A. Abu-Zant, M. Doric, and Y. Abu Kwaik
283
70. The Role of the Phagosomal Transporter (Pht) Family of Proteins in Legionella pneumophila Pathogenesis
John-Demian Sauer and Michele S. Swanson
288

71. A Role for Phosphoinositide Metabolism in Phagocytosis and Intracellular Replication of Legionella pneumophila
Stefan S. Weber, Curdin Ragaz, Katrin Reus, and Hubert Hilbi
292

72. Interaction with the Ciliate Tetrahymena May Predispose Legionella pneumophila to Infect Human Cells
Elizabeth Garduño, Gary Faulkner, Marco A. Ortiz-Jimenez, Sharon G. Berk, and Rafael A. Garduño
297

73. Genetics of Mouse Macrophage Resistance to Legionella pneumophila
Russell E. Vance, Tao Ren, Dario S. Zamboni, Craig R. Roy, William F. Dietrich
301

74. Birc1e/Naip5 in Macrophage Function and Susceptibility to Infection with Legionella pneumophila
Anne Fortier and Philippe Gros
307

75. Locus on Chromosome 13 in Mice Involved in Clearance of Legionella pneumophila from the Lungs
Seiji Kobayashi, Fumiaki Kura, Junko Amemura-Maekawa, Bin Chang, Naoki Yamamoto, and Haruo Watanabe
310

76. Inflammatory Immune Response to Cytosolic Flagellin Protects Mice from Legionella pneumophila Infection
Michele S. Swanson, Brenda G. Byrne, Natalie W. Whitfield, Etsu T. Fuse, Kazuhiro Tateda, and Ari B. Molofsky
313

77. A Peptidoglycan-Associated Lipoprotein of Legionella pneumophila Activates Toll-Like Receptor 2 in Murine Macrophages
Mi Jeong Kim, In Kyeong Lee, Jin-Ah Yang, Hee-Sun Sim, Jang Wook Sohn, and Min Ja Kim
321

78. Legionella Infection of Bone Marrow Dendritic Cells Induces Modulation by Catechins
James Rogers, Izabella Perkins, Alberto van Olphen, Nicholas Burdash, Thomas W. Klein, and Herman Friedman
323

79. Gene Expression and Virulence in Legionella: the Flagellar Regulon
Klaus Heuner, Sebastian Jacobi, Christiane Albert, Michael Steinert, Holger Brüggemann, and Carmen Buchrieser
327
80. Identification of *Legionella pneumophila* Genes under Transcriptional Control of LpnR Regulatory Proteins
 E. Lammertyn, L. Maes, E. De Buck, I. Lebeau, and J. Anné
 333

81. Modulation of *rpoH* Expression using an Antisense Strategy
 Fanny Ewann and Paul S. Hoffman
 336

82. Novel Use of *Helicobacter pylori* Nitroreductase (*rdxA*) as a Counterselectable Marker in Allelic Vector Exchange to Create *Legionella pneumophila* Philadelphia-1 Mutants
 339

83. Analysis of Gene Expression in *Legionella* during Axenic Growth and Infection
 Sergey Pampou, Irina Morozova, David Hilbert, Karim Suwwan de Felipe, Pavel Morozov, James J. Russo, Howard A. Shuman, and Sergey Kalachikov
 343

84. Bringing the Genome of *Legionella pneumophila* to Life: the Transcriptional Program during Infection of *Acanthamoeba castellanii*
 347

85. Genome Rearrangements and Horizontal Gene Transfer in *Legionella pneumophila*
 Irina Morozova, Pavel Morozov, Sergey Pampou, Karim Suwwan de Felipe, Sergey Kalachikov, Howard A. Shuman, and James J. Russo
 351

86. Genetic Diversity of *Legionella pneumophila*
 355

87. The Problem of Complexity
 Rodney M. Ratcliff
 359

88. Sequence-Based Discovery of Ecological Diversity within *Legionella*
 Frederick M. Cohan, Alexander Koeppel, and Daniel Krizanc
 367

89. Genome Sequencing and Genomics
 Carmen Buchrieser, Paul S. Hoffman, James J. Russo, and Joseph P. Vogel
 377
IV. ENVIRONMENTAL BIOLOGY, DETECTION, PREVENTION, AND CONTROL 381

90. Characterization of Sessile and Planktonic Legionella pneumophila in Model Biofilms
 Barry S. Fields and Claressa E. Lucas 383

91. The Amoeba Dictyostelium discoideum Contributes to Legionella Infection
 Michael Steinert, Carina Wagner, Marcela Fajardo, Olga Shevchuk, Can Ünal, Frank Galka, Klaus Heuner, Ludwig Eichinger, and Salvatore Bozzaro 390

92. Acanthamoeba castellanii Strongly Increases the Number of Legionella pneumophila in Model Tap Water Biofilms
 P. Declerck, J. Behets, E. Lammertyn, and F. Ollevier 395

93. Biofilm Formation of Legionella pneumophila in Complex Medium under Static and Dynamic Flow Conditions
 Jörg Mampel, Thomas Spirig, Stefan S. Weber, Janus A. J. Haagensen, Søren Molin, and Hubert Hilbi 398

94. Evaluation of Signaling between Legionella pneumophila Multiple Prokaryotes
 Stephanie D. Zeigler-Ballerstein and James M. Barbaree 403

95. Antimicrobial Activity of Some Lichen Extracts against Legionella pneumophila
 Zuhal Zeybek, Nihal Doğruöz, Aysin Çotuk, Ali Karagöz, and Ali Aslan 407

96. First Report of an Anti-Legionella Peptide Produced by Staphylococcus warneri
 Yann Héchard, Sébastien Ferraz, Emilie Brunetteau, Michael Steinert, and Jean-Marc Berjeaud 411

97. Occurrence and Diversity of Legionella pneumophila in Water Samples from the Brazilian Environment
 Fábio R. S. Carvalho, Annette S. Foronda, and Vivian H. Pellizari 414

98. Diversity of Legionella spp. in Antarctic Lakes of the Keller Peninsula
 Fábio R. S. Carvalho, Fernando R. Nastasi, Rosa C. Gamba, Annette S. Foronda, and Vivian H. Pellizari 417
99. Effects of Seawater Concentration and Temperature on the Survival of *Legionella pneumophila* Serogroup 1
 Susan Bennett and Richard Bentham
 420

100. Isolation of *Legionella* and Amoebae from Water Samples
 Laura Franzin, Daniela Cabodi, and Nicoletta Bonfrate
 423

101. Detection and Identification of Free-Living Protozoa Present in Drinking Water
 Rinske Valster, Bart Willings, Stefan Voost, Geo Bakker, Hauke Smidt, and Dick van der Kooij
 427

102. Growth of *Legionella* in Nonsterilized, Naturally Contaminated Bathing Water in a System that Circulates the Water
 Katsuhiko Ohata, Kanji Sugiyama, Mitsuaki Suzuki, Reiko Shimogawara, Shinji Izumiya, Kenji Yagita, and Takuro Endo
 431

103. Fluctuation in *Legionella pneumophila* Counts in Cooling Towers over a 1-Year Period
 436

104. Genotypic Variability and Persistence of *Legionella pneumophila* DNA Subtypes in 23 Cooling Towers from Two Different Areas
 439

105. Suitability of Peptide Nucleic Acid Probes for Detection of *Legionella* in Mains Drinking Water Supplies
 Sandra A. Wilks and C. William Keevil
 442

106. *Legionella* Detection from Water Samples by Real-Time PCR
 Laura Franzin, Daniela Cabodi, and Nicoletta Bonfrate
 446

 Sue M. Mietzner, Janet E. Stout, Jaclynn L. Shannon, Victor L. Yu, and David R. Wäreng
 449
108. A Novel and Rapid *Legionella* Detection System for Water Analysis
Steven Giglio, Paul T. Monis, and Christopher P. Saint
453

109. Use of Real-Time PCR for Detection and Quantification of *Legionella* Bacteria in Water on the Scale of a Watershed: the Vidourle Valley
Laurent Garrelly, Celine Minervini, L. Rolland, Séverin Pistre, and Jean-Christian Personné
456

110. Field Evaluation of the Binax Equate Test Kit for Enumeration of *Legionella pneumophila* Serogroup 1 in Cooling Water Samples
Anita Benovic and Richard Bentham
460

111. Method Development for *Legionella* Detection in Metalworking Fluids
Katalin Rossmoore, Leonard Rossmoore, and Christine Cuthbert
463

112. Risk Assessment for *Legionella* in Building Water Systems: Managing the Myths
Richard Bentham
465

113. Controlling *Legionella* in Hospital Water Systems: Facts versus Folklore
Janet E. Stout
469

114. Strategies for Infection Control of Nosocomial Legionnaires’ Disease: Four-Year Surveillance Experience in a Teaching Hospital in Italy
S. Boccia, P. Borella, V. Romano-Spica, P. Laurenti, A. Cambieri, G. Branca, M. Tumbarello, R. Cauda, G. Fadda, and G. Ricciardi
473

115. *Legionella* Contamination of Domestic Hot Water in a Tertiary Level Hospital and Resulting Introduction of Control Measure
Mona Schousboe, Alan Bavis, and Ros Podmore
477

116. Review of Nosocomial *Legionella* Outbreaks
Tim Eckmanns, Christiane Reichhardt, Maria Martin, Frauke Nietschke-Tiemann, and Henning Rüden
483

117. Quantitative Microbial Risk Assessment Model for *Legionella*: Summary of Methods and Results
Thomas W. Armstrong and Charles N. Haas
486
118. Risk of Legionella in the Spa Industry: Inadequacy of Current Legislation Covering Thermal Waters used for Medicinal Purposes
Vladimir Drasar, Radomir Polcar, and Paul Christian Lück
489

119. Biological Treatment of Industrial Wastewater: a Possible Source of Legionella Infection
Görel Allestam, Birgitta de Jong, and Jonas Långmark
493

120. Inhibition of Legionella Growth in Circulating Bathing Water by a Filter Refreshment Method using a High Concentration of Chlorine
Kanji Sugiyama, Katsuhiko Ohata, Mitsuaki Suzuki, Rieko Shimogawara, Shinji Izumiyama, Kenji Yagita, and Takuho Endo
497

121. Disinfection of Hospital Water Systems and the Prevention of Legionellosis: What is the Evidence?
Christiane Reichardt, Maria Martin, Henning Rüden, and Tim Eckmanns
501

122. Six-Month Experience of Silver-Hydrogen Peroxide Treatment for Legionella Control in Two Nursing Home Water Systems
505

123. Temperature Regimens versus Ionization and TMVs
John Hayes
509

124. Design and Realization of Zero-Aerosol Cooling Towers
Denis Clodic, Assaad Zouqhbah, Chantal Maatouk, Benoît Senejean, and Michèle Merchat
513

125. Legionella Population Control in Cooling Water Systems
Michèle Merchat, Tâher Mamodaly, and Gilles Chaperon
519

126. Control of Legionella Proliferation Risk in Cooling Water Systems
Michèle Merchat and Anabel Deumier
522

127. Control of Legionella in Large Buildings through Community-Wide Introduction of Monochloramine
Matthew R. Moore, Brendan Flannery, Lisa B. Gelling, Michael Conroy, Duc Vigia, James Salerno, June Weintraub, Valerie Stevens, Barry S. Fields, and Richard Besser
526
128. Efficacy of Monochloramine against Surface-Associated
Legionella pneumophila in a Cooling Tower Model System
Irfan Türetgen and Ayşin Çotuk
529

129. Monochloramine Treatment Induces
a Viable-but-Nonculturable State into Biofilm
and Planktonic Legionella pneumophila Populations
Laëtitia Alleron, Jacques Frère, Nicole Merlet, and Bernard Legube
533

130. Preventing Legionellosis with Hazard Analysis
and Control Systems
William F. McCoy
538

131. Environmental Sampling Data to Determine Risk:
a United Kingdom Perspective
Susanne Surman-Lee and Richard Bentham
543

Author Index 549
Subject Index 553
PREFACE

In the summer of 1976, a mysterious outbreak of pneumonic disease occurred at the Legionnaires’ convention in Philadelphia, Pennsylvania, USA. Soon thereafter, the medical and scientific communities realized that a new disease, Legionnaires’ disease, and a new bacterial genus, *Legionella*, had emerged. Since that time, there has been much progress toward understanding *Legionella* and diagnosing, treating, monitoring, and preventing legionellosis. Nonetheless, there remains much to be learned about the organism and the ways of addressing its impact on public health. Thus, researchers from around the world gathered in Chicago, Illinois, USA on October 16–20, 2005 for the 6th International Conference on *Legionella* (www.legionellaconf.org). The Conference had approximately 400 attendees who participated in nearly 40 invited lectures, 200 poster presentations, 3 panel discussions, and numerous other opportunities for scientific exchange and collaboration. This book summarizes the contributions presented at the meeting and as such represents the current state-of-the-art of *Legionella* research and investigation. We thank the many individuals who contributed to the success of the 6th International Conference, including our fellow members of the Scientific Organizing Committee, our numerous, generous sponsors, the managed meetings group of the ASM, and the Conference attendees. Finally, we thank all who have further contributed to the completion of this publication, including the many authors who submitted manuscripts, Jenny Dao who assisted us with processing the manuscripts, and ASM Press who once again served as our expert publisher.

NICHOLAS CIANCIOTTO
YOUSEF ABU KWAIK
PAUL EDELSTEIN
BARRY FIELDS
DAVID GEARY
TIMOTHY HARRISON
CAROL JOSEPH
RODNEY RATCLIFF
JANET STOUT
MICHELE SWANSON
AUTHOR INDEX

Abraham, William H., 55
Abu Kwaik, Y., 283
Abu-Zant, A., 283
Afshar, Baharak, 94, 152, 156, 163
Albers, Urs, 203
Albert, Christiane, 221, 327
Allan, David S., 255
Allard, Kimberly A., 242
Alleron, Laëtitia, 533
Allignet, J., 355
Amemura-Maekawa, Junko, 159, 310
Anné, J., 217, 333
Armstrong, Thomas W., 37, 486
Asare, R., 283
Aslan, Ali, 407
Aurass, Philipp, 199
Bae, Jae June, 108
Baek, Soo Jin, 108
Bakker, Geo, 427
Baladrón, B., 58
Banerji, Sangeeta, 199, 232, 238
Bangsberg, Jette M., 33
Barbarez, James M., 403
Bargellini, Annalisa, 110
Baruchelli, P., 505
Bavis, Alan, 477
Behets, J., 395
Bellamy, William, 94, 156, 163
Bennett, Susan, 420
Bennett-Wood, Vicki, 251
Benovic, Anita, 460
Benson, Robert F., 139
Bentham, Richard, 420, 460, 465, 543
Berjeaud, Jean-Marc, 411
Berk, Sharon G., 297
Bernander, Sverker, 63, 143
Besser, Richard, 526
Birteköz, A. Seher, 43
Boccia, Stefania, 110, 473
Bonfrate, Nicoletta, 423, 446
Borella, Paola, 110, 473
Bozzaro, Salvatore, 390
Branca, G., 473
Brandt, Christian, 128
Brassinga, Ann Karen C., 339
Brown, Alistair W., 55
Brown, Ellen W., 139
Brüggenmann, Holger, 327, 347
Brüm, Jacob P. 135
Bruneteau, Emilie, 411
Bulbert, Andreas, 73
Buchrieser, Carmen, 327, 347, 355, 377
Burdash, Nicholas, 323
Buford, Emily, 184, 192
Byrne, Brenda G., 313
Cabodi, Daniela, 423, 446
Cambieri, A., 473
Campbell, Karen, 53
Cano, Rosa, 121
Carman, Judy, 149
Casas, I., 22, 25, 28
Casas, Ricardo, 121
Castellanos, Miguel A., 118
Castignetti, Domenic, 242
Cauda, R., 473
Carvalho, Fábio R. S., 414, 417
Cazalet, C., 355
Chang, Bin, 159, 310
Chaperon, Gilles, 519
Cheong, Hee Jin, 79
Cho, Young Sik, 79
Chong, Audrey, 255
Cianciotto, Nicholas P., 207, 214, 224, 242
Claesson, Berndt E. B., 63
Clark-Dickey, Kathleen, 53
Clarke, Margaret, 177
Clodic, Denis, 513
Cohan, Frederick M., 367
Conroy, Michael, 526
Coppée, J.-Y., 347
Cosentina, R., 114
Çotuk, Ayşın, 43, 407, 529
Cowgill, Karen D., 139
Crespi, Sebastian, 118
Croxen, Matthew A., 339
Crumrine, David, 242
Cuthbert, Christine, 463
De Buck, E., 217, 221, 333
de Felipe, Karin Suwuan, 177, 343, 351
de Jong, Birgitta, 493
de Jong, Caroline M. A., 47
De Ponte, G., 505
Debruyne, S., 224
Declerck, P., 395
Dell’Eva, I., 505
den Boer, Jeroen W., 135
Deumier, Anabel, 522
Diederen, Bram M. W., 47
Berlin, Germany, 51
Binax Equate test kit, 460–462
BinaxNow, 18, 79–81
Bio–Rad, 59–61
Biodiversity, 358
Biofilms, 383–388
Acanthamoeba castellani’s effect on, 395–396
flow conditions and formation of, 398–401
growth phase of sessile/planktonic L. pneumophila, 386
L. pneumophila’s role in colonization of, 383–385
monochloramine-induced viable-but-nonculturable state in, 533–536
simplified model of, 385–386
Bioinformatics, 179–182
Biological treatment of industrial wastewater, 493–496
Biotest, 18–19, 79–81
Birc1/Naip gene, 307–309
Bloodwork, 5
Bone marrow dendritic cells, 323–325
Bordetella pertussis, 192, 195
Bovenkarspel Flower Exhibition epidemic, 6
Brazil, 414–416
British aerospace outbreak, 106
B. abortus, 192, 195
BS100 strain, 385
Buffered charcoal yeast extract (BCYE) agar, 15, 43
Building water systems
monochloramine for control in large, 526–528
risk assessment for, 465–467
Burlington 1 subgroup, 140, 141
C
C. Valenciana, 122, 123
CALP. See Community-acquired Legionella pneumonia
Camperdown subgroup, 70
Campylobacter spp., 67
Canada, 97
Canary Islands, 122, 123
Cancer, 31, 32, 40
Cancer therapy, 108, 109
CAP. See Community-acquired pneumonia
CAP Intensive Care Units (CAPUCI) Study, 12–13
CAPUCI Study. See CAP Intensive Care Units Study
Carbon monoxide diffusion measurements (DLCO), 6
Cardiac disease, 150
Caspase-1, 315–317
Catalonia, Spain, 22, 25, 28–29, 119, 120, 122, 439–441
Catechin modulation, 323–325
Cavitary lung disease, 5
CBPIS, 3, 4
CCRs (chemokine receptors), 110
CDC. See Centers for Disease Control and Prevention
Cefepime, 147
Cefuroxime, 146
Cell surface, 256–257
Centers for Disease Control and Prevention (CDC), 3, 22, 139
Chaperonins, 255–260
Chemokine receptors (CCRs), 110
Chemotherapy, 31, 32, 40
Chlamydia pneumoniae, 11, 85
Chlamydophila pneumoniae, 63, 65.67
Clarithromycin, 146
Chlorinated water, 133
Chlorine concentration, 497–500
Chlorine dioxide, 133
Chromosome 13, in mice, 310–312
Chronic heart failure, 26
Chronic respiratory disease, 26, 29
Ciliate Tetrahymena sp., 297–300
Ciprofloxacin, 10, 43–46, 147
Clade sequence diversity, 368–369
Clostridium, 9, 10, 41
Coinfections, 5–6
Colorimetric detection system, 51–52
Columbia University, 184
Combined therapy
for immunocompromized patients, 41
mortality rate, 11, 12
Community-acquired Legionella antibiotic therapy for, 85
in Barcelona, Spain, 29
in England/Wales, 105
in Europe, 91, 92
in Germany, 132–133
prevalence of, 16
sensitivity of, 18, 19
Community-acquired Legionella pneumonia (CALP), 22–23
Community-acquired pneumonia (CAP), 8
in HIV-infected patients, 30–32
PCR/colorimetric detection of, 51–52
TMA for L. pneumophila detection with, 53–54
Complexity problem, 359–365
Computer modeling, 6
Concord 4 subgroup, 140
Contig assembly, 164
Continuous-flow chamber system, 400–401
Control, Legionella. See Legionella control
Conventional SS PCR, 48
Conventional culture method, 449–452
Cooling towers
in Australia, 102
fluctuating counts of L. pneumophila in, 436–437
genotypic variability/persistence of L. pneumophila DNA subtypes in, 439–441
industrial, 63
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>in Japan, 162</td>
</tr>
<tr>
<td>mandated registration of, 104</td>
</tr>
<tr>
<td>monochloramine and surface-associated</td>
</tr>
<tr>
<td>L. pneumophila in, 529–531</td>
</tr>
<tr>
<td>as source of community-acquired LD, 91</td>
</tr>
<tr>
<td>zero-aerosol, 513–517</td>
</tr>
<tr>
<td>Cooling water systems</td>
</tr>
<tr>
<td>Binax Equate test kit for detection in, 460–462</td>
</tr>
<tr>
<td>Legionella population control in, 519–521</td>
</tr>
<tr>
<td>Legionella proliferation risk control in, 522–525</td>
</tr>
<tr>
<td>Copenhagen, Denmark, 33–36</td>
</tr>
<tr>
<td>006 Copenhagen genotype, 137</td>
</tr>
<tr>
<td>Corby strain, 221–223</td>
</tr>
<tr>
<td>Corticoids, 26</td>
</tr>
<tr>
<td>Corticosteroid therapy, 86</td>
</tr>
<tr>
<td>Cost of urinary testing, 112</td>
</tr>
<tr>
<td>Cotrimoxazole, 9</td>
</tr>
<tr>
<td>Coupling proteins, 170</td>
</tr>
<tr>
<td>Cre–Lox interbacterial screen, 173, 174</td>
</tr>
<tr>
<td>Creatine kinase, 6</td>
</tr>
<tr>
<td>Croatia, 92</td>
</tr>
<tr>
<td>Cross-reactivity, 65, 67</td>
</tr>
<tr>
<td>Cross-talk between different secretion systems, 212</td>
</tr>
<tr>
<td>Cryptococcus, 11</td>
</tr>
<tr>
<td>Culture samples, 56</td>
</tr>
<tr>
<td>PCR vs., 545–546</td>
</tr>
<tr>
<td>sensitivity/specificity of, 16, 18</td>
</tr>
<tr>
<td>Cytochrome c-dependent respiration, 211</td>
</tr>
<tr>
<td>Cytomegalovirus, 5, 11</td>
</tr>
<tr>
<td>Cytosolic flagellin, 313–319</td>
</tr>
<tr>
<td>Cytotoxic suppressor gene (lscC), 205</td>
</tr>
<tr>
<td>Cytotoxicity, 199, 203–204</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>D5387-98 subgroup, 140</td>
</tr>
<tr>
<td>D6010-81 subgroup, 140</td>
</tr>
<tr>
<td>Davenport 1 subgroup, 140</td>
</tr>
<tr>
<td>Dendritic cells, 323–325</td>
</tr>
<tr>
<td>Denmark, 92, 97</td>
</tr>
<tr>
<td>incidence rate in, 132</td>
</tr>
<tr>
<td>nosocomial LD in, 33–36</td>
</tr>
<tr>
<td>Detection. See also Legionella detection; Urinary antigen detection</td>
</tr>
<tr>
<td>colorimetric, 51–52</td>
</tr>
<tr>
<td>of free-living protozoa in drinking water, 427–430</td>
</tr>
<tr>
<td>outbreak, 90, 91</td>
</tr>
<tr>
<td>peptide nucleic acid probes for, 442–445</td>
</tr>
<tr>
<td>in respiratory secretions, 55–56</td>
</tr>
<tr>
<td>reverse dot blotting for, 51–52</td>
</tr>
<tr>
<td>sequence-based vs. serological, 58–62</td>
</tr>
<tr>
<td>serum-antibody, 47–50</td>
</tr>
<tr>
<td>TMA for, 53–54</td>
</tr>
<tr>
<td>DFA, 56</td>
</tr>
<tr>
<td>DFA testing. See Direct fluorescent antibody testing</td>
</tr>
<tr>
<td>Diabetes mellitus, 13, 108, 109</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>cases by method of, 92</td>
</tr>
<tr>
<td>of duopath Legionella, 73–75</td>
</tr>
<tr>
<td>in Germany, 132–134</td>
</tr>
<tr>
<td>Legionnaires’ disease, 6–7</td>
</tr>
<tr>
<td>microbiological, 15–20</td>
</tr>
<tr>
<td>serological vs. sequence-based methods of, 58–62</td>
</tr>
<tr>
<td>Diagnostic tests</td>
</tr>
<tr>
<td>cheaper/reliable, 6</td>
</tr>
<tr>
<td>ICT, 73–75, 79–81</td>
</tr>
<tr>
<td>and L. pneumophila sg 1 sensitivity, 63–67</td>
</tr>
<tr>
<td>latex agglutination reagents, 82–83</td>
</tr>
<tr>
<td>nucleic acid amplification, 85</td>
</tr>
<tr>
<td>PCR/colorimetric, 47–50</td>
</tr>
<tr>
<td>PCR–ELISA, 55–56</td>
</tr>
<tr>
<td>peptidoglycan-associated lipoprotein, 76–81</td>
</tr>
<tr>
<td>serological, 47–50</td>
</tr>
<tr>
<td>serotyping, 68–71</td>
</tr>
<tr>
<td>transcription-mediated amplification, 53–54</td>
</tr>
<tr>
<td>urine, 79–81</td>
</tr>
<tr>
<td>Dictyostelium discoideum, 390–394</td>
</tr>
<tr>
<td>cellular-level investigations of, 291</td>
</tr>
<tr>
<td>functional studies with customized, 392, 393</td>
</tr>
<tr>
<td>as host cell, 177, 178, 203, 205</td>
</tr>
<tr>
<td>transcriptional host-cell response, 391–392</td>
</tr>
<tr>
<td>Direct fluorescent antibody (DFA) testing, 19–20</td>
</tr>
<tr>
<td>Direct fluorescent assay, 59</td>
</tr>
<tr>
<td>Disinfection</td>
</tr>
<tr>
<td>effectiveness of, 546</td>
</tr>
<tr>
<td>of hospital water systems, 501–504</td>
</tr>
<tr>
<td>Distribution of strains, 97–98</td>
</tr>
<tr>
<td>DLCO, 6</td>
</tr>
<tr>
<td>DLCO (carbon monoxide diffusion measurements), 6</td>
</tr>
<tr>
<td>DNA detection of Legionella in respiratory secretions, 55–56</td>
</tr>
<tr>
<td>stability of LD, 124–127</td>
</tr>
<tr>
<td>DNA amplification, 51–52</td>
</tr>
<tr>
<td>DNA sequence analysis, 156–158</td>
</tr>
<tr>
<td>Dose response, 466</td>
</tr>
<tr>
<td>Dose-response modeling, 486–487</td>
</tr>
<tr>
<td>Dot/icm genes</td>
</tr>
<tr>
<td>clusters of, 186</td>
</tr>
<tr>
<td>discovery of, 184–185</td>
</tr>
<tr>
<td>in intracellular growth/vacuole formation, 169</td>
</tr>
<tr>
<td>and plasmid transfer system, 186–190</td>
</tr>
<tr>
<td>and proteins, 186–190</td>
</tr>
<tr>
<td>screening for, 185–186</td>
</tr>
<tr>
<td>translocated substrate identification in, 169–175</td>
</tr>
<tr>
<td>Dot/icm proteins</td>
</tr>
<tr>
<td>characteristics of, 188–190</td>
</tr>
<tr>
<td>phosphoinositide metabolism and binding of, 295</td>
</tr>
<tr>
<td>subcellular localization of, 192–194</td>
</tr>
<tr>
<td>Dot/icm type IV secretion system, 177, 186–190</td>
</tr>
<tr>
<td>characteristics identified in, 186</td>
</tr>
<tr>
<td>gene discovery, 184–185</td>
</tr>
<tr>
<td>IVA/IVB types of, 187</td>
</tr>
</tbody>
</table>
Dot/icm type IV secretion system, (continued) mechanism of, 186–187
proteins exported by, 188–190
subcellular localization of proteins in, 192–194
translocation pathway of, 195–197

DotA protein, 188, 189
DotB protein, 188, 189, 196
DotC protein, 196
DotD protein, 196
DotF protein, 188, 189, 193
DotG protein, 196
DotK protein, 196

DotL mutant, 170–172
DotL protein, 188, 189, 196

DotM protein, 188, 189
DotN protein, 188, 189
DotU protein, 188, 189

Doxycycline, 10, 44–46

Drift, measurement of, 514–516

Drowning, near-, 146–148

Duopath Legionella test, 73–75

Dynal Biotech, 449–452

Dyspnea, 26

E. coli. See Escherichia coli

Ecological diversity within Legionella, 367–375

Ecological genomics, 366–368

Ectopic expression, 179–182

EGCG. See Epigallocatechin gallate

ER. See Endoplasmic reticulum

Erythromycin, 10, 40, 41, 43–46

Escherichia coli (E. coli), 5, 11, 172, 200–202, 386

EU (European Union), 92

Eukaryotic host cells, 169

Eukaryotic-like proteins, 246–249

Europe, 89–92

European Union (EU), 92

European Working Group for Legionella infections (EWGLI)

Evidence-based risk assessment, 467

Evolution of Legionella genotypes, 365–368

EWGLI. See European Working Group for Legionella infections

EWGLINET, 89–91, 105, 121, 122

Exoenzyme U (ExoU), 199, 200

Experience of laboratory staff, 16

Extracellular growth, 200, 210

Extrapulmonary infection, 5–6

Extrapulmonary infection, 5–6

FiO2, 9

FlaA. See Flagellin subunit promoter

Flagellin regulon, 327–331

Flagellin, 313–319

Flagellin subunit (FlaA) promoter, 386, 388

Flow conditions, 398–401

Fluoroquinolones, 9, 10, 40–41

Epidemiology of LD in Australia, 100–104
and distribution/environmental sources, 135–137
in England/Wales, 105–107
in Europe, 89–92
in Germany, 132–134
and hotel water system, 124–127
in Italy, 110–112, 114–116
in Korea, 108–109
in Netherlands, 135–137
in Northern Italy, 114–116
and nosocomial LD, 128–131
in St. Croix, 139–141
in Spain, 118–120, 121–123
and travel-associated LD, 121–123
and typing of L. pneumophila, 94–98

Epigallocatechin gallate (EGCG), 323–325

ER. See Endoplasmic reticulum

Excretory expression, 179–182

EGCC. See Epigallocatechin gallate

EIA. See Enzyme-immunoassay

ELISA. See Enzyme-linked immunosorbent assays

Emergency-room diagnosis, 4–5

Empiric antibiotic therapy, 85

Endemic disease investigation, 95

Endoplasmic reticulum (ER), 169–171, 178

England as EWGLINET coordinator, 89

infection rates in, 92

outbreaks in, 91, 105–107

Enterobacter cloacae, 11

Enterococcus faecalis, 11

Environmental sampling, 343–348

Environmental sources of LD, 135–137

Enzyme-immunoassay (EIA), 55

Enzyme-linked immunosorbent assays (ELISA), 18,
55–56

Epidemic disease investigation, 94

IP: 54.70.40.11
On: Sun, 14 Jul 2019 14:12:07
France, 92, 97, 98, 132, 456–459
France/Allentown subgroup, 68, 70
Free-living protozoa, 427–430

G
Gardening, 149–150
Gatifloxacin, 9, 10
GCAT (glycerophospholipid: cholesterol acyltransferase), 199
GDSL-hydrolases of L. pneumophila, 228–230, 238–241
Gemifloxacin, 9, 10
Gen-Probe, 53
Gender, 23, 29
Gene expression in Legionella during axenic growth/infection, 343–345
and virulence in Legionella, 327–331
Gene transcription, 246
Gene transfer, 351–353
Genetic diversity of L. pneumophila, 355–358
Genome rearrangements, 351–353
Genome sequencing, 377–379
Genotypic PCR diagnosis, 47
Genotypic stability, 124–127
German Society of Pneumology, 51
Germans Trias i Pujol Hospital. See Hospital Germans Trias i Pujol
Germany, 92, 97, 133, 134
and change in Legionella subtype, 128–131
controlling Legionella in, 469–471
disposable in, 501–504
incident rate in, 132
university hospital study in, 128–131
GFP. See Green fluorescent protein
GGDEF/EAL proteins, 349
003 Glasgow genotype, 136, 137
Glycerophospholipid: cholesterol acyltransferase (GCAT), 199
GMS detection method, 453–455
Golgi apparatus, 169, 170, 171, 178
Greece, 92, 97
Green fluorescent protein (GFP), 177, 178
Growth phase of L. pneumophila, 386
GTPases, 169, 170

H
HACCP plan. See Hazard analysis critical control point plan
Haemophilus influenzae, 5
HALP. See Hospital-acquired Legionella pneumonia
Hampshire, UK, 152–154
Hands, contamination of, 149, 150
Hartmannella vermiformis, 383, 385, 386
Hayling Island, UK, 152–153
Hazard analysis critical control point (HACCP) plan, 538–541
Health Protection Agency Centre for Infections (UK), 105, 107, 156
Heart failure, 26
Helicobacter pylori, 192, 195
Helicobacter pylori nitroreductase (rdxA), 339–342
Hereford, UK, 98
Herpesvirus influenzae, 11
Heysham subgroup, 70
High-risk patients, 133
HIV. See Human immunodeficiency virus
Holiday Camp, 152–154
Horizontal gene transfer, 351–353
Horwitz laboratory, 185
Hospital-acquired Legionella pneumonia (HALP).
See also Nosocomial Legionnaire’s disease in Barcelona, Spain, 25–26
community- vs., 22–24
Hospital Episode Statistics, 107
Hospital Germans Trias i Pujol, 22, 25, 28–29
Hospital water systems, 133, 134
and change in Legionella subtype, 128–131
controlling Legionella in, 469–471
disinfection of, 501–504
hot water contamination in, 477–481
testing of, 24
Hospitals, 28–29
Host cells, 169–175
Legionella life inside, 177–178
transcriptional response of, 391–392
Hot spring water, 148, 160
Hot water, 477–481
Hot water systems, 509
Hotel potable-water systems, 124–127
Hotels, 91
Hsp60 chaperonin of L. pneumophila, 255–260
and bacterial cell surface, 256–257
virulence-related functions of HtpB, 257–259
HtpB, 256–260
Human immunodeficiency virus, 30–32
Hygiene, 149, 150
Hyperoxia, 10, 278–281
Hypertension, 108, 109
Hyponatremia, 3, 29

I
IcmF protein, 188, 189
IcmQ protein, 188, 189, 197
IcmR protein, 188, 189, 197
IcmS protein, 188, 189
IcmT protein, 188, 189
ICT. See Immunochromatographic test
IIF test. See Immunofluorescence test
IFA test. See Indirect fluorescent antibody test
IgA antibodies, 20
IgG antibodies, 20, 114
IgM antibodies, 20
Imipenem, 146
Immune response to LD, 110
Immunochromatographic test (ICT), 73–75, 79–81
Immune-compromized patients, 11, 13, 40–41, 130
Immunodeficiency, 5
Immunofluorescence (IF) test, 58–59
Immunomagnetic separation (IMS), 449–452
Immunosuppressed patients, 109
Immunosuppressive therapy, 26
IMS.
See Immunomagnetic separation
Incubation period, 37–39
Indianapolis 10 subgroup, 140
Indirect fluorescent antibody (IFA) test, 20, 63, 67
Industrial cooling tower, 63
Industrial wastewater, 493–496
Infection cycle of L. pneumophila, 390–394
Infectiousness of strains, 97–98
Infective phase of L. pneumophila, 386
Infectivity, 199–202
Inflammatory immune response, 313–319
Institute of Medical Microbiology and Hygiene, University of Dresden, 16
Instituto Nacional de Estadística, 121
International Conference on Legionella, 12–13
Interspecies communication, 281–282
Intracellular growth, 210
Intracellular infection, 212
Intracellular replication, 292–295
Intravenous drug use, 31
Ionization, 509–512
Iron
and L. pneumophila, 242
and legiobactin siderophore, 243–245
and siderophores, 242–243
Tat facilitates growth under low–, 211–212
and type II protein secretion, 214–216
Isberg laboratory, 184–188
Isolation of Legionella and amoebae, 423–425
Istanbul, Turkey, 43
Italy
incidence rates in, 92
nosocomial control in, 473–475
prevalence/risk factor study in, 110–112
SBT profiles of L. pneumophila in, 97
seroprevalence of antibodies in, 114–116
J
Japan, 97, 159–162, 431–435
K
Kanta-Häme Central Hospital, 146
Karolinska University Hospital, 143–144
Keller Peninsula (Antarctica), 417–419
Ketolides, 10
Kingston 1 subgroup, 140
Klebsiella pneumoniae, 11
Knoxville 1 subgroup, 129, 130, 140
Knoxville subgroup, 64–66, 68, 70, 129
Korea, 108–109
L
Laboratory staff experience, 16
Leg-1. See Lipopolysaccharide-associated gene
Leg-1 acetylation, 265–267
Lake water, 146–148
Latex agglutination assay, 74
Latex agglutination reagents, 59, 82–83
LC (lysocytic suppressor gene), 205
LCV (Legionella-containing vacuole), 178
LD. See Legionnaires’ disease
LD-4748, 61
Leg genes, 179–182
Legiobactin siderophore, 242–245
Legionella spp.
in Antarctic lakes, 417–419
antigenic diversity among, 76–78
number of, 73
serological vs. sequence-based identification of, 59–61
Legionella anisa, 59, 61, 76, 77, 82, 83, 91
Legionella bozemanicae, 91
Legionella bozemanii, 109, 148
Legionella bozemanii sg 1, 76, 77, 79, 81
Legionella bozemanii sg 2, 76, 77, 79, 81
Legionella bozemanii/jordanis, 61
Legionella bozemanii/longbeachae, 61
Legionella cincinatensis, 91
Legionella-containing vacuole (LCV), 178
Legionella control
in cooling water systems, 519–525
in Germany, 132–134
in hospital water systems, 469–471
in hospitals, 473–475, 477–481
with monochloramine, 526–528
with silver-hydrogen peroxide treatment, 505–507
Legionella detection
Binax Equate test kit for, 460–462
GMS rapid, 453–455
immunomagnetic separation vs. conventional
culture method of, 449–452
L. pneumophila sg 1, 449–452
in metalworking fluids, 463–464
with peptide nucleic acid probes, 442–445
real-time PCR, 456–459
by reverse transcriptase-PCR, 446–448
Legionella DNA, 19–20
Legionella dumoffii, 60, 61, 76, 77, 91, 109
Legionella effector, 177–182
bioinformatics/ectopic expression, 179–182
genetics/genomics/redundancy, 179
life inside host cell, 177–178
Legionella erythra, 59, 61, 62
Legionella felinei, 91, 109, 463–464
Legionella gormanii, 76–79, 81, 91, 108, 109
Legionella hackelia, 79–81
Legionella hackelia sg 1, 76–78
Legionella jordanis, 60, 76–79, 81
Legionella jordanis/bozemanii, 59, 60
Legionella londiniensis, 59, 61
Legionella longbeachae, 252
and Australian testing patterns, 100, 101, 103, 104
in Europe, 91
in Korea, 109
mip gene in, 224
and potting mix, 149–150
prevalence of, 251
serological/sequencing identification of, 60, 61
Legionella longbeachae sg 1, 76, 77, 79, 81
Legionella longbeachae sg 2, 76, 77, 79, 81
Legionella micdadei, 109
antigenic diversity in, 76, 77
in Europe, 91
mip gene in, 224
pathogenesis of, 251, 252
serological/sequencing identification of, 60
urinary antigen detection of, 79, 81
Legionella micdadei/longbeachae, 61
Legionella nautarum, 59, 61
Legionella oakridgensis, 61, 76, 77, 79, 81
Legionella parisiensis, 59–61, 91
Legionella pneumophila
and *Acanthamoeba castellani*, 395–396
apoptosis induction during intracellular replication of, 283–286
from aspiration of lake water, 146–148
in Australia, 100, 102–104
in biofilm colonization, 383–385
and *Bir1/Naip* gene in macrophage function/susceptibility, 307–309
bone marrow infection by, 323–325
in Brazilian environment, 414–416
and chromosome 13 in mice, 310–312
in cooling towers, 436–437, 439–441
differentiation/nutrient starvation, 288
distribution of, 97–98, 135–137
dot/icm type IV secretion system of. See Dot/icm type IV secretion system
eukaryotic-like proteins as virulence factors, 246–249
flagellar regulon of, 327–331
flow conditions and biofilm formation of, 398–401
GDSL-hydrolases of, 238–241
genetic diversity of, 355–358
genome rearrangements/horizontal gene transfer in, 351–353
genome sequence determination of, 347–349
growth phase of sessile/planktonic, 386
in hot potable-water systems, 125, 127
Hsp60 chaperonin of, 255–260
and ICT, 79–81
identification of cytotoxic, 199–202
identification without eukaryotic host cells, 169–175
infectiousness of, 97–98
inflammatory immune response to cytosolic flagellin, 313–319
and iron/low-temperature water, 214–216, 242
in Korea, 109
and latex agglutination reagents, 82, 83
and lichen extracts, 407–409
lipopolysaccharide architecture of, 261–264
mip function in, 224–226
and monochloramine, 529–531, 533–536
mouse macrophage resistance to, 301–306
outer membrane protein of, 19
outer membrane vesicles of, 16, 269–273
PAL antigen reactivity, 76–78
and patatin-like proteins, 199–202
pathogenesis of specific genes, 251–254
peptidoglycan-associated lipoprotein of, 321–322
pregnant pause virulence strategy of, 274–277
SBT for investigation of, 143–144
sequencing vs. serological identification of, 58–62
serotyping of, 68–71
signaling between multiple prokaryotes and, 403–406
Spanish seroepidemiological study of, 118–120
Tat pathway and two-dimensional protein gel electrophoresis, 217–219
translocation pathway of T4SS, 195–197
and type II protein secretion/twin-arginine translocation, 207–212
typing of, 94–98
viable-but-nonculturable state of, 533–536
Legionella pneumophila sg 1
cases of, 15, 16
detection of, 449–452, 460–462
in hotel potable-water systems, 125
and ICT, 79–81
identification of, 60, 61
in Korea, 108, 109
and latex agglutination reagents, 82, 83
in Netherlands, 136, 137
PAL antigen reactivity, 76, 77
PFGE/SBT in Japan, 159–162
and seawater concentration/temperature, 420–422
serologic sensitivity within, 63–67
Legionella pneumophila sg 6, 143–144
Legionella pneumophila Corby, 221–223
Legionella pneumophila Philadelphia-1, 339–342
Legionella pneumophila genes
pathogenesis role of, 251–254
transcriptional control of *lpnR* regulatory proteins, 327–331
Legionella pneumophila pathogenesis
in animal models, 278–282
and ciliate *Tetrahymena* sp. interaction, 297–300
phagosomal transporter protein family in, 288–291
Legionella pneumophila pathogenesis, (continued)
phosphoinositide metabolism in, 292–295
specific genes in, 251–254
Legionella pneumophila phospholipase A
identification/characterization of, 232–237
virulence factors by diversity, 228–230
Legionella pneumophila urinary antigens, 4, 18
Legionella rubrilucens, 61, 62
Legionella rubrilucens/taurinensis, 61
Legionella sainthelensi, 76, 77, 79, 81, 91
Legionella santicrusis, 61
Legionella secretion pathway (Lsp), 207–212
defining, 207, 209–210
extracellular growth role of, 210
intracellular growth role of, 210
and Tat pathway, 211–212
virulence role of, 211
Legionella tauriniensis, 61, 62, 82, 83
Legionella tauriniensis/rubrilucens, 61
Legionella testing patterns, 100–104
outbreaks, 102
rising notifications, 100–101
risk profile recognition, 102, 103
urinary antigen testing, 102, 103
Legionella vip genes, 181–182
Legionella wadsworthii, 61, 186
Legionnaires’ disease (LD), 3–7
bloodwork for, 5
clinical features of, 3, 4
coinfections with, 5–6
emergency-room diagnosis of, 4–5
follow-up to, 6
goals of diagnosing, 6
histopathology of, 313–314
importance of diagnosing, 6–7
pneumonia vs., 3, 4
prevention of, 538–541
scoring systems for, 3, 4
statistics about, 4
strains of, 18
testing strategies for, 84–85
Leishmania, 11
Lens, France, 98
Levofloxacin, 9–11, 40–41, 43–46
Lichen extracts, 407–409
LidA, 171, 172
Lidköping, Sweden, 63–67
Lipopolysaccharide (LPS), 16, 18
architecture of, 261–264
lag-1 acetylation of, 265–267
Lipopolysaccharide-associated gene (lag-1), 265–267
Listeria monocytogenes, 11
London epidemics, 98
009 London genotype, 137
010 London genotype, 136, 137
013 London genotype, 136, 137
029 London genotype, 137
Low-temperature tap water, 214–216
LPLA. See Lysophospholipase A
LpuR regulatory proteins, 327–331
LPS. See Lipopolysaccharide
Lsp. See Legionella secretion pathway
Lsp-secreted protein
defining, 207–210
enzymatic activities promoted by, 209
and extracellular growth, 210
and intracellular growth, 210
and virulence, 211
Lss secretion system, 221–223
001 Lugano genotype, 136, 137
017 Lugano genotype, 137
Lung disease, 5, 6
Luxembourg, 92
Lyon Cedex 1 subgroup, 140
004 Lyon genotype, 136, 137
Lysophospholipase A (LPLA), 199–202, 238–241
M
MAb. See Monoclonal antibody
MAb 3–1, 68
MAb 3–1 negative strains, 16, 18, 69–71
MAb 3–1 positive strains, 15, 16, 18, 69–71
Macro-azalides, 10
Macrolides, 40
fluoroquinolones vs., 9
Korean use of, 108
and mortality rate, 9
pharmacokinetic/pharmacodynamic advantages, 8–9
Macrophage function and susceptibility, 307–309
Macrophage infectivity potentiatior (mip) gene, 18,
59–61, 156–158
Macrophage infectivity potentiatior (mip) protein,
224–226
Macrophage resistance, in mice, 301–306
Mandatory reporting, 28, 33
Mature intracellular form (MIF), 297–300
MBC (minimum bactericidal concentration), 43
Mechanical ventilation, 9, 10, 26, 29, 40
Melbourne Aquarium outbreak (Australia), 101, 102,
104
Membrane vesicles, 274–277
Merck KGaA, 73
Metalworking fluids (MWFs), 463–464
Metronidazole, 147
Miami Beach 1 subgroup, 140, 141
Mice
apoptosis induction in, 283–286
chromosome 13 in, 310–312
inflammatory immune response to cytosolic
flagellin in, 313–319
Lsp promoting virulence of L. pneumophila in,
211
macrophage resistance in, 301–306
PAL activates Toll-like receptor 2 in, 321–322
Microarray design, 347
Microbial interactions, 383–388
Microbiological diagnostics, 15–20
culture samples, 15–18
direct fluorescent antibody, 19
nucleic acids in, 19
sensitivity of, 17
serum antibody, 20
urine antigen, 18
MIF. See Mature intracellular form
Milan, Italy, 114
Minimum bactericidal concentration (MBC), 43
Mip gene. See Macrophage infectivity potentiation
gene
Mip PCR, 48
Mip protein. See Macrophage infectivity potentiation
protein
MLEE. See Multilocus enzyme electrophoresis
MLST-like sequence-based typing, 129
Mobilization (Mob) proteins, 172–173
Molecular comparison, 139–141
Monochloramine
in large building water systems, 526–528
and surface-associated L. pneumophila, 529–531
viable-but-nonculturable state of L. pneumophila
induced by, 533–536
Monoclonal antibody (MAb), 16, 94
Mortality by Legionella
CALP vs. HALP, 23, 24
combined therapy’s effects on, 11
risk factors for, 25–26
Motility, 348–349
Moxifloxacin, 10
Multilocus enzyme electrophoresis (MLEE), 139–141
Murcia, Spain, 98
Muscle, 6
Mutants, 170–172
MWFs. See Metalworking fluids
Mycobacterium tuberculosis, 11
Mycoplasma pneumoniae, 11, 63, 65, 67, 85
Myeloid leukemia, 153
N
NAATs. See Nucleic acid amplification tests
Naip5, 315–318
National Epidemiological Institute (Spain), 119
Near-drowning, 146–148
Neisseria meningitidis, 11
Neopterin, 5
Netherlands, 92, 132, 135–137
Neurological sequelae, 26
New Zealand, 251, 477–481
NIMV (noninvasive mechanical ventilation), 40
Nitroreductase (rdxA), 339–342
Nocardia asteroides, 11
Noninvasive mechanical ventilation (NIMV), 40
Northern Italy, 114–116
Nosocomial Legionnaire’s disease, 5, 18. See also
Hospital-acquired Legionella pneumonia
and change in Legionella subtype, 128–131
control of, 473–475
in Copenhagen, 33–36
in England/Wales, 105
in Europe, 90
in Germany, 132, 133
outbreaks of, 483–485
prevalence of, 16
SBT for investigation of, 143–144
sensitivity of, 19
in U.S., 133
Notification rates, 100, 101
NU243 strain, 385
Nucleic acid amplification tests (NAATs), 54, 85
Nursing home water systems, 505–507
Nutrient starvation, 288
O
Ofloxacin, 10, 43–46
Ohio State, 3
OLDA/Oxford subgroup, 70
OLDA subgroup, 64–66
OM vesicles. See Outer membrane vesicles
Online identification of Legionella spp., 156–158
Online SBT tool, 163–166
database comparison/result submission for, 164, 165
quality assessment/contig assembly of, 164, 165
utility of, 163–164
Open reading frame (ORF), 174, 246–249
Organ transplant recipients, 5, 109
Organellar trafficking, 258–259
Outbreak detection, 90, 91, 105–106
Outer membrane (OM) vesicles, 269–273
Oxidized glutathione test, 59–61
P
PAL. See Peptidoglycan-associated lipoprotein
Pancreatitis, 5–6
Paris, 97, 141
PatA. See Patatin-like phospholipase A
Patatin-like phospholipase A (PLP), 199–202, 229–230
Patatin-like phospholipase A (PatA), 199–202
Pathogenesis of L. pneumophila, 207–212
and cross-talk, 212
defining Lsp secretome, 207–210
and hyperoxia, 278–281
and interspecies communication, 281–282
Lsp and extracellular growth, 210
Lsp and intracellular growth, 210
Lsp and virulence, 211
membrane vesicles in, 276–277
Pathogenesis of *L. pneumophila*, (continued)
Tat and cytochrome c-dependent respiration, 211
Tat and intracellular infection, 212
Tat and low-iron growth, 211–212
Tat pathway and phospholipase C activity, 211
Pazufloxacin, 9
PBS. See Phosphate-buffered saline
PCR, 17
5S PCR, 48
PCR assays
access to, 85
advantages of, 48, 49
community-acquired pneumonia detection by,
51–52
primer vs. probe, 48
sensitivity/specificity of, 19–20, 48
targets of, 47
PCR-ELISA. See PCR–enzyme-linked
immunosorbent assay
PCR–enzyme-linked immunosorbent assay
(PCR-ELISA), 55–56
Peptide nucleic acid probes, 442–445
Peptides, 411–413
Peptidoglycan-associated lipoprotein (PAL)
antigenic diversity among *Legionella* species of,
76–78
and immunochromatographic test, 79–81
and Toll-like receptor 2, 321–322
PFGE. See Pulsed-field gel electrophoresis
Phagocytosis, 203, 292–295
Phagosomal transporter (Pht) protein family, 288–291
Phase-dependent gene expression patterns, 347–348
Phenotypic diagnosis, 47
PhHV PCR, 48
Philadelphia 1 strain, 170, 199–201, 205, 234–236,
339–342
Philadelphia epidemic, 3, 98
Philadelphia subgroup, 64–66, 68, 70, 153, 154
Phosphate-buffered saline (PBS), 192–193
Phosphoinositide metabolism, 292–295
Phospholipase A (PLA)
identification/characterization of, 232–237
virulence factors, 228–230
Phospholipase C activity, 211
Pht protein family. See Phagosomal transporter
protein family
Piccadilly circus outbreak, 106
PilD. See Prepilin petidase
PilE. See *Type IV pili
Pili, 383–384
Piperacillin-tazobactam, 146, 147
PLA. See Phospholipase A
PlaB, 228–230
PlaC, 238–239
PlaD, 239–241
Planktonic *L. pneumophila*, 386–388, 533–536
Plasticity, 356–357
PLP. See Patatin-like phospholipase
Pneumococcal pneumonia, 4
Pneumocystis jirovei, 11
Pneumonias
Legionnaires’ disease vs, 3, 4
prevalence of all, 16
Polyclonal antisera, 16, 18
Pontiac fever, 108
Pontiac fever-like illness, 19
Pool water, 148
Post-traumatic stress disorder, 6
Potable-water systems
detection/identification of free-living protozoa in,
427–430
in German hospitals, 133, 134
peptide nucleic acid probes for detection in,
442–445
persistence/genotypic stability of LD in, 124–127
restrictions on use of, 36
Potting mix, 103, 149–150
Pregnant pause virulence strategy, 274–277
Prepilin petidase (PilD), 384, 385
Prevention of LD, 89, 538–541, 547
Prevotella intermedia, 11
Procainamid, 5
Prokaryotes, 403–406
Proteus mirabilis, 11
Prystynamycin, 9
Pseudohyphal growth, 257–258
Pseudomonas aeruginosa, 11, 146, 147, 199, 200, 383,
385, 386
PubMed, 37
Pulsed-field gel electrophoresis (PFGE), 95, 125, 126,
159–162
Putulent collection, 11
QMRA. See Quantitative microbial risk assessment
for Legionella
Quantitative microbial risk assessment (QMRA) for
Legionella, 486–488
Quinolones, 9, 41, 108
R
RA for *Legionella*. See Risk assessment for *Legionella*
Rhabdomyolysis, 23
RAPD-PCR technique, 83
Rapid immunographic assay, 18
rdxA. See Nitroreductase
Real-time 5S PCR, 48
Real-time PCR, 456–459
Recurring LD outbreak, 139–141
Redundancy, 179
Reference Laboratory of *Legionella*, 58
Renal failure, 10, 13, 23, 26
Replicative phase of *L. pneumophila*, 348, 386
Respiratory disease, 26, 29, 150
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory failure</td>
<td>23</td>
</tr>
<tr>
<td>Respiratory specimens</td>
<td>17</td>
</tr>
<tr>
<td>Respiratory symptoms</td>
<td>23</td>
</tr>
<tr>
<td>Restriction-fragment length polymorphism (RFLP) typing</td>
<td>95, 97</td>
</tr>
<tr>
<td>Reverse dot blotting</td>
<td>51–52</td>
</tr>
<tr>
<td>Reverse transcriptase-PCR</td>
<td>446–448</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>146</td>
</tr>
<tr>
<td>Rib mutants</td>
<td>189</td>
</tr>
<tr>
<td>Ribotyping</td>
<td>58</td>
</tr>
<tr>
<td>Rifampin</td>
<td>40, 43–46</td>
</tr>
<tr>
<td>Risk assessment (RA) for Legionella in building water systems</td>
<td>465–467</td>
</tr>
<tr>
<td>with environmental sampling, 543–548</td>
<td></td>
</tr>
<tr>
<td>quantitative microbial, 486–488</td>
<td></td>
</tr>
<tr>
<td>in spa industry, 489–492</td>
<td></td>
</tr>
<tr>
<td>standardization of, 547–548</td>
<td></td>
</tr>
<tr>
<td>Risk factors for LD in Australia study of</td>
<td>102, 103</td>
</tr>
<tr>
<td>with gardening, 149–150</td>
<td></td>
</tr>
<tr>
<td>Italian multicentric study of, 110–112</td>
<td></td>
</tr>
<tr>
<td>in Netherlands, 137</td>
<td></td>
</tr>
<tr>
<td>travel-associated, 121–123</td>
<td></td>
</tr>
<tr>
<td>Risk factors for LD mortality</td>
<td>25–26</td>
</tr>
<tr>
<td>River water</td>
<td>148</td>
</tr>
<tr>
<td>5S RNA PCR</td>
<td>56</td>
</tr>
<tr>
<td>16S RNA PCR</td>
<td>55, 56</td>
</tr>
<tr>
<td>Roentgenography</td>
<td>6</td>
</tr>
<tr>
<td>005 Rome genotype</td>
<td>137</td>
</tr>
<tr>
<td>020 Rome genotype</td>
<td>137</td>
</tr>
<tr>
<td>028 Rome genotype</td>
<td>136, 137</td>
</tr>
<tr>
<td>RpoH expression, modulation of, 336–338</td>
<td></td>
</tr>
<tr>
<td>RRNA, 53–54</td>
<td></td>
</tr>
<tr>
<td>16S rRNA gene</td>
<td>59–62</td>
</tr>
<tr>
<td>16S rRNA PCR</td>
<td>48</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>St. Croix outbreak</td>
<td>139–141</td>
</tr>
<tr>
<td>SaO₂</td>
<td>9</td>
</tr>
<tr>
<td>SBT, See Sequence-based typing</td>
<td></td>
</tr>
<tr>
<td>SCAP</td>
<td>8</td>
</tr>
<tr>
<td>SCAP (severe CAP)</td>
<td>8</td>
</tr>
<tr>
<td>Scirrus</td>
<td>37</td>
</tr>
<tr>
<td>Scoring systems for Legionnaires’ disease</td>
<td>3, 4</td>
</tr>
<tr>
<td>SD Bioline Legionella antigen test</td>
<td>79–81</td>
</tr>
<tr>
<td>Seawater concentration</td>
<td>420–422</td>
</tr>
<tr>
<td>Septic shock</td>
<td>23, 26</td>
</tr>
<tr>
<td>Sequence-based methods ecological diversity discovered with, 367–375</td>
<td></td>
</tr>
<tr>
<td>serological vs., 58–62</td>
<td></td>
</tr>
<tr>
<td>in absence of isolates, 152–155</td>
<td></td>
</tr>
<tr>
<td>Sequence-based typing (SBT)</td>
<td>95–97</td>
</tr>
<tr>
<td>in Japan, 159–162</td>
<td></td>
</tr>
<tr>
<td>and nosocomial-LD investigation, 143–144</td>
<td></td>
</tr>
<tr>
<td>online-tool development for, 163–166</td>
<td></td>
</tr>
<tr>
<td>PFGE vs., 159–162</td>
<td></td>
</tr>
<tr>
<td>Seroepidemiological study of L. pneumophila, 118–120</td>
<td></td>
</tr>
<tr>
<td>Serogroups (sg) of L. pneumophila</td>
<td>18</td>
</tr>
<tr>
<td>as Legionella identifiers, 16, 18</td>
<td></td>
</tr>
<tr>
<td>Serologic sensitivity</td>
<td>20, 63–67</td>
</tr>
<tr>
<td>Serological detection methods</td>
<td>58–62</td>
</tr>
<tr>
<td>Seroprevalence of L. pneumophila antibodies in Northern Italy</td>
<td>114–116</td>
</tr>
<tr>
<td>in Spain, 118–120</td>
<td></td>
</tr>
<tr>
<td>Serotyping of L. pneumophila, 68–71</td>
<td></td>
</tr>
<tr>
<td>in absence of isolates, 152–155</td>
<td></td>
</tr>
<tr>
<td>discrimination power in, 71</td>
<td></td>
</tr>
<tr>
<td>reagent selectivity for ELISA, 68–71</td>
<td></td>
</tr>
<tr>
<td>Serum antibody detection</td>
<td>47–50</td>
</tr>
<tr>
<td>Serum samples</td>
<td>17</td>
</tr>
<tr>
<td>Sessile L. pneumophila</td>
<td>386–388</td>
</tr>
<tr>
<td>Severe CAP (SCAP)</td>
<td>8</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>171, 194</td>
</tr>
<tr>
<td>Shock heat</td>
<td>133</td>
</tr>
<tr>
<td>Shuman laboratory</td>
<td>184–188</td>
</tr>
<tr>
<td>Siderophores</td>
<td>242–245</td>
</tr>
<tr>
<td>Sigma factors</td>
<td>349</td>
</tr>
<tr>
<td>Signaling</td>
<td>403–406</td>
</tr>
<tr>
<td>Silver-hydrogen peroxide treatment</td>
<td>505–507</td>
</tr>
<tr>
<td>Smoking</td>
<td>23, 29, 31, 32, 102, 108, 109, 150</td>
</tr>
<tr>
<td>South Australia</td>
<td>149–150</td>
</tr>
<tr>
<td>Spa industry</td>
<td>489–492</td>
</tr>
<tr>
<td>Spa pools in Australia, 102</td>
<td></td>
</tr>
<tr>
<td>as source of community-acquired LD, 91</td>
<td></td>
</tr>
<tr>
<td>Spa water, 148, 160, 162</td>
<td></td>
</tr>
<tr>
<td>Spain antibody study in, 118–120</td>
<td></td>
</tr>
<tr>
<td>community-acquired LD in, 91</td>
<td></td>
</tr>
<tr>
<td>cooling-tower studies in, 436–437, 439–441</td>
<td></td>
</tr>
<tr>
<td>incidence rate in, 132</td>
<td></td>
</tr>
<tr>
<td>incidence rates in, 92</td>
<td></td>
</tr>
<tr>
<td>SBT profiles of L. pneumophila in, 97, 98</td>
<td></td>
</tr>
<tr>
<td>serological- vs. sequenced-based-identification study in, 58</td>
<td></td>
</tr>
<tr>
<td>travel-associated LD in, 121–123</td>
<td></td>
</tr>
<tr>
<td>Spanish Census Office</td>
<td>121</td>
</tr>
<tr>
<td>Spiramycin</td>
<td>9, 10</td>
</tr>
<tr>
<td>Sport facilities</td>
<td>116</td>
</tr>
<tr>
<td>SPP, See Streptococcus pneumoniae pneumonia</td>
<td></td>
</tr>
<tr>
<td>SSI, See Statens Serum Institut</td>
<td></td>
</tr>
<tr>
<td>Staffordshire Hospital outbreak</td>
<td>105, 106</td>
</tr>
<tr>
<td>Standardization of risk assessment</td>
<td>547–548</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5, 11</td>
</tr>
<tr>
<td>Staphylococcus aureus pneumonia</td>
<td>19</td>
</tr>
</tbody>
</table>
Staphylococcus warneri, 411–413
Statens Serum Institut (SSI), 33, 35
008 Stockholm genotype, 137
030 Stockholm genotype, 136, 137
Streptococcus mitis, 11
Streptococcus pneumoniae, 5, 11, 48
Streptococcus pneumoniae (SPP), 30–32
Subcellular localization of dot/icm proteins, 192–194
Superinfections, 5, 11
Suppressor plasmids, 203–204
Surface-associated L. pneumophila, 529–531
Sweden, 63, 89, 97, 143–144
Switzerland, 92, 97
T
T pilus complex, 195–196
Tap water
Acanthamoeba castellani and L. pneumophila in,
low-temperature, 214–216
Target proteins, identification of, 221–223
Tat secretion pathway, 217–219
Tat system
and cytochrome c-dependent respiration, 211
and growth under low-iron conditions, 211–212
and intracellular infection, 212
model for, 207, 208
and phospholipase C activity, 211
Telithromycin, 10
Temperature
control with ionization/TMVs vs., 509–512
effects of, 420–422
Testing strategies, 84–85, 546–547
Tetracyclines, 10
Tetrahymena sp., 297–300
T4SS. See Type IV secretion system
Thermal waters for medicinal purposes, 489–492
Thermostatic mixing valves (TMVs), 509–512, 546
TLR4, 110
TLRs. See Toll-like receptors
TMA. See Transcription-mediated amplification assay
Tmethylprednisolon, 146
TMVs. See Thermostatic mixing valves
Tobramycin, 146
Toll-like receptors (TLRs), 110, 321–322
Total heterotrophic plate counts (TPCs), 465
TPCs (total heterotrophic plate counts), 465
Transcription-mediated amplification assay (TMA),
53–54
Transcriptional control of LphR regulatory proteins,
327–331
Transcriptional host cell response to L. infection,
391–392
Transcriptional regulators, 349
Translocation, 207–212
Translocation pathway of L. pneumophila T4SS,
195–197
Translocation substrates of L. pneumophila, 169–175
Transmission of Legionella, 43
Transmissive phase of L. pneumophila, 348–349
Travel-associated LD
control/prevention of, 89
definitional changes for, 91
in England/Wales, 105
in Europe, 90, 92
prevalence of, 16
sensitivity of, 18, 19
in Spain, 121–123
typing used in investigation of, 95
Treatment of Legionnaires’ disease, 8–13
ancillary, 86
antibiotic, 8–10
combined, 11, 12
duration of, 10–11
empiric antibiotic, 85
with extrapulmonary manifestations, 11
with levofloxacin/azithromycin, 40–41
macrolides vs. fluoroquinolones, 9
mechanical ventilation as, 9, 10
with polymicrobial infection, 11
positioning in, 9
and prognostic factors, 12–13
statistics, 8
steroid, 10
with superinfection, 11, 12
Trojan horse analogy, 184
T2S. See Type II protein secretion
Twin-arginine translocation, 207–212
Two-dimensional gel electrophoresis, 217–219
Type II protein secretion (T2S)
and biofilm development, 384
and iron/low-temperature water, 214–216
and twin-arginine translocation promoting pathogenesis, 207–212
Type IV pili (PilE), 383–384, 384
Type IV secretion system (T4SS), 169–173, 187,
195–197. See also Dot/icm type IV secretion system
Typing of L. longbeachae, 149–150
Typing of L. pneumophila, 94–98
in absence of isolates, 152–155
and distribution/infectiousness, 97–98
in endemic disease investigation, 95
in epidemic disease investigation, 94
and near drowning, 146–148
in nosocomial LD, 143–144
by PFGE/SBT, 159–162
reason for, 94
sequence-based, 95–97
in travel-associated LD, 95
Typing of Legionella spp., 156–158, 163–166
U
UA detection. See Urinary antigen detection
U937 macrophages, 200–202
United Kingdom. See also England; Wales
environmental-sampling study in, 543–548
Hampshire outbreak in, 152–154
RFLP typing used in, 95
SBT profiles of L. pneumophila in, 97, 98
travel-associated LD in, 92
United States
LD cases in, 184
nosocomial LD in, 133
SBT profiles of L. pneumophila in, 97
Urinary antigen (UA) detection
advantages of, 19
and culture sampling, 55
in England/Wales, 107
in Hospital Germans Trias i Pujol, 25, 28
of L. pneumophila, 4
with rapid immunochromatographic test, 79–81
sensitivity/specificity of, 18–19
Urinary antigens, 18
Urine samples, 17
UV light, 133
V
Vacuolar membranes, 169
Vesicular trafficking, 258–259, 292–293
Viable-but-nonculturable state of L. pneumophila, 533–536
Victoria, Australia, 100–104
Victorian Infectious Diseases Reference Laboratory (VIDRL), 101, 102
Vidourle Valley (France), 456–459
VIDRL. See Victorian Infectious Diseases Reference Laboratory
VipD, 199–201
VirB/D4 T4SS, 195–197
Virulence
in different strains, 355–356
diversity factors in, 228–230
and eukaryotic-like proteins, 246–249
and gene expression, 327–331
and Lsp, 211
and patA/vipD mutants, 201–202
pregnant pause strategy of, 274–277
in transmissive phase, 348–349
W
Wales, 105–107
Wastewater, industrial, 493–496
Water, 16
drinking, 427–430, 442–445
tap, 35, 214–216, 395–396
Water circulating systems, 431–435
Water management plans and budgets, 538–539
Water safety plan (WSP), 539, 543–545
Water samples, 423–435
GMS rapid detection from, 453–455
reverse transcriptase-PCR for detection in, 446–448
Water systems
hospital. See Hospital water systems
hotel potable, 124–127
monochloramine for control in, 526–528
nursing-home, 505–507
resistant strains in, 44
risk assessment for Legionella in, 465–467
as source of community-acquired LD, 91
Spanish hotel, 124–127
Western Australia, 100
WHO (World Health Organization), 89
Winthrop–University scoring system, 3, 4
World Health Organization (WHO), 89
WSP. See Water safety plan
Z
Zero-aerosol cooling towers, 513–517
Zinc metalloprotease ProA, 238–239
ALSO AVAILABLE FROM ASM PRESS

Exposure: a Guide to Sources of Infections
Dieter Stürchler, Basel University, Basel, and
StürchlerEpidemiologic, Büren, Switzerland

Exposure: a Guide to Sources of Infections is a single reference source for clinicians, public health professionals, epidemiologists, and clinical microbiologists working to identify infectious disease agents. From prions to parasites, this unique new volume offers comprehensive coverage of infections and infectious agents and provides a good starting point for compiling a thorough patient exposure history and initiating the appropriate laboratory testing.

The Power of Plagues
Irwin W. Sherman

The Power of Plagues offers a fascinating examination of epidemic diseases within a historical context. Chapters present individual, independent plague stories complemented by relevant and historical illustrations. Major historic outbreaks are covered, including those of the Greek and Roman empires as well as the infamous Black Death. Contemporary and emerging diseases are comprehensively detailed, including HIV-AIDS, tuberculosis, malaria, smallpox, severe acute respiratory syndrome (SARS), West Nile virus infection, influenza, mad cow disease, and several others.

Emerging Infections 7
Editors: W. Michael Scheld, University of Virginia Health System
David C. Hooper, Massachusetts General Hospital and Harvard Medical School
James M. Hughes, Emory University School of Medicine

This new volume is the seventh in a series of books based on ICAAC Symposia on Emerging Infections. It offers an updated review of new and emerging infectious diseases, including avian influenza (H5N1), SARS, West Nile fever, and many others.