Food-Borne Viruses
Progress and Challenges
Emerging Issues in Food Safety
SERIES EDITOR, Michael P. Doyle

Microbiology of Fresh Produce
Edited by Karl R. Matthews

Microbial Source Tracking
Edited by Jorge W. Santo Domingo and Michael J. Sadowsky

Microbial Risk Analysis in Foods
Edited by Donald W. Schaffner

Enterobacter sakazakii
Edited by Jeffrey M. Farber and Stephen J. Forsythe

Food-Borne Viruses: Progress and Challenges
Edited by Marion P. G. Koopmans, Dean O. Cliver, and Albert Bosch

ALSO IN THIS SERIES
Edited by Michael P. Doyle and M. C. Erickson
Food-Borne Viruses
Progress and Challenges

EDITED BY

Marion P. G. Koopmans
Laboratory for Infectious Diseases and Prenatal Screening
Centre for Infectious Diseases Control Netherlands
National Institute for Public Health and the Environment
Bilthoven, The Netherlands

Dean O. Cliver
Food Safety Laboratory and World Health Organization
Collaborating Center for Food Virology
Department of Population Health and Reproduction
School of Veterinary Medicine
University of California, Davis
Davis, California

AND

Albert Bosch
Enteric Virus Laboratory
Department of Microbiology
University of Barcelona
Barcelona, Spain

ASM PRESS
WASHINGTON, DC
Contents

Contributors vii
Series Editor’s Foreword ix
Preface xi

1 Historic Overview of Food Virology 1
Dean O. Cliver

2 Food-Borne Viruses—State of the Art 29
Marc-Alain Widdowson and Jan Vinjé

3 Enterically Transmitted Hepatitis 65
Rakesh Aggarwal and Sita Naik

4 The Challenge of Estimating the Burden of an Underreported Disease 87
Sarah J. O’Brien

5 Emerging Food-Borne Viral Diseases 117
Erwin Duizer and Marion Koopmans

6 Viral Evolution and Its Relevance for Food-Borne Virus Epidemiology 147
Esteban Domingo and Harry Vennema

7 Rethinking Virus Detection in Food 171
Rosa M. Pintó and Albert Bosch
Contents

8 **Binding and Inactivation of Viruses on and in Food, with a Focus on the Role of the Matrix** 189
Françoise S. Le Guyader and Robert L. Atmar

9 **Use of the Codex Risk Analysis Framework To Reduce Risks Associated with Viruses in Food** 209
Jaap Jansen

10 **Risk Assessment of Viruses in Food: Opportunities and Challenges** 221
Arie H. Havelaar and Saskia A. Rutjes

Index 237
Contributors

RAKESH AGGARWAL
Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India

ROBERT L. ATMAR
Departments of Medicine and Molecular Virology & Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030

ALBERT BOSCH
Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, 08028 Barcelona, Spain

DEAN O. CLIVER
Food Safety Laboratory and World Health Organization, Collaborating Center for Food Virology, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, One Shields Ave., Davis, CA 95616-8743

ESTEBAN DOMINGO
Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

ERWIN DUIZER
Laboratory for Infectious Diseases, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands

ARIE H. HAVELAAR
Laboratory for Zoonoses and Environmental Microbiology, Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, 08028 Barcelona, Spain
Contributors

JAAP JANSEN
614 Rue Villard, 01220 Divonne les Bains, France

MARION KOOPMANS
Laboratory for Infectious Diseases, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands

FRANÇOISE S. LE GUYADER
Laboratoire de Microbiologie, Institut Français pour la Recherche et l’Exploitation de la Mer (IFREMER), Nantes, France

SITA NAIK
Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India

SARAH J. O’BRIEN
School of Translational Medicine, University of Manchester, Clinical Sciences Building, Hope Hospital, Stott Lane, Salford M6 8HD, United Kingdom

ROSA M. PINTÓ
Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, 08028 Barcelona, Spain

SASKIA A. RUTJES
Institute for Risk Assessment Sciences, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands

HARRY VENNEMA
Laboratory for Infectious Diseases, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands

JAN VINJÉ
Respiratory and Enteric Viruses Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333

MARC-ALAIN WIDDOWSON
Epidemiology Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333
Food-borne viruses, in particular noroviruses, are the most common known causes of food-associated illnesses in much of the world. In the United States alone, public health experts estimate more than 9 million cases of norovirus infections annually. From restaurants to cruise ships, noroviruses have few boundaries, being transmitted mostly by infected humans, especially after they handle food. Although not nearly as prevalent, a variety of other enteric viruses have food-borne disease potential as well and many more are likely to emerge.

Written by a cadre of the world’s leading virologists, this book provides state of the science information regarding the evolution and future development of viruses with food-borne potential, the role of viruses in global food-borne illnesses, the challenges and opportunities in developing methods to detect viruses in foods, our current understanding of virus binding on and inactivation in foods, and the application of risk analysis to reducing the risk of food-associated viral illnesses. I know of no other single source that provides such an in-depth, forward-thinking treatise on this subject. It is required reading for anyone interested in not just food-borne viruses but in food-borne disease in general. I commend Marion Koopmans for leading the development of this volume and thank her two collaborators, Dean Cliver and Albert Bosch, for their contributions as Editors. This is truly a benchmark contribution in an area of major significance for the safety of foods.

MICHAEL P. DOYLE, Series Editor
Emerging Issues in Food Safety
Illness following consumption of food that was contaminated with viruses has been recognized as early as 1914, when four cases of paralytic illness were described among children in an English community who drank raw milk from a common source. That illness was poliomyelitis, later found to be caused by a small virus belonging to a family of viruses that was named Picornaviridae (pico = small; RNA is the genome type). Almost a century later, food-borne viral diseases are recognized as a major health concern, but the extent of the problem is poorly defined. Noroviruses and hepatitis A virus, causing vomiting and diarrhea (noroviruses) or liver disease (hepatitis A virus), are the most commonly detected food-borne viruses, and their epidemiology appears to be changing: noroviruses change rapidly over time in a manner similar to influenza A viruses, and increasing levels of hygiene have resulted in an increased susceptibility of populations in high-income countries to hepatitis A that may be imported via food. New viruses are discovered regularly as more is learned about pathogens, and with them new questions arise about the potential for food-borne transmission. The emergence of SARS coronavirus, Nipah virus, and avian influenza viruses from animal reservoirs has illustrated that local food habits may contribute to the spread of pathogens from wild animals to humans and has also shown how difficult it is to determine if food-borne transmission may lead to further dissemination. The global export of foods has more than tripled in the past two decades, resulting in increased risk for large-scale, international outbreaks that are difficult to detect. While regulations are in place to monitor the microbiological quality of food, the criteria in use have been developed based on properties of bacteria, not viruses. Viruses behave quite differently and may remain intact under circumstances in which bacterial contaminants...
would be killed. In addition, their detection in food requires specialized expertise that is not yet available in most laboratories charged with quality control of food.

What do we know about the recognized food-borne viruses, and what are the gaps? Which lessons can we learn from the past about early detection and control of (emerging) viral infections? What are the challenges in developing reliable ways of detecting if food is contaminated with viruses? What is the role of viral changes through mutation and recombination on their biological properties and epidemiology? These are some of the questions addressed in this book. Chapters have been written by leading scientists in the field, who have been encouraged to provide a challenging in-depth discussion and share their vision for future directions of their field of work. In addition, this book tries to bring scientists and risk managers together by giving a brief background for the methods that have been developed to help decide the best options for controlling food-borne disease and what is needed before these can be used for viral food-borne disease. In short, this book is recommended reading for anyone interested in and/or working on aspects of food-borne viral illness.

Enjoy!

Marion Koopmans
Dean O. Cliver
Albert Bosch
Index

A
Adenoviridae, 126–127, 135
Adenoviruses, human, 226
Alcohol hand gels, 48
Anellovirus, 127
Animal reservoirs of infectious disease, 122
Anti-HAV antibodies, detection, 172–173
Astroviridae, 126–127, 135
Astroviruses, 30
Avian HEV, 74–75
Avian influenza, 133–134
Avian influenza virus, 117, 126

B
Basic reproductive ratio, 158
Bacovirus, 31
Biphasic milk fever, 132
Birnaviridae, 127, 135
Blood serum, for culture of cells, 4
Bocavirus, 128–129
Bottleneck events, 156–157
Bovine viral diarrhea, 132
“Brute-force” ultracentrifugation, 10
Bovine spongiform encephalopathy (“mad cow disease”), 2, 13, 14

C
Caliciviridae, 31, 48, 126–127, 135, 149, 179, 180
Caliciviruses, 171
human, 30–32
Canine calicivirus, 48
Cat-Floc, 9–10
Cell culture, in detection of viruses, 224
media for, 3–4
vessels for, 3
Cell culture propagation, of hepatitis A virus, 171–172
Cells, kidney as source of, 4
Centrifugation, 8–9
Chromatography, column, 7
“membrane,” 7
Circoviridae, 127, 135
Circovirus, 127
Circoviruses, human, 226
Creutzfeldt-Jakob disease, 2, 14
Cliver, Dean O., 16
Codex Alimentarius Commission, 214
Codex Alimentarius (“food code”), 210–214
and international food trade, 210–212
origins of, 213
Codex Committee on Food Hygiene (CCFH), 210, 214–215
Codex General Principles of Food Hygiene, 212–213
Codex risk analysis, in reduction of viruses in food, 216–219
risks of viruses in food and, 209–220
work on viruses in, history of, 215–216
Codex system, 210–212
commodity standards and, 212–213
guidelines of, 212
standards and codes of practice of, 212–213
Contagium vivum fluidum, 1
Conventional reverse transcription-PCR (RT-PCR) assays, 32
Cooking, to inactivate viruses, 199–201
Coronaviridae, 130–131
Coronaviruses, fecal-oral transmission of, 157–158
Crassostrea gigas, 194
Crassostrea virginica, 194
Cytopathic effect, 5

D
Dack, Gail M., 2
Delphi technique, 104
Dengue virus, 132
Depuration, 71, 193, 194
Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability, 191–192
Diarrhea, bovine viral, 132
Diarrheal disease, investigation of, 107
norovirus in stools in, 43
Disease burden, population-based approaches for determining, 97–102
prospective studies of, 98–101
retrospective surveys of, 98, 99
underreported, estimation of burden of, 87–115
Disinfectants, against NoVs, 48
DNA, viral, 1
mutation of, 151–153
DNA virus replication, inhibition of, 7
DNA viruses, 156
Dose-response models, 228–229
Dose-response relationship, for viral infections, 228–229
Drinking water, contamination of, 176
protozoa in, 222

E
Ecological factors, viral disease and, 122
Economic assessments, of burden of AGE and/or NoV, 101–102
Electron microscopy, 1
to detect noroviruses, 89
Encephalitis, tick-borne, 17
Encephalomyocarditis virus (EMCV), 179
Encephalopathies, spongiform, 14
Enteric viral infections, 29
Enteric viruses, 7
Environmental factors, effects on inactivation of virus, 196–197
Enzyme immunoassays, 33–34
Epidemiologic studies, analytical, of food-borne viral gastroenteritis, 102–104
European Agency for the Evaluation of Medicinal Products, 179
European Committee for Standardization of Horizontal Methods for the Molecular Detection of Viruses in Food, 182
Expert opinion, for analysis of food-borne viral gastroenteritis, 104–105
Exposure assessment, in risk assessment, 222
virus survival in food storage, 227

F
Fecal-oral transmission, 17, 18
Feline calicivirus (FCV), 48, 180
Filtration, 8–9
Flaviviridae, 132–133
Flavivirus, 132
Food(s), contaminated, norovirus burden in, 105–106
traceback of, 122
contamination of, at source, 159
by food handler, 159
environmental sources of, 189, 190
effects of compounds on viral growth, 196
exports from different countries, 121
gamma irradiation of, 199
global trade of, 121–122
HAV entry and concentration in, 71
preharvest and postharvest contamination of, 176
processing and storage of, virus survival and, 227
prospective versus retrospective analysis of, 176–178
ready-to-eat, contamination of, 190, 271–218
real-time RT-PCR-based analysis of, 179
transmission of HEV via, 78–79
transmission of viruses by, factors influencing, 189
treatment against NoVs, 49
treatment to remove or inactivate viruses, 198–201
viral genome copies in, estimation of, 181
virus binding to, 190–195
probability of, 191
virus detection in, 171–188
 molecular approaches to, 173–176, 182
 procedures for, 222–227
 standardization of, 178
virus persistence in, consequences of, 201–202
virus transmission via, 156–157
viruses in, cooking to inactivate, 199–201
 hazard characterization of, 228–229
 risk assessment of, 221–236
viruses on and in, binding and inactivation of, 189–208
zoonotic virus transmission via, 157–158
Food additives, FAO/WHO Conference on (1955), 214
Food and Agriculture Organization (FAO), food-borne illnesses and, 209
 role in risk assessment, 214–215
Food and Agriculture Organization (FAO)/World Health Organization (WHO), Conference on Food Additives, 213–214
Expert Committee on Food Additives (JECFA), 214
Expert Consultation on Food-Borne Viruses, 216
Food-borne disease, causes of, 6–7
 economic burden of, 46–47
 historic summary of, 19
 NoVs as cause of, 44
 difficulty in diagnosis of, 44–46
Food-borne viral disease, burden of, improving assessment of, 106–108
detection of, surveillance systems for, 135 emerging, 117–145
 food handler transmission of, 124
 laboratory and, 89–90
 laboratory-based surveillance for, 93–96
 pathogen-related factors in, 122–123
 person-to-person transmission of, 104
 physician and health care system and, 88–89
 public health system and, 90–91
 surveillance of, challenges in, 87–92
 surveillance pyramid and, 91, 92
 transmission of, control of, 123
 prerequisites for, 123–124
 virus and patient and, 87–88
 zoonotic transmission of, 123–124
 factors favoring, 126
Food-borne viruses, Codex risk analysis and, 209–220
detection of, 8–12, 80, 171–188
effect of virus aggregation in, 225
 proxies and, 226
 sensitivity of detection and, 226–227
 steps in, 222
 virus aggregation and, 225
 virus concentration in, 223–224
 virus detection in, 224–225
 virus release in, 223
 epidemiology of, viral evolution and relevance for, 147–169
 hazard characterization of, 228–229
 history of cases of, 2
 identification of, 8–12
 irrigated crops and, 230
 obtaining samples for testing, 8
 risk assessment of, 221–236
 seeding event, 158
 state of art, 29–64
 transmission of, prevention of, 80
 Food chain surveillance, integrated, 97
 Food chemistry and microbiology, consumer interest in, 213–214
 Food Research Institute of University of Chicago, 2
 Food trade, and Codex Alimentarius, 210–212
 Food virology, historic overview of, 1–28
Foot-and-mouth disease, 126
Freon extraction method, 9
G
Gamma irradiation of food, 199
Gastroenteritis, acute, economic burden of, 101–102
 population-based prospective studies of, 98–101
 population surveys of, 106–107
 retrospective surveys of, 98, 99
 surveillance for, 92–97
 food-borne outbreaks of, due to noroviruses, 96
 viral, 29, 30–31
 food-borne, analytical epidemiologic studies of, 102–104
 assessment of proportion of, 102–105
 expert opinion for analysis of, 104–105
 public health system and, 90–91
 norovirus infection causing, 44–46
 noroviruses in, 43–44
Gastrointestinal illness, food-borne viruses causing, 30
Genes, encoding proteins of viruses, 149–150
Genome copies, infectivity and, 182
Green onions, hepatitis A virus and, 193
Gyrovirus, 127

HAV genotyping, to detect HAV, 73
Hazard Analysis and Critical Control Point (HACCP) system, 177, 212
application to viral safety, steps in, 177
Health care system, food-borne viral disease and, 88–89
Hedra viruses, 134
HeLa cell line, 4
Henipavirus, 134
Hepacivirus, 132
Hepatitis, acute sporadic, HEV infection and, 76
enterically transmitted, 65–85
food-borne outbreaks of, 2
food-borne viruses causing, 30
infectious, history of transmission of, 6
viral, clinical presentation of, 65
viruses causing, 65, 66
Hepatitis A infection, 6
age at and clinical expression of, 68
antibodies protective against, 69–70
diagnosis of, 69
epidemiological patterns of, 67–69
green onion consumption and, 193
immunization against, 70
routes of transmission of, 69
Hepatitis A virus, 17–19, 124, 149, 156, 171
contamination of foods, detection, 72–73
cooking to eliminate, 199–201
effect of temperature on, 195–196
entry and concentration in foods, 71
epidemiology of, 67–69
food-borne outbreaks due to, 172
food-borne transmission of, 70–71
prevention of, 71–72
genotypes of, 67
modified atmospheric packaging and, 198
multiplication and excretion of, 67
thermal and environmental stability of, 70
transmission of, 38, 135
vaccination for postexposure prophylaxis, 73
virology and molecular biology of, 65–67
Hepatitis E infection, clinical features and outcome of, 76–77
diagnosis of, 77
endemic, differences in areas with and without, 79–80
epidemiology of, 75–76, 79
person-to-person transmission of, 75–76
protective antibodies against, 77
transmission of, evidence of, 78–79
Hepatitis E virus, detection in food, 80
genotypes of, 74–75
in meat, 126
outbreaks and spread of, 120–121
thermal and environmental stability of, 77
virology and molecular biology of, 73–74
Hepatitis viruses, enterically transmitted, 80–81
Hepatomegaly-splenomegaly syndrome, HEV and, 75
Hepatovirus, 149
Hepeviridae, 126–127, 135
High-hydrostatic-pressure processing (HHP), for virus inactivation, 198–199
Histo-blood group antigens, 36–37
in shellfish, 194
Hog cholera virus, 126
Human immunodeficiency virus, 117–118
Hydrostatic pressure, to inactivate HAV, 72

Immune electron microscopy, to detect HAV, 72
Immunity, protective effect of, risk assessment models and, 231
Immunoassays, enzyme, 33–34
Infections, ecological factors and, 122
viral. See Viral infections
Infectious disease models, 231
Influenza A viruses, 133–134
Influenza virus, transmission of, 135
Irrigated crops, and viruses in foods, 230

Japanese encephalitis virus, 132
Index

K
Kapikian, Albert, 30–31
Kidney, as source of cells, 4
Kuru, 13

L
Laboratory, examination of stool samples, 89
 food-borne viral disease and, 89–90
Laboratory-based surveillance, 93–96
Lagovirus, 31, 149
Leviviridae, 179
Listeria monocytogenes, 217–218
Listeriosis, food-borne, 218
“Live-virus” vaccines, 4
Liver disease, acute-on-chronic, 77

M
Mad cow disease, 13, 14
Mammalian viruses, taxonomic groupings of, 124, 125
Marination, 199
Meat, hepatitis E virus in, 126
Medium 199, 3
“Membrane chromatography,” 7
Microbial dose-response models, 228–229
Microbiological risk assessment, bacterial example of, 217–219
JECFA and, 214
 of bacterial and viral food-borne agents, compared, 216–217
outputs in risk management, 215
Microbiological risk management, 210, 211
Microscope, for demonstration of virus replication, 5
Migration, introduction of disease due to, 120
Mimiviruses, 148
Modified atmospheric packaging, 198
Molecular biology, 29
Molecular techniques, in detection of viruses in foods, 182, 224–225
Molluscan shellfish, 123
Mouse encephalomyelitis virus, 192
Murine NoV-1, 179
Mutagenesis, lethal, mechanism of, 162–163
Mutation, and role in virus evolution, 151–153
genetic variation of viruses and, 150

N
Nabovirus, 31
National health help line, for syndromic surveillance, 92–93
Nipah virus, 117, 122, 124, 134–135
Norovirus, 31, 124, 149
 genogroups and genotypes of, 194
Norovirus infection, as outbreak-related disease, 96
causes large outbreaks of gastroenteritis, 44–46
economic burden of, 101–102
endemic, epidemiology of, 43
 food-borne outbreaks of, foods implicated in, 38–39
from NoV-contaminated environments, 39, 40
illnesses attributed to, 34–35
 immunity to, 36–38
molecular epidemiology of, 41
 pathogenesis of, 35–37
 population-based prospective studies of, 98–101
 presentation of, 34–35
 prevention and control of, 47–49
 questions about mechanisms of, 37
 saliva samples to estimate, 107
 “sporadic,” prevalence estimates for, 93, 94–95
 sporadic disease due to, 41–44
 symptoms of, 34
 transmission modes and settings of, 44–46, 135
 treatment of, 47
 waterborne outbreaks of, 39
Noroviruses, 2, 7, 30, 149, 171
 binding patterns of strains of, 37
 cell culture and animal models of, 33–34
 classification of, 31–32
 control of, 47–49
 detection in clinical samples, 32–34
 diagnostic laboratories and, 89
 disinfection against, 47–49
 diversity of, 175–176
 enzyme immunoassays for, 33–34
 food-borne, estimation of burden of, 103
 outbreak data to estimate, 103, 105
 outbreaks due to, 172
 outbreaks of gastroenteritis due to, 96
gaps in knowledge concerning, 49–51
genotype IIc, 158
 in contaminated foods, 105–106
 in gastroenteritis, role of, 43–44

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Wed, 30 Jan 2019 18:00:03
Noroviruses, (continued)
recombination in evolution of, 154
risk assessment models for, 230–231
RT-PCR assays for, 32–33, 89–90
secondary person-to-person transmission of, 104
subclades and variants of, 41, 42
transmission of, 38–41
person to person, 96
treatment of food against, 49
vaccine against, obstacles to development of, 49
Norwalk virus, 13, 31, 36–37
NoV genome, detection of, 35–36
Nucleic acid sequencing, to detect HAV, 73
Nucleic acid type viruses, 7–8

O
Open reading frames (ORFs), 31
“Organic flocculation,” 11
Orthomyxoviridae, 133–134
Outbreak data, to estimate proportion of food-borne NoV, 103, 105
Outbreak surveillance, 96
Oysters, virus elimination by, 194
virus persistence in, 198

P
Papillomaviridae, 128, 135
Paramyxoviridae, 134–135
Parvoviridae, 128–129, 135
PCR, quantitative, to assess viral load of NoV, 44
Pestivirus, 132
Pharmacy, for syndromic surveillance, 92–93
Physician, food-borne viral disease and, 88–89
Picornaviridae, 126–127, 135, 149, 179
Picornaviruses, mutation and rates of evolution of, 152
translation of, 173–176
Plants, virus contamination of, 192–193
Poison control center database, for syndromic surveillance, 93
Poliomyelitis, food-borne, 2
recombinants of poliovirus vaccine and enteroviruses and, 154
Poliovirus 1, inactivation of, 12
Poliovirus type 1 strain, 192
Poliovirus vaccines, 17
Polyethylene glycol (PEG), dialysis against, 11
Polyethylene glycol (PEG) 6000, 11
Polymer two-phase system, 11
Polyomaviridae, 129–130, 135
Polyomaviruses, 226
Population, as basis for determining disease burden, 97–102
Population increases, risk of infectious disease in, 120–121
Population surveys, of acute gastroenteritis, 106–107
Primary monkey kidney (PMK) cell cultures, 11–12
Prion(s), 2
description of, 13
Prion diseases, 13–15
Produce, fresh, contamination of, 176
NoV-contaminated, 106
Proofreading-repair activity, 151
Prospective cohort studies, population-based, of AGE or NoV infection, 98–101
Proteins, of viruses, genes encoding, 149–150
Protozoa, in drinking water, model for estimation of, 222
PrP, 13
PrPsc (infective prion), 13, 14–15
Public health system, food-borne viral disease and, 90–91

Q
Quality assurance and quality control (QA/QC) measures, 178, 180
Quasispecies, viral, biological implications of, 161–163
concept of, 159–161

R
Real-time reverse transcription-PCR assays, 32, 33, 179
Recombination, and virus evolution, 153–154
definition of, 153
Relaying, 193
Reoviridae, 126–127, 135
Respiratory tract viral pathogens, 163–164
Retrospective studies, of acute gastroenteritis, 98, 99
Reverse transcription-PCR assays, 32–33, 43, 46
in detection of virus concentration, 223, 224
to detect HAV, 72
in food, 173–176
to detect noroviruses, 89–90
in food, 173–176
Rhinoviruses, 8
Risk analysis, Codex. See Codex risk analysis
components of, 209
developing framework of, 214–215
Risk assessment, early, of enteroviruses and rotaviruses, 221
exposure assessment in, 222
four steps in, 221
in risk analysis, 210
of viruses in food, 221–236
bacterial pathogens and, 221
WHO and FAO in, 214–215
Risk assessment studies, published, 229–231
secondary transmission and immunity in, 231
Risk characterization, 229
Risk estimate, 229
Risk management, microbiological, 210, 211, 214, 215
RNA-containing capsids, noninfectious unaltered, 182
RNA viruses, 1, 122, 156, 173
intact, 8
mutation of, 151–153
variability of, 164
Rotaviruses, 30, 122–123

S
Sabin, A.B., 4
Salad crops, irrigated, concentration of viruses on, 230
Saliva samples, to estimate incidence of NoV infection, 107
Sanitizers, 48
Sapovirus, 31, 48, 149
Sapoviruses, 30
classification of, 32
SARS coronavirus (CoV), 126, 130–131
food-related transmission of, 131
transmission of, 135
Scrapie, 13
Seafood, NoV-contaminated, 106
Serologic studies, limitations of, 43
Severe acute respiratory syndrome, 121
Severe acute respiratory syndrome virus, 117
origin and transmission of, 157–158
Shellfish, contamination of, 176, 190
cooking to inactivate viruses, 199–201
culturable enteroviruses in, 229–230
HBGA A-like carbohydrate in, 194
marination of, 199
persistence of viruses in, 197–198
uptake and concentration of viruses in, 194
virus inactivation in, physical factors influencing, 200–201
virus uptake by, 193–195
Southampton virus, 31
Spongiform encephalopathies, 14
Stool sample, laboratory examination of, 89
submission to physician, 88
Surveillance, active, 97
integrated food chain, 97
laboratory-based, 93–96
outbreak, 96
syndromic, motivation and compliance in, 93
national health help line for, 92–93
pharmacy-based, 92–93
poison control center database-based, 93
sources of data for, 92
Surveillance data, interpretation of, 97
sources of, making better use of, 108
Surveillance pyramid, food-borne viral disease and, 91, 92
Swine fever virus, 132
Swine HEV, 74–75

T
Telephone triage systems, nurse-led, 88–89
Temperature, effects on inactivation of virus, 195–196
Tick-borne encephalitis, 17
Tick-borne encephalitis virus, 132
Transmission electron microscopy, 8

U
Ultracentrifuge, 10–11
U.S. Environmental Protection Agency, 5
U.S. Food and Drug Administration, 179
UV irradiation of shellfish, 72

V
Vaccine(s), against NoVs, obstacles to development of, 49
from kidneys of monkeys, 4
HAV, 70
“live-virus,” 4
oral vaccine, 4
poliovirus, 17
recombinant HEV, 80
vCJD, 14–15
Vesivirus, 31, 48, 149
Viral disease, emergence and spread of, factors contributing to, 119–123
food-borne. See Food-borne viral disease
Viral genome copies in food, estimation of, 181
Viral infections, dose-response relationship for, 228–229
emergence and spread of, factors contributing to, 118–119
human factors in, 120–121
emerging, 117–119
enteric, 29
Viral quasispecies, biological implications of, 161–163
concept of, 159–163
Virogenomics, 149
Virology, food, historic overview of, 1–28
Virus(es), adaptation to changing environments, 147
aggregation of, effect on virus detection, 225
binding to foods, 190–195
probability of, 191
causing hepatitis, characteristics of, 66
characterization of, 6
classification of, 7
Codex risk analysis of, history of, 215–216
contamination of plants by, 192–193
detection of, 3
DNA or RNA in, 1
enteric, binding to foods, 202
evolution of, 148–150
in vivo, dynamics of, 155–163
mutation and, 151–153
recombination and, 153–154
segment reassortment in, 155
food-borne. See Food-borne viruses
genetic variation of, molecular mechanisms of, 150–155
growth of, compounds in foods and, 196
hepatitis, enterically transmitted, 80–81
inactivation of, 12–13, 19
and persistence of, 195–198
cooking for, 199–201
effects of environmental factors on, 196–197
effects of temperature on, 195–196
factors influencing, 191, 195
high-hydrostatic-pressure processing for, 198–199
in shellfish, physical factors and, 200–201
mammalian, taxonomic groupings of, 124, 125
media for culture of, 3–4
microevolution of, 150
origin of word, 1
persistence in environment, 163–164, 226
persistence in foods, consequences of, 201–202
persistence in shellfish, 197–198
prevention of transmission of, 15–19
propagation of, 1, 3–5
proteins of, genes encoding, 149–150
replication of, 5
subpopulations of, selection in environment, 163–164
transmission of, cross-species, 158
secondary, risk assessment models and, 231
transmission via food, 156–157
factors influencing, 189
treatment of foods to remove or inactivate, 198–201
uptake by shellfish, 193–195
vessels for culture of, 3

W
Wastewater, antiviral treatment of, 17
fecal–oral transmission via, 17, 18
Water, contamination of, 176
irrigation, transfer of viruses from, 230–231
protozoa in, model for estimation of, 222
West Nile virus (WNV), 132
| World Health Organization (WHO), food-borne illnesses and, 209 |
| role in risk assessment, 214–215 |
| World Health Assembly 1953 statement, 213 |
| World Trade Organization (WTO), food-related illness and, 211–212 |

Y

| Yellow fever virus, 132 |

Z

| Zoonoses, 122 |
| Zoonotic virus, transmission via food, 157–158 |