Imported Foods
Microbiological Issues and Challenges
Emerging Issues in Food Safety
Series Editor, Michael P. Doyle

Microbiology of Fresh Produce
Edited by Karl R. Matthews

Microbial Source Tracking
Edited by Jorge W. Santo Domingo and Michael J. Sadowsky

Microbial Risk Analysis of Foods
Edited by Donald W. Schaffner

Enterobacter sakazakii
Edited by Jeffrey M. Farber and Stephen J. Forsythe

Food-Borne Viruses: Progress and Challenges
Edited by Marion P. G. Koopmans, Dean O. Cliver, and Albert Bosch

Imported Foods: Microbiological Issues and Challenges
Edited by Michael P. Doyle and Marilyn C. Erickson
Imported Foods
Microbiological Issues and Challenges

EDITED BY

Michael P. Doyle
Center for Food Safety
University of Georgia
Griffin, Georgia

AND

Marilyn C. Erickson
Center for Food Safety
University of Georgia
Griffin, Georgia
Contents

Contributors vii
Series Editor's Foreword ix
Preface xi

1 Status and Projections for Foods Imported into the United States 1
W.J. Florkowski

2 Food Safety Regulations Applicable to Imported Foods 45
Neal D. Fortin

3 Outbreaks of Food-Borne Diseases Related to the International Food Trade 69
Robert V. Tauxe, Sarah J. O'Brien, and Martyn Kirk

4 Animal and Human Waste as Vehicles for Cross-Contamination of Imported Foods 113
Charles P. Gerba and Christopher A. Scott

5 Sanitation and Hygiene Deficiencies as Contributing Factors in Contamination of Imported Foods 139
Fengxia Dong and Helen H. Jensen
6 Antimicrobial-Resistant Food-Borne Pathogens in Imported Food 159
Shaohua Zhao

7 Mycotoxin Contamination of Foods from around the World 187
Garnett E. Wood

8 Role of Programs Designed To Improve the Microbiological Safety of Imported Food 209
Ewen Todd and Julie A. Caswell

9 Summary and Perspective of the Impact of Imported Foods on the Microbiological Safety of the United States’ Food Supply 255
Marilyn C. Erickson and Michael P. Doyle

Index 267
Contributors

JULIE A. CASWELL
Department of Resource Economics, 215 Stockbridge Hall, University of Massachusetts, 80 Campus Center Way, Amherst, MA 01003–9246

FENGXIA DONG
Center for Agricultural and Rural Development, Iowa State University, Ames, IA 50011–1070

MICHAEL P. DOYLE
Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223–1797

MARILYN C. ERICKSON
Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223–1797

W. J. FLORKOWSKI
Department of Agricultural and Applied Economics, University of Georgia, Griffin, GA 30223

NEAL D. FORTIN
Institute for Food Laws and Regulations, Michigan State University, East Lansing, MI 48824

CHARLES P. GERBA
Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721
HELEN H. JENSEN
Department of Economics, Center for Agricultural and Rural Development, Iowa State University, Ames, IA 50011–1070

MARTYN KIRK
OzFoodNet, Office of Health Protection, Department of Health and Ageing, GPO Box 9848, MDP 14, Canberra 2601, Australian Capital Territory, Australia

SARAH J. O’BRIEN
University of Manchester, Clinical Sciences Building, Hope Hospital, Stott Lane, Salford M6 8HD, United Kingdom

CHRISTOPHER A. SCOTT
Department of Geography and Regional Development, and Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ 85721

ROBERT V. TAUXE
Division of Foodborne, Bacterial and Mycotic Diseases, National Center for Zoonotic, Vectorborne and Enteric Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop C-09, Atlanta, GA 30333

EWEN TODD
Food Safety Policy Center, 328 Communications Arts and Sciences Building, Michigan State University, East Lansing, MI 48824

GARNETT E. WOOD
Office of Food Safety, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740

SHAOHUA ZHAO
Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708
The microbiological safety of foods has become a highly visible international issue of concern, with many outbreaks of food-borne illness being reported daily around the globe. In the United States alone, more than 1,200 food-borne outbreaks are reported annually, and more than 70 million cases of food-borne illness are estimated. The Emerging Issues in Food Safety series was conceived by ASM Press in 2006 to provide in-depth, state of the science information regarding current topics in the microbiological food safety arena.

Since the inception of the series, six volumes have been published addressing the issues of the day. Food attribution studies of cases associated with recent food-borne illness outbreaks have revealed vegetables and noroviruses as the leading vehicle and pathogen, respectively, responsible for these outbreaks. Microbiology of Fresh Produce, edited by Karl Matthews, and the treatise Food-Borne Viruses: Progress and Challenges, edited by Marion Koopmans, Dean Cliver, and Albert Bosch, provide timely, insightful perspectives on both of these topics.

Public health professionals, largely because of major advances in surveillance systems, have unearthed outbreaks likely to have gone unnoticed in the past. Jorge Santo Domingo and Michael Sadowsky have, in the volume Microbial Source Tracking, provided an intriguing look into the future of novel approaches to trace pathogens to their points of origin. Coupled with better surveillance systems for detecting food-borne outbreaks, this tracking technology will enable food producers and processors to better understand sources of contamination and thereby take corrective actions to prevent pathogen contamination.

New food-borne pathogens continue to emerge and sometimes reemerge, including Enterobacter sakazakii, which has recently become a major nemesis
of the infant formula industry. Two internationally recognized leaders in studying the food-associated aspects of this pathogen, Jeffrey Farber and Stephen Forsythe, have edited the book *Enterobacter sakazakii*, which provides a comprehensive treatise on the food safety aspects of this microorganism.

On the heels of food safety issues associated with emerging food-borne pathogens are food safety concerns linked to emerging markets that provide foods and food ingredients. Many of the emerging food sources are developing countries that do not employ the same level of sanitary practices in food production and processing that developed countries do. This can result in unintended and unacceptable pathogen contamination of foods imported by countries with high standards of sanitary practices for food production and preparation. Marilyn Erickson and I have organized *Imported Foods: Microbiological Issues and Challenges* to address many of the food safety issues facing the United States and many other countries that import foods from countries having less than adequate food production and preparation practices.

With the emergence of newly recognized food-borne pathogens, major sources of foods produced under unsanitary conditions, changes in eating behavior involving more consumption of higher-risk fresh, uncooked ready-to-eat food (such as fresh vegetables), and better methods for detecting and tracking food-borne disease outbreaks, microbiological food safety issues will undoubtedly be of major international concern for many years to come. One of the greatest challenges in addressing these issues is determining how best to regulate them. Most countries have limited, and often minimal, resources to ensure the safety of foods. Hence, international efforts are being directed to developing science-based decision-making tools for identifying the most effective use of resources to minimize food-borne illnesses. The concept of microbial risk analysis has been conceived and widely embraced to address this need. Donald Schaffner has brought together a cast of internationally recognized experts to draft *Microbial Risk Analysis of Foods*, which elucidates how risk analysis of food-borne agents of microbial origin can be used to provide greater public health protection to the food supply.

Collectively, these six contributions cover the gamut of today’s microbiological food safety issues and provide cutting edge information and insights that cannot be found elsewhere. I personally find them to be a treasure trove of intelligence, and they are valuable resources for food safety professionals who are at the cutting edge of food safety.

Michael P. Doyle, Series Editor

Emerging Issues in Food Safety
According to USDA-ERS data, in 2004 the United States began to import more food than it exported based on dollar value, and this differential continues to grow. Currently about 15% of foods consumed in the United States are imported, but differences in import percentages exist for commodity types. For example, in 2005, about 80% of fresh and frozen fish and shellfish, 44% of fresh fruits, 43% of tree nuts, and 16% of fresh vegetables consumed in the United States were imported. Unfortunately, sanitation practices for food production and preparation are not universally equivalent throughout the world. Many developing countries, including those that provide food to the United States, have high incidences of infectious diseases and large portions of their populations are asymptomatic carriers of food-borne pathogens like norovirus, *Campylobacter*, and parasites. These harmful microbes frequently contaminate human sewage that is used untreated to fertilize land for growing produce and ponds for growing fish and shrimp in many East Asian countries like China. Current estimates indicate at least two-thirds of the world production of farmed fish is grown in ponds fertilized with animal manure and/or human sewage. In Mexico City with its population of more than 25 million, less than 10% of the city’s wastewater sewage is treated, with the remainder being sent into rivers that irrigate farmland to the north.

In addition to microbiological food safety concerns, there are many chemical contaminants associated with foods produced in developing countries. For example, in China, where farmers largely grow crops or fish in one-acre parcels, excessive or inappropriate use of pesticides, antibiotics, and veterinary drugs frequently occurs to enable maximum productivity. Consequently, antibiotics like chloramphenicol that are not allowed for crop or aquaculture purposes in the United States have been detected in foods from China.
Food distributors and processors within the United States are the first line of defense to ensure safety of the foods they make available to domestic consumers. The federal government, on the other hand, is responsible for ensuring that those companies marketing foods and food ingredients from foreign sources are providing safe foods. In particular, the U.S. Food and Drug Administration (FDA) has oversight of about 80% of the U.S. food supply but visually inspects only about 1% of about 9 million food shipments annually while less than 0.5% of imported foods are sampled and tested.

FDA testing of imported foods continues to identify tainted products. For example, in August 2007 the FDA reported 187, 173, and 160 food refusal actions from China, India, and Mexico, respectively. Examples of rejected foods from China include chives (*Salmonella*), shrimp (nitrofuran), peppercorns (*Salmonella*), pear juice concentrate (pesticides), catfish (veterinary drugs), diced green bell peppers (pesticides), IQF butterfly shrimp (veterinary drugs and nitrofuran), aniseed powder (*Salmonella*), wheat gluten (poisons, filth), and soy protein (poisonous, unsafe additives), and frozen soybeans (pesticides). *Salmonella* and pesticide contamination of spices and seasonings were common causes of refusals from India. Pesticides in produce were also a major reason for rejections of food from Mexico. These statistics are evidence that there are continuing contamination problems in the food import system and provide justification for the importance of the FDA not only to continue, but also to improve its sampling and testing protocols to detect adulterated food coming into the U.S. food supply.

If the U.S. food safety system is allowed to continue unchanged, there are likely to be major increases in the occurrence and size of food-borne outbreaks as U.S. food imports increase from countries in which risky food production, harvesting, and processing practices exist. This issue is among the most serious of food safety concerns confronting Americans for the foreseeable future. This book is the first to provide a comprehensive treatment of the microbiological food safety issues facing the United States from imported foods, and provides the justification for changes in the U.S. food safety net.

Michael Doyle
Marilyn Erickson
Index

A

Aflatoxins, 190–195
- as hepatocarcinogens in animals, 190
- FDA action level for, 191
- growth on crops, 190
- in figs/dried fruit, 193

African swine fever, 231

Agricultural production, immigrants in, 24

Alcohol and Tobacco Tax and Trade Bureau (TTB), 59

Alfalfa seeds, from Australia, *E. coli* O157 infections due to, 83–84, 103

Alfalfa sprouts, *Salmonella* and *E. coli* infections linked to, 96

Salmonella serotype Stanley infections traced to, 70, 103

Almonds, *S. enterica* serotype Enteritidis from, in Canada, 87

Animal and Plant Health Inspection Service (APHIS), U.S Department of Agriculture, 57

Animal feed, contamination of, 101–102

Animal wastes, 120–122
- pathogens in, 120–121

Antibiotic residues, in foods, monitoring of, 224

Antimicrobial-resistant food-borne pathogens, in imported food, 159–185

Antimicrobials, administration to food animals, 159
- approved, in food animal production, 174–175
- benefits of, 159
- in food animal production, amount of, 173–176
- purposes of, 173
- to maintain animal health, 173
- resistance to, as public health threat, 159
- development and dissemination of, 161–162
- use in aquaculture, 177–179

Apple juice, imports of, 8
- patulin in, 196–197

Apples, imported, volume of, 7

Aquaculture, and food animals, antimicrobial use in, 172–179
- fish, use of contaminated water in, 131–132
- imported seafood from, 37
- use of antimicrobial agents in, 177–179

Artichokes, imported, 10

Asparagus, imported, 10

Aspergillus ochraceus, 201

Australia, alfalfa seeds from, *E. coli* O157 infections due to, 83–84
- changing weather conditions in, genetically modified foods and, 210
- food exported from, outbreaks from, 96
- goods imported by, outbreaks from, 93–95
- importation of food by, 73
- OzFoodNet in, 76–80

Australia/New Zealand Food Authority (ANZFA), 216

Australia/New Zealand risk-based approach, 216–218

Australian Quarantine and Inspection Service (AQIS), 73, 216, 218

Avian influenza, in turkeys, 222
Avian influenza H5N1 virus, 62
Avocados, imports of, 7

B
Bacillus anthracis, 233
Beef, British, variant Creutzfeldt-Jakob
disease and, 92–93, 211
worldwide ban on export of, 93
ground, E. coli O157 infections from, in
Japan, 86–87
Bell peppers, imported, 10
Biosolids, pathogens in, 119
Bioterrorism, confidentiality issues and,
239–240
food, 232–235
emergency response systems and,
237–239
Bioterrorism Act of 2002, 48, 49, 237–238,
247
Birds, and unprocessed bird products,
restrictions on, 62
Blueberries, cultivated, production of,
26–27
imports of, 7–8
Bovine spongiform encephalopathy (BSE),
61–64, 92–93
and risk of variant Creutzfeldt-Jacob
disease, 211
Brazil, as major food exporter, 256
Brazil nuts, aflatoxins in, 194
imports of, 14
Brie cheese, E. coli infections traced to, 70
Broccoli, imported, 10
Broilers, Salmonella in, 212
Bureau of Customs and Border Protection
(CBP), 46, 57–58

C
Campylobacter, 114
and fluoroquinolone use in animals, 162
antimicrobial resistant, 160
fluoroquinolone-resistant, infections with,
countries recording, 166–167
food-borne bacterial infections and,
162–167
Campylobacter jejuni, antimicrobial-resistant,
from chicken, 172
Campylobacteriosis, travel-associated, 163
Canada, S. enterica serotype Enteritidis in,
from almonds, 87
Cantaloupes, Salmonella serotype Poona in-
fecions and, 84–85
CARVER + Shock method for vulnerability
assessment, 236–237
Cashews, imported, 11
Catfish, domestic production of, 16
Centers for Disease Control and Prevention
(CDC), fruit and vegetable con-
sumption and, 38
incidence of food-borne illnesses and, 140
National Surveillance System, 259
Central America, exports to United States, 27
Cephalosporins, third-generation, resistance
to, 160
Cherries, imports of, 7
Chestnuts, exporters of, 34, 35
imports of, 14
China, as food exporter, 27, 256
defense of exports from, 220
imports from, recall of, 218–220
night soil use as fertilizer in, 130
rejection of food shipments from, 219–220
sanitation performance standards in, 149
scattered production in, control of chemi-
cals and, 149–150
Chocolate, from Italy, S. enterica serotype
Napoli due to, 88
Cholera, associated with seafood, 214
traced to frozen crabs, 70
traced to frozen fresh coconut milk, 70
Citrus, imported, growth in volume of, 6–7
Climate change, global food supply and, 210
Coconut, desiccated, from Malaysia, S.
enterica serotype Paratyphi B biovar
Java in, 90–91
Coconut meat, imports of, 14
Coconut milk, frozen fresh, cholera traced
to, 70
Cod, decreased consumption of, 18
Codex Alimentarius, 60–61, 195, 213–216,
247
as program of United Nations Food and
Agriculture Organization and
WHO, 215
Random Surveillance category of foods,
217–218
Recommended International Code of
Hygienic Practice for Foods for In-
fants and Children, 217
standard-setting process of, 215–216, 217
timeliness and efficiency of, 216
Coffee beans, ochratoxin A in, 202
Common Market for the Southern Cone
(MERCOSUL), 245
Compost, and night soil, 129–130
Composting systems, 122
Consumption patterns, changing, demand created by, 256
Corn and corn products, fumonisins in, 199–200
circumvention of benefits of, 230
worldwide use of, 230
Crab(s), consumption of, 23
frozen, cholera traced to, 70
Cranberries, imports of, 7–8
Creutzfeld-Jakob disease, variant, and British beef, 92–93, 211
risk of, bovine spongiform encephalopathy and, 211
Crustacea, cooked, as risk category food, 218
Cryptosporidium, 114–115
in irrigation waters, 124
in shellfish, 130
Cryptosporidium parvum, in animal wastes, 120
Cucumbers, imported, 10
Customs, 46, 57–58
Cyanide scare, in Chilean grapes, 233
Cyclospora cayetanensis, 81–82
Cyclospora food-borne illness, 62, 103, 141
Cyclosporiasis, and Guatemalan raspberries, 81–82, 141
DANMAP report, 173–176
Deoxynivalenol, fungi producing, 197
in imported wheat products (2000–2006), 198
wheat crops and, 197–198
Diarrhea, turista, 82–83
Diarrheal diseases, 140
Disability-adjusted life years (DALYs), 258
level-of-protection goal and, 128
Disease prevention, improvement in, 104–105
Doha Round, 209
Dysentery, and parsley, 82–83
Eggplant, imported, 10
Eggs, from Spain, Salmonella serotype Enteritidis from, 91–92
Salmonella in, 212
Electronic Foodborne Outbreak Reporting System (eFORS), 75–76
Electronic Product Code (EPC), 245
Engle function, 29
Enter-net network, 74, 76, 97, 99
food-borne disease investigated through, 76, 79
Enteric zoonotic pathogens, transmission of, 114
Enteroviruses, 116
Environmental Protection Agency (EPA), 58–59
EPCglobal, global product coding standard of, 245
Epidemiologic challenges, current, 96–102
Erythromycin, Campylobacter coli resistance to, 176
Escherichia coli, composting systems and, 122
growth on produce, 125
in irrigation waters, 124, 128–129
linked to alfalfa sprouts, 96, 103
nourseothricin-resistant, 162
parsley and, 82–83
Escherichia coli infections, due to raw-milk Brie cheese, 70
Escherichia coli O157 infections, and alfalfa seeds from Australia, 83–84
from ground beef in Japan, 86–87
Escherichia coli O157:H7, 114
in animal wastes, 120, 121
resistance to antimicrobials, 167
Ethnic communities, markets for imported foods in, 29
EurepGAP, private certification of fruits and vegetables, 227, 228
European Program for Intervention Epidemiology Training (EPIET), 99, 100
European Union (EU), 72
and Doha Round, 209–210
Kenya fish exports to, 147
FAO/WHO Joint Expert Committee on Food Additives (JECFA), 190–191
FAO/WHO Joint Food Standards Program, 215
Feces, animal and human, generation and use of, 113–114
human, pathogens in, 116, 117
Federal Food, Drug, and Cosmetic Act, 188
food safety standards and, 45
Fertilizer, animal wastes as, 120
human wastes as, 113–114
night soil as, 129–130
Figs/dried fruit, aflatoxins in, 193
Fish, and shellfish, imported, value of, 16
 imports of, 15
 increase in, 3
 top ten types of, 17
exports from Kenya to European Union, 147
infections of, treated with antimicrobials, 177–178
Fluoroquinolones, Campylobacter infections associated with, countries recording, 166–167
 resistance to, 160
 use in animals, Campylobacter and, 162
Food and Agriculture Organization (FAO) of United Nations, 262–263
Food and Drug Administration (FDA), 45, 46, 113
 and antibiotic residues in foods, 224
 antimicrobial-resistant food-borne pathogens and, 159
Bioterrorism Act and, 48, 49, 237–238, 247
Center for Food Safety and Applied Nutrition (CFSAN), Compliance Program, mycotoxin contamination and, 189
Food Drug and Cosmetic Act and, 47, 48, 50
Food Protection Plan of, 263–264
foods regulated for safety by, 71
fumonisins in foods and, 199–200
import shipments of FDA-regulated products and, 142
imported food inspection activities of, 62
imported food products inspections by, 141–142
imported items inspected by, 63–64
inspection of foreign exporting firms, 50
International Workshop on Mycotoxins of, 202–203
Memorandum of Understanding (MOU) with USDA, 191
“Notice of FDA Action” and, 50, 52–54
 product testing at border by, 72
 products refused by (2006), 142, 143
 products refused by (2007), 259, 260
 refusal of food shipments from China, 220
 regulation of importation of foods, 47–54, 256–257
 actions when violation is found, 50
 authorization to relabel, 50–51
 basic import procedure, 48
 forms for foods, 49–50
 good agricultural practices (GAPs), 51–54
 import food facility registration, 49
 inspection after reconditioning or relabeling, 51
 prior notice of import, 48–49
 regulatory oversight of U.S. food supply and, 167–168, 169
 relabeling of foods and, 50–51
 restrictions on cattle materials and, 61
 review of information on imported foods, 212–213
 strategies to minimize mycotoxins, 188
Food animals, and aquaculture, antimicrobial use in, 172–179
Food bioterrorism, 232–235
 confidentiality issues and, 239–240
 emergency response systems and, 237–239
Food-borne illness, annual investigations in U.S., 75–76
 collating reports of, 75
 high costs of, 140–141
 identification of cluster of, 74
 imported foods causing, 62–63
 incidence of, 69
 investigated through Enter-net, 76, 79
 investigation of source of food, 74
 lost sales in, 141
 outbreak investigations, 73–75
 outbreaks in multiple locations, 70
 outbreaks in United States and Australia, traced to imported foods, 76, 77–78
 persons at risk for, 140
 produce-associated, 80
 spread of, 70–71
Food categories, and countries of origin, 2
Food choices, of educated consumers, 29
Food consumption, changing behavior in, 28, 37
 convenience in, demand for, 29
 income and, 29
Food Drug and Cosmetic Act (FDCA), and Food and Drug Administration, 47, 48, 50
ochratoxin A and, 201
Food exporters, to United States, 1, 2
Food-exporting countries, economic and social conditions in, 30–35
Food groups, selected imported, consumption of, 2–5
Food handling and processing, sanitation deficiencies in, hazards from people to food in, 148
Food imports, regulation of, challenges facing, 61–64
state regulations concerning, 47
to United States, demand-side drivers of, 28
export-oriented growth policies and, 27
fruits and vegetables as, 1
increase between 2000 and 2005, 5
percentage of, 40
processing of, 5
projections of, 35–37
status and projections for, 1–43
supply-side drivers of, 23–28
voluntary recalls of, 39
Food production, food safety activities in, 149
Food purchase, income spent on, 29
Food safety controls, hygienic practices of producers and handlers of food and, 154
implementation of, based on level of economic development, 150–151
in inadequate technology and equipment, 154
in inadequate water supply, 154
Food Safety Inspection Service (FSIS), 45–46, 54–57
documentation checks of shipments by, 65
eligible foreign meat and poultry establishments and, 55, 56
food inspections and, 57
food safety systems and, 55
foods regulated for safety by, 71, 257–258
review of information on imported foods, 212–213
visual inspections of food shipments by, 55
Food safety interventions, inadequate, due to deficient systems of enforcement, 149–150
Food safety regulations, enforcement of, 32
Food safety systems, 148–150
conflicting traditional production methods and, 153
Country-of-Origin Labeling (COOL) and, 229–232
food supply chains and, 153–154
incentives of private parties and, 227–229
private standards used in, 227
Food trade, international, advantages and disadvantages of, 139
Foods, deliberate contamination of, 232–235
vulnerability assessment and, 236–237
disease transmission through, 140–141
exported from United Kingdom, outbreaks due to, 91–92
exported from United States, outbreaks from, 86–87
global trade of, rise in, 113–138
imported, antimicrobial-resistant foodborne pathogens in, 159–185
antimicrobial-resistant Salmonella from, 167–172
contaminated, identification of, 226
cross-contamination of, animal and human waste in, 113–138
from contaminated hands, 131
from contaminated water postharvest, 131
routes of, 126–132
deliberate acts of sabotage and, 234
food safety hazards in, sources of, 144–146
food safety regulations applicable to, 45–68
impact of, on microbiological safety of food supply, 255–266
microbiological safety of, programs designed to improve, 209–253
mycotoxins in, 190–202
outbreaks from, in United States, 81–86
prioritization of control strategies for, 226
procedural and legal hurdles to, 47
refusals of, 261
regulatory oversight of, 46
smuggling of, to United States, 232
imported by United Kingdom, outbreaks from, 88–92
international, expanding trade in, 71–73
international trade in, advantages of, 1
new, introduction of, ethnic diversity and, 28
production sites for, potable water for, 144–146
safety of, in United States, as shared responsibility, 210–213
Foot and mouth disease, 231
France, infant formula from, S. enterica serotype Anatum in, 89–90
Free Trade Area of the Americas (FTAA), 245
Fruit flies, 71
Fruits, and nuts, imports of, increase in, 3 and vegetables, food-borne illness associated with, 80 imported into United States, 1, 139–140 private certification by EurepGAP, 228 recommended consumption of, 38 fresh, imported, between 2000 and 2005, 5–6 imports of, in total domestic consumption, 4 outbreaks related to, 103 imports of, projections on, 35–37 processed, imports of, 8 Fumonisins, in corn and corn products, 199–200 Fusarium culmorum, 198 Fusarium graminearum, 198 Fusarium verticillioides, 198–199

G

Giardia, 114–115
in irrigation waters, 124
Global Trade Item Number (GTIN), 243
Good agricultural practices (GAPs), 228 codes and food safety issues addressed by, 225–226 Food and Drug Administration and, 51–54 safety of food products and, 148 Grapefruit, imports of, growth of, 6–7 Grapes, Chilean, cyanide scare in, 233 imports of, 7 Green onions, and jaundice, 63, 83, 145 Groundwater, pathogens in, 123–124 Guatemala, raspberries grown in, and cyclosporiasis, 81–82, 141

H

Hazard Analysis and Critical Control Point (HACCP) program, 63–64, 103, 214 application of risk management principles, 89 Hazelnuts, imports of, 14 Helva, Salmonella spp. in, 94–95 serotype Montevideo, 98 serotype Typhimurium DT 104, 93–94 Hepatitis A, 63, 83, 145 Hepatitis A virus, 115–116 growth on produce, 125–126 Hepatitis E, 120 Hepatitis E virus, 114 Household environment, changes in, food consumption and, 28 Hygiene and sanitary issues, in developing countries, constraints and problems related to, 150–155

I

Ice cream, Salmonella contamination of, 234 Immigrants, in agricultural production, 24 Income, and food consumption, 29 per capita, as measure of development, 30 Index of Economic Freedom (EFI), 32, 33 and Transparency Index, 33–34 Infant formula, from France, S. enterica serotype Anatum in, 89–90 information required concerning, 49–50 Infections, associated with antimicrobial-resistant food-borne pathogens, 162–167 INFOSAN (international food safety authorities network), 99–101 Institutional and regulatory systems, in developing countries, development and implementation of, 152 Irrigation systems, four types of, 127 used by different countries, 127 Irrigation waters, cross-contamination of foods via, 126–132 factors influencing, 126 pathogens in, 124, 258 standards for quality of, 127–129 Israel, savory snack from, Salmonella serotype Agona in, 89 Italy, chocolate from, S. enterica serotype Napoli due to, 88

J

Japan, E. coli O157 infections in, from ground beef, 86–87 imports from, FDA refusal of, 142, 143 oysters from, norovirus outbreaks linked to, 95 Jaundice, and green onions, 63, 83, 145

K

Kenya, fresh produce for British and European markets from, 146–147

L

Labor costs, as factor in food importation, 23–26 in China, 25–26 in fisheries, 24
Index 273

in fruit and vegetable production, 24
in Japan, 25–26
in Mexico, 25
in various countries, differences between, 256
Leisure time, as factor in food consumption, 28
Lemons, imports of, growth of, 6
Lettuce, from Spain, S. sonnei in, 88–89
imported, 8–9
Typhimurium DT 104 in, 98
Limes, imports of, growth of, 6–7
Listeria, foods tested for contamination by, 218
in seafood products, 214
Listeria monocytogenes, 85
in foods, variable standards for, 224
resistance to antimicrobials, 167
Listeriosis, and queso fresco cheese, 85

M
Macadamia nuts, countries exporting, 13
Malaysia, desiccated coconut from, S. enterica serotype Paratyphi B biovar Java in, 90–91
Mangoes, and Salmonella enterica serotype Newport infections, 85
imports of, 8
Manufacturing, production workers in, hourly compensation of, 25
Manure, treated, as fertilizer, 121–122
Meats, antimicrobial-resistant Salmonella in, 171–172
fresh, importation of, 71
illegal, smuggling of, 232
red, imports of, in total domestic consumption, 3–4
increase in, 3, 5
Mexico, fruit imports from, 71
imports from, FDA refusal of, 142, 143, 144
Mushrooms, imported, 9
Mycotoxins, 187
as stable compounds, 187–188
avoidance in food, 188
contamination of food crop by, as variable, 187
factors influencing growth of, 187
in imported foods, 190–202
strategies of FDA to minimize, 188

N
National Antimicrobial Resistance Monitoring System (NARMS), 163
National Marine Fisheries Service (NMF), 60
National Oceanic and Atmospheric Administration (NOAA), 59–60
Night soil, compost and, 129–130, 258
Noroviruses, food-borne diseases and, 140
human enteric, 115–116
linked to quick-frozen oysters, 95
North American Free Trade Agreement (NAFTA), 245
food safety and, 209
Nourseothricin, E. coli and, 162
Nuts. See Peanuts; Tree nuts.

O
Ochratoxin A, food crops susceptible to, 201
levels in imported foods, 201, 202
prevalence and levels of, 201
toxicity in animals, 201
Onions, green, and jaundice, 63, 83, 145
imported, hepatitis A and, 63, 83, 145
imported, 9
Organophosphates, ban on, 28
Outbreak investigations, 102–103
OutbreakNet, 74, 97
Oysters, quick-frozen, norovirus linked to, 95
OzFoodNet, 76–80, 97

P
Papayas, imports of, 8
Parsley, dysentery and, 82–83
Pathogens, concentrations of, wastewater types and, 116
die-off rates of, 125
end-product testing for, 240–241
food-borne, antimicrobial-resistant, in imported food, 159–185
infections associated with, 162–167
prevalence of, 164–165
in animal wastes, 120–121
in groundwater, 123–124
in human feces, 116, 117
in irrigation waters, 124
in shellfish-growing waters, 130–131
in surface waters, 122–123
occurrence in environment, 116–124
survival of, 124–126
transmission of, 113–114
Patulin, 195–197
growth on foods, 195
immunosuppressive effects of, 196
in apple juice, 196–197
Peaches and nectarines, imports of, 7
Peanuts, and peanut products, aflatoxin contamination in, 193–194, 195
dried, Salmonella serotype Stanley, 94
Pecans, imported, 11–13
Penicillium verrucosum, 201
Pesticides, environmental concerns and, 27–28
regulations on use of, 24
tolerances for foods, 59
Pineapple juice, imports of, 8
Pineapples, imports of, 8
Plants, pathogen survival in, 125–126
Plums, imports of, 7
Pollock, consumption of, 18–19
Poultry, variable standards for Salmonella in, 223
Preparedness programs, implementation of, 237–239
testing of, 239
Processed foods, imports of, 4–5
Produce. See Vegetables, and Fruits, fresh, British and European markets, 146–147
Kenya and, 146–147
Production and processing sites, hygienic practices at, 148
Public health, disparities in, 258
Pulsed-field gel electrophoresis, to differentiate isolates, 166
PulseNet, 74, 96, 99
Purchasing Power Parity (PPP), 30
ranking, and economic reasons for trade, 30, 31–32
Q
Queso fresco cheese, and listeriosis, 85 as public health hazard, 101
R
Radiofrequency identification data (RFID), 243–244, 247
Radishes, imported, 10
Raspberries, Guatemalan, and cyclosporiasis, 81–82, 141
Relabeling of foods, Food and Drug Administration and, 50–51
Risk analysis, considerations for application of, 213
d blindly, 214
Risk communication, importance of, 221
slow, consequences of, 221
Risk management, and communication, 220–221
in developing countries, issues hampering, 262–263
Roquefort cheese, ban on importation of, 219
Rotavirus, 116
S
Salm-Gene, 96, 99
Salmon, imports of, 18–20, 21
increased consumption of, 18
Salmonella, 114
antimicrobial-resistant, 160
from imported foods, 167–172
composting systems and, 122
contamination of ice cream, 234
Danish surveillance program for, 226
food-borne bacterial infections and, 162–167
growth on produce, 125
imported foods as source of, 160
in eggs and broilers, 212
in irrigation waters, 124
in poultry, variable standards for, 223
linked to alfalfa sprouts, 96
multidrug-resistant, recovered from imported foods, 169–171
nontyphoidal, and antimicrobials use in food animals, 162
Salmonella enterica serotype Agona, in savory snack from Israel, 89
Salmonella enterica serotype Anatum, in infant formula from France, 89–90
Salmonella enterica serotype Enteritidis, from almonds in Canada, 87
Salmonella enterica serotype Enteritidis, in eggs from Spain, 91–92
Salmonella enterica serotype Montevideo, in sesame seed products, 94–95
Salmonella enterica serotype Napoli, in chocolate from Italy, 88
Salmonella enterica serotype Newport infections, and mangoes, 85
Salmonella enterica serotype Paratyphi B biovar Java, in desiccated coconut from Malaysia, 90–91
Salmonella enterica serotype Poona, 63
infections and cantaloupes, 84–85
Salmonella enterica serotype Stanley, from dried peanuts, 94
Salmonella enterica serotype Stanley infections, alfalfa sprouts and, 70, 103
Salmonella enterica serotype Typhimurium DT 104, 98
associated with imported helva, 93–94
Salmonella serotyping, in public health surveillance, 74
Salmonella violations, food refusals due to, 259
Sanitary and Phytosanitary (SPS) Measures Agreement of WTO, 220–221, 222–225
Sanitation performance standards, assessment of food safety and health control systems and, 152–153
compliance with, in China, 149–150 in developing countries, benefits to domestic consumers, 156
required by developed countries, investment needed for, 156
Scallops, imported to U.S., 23
Seafood, antimicrobial-resistant Salmonella in, 171
cholera associated with, 214
health benefits of, 39
imported, assessment of, 213–216
increase in consumption of, 36–37
leading exporters to United States, 15–16
refusals of, microbiological violations codes associated with, 261
Sesame seed products, serotype Montevideo in, 94–95
Sewage, pathogens in, 117–120
in developing countries, 117–118
treatment of, 118–119
improvements needed in, 104
Shellfish, enteric viruses in, 130–131
imported, outbreaks of disease associated with, 131
imports of, projections of, 36
Shellfish-growing waters, pathogens in, 130–131
Shigella sonnei, 82
in iceberg lettuce from Spain, 88–89
Shrimp, aquaculture production of, 37
importers to U.S., 22–23
imports of, 21–23
major exporting countries, 34
Shrimp ponds, antimicrobials used in, 178–179
Skipjack, imports of, 18, 20
Sludge, activated treatment of, 119–120
classification of, 119
Soil, pathogen survival in, 125
Spain, eggs from, serotype Enteritidis from, 91–92
lettuce from, S. sonnei in, 88–89
Spices, refusals of, 259
Spinach, imported, 8–9
Squash, imported, 10
Staphylococcal food poisoning, due to mushrooms, 70
Stockholm Framework, 118
Surface waters, pathogens in, 122–123
Surveillance systems, 235–236

T
Tahini, Salmonella spp. in, 94–95
serotype Montevideo associated with, 98
Technical Barriers to Trade Agreement (TBT), 60–61
Technological progress, relocation of production and, 26–27
Texas American Foodservice Corporation, Bacterial Pathogen Sampling and Testing Program of, 226
Thailand, tropical fruit promoted by, 27
Tilapia, imported, 16–17, 18
Tomatoes, imported, 10
Traceability systems, code information in, 243
mechanisms of, 242–243
principles of, 240–241
reasons for adopting, 242
retrieval of contaminated food by, 241–242
types in information collected in, 242
Traceback investigations, 98
and surveillance, 102
collaboration with various countries in, 98–99
difficulties in developing countries, 153–154
embargoes on specific foods and, 103–104
gray market transport of foods and, 99–101
negotiations with importing country and, 98
product substitution and relabeling complicating, 98
Training Programs in Epidemiology and Public Health Interventions Network (TEPHINET), 99
members of, 100
Transparency, and economic freedom, 33
and economic freedom indexes, 32–35
information to sellers and buyers and, 32–33
Transparency Index (TI), 32
Index of Economic Freedom and, 33–34
Transparency International, 32
Tree nuts, aflatoxin contamination of, 194
consumption of, 36
imports of, 11–15
testing of, 39
Trichothecenes, fungi producing, 197
in imported wheat products (2000–2006), 198
wheat crops and, 197–198
Tuna, forms of, 17
imported, 17–18, 19, 20
Turkey, helva from, *Salmonella* serotype Typhimurium DT 104 associated with, 93–94

U
United Kingdom, animal products checked for import into, 72
designated ports for food entry into, 73
Enter-net network and, 76
foods exported from, outbreaks due to, 91–92
foods imported by, outbreaks from, 88–92
legislation on food standards in, 72
U.S. Department of Agriculture (USDA), 54–57
Animal and Plant Health Inspection Service, 57
FDA Memorandum of Understanding (MOU) with, 191
Food Safety Inspection Service (FSIS), imported food inspection activities of, 63, 64
meat and poultry inspection by, 167
U.S. Federal Agencies, 46
U.S. Government Accountability Office (GAO), 62

V
Vegetable juices, imported, 11
Vegetables, and fruits, food-borne illness associated with, 80
imported into United States, 1, 139–140
private certification by EurepGAP, 228
recommended consumption of, 38
fresh, imported, 8–11
imports of, forces driving, 26–27
in total domestic consumption, 4
outbreaks related to, 103
imports of, increase in, 3
projections on, 35–37
processed, imported, 10–11
Vibrio parahaemolyticus, in oysters and clams, 214
Vibrio vulnificus, in oysters, 214
Vietnam, night soil use as fertilizer in, 130
Viruses, contamination of groundwater by, 123–124
enteric, in shellfish, 130–131
Vomitoxin, fungi producing, 197
in imported wheat products (2000–2006), 198
wheat crops and, 197–198
Vulnerability assessment, 236–237

W
Waste stabilization ponds, 119
Wastewater, for irrigation, in developing world, 128–129
reclaimed, treatment processes for, 128–129
standards for irrigation water quality and, 127–129
Water, and sewage sanitation, improvements needed in, 104
drinking, contamination of, in developing countries, 131–132
provision of safe, 104
microbiologic quality of, for food production, 132
potable, for food production sites, 144–146
used to process fresh foods, 82–83, 144
Watermelon, imports of, 7
World Health Organization (WHO), and INFOSAN, 99–101
antimicrobial agents for growth promotion and, 160
Global Salm Surv program of, 99
recommendations for reuse of wastewater and greywater, 128, 132
response to bioterrorism threats and, 235
World Trade Organization (WTO), 60–61, 245
Sanitary and Phytosanitary (SPS) Measures Agreement of, 220–221, 222–225