The BIOLOGY of VIBRIOS
The BIOLOGY of VIBRIOS

EDITED BY

Fabiano L. Thompson, Brian Austin, and Jean Swings
To Huai-Shu Xu
CONTENTS

Contributors • ix
Preface • xiii

I. Introduction
1. A Global and Historical Perspective of the Genus Vibrio • 3
R. R. Colwell

II. Isolation, Enumeration, and Preservation
2. Isolation, Enumeration, and Preservation of the Vibrionaceae • 15
Bruno Gomez-Gil and Ana Roque

III. Classification and Phylogeny
3. Taxonomy of the Vibrios • 29
Fabiano L. Thompson and Jean Swings
4. Molecular Identification • 44
Mitsuaki Nishibuchi

IV. Genome Evolution
5. Comparative Genomics: Genome Configuration and the Driving Forces in the Evolution of Vibrios • 67
Tetsuya Iida and Ken Kurokawa
6. Gene Duplicates in Vibrio Genomes • 76
Dirk Gevers and Yves Van de Peer
7. The Roles of Lateral Gene Transfer and Vertical Descent in Vibrio Evolution • 84
Yan Boucher and Hatch W. Stokes
8. The Adaptive Genetic Arsenal of Pathogenic Vibrio Species: the Role of Integrons • 95
Dean A. Rowe-Magnus, Mohammed Zouine, and Didier Mazel

V. Physiology
9. Motility and Chemotaxis • 115
Linda L. McCarter
10. Adaptive Responses of Vibrios • 133
Diane McDougald and Staffan Kjelleberg
11. Extremophilic Vibrionaceae • 156
Douglas H. Bartlett

VI. Habitat and Ecology
12. Aquatic Environment • 175
Hidetoshi Urakawa and Irma Nelly G. Rivera
13. Dynamics of Vibrio Populations and Their Role in Environmental Nutrient Cycling • 190
Janelle R. Thompson and Martin F. Polz
14. The Vibrio fischeri–Euprymna scolopes Light Organ Symbiosis • 204
Eric V. Stabb
15. The Mutual Partnership between *Vibrio halioticoli* and Abalones • 219
 Tomoo Sawabe

16. Vibrios in Coral Health and Disease • 231
 Eugene Rosenberg and Omry Koren

17. *Vibrio cholerae* Populations and Their Role in South America • 239
 Ana Carolina P. Vicente, Irma Nelly G. Rivera, Michelle D. Vieira, and Ana Coelho

VII. Animal Pathogens

18. The Biology and Pathogenicity of *Vibrio anguillarum* and *V. ordalii* • 251
 Jorge H. Crosa, Luis A. Actis, and Marcelo E. Tolmasky

19. *Vibrio harveyi*: Pretty Problems in Paradise • 266
 Leigh Owens and Nancy Busico-Salcedo

20. *Vibrio salmonicida* • 281
 Brian Austin

21. *Vibrio splendidus* • 285
 Frédérique Le Roux and Brian Austin

22. Miscellaneous Animal Pathogens • 297
 Brian Austin

VIII. The Impact of Genomics and Proteomics in the Study of Human Pathogens

23. *Vibrio cholerae*: the Genetics of Pathogenesis and Environmental Persistence • 311
 Michael G. Prouty and Karl E. Klose

24. *Vibrio parahaemolyticus* • 340
 Tetsuya Iida, Kwan-Sam Park, and Takeshi Honda

25. *Vibrio vulnificus* • 349
 James D. Oliver

26. Miscellaneous Human Pathogens • 367
 Mitsuaki Nishibuchi

IX. Epidemiology

27. Epidemiology • 385
 Shah M. Faruque and G. Balakrish Nair

X. Applications

28. Biotechnological Applications • 401
 J. Grant Burgess

XI. Conclusions

29. Conclusions • 409
 Fabiano L. Thompson, Brian Austin, and Jean Swings

Index • 417
CONTRIBUTORS

Luis A. Actis
Department of Microbiology, Miami University, Oxford, Ohio 45056

Brian Austin
School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, Scotland, United Kingdom

Douglas H. Bartlett
Marine Biology Research Division (0202), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202

Yan Boucher
Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia

J. Grant Burgess
School of Marine Science and Technology, Armstrong Building, University of Newcastle, Newcastle Upon Tyne NE1 7RU, United Kingdom

Nancy Busico-Salcedo
College of Veterinary Medicine, University of Southern Mindanao, Kacacan, 9407 Cotabato, Philippines

Ana Coelho
Department of Genetics, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21944-970, Brazil

R. R. Colwell
Center for Bioinformatics and Computational Biology (CBCB), Agriculture/Life Sciences Surge Bldg. #296, Room 3103, University of Maryland, College Park, Maryland 20740

Jorge H. Crosa
Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon 97201-3098

Shab M. Faruque
Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka-1212, Bangladesh

Dirk Gevers
Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium

Bruno Gomez-Gil
CIAD, A.C. Mazatlán Unit for Aquaculture and Environmental Management, A.P. 711, Mazatlán, Sin. 82000, México

Takeshi Honda
Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Tetsuya Iida
Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Staffan Kjelleberg
School of Biotechnology and Biomolecular Sciences, Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney 2052, Australia

Karl E. Klose
South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
Omry Koren
Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel

Ken Kurokawa
Laboratory of Comparative Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Japan

Frédérique Le Roux
Laboratoire de Génétique et Pathologie, Ifremer, BP 133, Ronce les bains, 17390 La Tremblade, France

Didier Mazel
Unité postulante “Plasticité du Génome Bactérien,”—CNRS URA 2171, Dépt. Structure et Dynamique des Génomes, Institut Pasteur, 75724 Paris, France

Linda L. McCarter
Microbiology Department, The University of Iowa, Iowa City, Iowa 52242

Diane McDougald
School of Biotechnology and Biomolecular Sciences, Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney 2052, Australia

G. Balakrish Nair
Laboratory Sciences Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka-1212, Bangladesh

Mitsuaki Nishibuchi
Center for Southeast Asian Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

James D. Oliver
Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223

Leigh Owens
Microbiology and Immunology, School of Veterinary and Biomedical Sciences, James Cook University, Townsville 4811, Australia

Kwan-Sam Park
Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Martin F. Polz
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Michael G. Prouty
South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249

Irma Nelly G. Rivera
Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, CEP 05508-900, Brazil

Ana Roque
Instituto de Recerca i Tecnologia Agroalimentaries, Centre d’Aquicultura, AP200 Sant Carles de la Rapita 43540, Spain

Eugene Rosenberg
Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel

Dean A. Rowe-Magnus
Department of Microbiology, Sunnybrook & Women’s College Health Sciences Centre, Toronto, Ontario M4N 3N5, Canada

Tomoo Sawabe
Laboratory of Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan

Eric V. Stabb
University of Georgia, Department of Microbiology, 828 Biological Sciences, Athens Georgia 30602

Hatch W. Stokes
Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia

Jean Swings
Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
Fabiano L. Thompson
Microbial Resources Division and Brazilian
Collection of Environmental, and Industrial
Micro-organisms (CBMAI), CPQBA, UNICAMP,
Alexandre Caselatto 999, CEP 13140000,
Paulínia, Brazil

Janelle R. Thompson
Department of Civil and Environmental
Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge,
Massachusetts 02139

Marcello E. Tolmasky
Department of Biology, College of Natural Sciences
and Mathematics, California State University—
Fullerton, Fullerton, California 92834-6850

Hidetoshi Urakawa
Center for Advanced Marine Research, Ocean
Research Institute, The University of Tokyo,
1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan

Yves Van de Peer
BioInformatics & Evolutionary Genomics,
Ghent University/VIB Technologiepark 927,
B-9052 Ghent, Belgium

Ana Carolina P. Vicente
Department of Genetics, Instituto Oswaldo Cruz,
Rio de Janeiro, CEP 21045-900, Brazil

Michelle D. Vieira
Department of Genetics, Instituto de Biologia,
Universidade Federal do Rio de Janeiro,
Rio de Janeiro, CEP 21944-970, Brazil

Mohammed Zouine
Unité Postulante “Plasticité du Génome
Bactérien”—CNRS URA 2171, Dept. Structure et
Dynamique des Génomes, Institut Pasteur,
75724 Paris, France
Two decades has passed since the last dedicated textbook on the vibrios, i.e. *Vibrios in the Environment*, which was edited by R. R. Colwell. Since then, there have been tremendous developments in the knowledge of the vibrios, including improvements in the taxonomy, ecology, and pathogenicity of the group. Indeed, vibrios are the best studied of all aquatic bacteria. Many new species have been described, and exciting concepts have been proposed. Improved detection, characterization, and identification tools have been developed to enable the rapid screening of strains. Molecular biology analyses and, more recently, whole genome sequencing of several vibrios, have shed much light on the biology of these microbes in their natural habitats and opened up new avenues for basic and applied research. It is therefore timely to compile a volume containing data about the current status of research and understanding of the vibrios. For this, we are grateful to the co-operation of the numerous authors, all of whom have produced manuscripts within a tight time frame. ASM Press was especially helpful during all stages of the book, from the nurturing of the original idea to the professional editing of the text, to the production of the finished volume. The result is a book that is primarily targeted at bacterial taxonomists, microbial ecologists, genome researchers, health management workers, and postgraduate and senior undergraduate students.

We are grateful to the following publishers, who have given permission to use copyrighted material: ASM Press, Blackwell Publishing, Boxwood Press, Elsevier Science BV, and the *Proceedings of the National Academy of Sciences, USA*. Numerous scientists have provided original photographs, and for these we acknowledge J. Bina, M. N. Guentzel, J. Mekalanos, J. Oakey, J. Reidl and F. Yildiz.

We hope the book will be a fitting tribute to those who have worked assiduously to improve the understanding of this fascinating group of vibrios.

F. L. Thompson, B. Austin, and J. Swings
August 2005
INDEX

Abalones, biology of, 220–221
 development and aquaculture of, 220–221
 feeding behavior of, 220
 nitrogen cycle of, gut microbes and, 226–227
 taxonomy of, 220
 Vibrio halioticoli and, mutual partnership between, 219–230
 coevolution of, 227–228
 future work in, 228
 Acinetobacter baumannii, 258
 Acinetobactin, 258
 Adaptive responses, 133–155
 Alkaline peptone water, 16
 Alkaline serine exoprotease, 403
 Amplified fragment length polymorphism, 34–35, 36
 Anguibactin biosynthesis, *Vibrio anguillarum* and, 255, 256, 257
 Animal diseases, and control of, 412–413
 Animal models of cholera, 328–329
 Animal pathogens, 297–308
 Animals, marine. *See* Marine animals
 Antibiotic resistance, luminous vibriosis and, 270 rise in, 96–97
 Anticyanobacterial compound beta-cyanoalanine, 402–403
 Antigen technology, in vivo-induced, 327
 Aquatic animals, *Vibrio* species pathogenic to, 56
 Aquatic environment, 175–189
 coastal water, 175
cold adaptation in evolutionary history and, 182–183
 function and ecological roles in, 183–185
 grazing pressures and, 180–181
 habitats and niches in, 175–180
 host-microbe interactions in, 179–180
 moderately halophilic bacteria in, 181
 pelagic water, 179
 remote sensing to predict blooms in, 185–186
 salinity and temperature as distribution factors, 181–183
 sediment in, 180
 starvation response mechanism and, 180
 water and sediment, bacteria in, 177
 zooplankton in, 178–179
 Aquatic organisms, isolation of vibrios from, 20
 Bacterial luminescent disease, *Vibrio harveyi* and, 268–269
 Bacteriocins, *Vibrio harveyi*, 274
 Bacteriophages, toxicity of *Vibrio harveyi* and, 275–276
 Bacterioplankton, growth in, 193
 Bacteriophage CTXb, 72
 Barophiles, 158
 Bile, as signal for gene expression, 320
 Bile salts, 15
 Bioactive compounds, low-molecular-weight, 402–403
 Biofilm formation, as survival strategy, 144–149
 exopolysaccharide in, 147–148
 non-quorum sensing regulators of, 148–149
 protective effects of biofilms and, 145, 146
 quorum sensing regulation of, 148–149
 surface structures in, 151
 temperature and media influence on, 146–147
 Biofilms, 324
 protective effects of, 145, 146
 Bioluminescence, 3, 46
 biomonitoring using, 403–404
 importance of, in *Vibrio fischeri-Euprymna scolopes* symbiosis, 212–213
 Biotechnological applications, 401–406
 Bioterrorism, 404
 BLAST, searching databases with, 85
 Brominated compounds, 402
 Bromothymol blue teepol (BTBT) agar, 17
 Campylobacter, 7
 Capsular polysaccharide (CPS), 352–353
 Carbohydrates, degradation by *Vibrio halioticoli* and abalones, 224–225
 Carbon, storage of, 195
 Carbon products, 195
 Carbon substrates, consumption of, 195
 Cell-cell communication, interfering with, 403
 Chemotaxis, 124–127
 chemoeffectors and repellents in, 126
 chemoreceptors in, 126
 coordination of swimming and swarmng in, 127
 cytoplasmic chemotaxis genes in, 126–127
 flagellar behavior in, 125–126
 importance of, 124
 motility and, 115–132, 181, 314–315
 Chemotaxis genes, polar flagellar genes and, 115
 Chitin degradation, 184
 Chitinases, excretion by *Vibrio harveyi*, 273
 Cholera, acquisition of, 311–312, Color Plate 15
 animal models of, 328–329
 cases versus cases predicted, 8, 9
 countries reporting cases in 2003, 387, Color Plate 18
 enzyme-linked immunosorbent assay in, 404
 epidemiology of, 184, 387–392
 historical perspective on, 3
 in South America, historical and epidemiological aspects of, 239, Color Plate 10
 in 1990s, 239–240, Color Plate 10

417
research on, 243–246
multilocus enzyme electrophoresis and ribotyping in, 240
outbreaks of, sea surface temperature and, 8–9
population susceptible to, 388
seasonal epidemics of, 388
seventh pandemic of, 387
strains causing, 311
symptoms of, 312
Cholera toxin, 312–313, 401–402
Cholera toxin B subunit, 401–402
Cholera vaccine(s), 401
development of, 329–330
Chromogenic agar (CHROMagar Vibrio), 17–18
Chromosomal multidrug efflux pumps, 95–96
Chromosomes. See Two-chromosome genome configuration
Climate, and epidemic patterns, ecological relationship between, 185–186
Clinical samples, isolation of vibrios from, 20
Coastal waters, dynamics and distribution in, 190–191
Cold shock response, extremophilic Vibrionaceae and, 159
Colistin, 15
Colistin-polymyxin B-cellobiose agar, 357–358
Collagenase, 403
Colonization factors, in Vibrio fischeri-Euprymna scolopes symbiosis, 204–205
Colony hybridization technique, 23
Coral reefs, functions of, 233
Corals, bleaching of, vibrio population increases in, 232
decline in, 231
diseases of, 231–238
Counterillumination, 206
CP-T1, 323
Crassostrea gigas, 290, 291, 292, 293
Crustaceans, isolation of vibrios from, 21–22
Cryopreservation, 23
CTXφ, 322–323
Cultivation, media used for, 16–20, Color Plate 1
Culture collections, 23–24
and databases, publicly accumulated worldwide, biotechnical applications of, 413–414
Culturing, 413
Death, leading causes of, 5
Deep-sea habitats, dynamics and distribution in, 191–192
Differentiation, starvation-induced, 134–135
DNA-DNA hybridization and %G+C of DNA, 34, 35
DNA transfer, detection methods, 84
modes of, 84
Duplication, genome expansion by, 77–78
Dynamics and distribution of populations, 190–192
Ecology, microbial, 412
Ecotype, 288
Eels, 303–304
Enrichment media, 15–16
Enterotoxin, Vibrio heat-stable, 402
Enumeration, molecular techniques of, 22–24
Environmental conditions, changing, strategies to persist in, 180–181
flagellation and, 115
Environmental nutrient cycling, 190–203
system-level significance of, 192–194
Environmental samples, isolation of vibrios from, 21
Environments, aquatic. See Aquatic environment extreme, and viable but nonculturable state, 165
Enzymatic activity, extracellular, 193–194, 405
Extracellular enzymatic activity, 193–194, 403
Extracellular proteins, Vibrio harveyi and, 272–273
Evolution, driving forces in, 71–73
lateral and vertical inheritance in, 91–92
diversity of piezophiles and, 161–162
membrane alteration and, 162–163
mesophilic organisms and, 162
Piezobacterium profundum strain SS9 genetics/genomics and, 164
piezophile enzymes and, 163
low-temperature adaptation in, 158–161
cold shock response and, 159
membrane alteration and, 160–161
nucleic acid function and, 159–160
protein folding and, 161
psychrophile enzymes and, 161
low-temperature-adapted, examples of, 157–158
osmotic adaptation of, 164–165
Fatty acid methyl ester analysis, 32
Fermentation, by Vibrio halioticoli, abalones and, 225–226
Fermentation patterns, 183–184
Fish, isolation of vibrios from, 20
Fish pathogens, 3
Flagellar filaments, as propellers, 116–119
polar propulsion of, sodium-driven, 119–120
Flagellar genes, polar, and linked chemotaxis genes, 118
Flagellar system, lateral, 123–124
and polar, differences between, 124
genes of, 123
polar flagellar performance and, 128
regulation of expression of, 123–124
lateral propulsion in, 123
regulatory hierarchy and morphogenetic pathway in, 123–125
polar, 115–123
and lateral, differences between, 124
flagellar filaments of, 116–119
MotA-MotB complex of, 120
MotX and MotY proteins of, 120–121
polar flagellar genes of, 115–121
polar propulsion and, 119–120
regulatory hierarchy and morphogenetic pathway in,
121–123
sheath of, 119
surface sensing and, 128
torque generation and ion specificity of, 120
Flagellation, environmental conditions and, 115
patterns of, 115–117
Flow cytometry for enumeration, 21–22
Fluorescence in situ hybridization (FISH), 22
Food-borne and waterborne pathogens, detection of, 56
Food products, isolation of vibrios from, 19–20
Food-web interactions, 194
Freeze-drying, 23
Freshwater environments, distribution in, 176, 181
dynamics and distribution in, 190
Gammaproteobacteria, 184
Gastroenteritis, due to *Vibrio vulnificus*, 350
seafood-borne, 340
Gene cassette arrays, integrons and, 90–91
gene coding, for taxonomy and identification, 45–46,
47–56
Gene content, variation in, 87
Gene duplicates, in genomes, 76–83
Gene families, definition of, 76
sequence divergence within, 79
Gene probe(s), 44
for molecular identification, 46–56
Gene sequences, for taxonomy and identification, 45–46
Gene transfer, lateral, 84
and vertical descent in evolution, 84–94
at single locus, 86
cases of, 86
detection by atypical composition, 85
detection of, 86–88
 genomic islands and, 88–89
in completely sequenced genomes, 87
incongruence among phylogenetic trees and, 85
methods of detection, 84–86
ranking of similarity among homologs and, 85
transposon insertion elements and, 84
Genes, central cytoplasmic chemotaxis, 126–127
in genomes, 127
conserved in bacteria, for phylogenetic analysis, 45
conserved predominantly in *Vibrionaceae*, 46–48
expression of, polar flagellar performance and, 128
lateral flagellar, 123, 124
polar flagellar performance and, 128
regulation of expression of, 123–124
polar flagellar, 115–123
Genome(s), bacteriophages and, 72
bacteriophages and, 72
completely sequenced, 91
laterally acquired genes in, 87
copies of chemotaxis genes in, 127
evolution of, evolutionary scenarios for, 78–79
expansion by duplication, 77–78
gene content comparison between, 85
gene duplicates in, 76–83
organization of parnome within, 82, Color Plate 3,
Color Plate 4
pathogenicity islands in, 72–73
properties of, 77
segmental duplication and conservation and, 82,
Color Plate 4
superintegrons in, 72
Genome configuration, two-chromosome, chromosome size
comparisons, 70–72, Color Plate 2
discovery of, 67
subsequent reports of, 67–68
Genome sequences, determination of, 4
hybridization techniques and, 86
in GenBank database, 198–199
Genome structure, and relative positions of conserved
genes, compared, 70–72, Color Plate 2
Genomic islands, lateral gene transfer and, 88–89
Genomics, advances in, *Vibrio fischeri-Euprymna scolopes*
symbiosis and, 216–217
comparative, 67–75, 198
compensative, 67–75, 198
Germ theory of disease, 3
Global perspective, 3–11
Glucose-salt-teepol broth, 16
Grazing pressures, 180–181
Great Barrier Reef, bleaching on, 236
Grimontia (Vibrio) hollisae, 367–368
Growth, maximum, temperature for, 183
nonbiological factors limiting, 133

Haliotis abalone, sectional view of, 221
Halophiles, 158, 164
Haloversatiles, 158
Hantaviruses, discovered since 1993, 7
Hemagglutinin, mannose-sensitive, 149, 326
Hemagglutinin/protease, 316–317
Hemolysin, TDH-related, 340–341
thermostable direct, 340–341
Hermodice carunculata, as disease vector, 235,
Color Plate 8
as reservoir for *Vibrio shiloi*, 235
Heterotrophs, facultatively aerobic, ecological roles of, 183–184
Historical perspective, 3–11
HlyA hemolysin, 317
Human diseases, and control of, 412–413
Hydrocarbons, polycyclic aromatic, degradation of, 185
Identification, molecular, 44–64
gene sequences useful for, 45–46
Infection, wound, 352, 355
Infectious diseases, deaths caused by, 5, 6
outbreaks of, 5, 6
Inheritance, lateral and vertical, in evolution, 91–92
Integrative and conjugative elements, 96
Integrative/conjugative elements, plasmids and, 89–90
Integron(s), adaptive capacity and, 95–111
and gene cassette arrays, 90–91
and superintegron, structural comparison of, 98
definition of, 97–98
mobile, 98
and superintegrons, resistance cassettes of, 104–105
recombination pathway in, 105–107
Integron gene cassettes, functions encoded by, 101–103
interspecies content variations of, 103
Integron integrases, phylogeny of, 99–102

Isolation, 15–22
from aquatic organisms, 20
from clinical samples, 19
from contaminated food products, 19–20
from crustaceans, 21
from environmental samples, 20
from fish, 20
from mollusks, 21

Lateral flagellar system. See Flagellar system, lateral

Lateral gene transfer. See Gene transfer, lateral

Light organ environment, Vibrio fischeri-Euprymna scolopes symbiosis in, 209–210
Light organ symbiosis, See Vibrio fischeri-Euprymna scolopes symbiosis

Lipopolysaccharide, 313–314, 353
Luminescent agar, 19

Macronutrient cycling, 195–198
Mannitol salt agar, 17
Mannose-sensitive hemagglutinin, 149, 326
Marine agar, 16, 18
Marine algal cells, dynamics and distribution in, 192
Marine animals, as vehicle for survival, 181
dynamics and distribution in, 192
impact of vibrios on, 185
pathogens of, 3
Marine environment. See Aquatic environment

Media for cultivation, 15–19
vibrios in, Color Plate 1

Membrane lipids, alteration at high pressure, 163–164
alteration at low temperature, 160–161
Mesophilic organisms, high-pressure effects on, 163–164

Microarray analysis, 413
of Vibrio cholerae genome, 327–328, Color Plate 16
Microarray hybridization, for comparisons, 86

Microbial loop, 193, 194
Microbiology, systems, 411–412
Microtox system, 404

Molecular identification, 44–64
gene sequences useful for, 45–46
Mollusks, isolation of vibrios from, 21
Monastrea, bleaching of, vibrio population increases in, 232
Moritella marina, 297
Moritella viscosa, 297
MotA-MotB complex, 120
Motility, 314–315
and chemotaxis, 115–132, 181, 314–315
flagellum-mediated, 115–127
nonflagellar, 127–128
MotX and MotY proteins, 120–121
MT agar, 17
Mucinase production, 184
Multilocus enzyme electrophoresis, 240
Multilocus sequence analyses, 35, 37, 39, 40, 86
Multilocus sequence typing, 35–37, 40
Multiplicons, 82
Mutagenesis, signature-tagged, 327

N-(β-Hydroxybutyryl) homoserine lactone, 274–275
NaCl concentrations, 15
Nitrate metabolism, pathways of, 197
Nitrate reduction, dissimilatory and assimilatory, 197
Nitrification, 197
Nitrogen, ammonification of, 197–198
cycling of, 196
Nitrogen cycle, 184
Nitrogen fixation, 196–197
Nitrogen starvation, 136
Nucleic acids, function at low temperature, 159–160
Nutrient cycling, environmental, 190–203
system-level significance of, 192–194
Nutrients, limitation of, effect on starvation response, 136

Oceans, open, dynamics and distribution in, 190–191
Oculina patagonica, bleaching by Vibrio shiloi, 232–235, Color Plate 7
Oxidative stress, in starvation survival, 136–137
Oysters, Vibrio splendidus and, 292, 293
Vibrio vulnificus and, 350–352, 358, 361–362

Paranome, functional landscape of, 80–81, Color Plate 3
organization within genome, 82, Color Plate 3, Color Plate 4

Pathogenic Vibrio species, 95
adaptive genetic capacity of, 95–111
paths of resistance of, 95–96
Pathogenicity islands, in genomes, 72–73
Pelagic water, 179
Penaeus monodon, Vibrio harveyi and, 268, 269–273
Peptidoglycan monomer, roles for, 214
Peptone salt cellobiose, 16
Phenanthrene, 185
Phosphorus, inorganic and organic, assimilation of, 198
Photobacterium damselae, 368–369
identification of, 56
subsp. damselae, 297–298
subsp. piscicida, 298–299
Photobacterium phosphoreum, 157
Photobacterium profundum, 156, 157, 159, 163–164
Phylogenetic trees, incongruence among, 85
Phylogenomics, 412–413
Phytoplankton, 8
Phaeophytes, 158
diversity of, at high pressure, 161–162
Plankton, activity in, 193
proliferation in, 193

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Fri, 21 Jun 2019 04:09:38
Plasmid profile studies, 89
Plasmid profiling, 85
Plasmids, and integrative/conjugative elements, 89–90
antibiotic resistance, *Vibrio harveyi* and, 274
 cryptic, 323
Plate count for enumeration, 21
Pocillopora damicornis, bleaching of, by *Vibrio coralliilyticus*, 235, Color Plate 9
Polar flagellar gene expression, regulation of, 118, 121–124
Polar flagellar genes, 115–116
 and linked chemotaxis genes, 118–119, 121
 for molecular identification, 47–49
 for simultaneous pathogen detection, 56
Polymyxin B, 15
Polymyxin E, 15
Polysaccharide, capsular, 352–353
 extracellular, polar flagellar performance and, 128
Porins, outer membrane, 315–316
Porites compressa, skeletal tumors of, 236
Preservation, long-term, 23
temporal or short-term, 23
Probiotics, 404
 luminous vibriosis and, 269–272
Prophages, vibriophages and, 90
Proteases, extracellular, 403
Proteins, cold shock, 159
 folding of, at low temperature, 161
 in response to starvation, 135–136
Proteobacteria, phylogenetic relationship of integron genes among, 99–102
Proteomes, ancestral, properties of, 79, 80
 parsimonious evolutionary scenario for, 78
Pseudoalteromonas, 184
Psychrophiles, 156–158
 enzymes of, low-temperature adaptation by, 161
 temperature adaptation and, 182, 183
Psychrotolerants, 156–158
Psychrotrophs, 156–158, 181–183
Pulsed-field gel electrophoresis, 67–68
Quorum sensing, 140–144
discovery of, 403
 in regulation of biofilm formation, 148
 in *Vibrio anguillarum*, 144
 in *Vibrio cholerae*, 142–143
 in *Vibrio fischeri*, 140–141
 in *Vibrio harveyi*, 142
 in *Vibrio parahaemolyticus*, 143–144
 in *Vibrio vulnificus*, 144
 systems of, 143
Real-time polymerase chain reaction. See Polymerase chain reaction, real-time
Recombination, homologous, detection by multilocus sequence analysis, 87–88
Recombination-based in vivo expression technology (RIVET), 326–327
RTX toxin, 316
Salinity, as distribution and habitat segregation factor, 176, 181, 360
Salmon, Atlantic, *Vibrio salmonicida* and, 280
Seawater, *Vibrio vulnificus* in, 358
Septicemia, primary, due to *Vibrio vulnificus*, 350–352
Shellfish, *Vibrio vulnificus* in, 358
Shewanella putrefaciens, 298–299
Siderophores, *Vibrio harveyi* and, 273–274
Signature-tagged mutagenesis, 327
Squid, sepiolid, evolution and biology of, 206–207
Starvation, adaptation to, 133–137
 and differentiation induced by, 134–135
 limitation of nutrients and, 136
 oxidative stress and, 136–137
 protein response in, 135–136
 ultramicrobacteria and, 133–134
 as response mechanism, 180
Strain-specific expansions, 80
SXT element (conjugative-transposon-like element), 325
Superintegron(s), 98–101
 and chromosomal integrons, bacterial species harboring, 99–101
 and mobile integrons, structural comparison of, 98
 and mobile integrons, resistance cassettes of, 104–105
 in genomes, 72
Suppressive subtractive hybridization, for comparisons, 86
Swarming, 123–124
 swimming and, 115
Swimming, 115–123
 and swarming, 115
Systems microbiology, 411–412
Taurocholate tellurite gelatin agar, 16–17
Taurocholate tellurite peptone water, 15
Taxonomy, 29–43
 current status of, 30
 gene sequences useful for, 45–46
 genomic basis of, 34
 history of, 29
 perspectives for, 39–40, 412
 phenetic basis of, 30–34
TDH-related hemolysin, 340–341
Teepol, 15
Tellurite, 15
Temperature, as distribution and habitat segregation factor, 182–183, 359, 360
 for maximum growth, 183
Tetrodotoxin (TTX), 402
 biotechnology of, 402
 production of, 184–185
Thiosulfate citrate bile salt sucrose agar, 340–341
Thiolase citrate bile salt sucrose agar, 16, 18, 19–20, 266, 404
Toxin coregulated pilus, 313
Toxins, medical applications of, 401–402
ToxR regulon, 317–320
Tryptone soya medium, 20
TSA plus triphenyltetrazolium chloride, 18
Tularemia, 7
Two-chromosome genome configuration, chromosome
size comparisons, 70–71, Color Plate 2
discovery of, 67
origin of small chromosome and, 69
questions concerning, 68–69
replication and segregation of chromosomes in, 69–70
subsequent reports of, 67–68
Type II secretion system, 317
Type III secretion systems (TTSS), 341–345, Color Plate 17
Ultramicrobacteria, 133–134, 191
Vaccines, in vibriosis, 253
Viable but nonculturable state, 137–140, 326, 412
culturability of *Vibrio vulnificus* and, 360–361
extreme environments and, 165
hypothesis of, 137
indirect assays of viability and, 137–139
oxidative injury hypothesis in, 139
population differentiation in, 139
resuscitation of cellular response and, 138
Vibrio alginolyticus, 299, 370–371
identification of, 55
Vibrio anguillarum, 3
and *Vibrio ordalii*, differentiation of, 258, 259
anguibactin biosynthesis pathway and, 255–257
biology and pathogenicity of, 251
control of, 252–253
identification of, 56
and classification of, 251–253
production and secretion of proteases by, 255
quorum sensing in, 143, 254–255
virulence factors of, 254
virulence plasmid of, 255, Color Plate 12
Vibrio angustum S14, 135–137
Vibrio campbellii, 29
Vibrio carchariae, 3–4
Vibrio cholerae, 3, 4, 5, 7–8, 15, 29
Amazonian strain of, genetic characterization of,
242–243
proteomic analysis of, using mass spectrometry, 243,
244–245, Color Plate 11
ecology of, 186
emerging variants of, 390–391
environmental persistence of, 324–326
environmental reservoirs of, 391–392
epidemiology of, 385–386
genetic examination of, 52
genome of, 390
identification and detection of, 46–52
in Argentina, 240–241
in Brazil, 241–242
in Colombia, 241
in Peru, 241
infectious dose and mode of transmission of, 389
mobile genetic elements of, 322–324
molecular epidemiology of, 389–390
motility and chemotaxis, 314–315
pathogenesis and environmental persistence, genetics of,
311–339
pathogenicity islands and, 73
populations in South America, molecular analyses of,
240–243
quorum sensing in, 142–142, 321
role in South America, 239–247
virulence factors of, 314–317
and classification of, 251–253
and differentiation of, 258, 259
anguibactin biosynthesis pathway and, 255–257
biology and pathogenicity of, 251
control of, 252–253
identification of, 56
and classification of, 251–253
production and secretion of proteases by, 255
quorum sensing in, 143, 254–255
virulence factors of, 254
virulence plasmid of, 255, Color Plate 12
Vibrio furnissii, 15, 301, 372–373
Vibrio harveyi, 31, 373
animal hosts of, 267, 268
bioluminescence of, 265, Color Plate 13
classification of, 265, 266
identification of, 55, 56, 265, 267
luminous vibriosis and, 268–271
quorum sensing in, 142
sources of, 269
Vibrio damsela, 297
Vibrio diazotrophicus, 3–4, 184
Vibrio fischeri, 3, 301
quorum sensing in, 140–141
Vibrio fischeri-Euprymna scolopes symbiosis, as model of
bacteria-animal interactions, 204
basics of association in, 207, Color Plate 6
coevolution and, 206–207
colonization factors in, 210–212
everal events in, 207–209
experimental tractability of, 204–205
importance of bioluminescence in, 212–213
interspecies recognition and signaling in, 213–214
light organ environment of, 209–210
new perspectives gained by, 216
obstacles to overcome in, 207–208
research in, advances in genomics and, 214–215
stages in establishment of, 208–209
Vibrio fischeri genome, 214–215
Vibrio furnissii, 15, 301, 372–373
Vibrio halioticoli, and abalones, mutual partnership
between, 219–230
coevolution of, 227–228
future work in, 228
distribution, abundance, and diversity of, 221–224
ecophysiological roles of, 224–227
ecophysiology of, in terms of abalone life cycle, 225,
226
methods of detection of, 224
morphology of, 221, 222
motility of, 223–224
Vibrio harveyi, 31, 373
animal hosts of, 267, 268
bioluminescence of, 265, Color Plate 13
classification of, 265, 266
identification of, 55, 56, 265, 267
luminous vibriosis and, 268–271
quorum sensing in, 142
sources of, 269
Vibrio harveyi agar, 18
Vibrio hispanicus, 15
Vibrio cholerae, 367
identification of, 55
Vibrio ichthyoventeri, 301
Vibrio logei, 157–158, 301
Vibrio metchnikovii, 15, 373–374
Vibrio mimicus, 15, 301, 374–375
epidemiology of, 386
identification of, 55
Vibrio nereis, 29
Vibrio ordalii, 258–261
and Vibrio anguillarum, differentiation of, 258, 259
identification and classification of, 258–261
nucleotide sequence of, 259, 260
vibriosis caused by, 258, 261
virulence factors of, 261
Vibrio orientalis, 157–158
Vibrio parahaemolyticus, 3, 4, 16, 31, 301, 340–348
biochemical identification of, 52–54
epidemiology of, 386, 392
genome analysis of, 341–343
infection caused by, spread of, 394
mode of infection by, 340
pandemic potential of, 393
pathogenicity islands and, 73
pathogenicity of, 345
protein secretion by, 344
quorum sensing in, 143–144
type III secretion systems (TTSS) of, 341–345
bacterial pathogenicity and, 345
gene expression by, 344–345
virulence factors of, 392
whole genome sequencing, 67
Vibrio pectenicida, 302
Vibrio pelagius, 302
Vibrio penaeicida, 302
Vibrio proteolyticus, 302
Vibrio salmonicida, 157–158
characteristics of, 280–281
ecology of, 281
isolation of, 280
pathogenicity of, 281–282
vaccines against, 282
Vibrio shiloi, 138
bleaching of Oculina patagonica by, 232–235,
Color Plate 7
classification of, 233
temperature-regulated mechanisms of infection by,
233–234
Vibrio splendidus, 158
and host interactions, 287–292
bacteria related to, genetic structure of, 284–287
biotypes of, 285
epidemiological studies of, 284
genome sequence of, 292–293
identification of, 287
phylogenetic tree of, 286, 288
Vibrio tapetis, 302–303
Vibrio tubiashii, 303
Vibrio vulnificus, 4, 16, 18, 303–304, 349–366
biochemical identification of, 54–55
biotype 1, 349–350
diseases caused by, 350–352
biotype 2, 350, 354–355
biotype 3, 350, 355
distribution in environment, salinity and, 360
temperature and, 359, 360
VBNC state and, 360–361
distribution in marine environment, 357–361
environmental prevalence of, 394
epidemiology of, 386, 393
genetic heterogeneity of, 356–357
genotypes of, 356–357
in food, methods to eliminate, 361–362
infection caused by, host factors and, 355
pathogenesis of, 355–356
spread of, 394
pathogenesis of, 352–355
regulation of, 354
quorum sensing in, 144
taxonomy of, 349–350
virulence factors for, 352–355, 393–394
putative, 353–354
virulence of, 349
whole genome sequencing, 67
Vibrio vulnificus CMCP6, 104, Color Plate 5
Vibriophages, and prophages, 90
Vibriosis, antibiotics in, 252
clinical signs of, 253
coldwater, 280
etiology of, 251, 259
histopathology of, 253–254
luminous, 268–271
control of, 269–271
factors contributing to, 269
histopathology of, 269, Color Plate 14
vaccines in, 253
pathogenesis of, 352–355
regulation of, 354
virulence factors and, 254
Vimelysin, 403
Viral lysis, mortality due to, 194
VPS exopolysaccharide, 324–326, Color Plate 15
Waterborne pathogens, and food-borne pathogens,
detection of, 56
World Health Organization, infectious diseases and, 5, 6
Wound infection, due to Vibrio vulnificus, 352, 355
Yellow blotch/band disease, 235–236
causative agents of, 236
Zobell medium, simplified, 18–19
Zooplankton, association with, 176, 178
cholera and, 8