Biology and Biotechnology

Science, Applications, and Issues
Biology and Biotechnology

Science, Applications, and Issues

Helen Kreuzer
Department of Biology, University of Utah,
Salt Lake City, Utah

Adrianne Massey
A. Massey & Associates,
Chapel Hill, North Carolina

ASM PRESS
WASHINGTON, D.C.
To Anne, Lloyd, and Bob with gratitude and love
About the Authors

Helen Kreuzer is a scientist and an educator. She received her Ph.D. degree in molecular genetics and microbiology from Duke University Medical Center and has taught numerous biology courses to undergraduate students. From 1991 to 1994, she worked with Adrianne Massey at the North Carolina Biotechnology Center, where she designed classroom activities and wrote curriculum materials for teaching about molecular biology and biotechnology in high school. These activities were later published in the book she coauthored with Dr. Massey, *Recombinant DNA and Biotechnology: A Guide for Teachers*, and the accompanying *Guide for Students*. She has taught numerous courses and workshops for high school teachers and developed additional laboratory exercises, models, and videos for molecular biology instruction. Dr. Kreuzer is a member of the biology faculty at the University of Utah, where she researches the use of stable isotope ratios to answer forensic as well as basic biological questions. She and her husband live in Salt Lake City with their basset hounds, TJ and Rosebud, and their dachshunds, Daisy and Pete. In their free time, they perform volunteer work on behalf of homeless dogs and enjoy camping, hiking, and kayaking.

Adrianne Massey has been involved with scientific research, education, and public policy for over 20 years. Her company furthers informed science and technology policy development by mediating consensus-building activities, counseling governments, helping nonscientists understand biology, and training scientists in communications. Prior to founding her company, she was a vice president at the North Carolina Biotechnology Center and a biological sciences faculty member at North Carolina State University. Dr. Massey served as the science advisor for the PBS series *BREAKTHROUGH: Television’s Journal of Science and Medicine* and was the original director of the North Carolina Environmental Technology Consortium. She received her Ph.D. in zoology from North Carolina State University and has taught undergraduate and graduate courses in biology and evolutionary ecology. She is currently working with governments in various African and Asian countries to foster responsible economic growth through scientific innovation and technological advance.
Contents

Foreword ix
Preface xi
Acknowledgments xv

PART I Perspective 1
1 Science, Technology, and Society 3

PART II The Foundational Science 33

From Atoms to Organisms
2 The Cell: the Basic Unit of Life 35
3 Molecular Components of Cells 51
4 Expression of Genetic Information 71
5 Protein Structure and Function 89
6 Cell Metabolism 111
7 Cells Maintain Their Internal Environments 137
8 Cells Respond to Their External Environments 157
9 Cells Grow and Reproduce 183
10 Cells Differentiate 205

From Organisms to Ecosystems
11 Patterns of Genetic Inheritance 233
12 From Genotype to Phenotype 257
13 Evolutionary Mechanisms 287
14 Ecological Interactions 319
PART III Biotechnology Applications and Issues 357

Research Applications
15 The Biotechnology Toolbox 359
16 Biotechnology in the Research Laboratory 385

Commercial Applications
17 Moving Science from the Laboratory into Society 419
18 Risks and Regulations 443
19 Health Care Applications 475
20 Medical Biotechnology in Society 509
21 Biotechnology in the Food Industry 535
22 Ecology and Evolution in Agriculture 569
23 Biotechnology and Sustainable Agriculture 591
24 Environmental Sustainability and Biotechnology 627

Index 651
Old habits die hard. Perhaps surprisingly, this is nowhere more true than in academia—supposedly a bastion of rational, analytical thought. In the last century, science and technology have utterly transformed our lives. Today, a citizen who does not understand the nature of science and its unique, highly productive way of learning about the world (“science as a way of knowing”) cannot claim to be truly educated—any more than someone who cannot write a clear essay. But in our colleges and universities, history is rarely taught to reflect the dramatic ways in which scientific and technological advances have shaped our societies, as well as the course of human events. And most of our science and engineering faculty continue to teach their subject as if it were important only for those who seek to become professionals in their own or a related field.

Even for majors in the subject, we often teach science poorly. Should the purpose of an introductory science course be to commit to memory a large mass of facts that scientists have discovered about the natural world? Life is very different from a quiz show, and anyone with access to the Internet can find almost any fact that he or she wants to know in a few seconds on Google. We need to teach science to all of our students in a way that gives them a clear understanding of how scientific knowledge is accumulated, with its emphasis on logical argument and its insistence on openly presenting evidence—along with details of the methods used to obtain it—so that each scientist’s observations can be confirmed (or refuted) by any other scientist. Science is a marvelous community endeavor that enables new knowledge to be built upon old knowledge in ways that have enabled us to gain a tremendous understanding of the physical world. The understanding has in turn enabled humans to manipulate this world in ways that produce great benefits for humanity.

All of those who teach science in our colleges and universities should think carefully about the fact, cited at the beginning of chapter 22, that “only
30 percent of the consumers in the seven largest EU countries know that all crop plants have genes”—or the fact that half of Americans believe in astrology. How can we hope to maintain a rational society when a majority of our citizens are so disconnected from reality? I would contend that, in every science course that is taught, our primary aim should be to encourage the students to engage in the excitement of the subject and to understand deeply the manner in which science is carried out and its relevance for society.

Despite the arguments just presented, we continue to teach biology to college freshmen from massive textbooks that attempt to cover all of biology in a single year. In such courses there is not enough time to delve into any one aspect of biology in enough detail for students to get a feeling for the fabric of science—or to appreciate how powerfully the science connects to technologies that shall continue to change their lives.

Fortunately, *Biology and Biotechnology: Science, Applications, and Issues* is a different type of textbook for a different type of course. By not attempting to explain all of biology and instead focusing on biotechnology and its many applications, the authors have been able to pursue arguments and present case studies in enough depth to give students a real feeling for the nature of science in its modern context. This course also explicitly aims to connect science to the students’ lives and the decisions that they will have to make as citizens in a democratic society. The authors display the many connections between science and technology, using carefully chosen, beautifully explained examples. Students can thereby begin to understand the source of many of the changes that they have already experienced during their lifetime.

In closing, I would like to congratulate Helen Kreuzer and Adrienne Massey, as well as their publisher, ASM Press, for having the courage to produce a new kind of textbook. The inertia in academia stems in part from the fact that textbook publishers naturally concentrate on producing books that will be sold in large numbers. They therefore design their new books to match the prevailing large courses. But if all of the attention, energy, and talent are devoted to producing materials for these broad survey courses—a mile wide and an inch deep—there is no hope for a change in academia.

Rarely, a new kind of textbook like this one comes along that creates a “tipping point,” triggering a widespread change in how we teach a particular subject. I contend that we are way past the time for a tipping point in the way that we teach introductory biology to college students. Hopefully, this bold new textbook by Kreuzer and Massey will help pave the way for others, thereby catalyzing the spread of many new courses that can inspire students with the wonder and power of modern science.

Bruce Alberts, President
National Academy of Sciences
Washington, D.C.
March 2005
In the course of our professional lives, we have had many opportunities to talk about aspects of biotechnology with audiences from diverse walks of life: lawyers, farmers, businesspeople, school teachers, students, restaurant chefs, and the general public, to name a few. These people genuinely sought to understand issues that they had heard about in the media and brought a high level of interest, intelligence, and thoughtfulness to the task. Often, their motivation was to become an informed consumer of biotechnology. For example, did they want to purchase and eat genetically modified food, to grow genetically modified crops, to support stem cell research, to favor genetic testing? Sometimes they were merely curious, seeking answers to questions such as how does DNA fingerprinting work? What is cloning? What is recombinant DNA? Our task has been to explain the science and to provide sufficient information about the issues to enable people to formulate their own opinions about them.

This book is an outgrowth of these experiences. Our goal was to create a text that would give readers the foundation they needed for understanding the many inevitable advances in biotechnology that the coming years will bring and a context for making decisions about them as potential consumers. We wrote it for students and readers who have not necessarily chosen biology as their major field of study, although we believe it may offer unique perspectives to biology students as well. The book is self-contained. Readers do not need to have taken a college biology course prior to using it, although since its focus is quite different from that of a typical introductory biology course, the information presented will not be redundant to those who have. Because of its blending of science, consumer applications, regulatory information, and social issues, we believe that the book will be of interest to students and other readers from many disciplines.

We begin our text with a perspective on the interrelationship between science, technology, and society. These three realms have reciprocal effects on
one another. Science leads to technologies that provide new tools for doing science. At the same time, technologies are evaluated by society, often in the form of market forces, influencing the future direction of scientific research and technological development. The interweaving of these threads is particularly well illustrated in the case of biotechnology because the social debate about biotechnology products is so public and because the links between scientific and technological advances are so immediate. At the same time, the use by human beings of biology and biological organisms to make products and improve their environment is ancient, giving us a historical context in which to view modern biotechnologies. The perspective offered in the first part of the book infuses the discussion of biotechnology applications presented later on.

Before we discuss applications of biotechnology, we provide the scientific foundation necessary to understand them in the second part of the book, “The Foundational Science.” Modern biotechnology concerns the use and manipulation of cells and their subcomponents to make products and solve problems, and the biotechnological manipulation of whole organisms starts with the manipulation of individual cells. Thus, the first subpart of this part is a primer on cell biology titled “From Atoms to Organisms,” in which we look at the life processes of cells and how those processes translate to the organism level.

Cell biology alone, however, is not sufficient for understanding many of the applications of biotechnology, which can go beyond individual cells and organisms to affect the progeny of the manipulated organisms. Biotechnologies such as genetic testing look at parents and offspring in context. Agricultural and environmental biotechnologies evoke ecological and evolutionary questions concerning how the characteristics of one member of a community can affect its other members both immediately and over time. The second subpart of this part of the book, titled “From Organisms to Ecosystems,” introduces genetics, ecology, and evolution: the transmission of genes from one generation to the next, the interaction of genes and environment to produce traits, the interaction of organisms in communities and ecosystems, and finally, the evolutionary response of organisms and ecosystems to environmental changes.

Throughout “The Foundational Science,” we present examples of how the scientific knowledge being explained has been translated into technologies used to solve problems in medical and everyday settings. Also imbedded within this part are a few narratives of the history of particular scientific developments. We include these as examples of how science progresses and to illustrate the impact of society and social context on science.

Having laid this scientific foundation, we can now focus on biotechnology in the third major part of the book, “Biotechnology Applications and Issues.” Although the title of this part would probably cause most people to think of commercial applications, so far the most significant applications of biotechnology have been in the research laboratory, enabling scientists to gain new knowledge about the natural world at an ever-increasing pace. We begin with a look at this impact of technology upon science in a subpart titled “Research Applications,” which describes biotechnology techniques and shows how these methods are used to gain new scientific knowledge in scientific fields from archaeology to zoology. The two chapters in this subpart will also address “how do they do that” questions.

The second subpart of this part, “Commercial Applications,” looks at biotechnology products in society at large. We begin this subpart with a dis-
discussion of issues that arise when scientific advances are moved from the research laboratory into society, the concepts of risk and regulation. We present a framework and process for thinking about risk that readers can use to put new technologies and products into perspective in comparison with older ones.

In the following chapters, we look specifically at biotechnology in medicine, food, agriculture, and the environment. These chapters are not simply laundry lists of products and potential products. Rather, we show the scientific basis of a few specific products, as well as the complexity surrounding their introduction into the market. We also discuss how product introductions are regulated and the process that regulators go through in making decisions.

Biotechnology applications can trigger ethical dilemmas in which there are no easy or perfect answers. Our goal in these chapters is not to provide readers with an opinion but rather to provide them with tools for conducting their own informed, critical evaluations. To that end, we attempt to provide the essential information required for understanding both the science and the issues involved in each chapter’s example applications. As we discuss the issues raised by each application, we use the framework presented earlier to analyze them. We hope that these thorough examples will illustrate what kinds of questions need to be asked and how the answers can be put into perspective as the readers think about any new technology.

In the past, technologies were usually adopted without consideration of their potential impact on society and the environment. In recent decades, the impact of technology on society and the environment has become an issue of great concern to many, and biotechnology as a whole is one of the first broad categories of technology to receive public scrutiny before its widespread introduction. Societal decisions about which technologies to adopt may have profound implications for humanity in terms both of what technological options are available to us today and of the impact that our decisions have on the future direction of scientific and technological advances.

Readers, the decisions you make about biotechnology will contribute to our societal decisions as a whole and thus to the future of science, technology, and society. We hope that this book will empower you to evaluate issues independently and critically.

Helen Kreuzer and Adrianne Massey
April 2005
Writing this book was a long and difficult task. Many people supported and encouraged us in many different ways during the process, and it is now our pleasure to thank those who helped this book come to be.

First, we thank Jeff Holtmeier, the director of ASM Press. Jeff gently prodded us to write a college-level textbook, based on our first book on biotechnology, which was also published by ASM Press. Early in the process we realized that we wanted to write a textbook that bears little resemblance to our other book, and without hesitation Jeff allowed us to do this. As Bruce Alberts notes in the foreword, publishing a textbook that differs significantly from existing textbooks that are geared to familiar, well-established markets requires courage. Jeff, we thank you for your courage and for your faith in us.

We also thank the ASM Press staff, particularly Susan Birch, Laura Ledbetter, and Jennifer Adelman. In addition to providing highly professional assistance in every way, they also offered emotional support and enthusiasm for the project. We are fortunate to work with such a thoughtful and generous group of people. Thanks also to Elizabeth McGillicuddy, who copyedited the book; Susan Schmidler, who did the cover and interior design; and Patrick Lane, who rendered the art.

Many members of the scientific community improved the content and visual quality of the book. A number of anonymous reviewers read the first draft of the entire book, and other scientists, including Harold Coble, Fred Gould, Karyn Hede, and Ron Kuhr, read selected chapters. Reviewing is a time-consuming task, and we are grateful for your time and effort. Your conscientious reviews led to numerous improvements in the manuscript. Other scientists allowed free use of their photographs. Some exceeded our requests and found additional images that they thought might be useful. We thank all of you for your generosity, especially Steven Baskauf, Carol and Dennis Gonzales, Nasser Rusan, Kent Schweigerle, Hans and Petra Sommer, George Seidel, and Michael Vernon.
We thank Thomas Martin, a computer graphics expert and professional photographer, for his multifaceted support throughout this project. He handled countless image and file transfer issues, took several photographs specifically for the book, volunteered to be a nonscientist reviewer for most of the chapters, and served as a computer consultant throughout the project. And he did all of this at no charge! Tommy, we can’t thank you enough for the many tangible and intangible contributions you made to this book.

A special note of thanks goes to Bruce Alberts, president of the National Academy of Sciences, for his willingness to write the foreword. We are honored that you found the time to read the book and gratified that you saw so clearly the heart of our intentions in writing it.

Finally, we could not have finished this project without the moral support and encouragement of our friends and loved ones. You know who you are. Thanks, y’all.

Helen Kreuzer and Adrianne Massey
April 2005
A
Abiotic factors, 319
abl gene, 199, 202
ABO blood type, 59, 269–270
Abortion, political aspects, 423–424
Absolute risk, 445
Acacia plant, coevolution with Pseudomyrmex ants, 311
ACE, see Angiotensin-converting enzyme
ADH, see Antidiuretic hormone
Adenine, 30, 63–64, 184–185
Adenocarcinoma, 194
Adenoma, colonic, 196–197
Adenosine diphosphate, see ADP
Adenosine triphosphate, see ATP
ADH, see Antidiuretic hormone
Adult stem cells, 496–497, 531
differentiation, 498
Aerobic exercise, 118
Aflatoxin, 466, 562
AFLP, see Amplified fragment length polymorphism
Agar, 57
agarose gel electrophoresis, 362–363, 365–366
Agricultural ecosystems, 579–581
modeling after natural ecosystems, 596–597
pest species, 580–581
soil erosion and nutrient depletion, 579–580
Agricultural productivity, 352–355
Agricultural technology, 351–355
Agricultural workforce, 570
Agriculture, see also Crop entries; Plant entries
beginnings, 570–572
effects of biotechnology, 17
energy use, 593
human population growth and, 348–355
Industrial Revolution and, 581–590
monoclonal, 587
sustainable, 589, 591–626
trade-offs and compromises, 588–590
Agrochemicals, 582–583
AIDS, 422–423, see also HIV infection
anti-AIDS drugs, 372
diagnosis, 480–482
AIDS-defining illness, 480–481
Albinism, 128–129
Alcohol, 176
Aluminum, toxicity to plants, 412
Alzheimer’s disease, 485, 516
Amaranth, 537
Amber-encased insects, 399–400
AMH, see Anti-Müllerian hormone
Amino acids, 61
commercial production, 132
as energy sources, 117–118
enhancing nutritional value of foods
adding new proteins to crops, 537–538
metabolic engineering of amino acid synthesis, 538–539
essential, 126, 536–539
metabolism, 116
protein synthesis, see Protein(s), synthesis
side chains
hydrophobicity/hydrophilicity, 92–93
Aldosterone, 163, 175–180
Aldosterone receptor(s), 179
Aldosterone receptor blockers, 180
Aldosterone resistance, 179
Algae, 631
Alkaloids, 447
Alkaptonuria, 128
Allele, 242
Allergen, identification, 563
Allergenicity tests, transgenic proteins, 562–563
Allergy, food, see Food allergy
Alpha helix, 95–98
hydrophobic, 102
Alpha-1 antitrypsin deficiency, 485, 493, 516
Aluminum, toxicity to plants, 412
Alzheimer’s disease, 485, 516
Amaranth, 537
Amber-encased insects, 399–400
AMH, see Anti-Müllerian hormone
Amino acids, 61
commercial production, 132
as energy sources, 117–118
enhancing nutritional value of foods
adding new proteins to crops, 537–538
metabolic engineering of amino acid synthesis, 538–539
essential, 126, 536–539
metabolism, 116
protein synthesis, see Protein(s), synthesis
side chains
hydrophobicity/hydrophilicity, 92–93
Aldosterone, 163, 175–180
Aldosterone receptor(s), 179
Aldosterone receptor blockers, 180
Aldosterone resistance, 179
Algae, 631
Alkaloids, 447
Alkaptonuria, 128
Allele, 242
Allergen, identification, 563
Allergenicity tests, transgenic proteins, 562–563
Allergy, food, see Food allergy
Alpha helix, 95–98
hydrophobic, 102
Alpha-1 antitrypsin deficiency, 485, 493, 516
Aluminum, toxicity to plants, 412
Alzheimer’s disease, 485, 516
Amaranth, 537
Amber-encased insects, 399–400
AMH, see Anti-Müllerian hormone
Amino acids, 61
commercial production, 132
as energy sources, 117–118
enhancing nutritional value of foods
adding new proteins to crops, 537–538
metabolic engineering of amino acid synthesis, 538–539
essential, 126, 536–539
metabolism, 116
protein synthesis, see Protein(s), synthesis
side chains
hydrophobicity/hydrophilicity, 92–93
Amino acids (continued)
interactions with water, 93
polarity, 91–93
structure, 90–92
sweet, 127
synthesis
feedback inhibition, 121–123
metabolic engineering, 538–539
Ammonia, nitrogen cycle, 334–335
Aminoacetic acid, 189, 515, 517
AMP, 63
Amplified fragment length polymorphism (AFLP), 396, 403
Amylase
commercial production, 132
industrial production, 410
“lith” beer production, 134
pancreatic, 216
saliary, 216–217
structure and function, 62
Amyotrophic lateral sclerosis, 516
Androgen insensitivity, 229–230
Androgen(s), 163
Anaphase, 190–191
Anabolism, 114–121
Amyotrophic lateral sclerosis, 516
Androgen insensitivity, 229–230
Androgen(s), 163
Anaphase, 190–191
Anabolism, 114–121
Animal(s)
Anterior-posterior body axis, 218
Antennapedia complex, 219–220
Animal cloning, 431–432
Animal cells, 47
Animal breeding, 435–439
Animal manure, 580, 582
Animal performance studies, transgenic crops, 562
Annual plants, 571
Antennapedia complex, 219–220
Anterior-posterior body axis, 218
Anticoagulants, 485
Antidote, 485
Antioxidants, 549
Aortic valve, 176
Arterial muscle tone, 172, 175–176
Arterial thrombosis, 176
Arrhythmia, 145–146
Aspartate kinase, 538–539
Aspartame, 127
Aspartic acid
commercial production, 132
metabolism, 123
Assortative mating, 308
Astrocytoma, 194
Atrial blood pressure, 172
Atrial natriuretic hormone (ANH), 175
Atrial natriuretic hormone (ANH), see Atrial natriuretic hormone
Atrial natriuretic hormone (ANH), see also Atrial natriuretic hormone
Atrial natriuretic hormone (ANH), see also Atrial natriuretic hormone
Bacillus thuringiensis, 452–466
Bacteriophage, 31, 48
Bacteriophage T4 lysozyme, 108
Bacteriophage lambda, 99, see also Lambda repressor
Bacteriophage T4 lysozyme, 108
Baculovirus, 603, 640
Banana, chromosome number, 299–300
Baroreceptors, 158–159, 176–178
Beltool, 199
Bean, 135
Beer, 131
reduced-calorie, 134–135
Beltian body, 311
Benign tumor, 194
Benzoyleure, 199–200
Beta sheet, 95–98
Beta-carotene, 132, 540–541, 548–549, 555, 557
Beta-thalassemia, 485
Bicoid protein, 217–218, 390
Bicoid-like genes, vertebrates, 218
Bimodal distribution, 309
Binding, 44, 46
Bioaugmentation, 647
Bioavailability, 539
Biocatalysts, 633–637, 649
advantages, 633–635
disadvantages, 634–635
Bicoid protein, 217–218, 390
Bicoid-like genes, vertebrates, 218
Bimodal distribution, 309
Binding, 44, 46
Bioaugmentation, 647
Bioavailability, 539
Biocatalysts, 633–637, 649
advantages, 633–635
disadvantages, 634–635

Biotechnology

Biosensors, 16

Bioprospecting, 635–637

Bioprocess technologies, 16, 633–637

Biomolecules, 63–65

Biomass, 324

Biomarkers, 482–484

Biomanufacturing, 637–642

maximizing yields and minimizing costs, 639–640

plants and animals as bioreactors, 640–642

Biomarkers, 482–484

Biomass, 324

energy sources, 642–643

feedstock chemicals, 642–645

sources, 645–646

crops and trees grown for biomass, 645
	natural vegetation, 645

waste products, 646

Biomolecules, see Biological molecules

Bioprocess technologies, 16, 633–637

advantages over chemical processes, 633–635

genetic optimization through selection and mutagenesis, 634

optimization with molecular techniques, 634

Bioprospecting, 635–637

Bioreactors, 638

transgenic plants and animals, 640–642

Bioremediation, 133–134, 646–647

Biosensors, 16

environmental monitoring, 648

Biotecnology

analyzing issues, 425–427

in context of existing technology, 425–426

costs of no new technology, 426, 430

process, 427–431

benefits and costs, 430–431

biochemistry and, 68–69

capitalization on cell properties, 18–19

collection of technologies, 15–18

continuum of technologies, 19

definition, 13–14

historical context, 426–427, 429

industrial sectors affected by, 17

regulation, see Government policies;

Regulatory agencies

research laboratory, 385–418

risks (related to safety), 429–430

societal issues, 419–442

Biotechnology development, 6–8, 420–425

citizens’ power to influence, 424–425

political aspects, 422–424

stages, 422

Biotechnology life cycle, 420

Biotechnology toolbox, 15, 359–384

Biotic environment, 311

Biotechnology development, 6–8, 420–425

citizens’ power to influence, 424–425

political aspects, 422–424

stages, 422

Biotechnology life cycle, 420

Biotechnology toolbox, 15, 359–384

Biotechnology development, 6–8, 420–425

citizens’ power to influence, 424–425

political aspects, 422–424

stages, 422

Caenorhabditis elegans, development, 207–208

Caenorhabditis elegans, development, 207–208

Campylobacter, food-borne illness, 549

Cancer, 193–198, see also specific types of cancer
diagnosis, 482

imaging, 477–478

metastasis, 194, 483, 488

mutations and, 194–197

disease progression, 197–198

screening, 203, 510

treatment

chemotherapy, 201–202, 223

immune system molecules, 491

stem cell therapy, 223

Cancer syndromes, 197

Cancer vaccine, 491–492, 504–505

Cancer, 193–198, see also specific types of cancer
diagnosis, 482

imaging, 477–478

metastasis, 194, 483, 488

mutations and, 194–197

screening, 203, 510

treatment

chemotherapy, 201–202, 223

immune system molecules, 491

stem cell therapy, 223

Cancer syndromes, 197

Cancer vaccine, 491–492, 504–505

Canola

gene flow from transgenic canola to wild relatives, 615–617

increasing essential amino acids, 539

transgenic, 608

Capillary walls, nutrient transport across, 149–150, 171

Capsids, viral, 48, 306

Carbohydrates, 15, 57–59

building block molecules from, 116

catabolism, 115–116

commercial production, 132

in energy metabolism, 58

as energy sources, 116

metabolism, 38

molecular recognition molecules, 59

Bread making, 131

Breeding, seasonal, 280

Breeder, Sydney, 208

Bt corn, 550, 562, 595

benefits, 466

monarch butterflies and, 452–466

regulatory approval process, 458–469

regulatory review, 469–472

rootworm control, 623–625

Bt gene, 619

Bt protein, 456, 623

Bubble boy disease, 493–494

Buffers, 639

Butanol, 132
Cell(s), 36–42
 movement of molecules across, 46, 138–139
 phospholipids, 56–57, 137–138
 plasma membrane, see Plasma mem-
 brane
 proteins, 138–139
 sterols, 57, 138
 structure, 45–46, 56–57, 137–138
Cell culture, 16
Cell cycle, 38–39, 191–193
 checkpoints, 193–194
Cell division, 37–39, 183–204
Cell encapsulation, 496
Cell migration, morphogenesis, 212–213
Cell processes
 chemical reactions, 41
 energy requirements, 40–41
 pathways, 41
 regulation, 41–42
Cell Theory, 243–244
Cell transplantation therapy, 495–496
Cellular membranes
 internal, 45–46, 48
 banding, 189, 225, 476
 gene locations on, 248–254
 homologous, 224, 242, 246
 human, 225, 476
 metaphase, 189
 Chronic myelogenous leukemia, 202
 Chymotrypsin, 99
 Citric acid, 132
 Clarithromycin, 81, 408
 Class (taxonomic level), 292–293
 Clinical chemistry, 478
 Clonal population, 303
 Clone, 432
 Cloning, 373–379
 animals, see Animal cloning
 complex organisms, 378–379
 definition, 432
 DNA, 373–377
 DNA libraries, 376–378
 humans, 440–442
 plants, 432–433
 reproductive, 441, 531–532
 therapeutic, 442, 503, 532
 types, 432
 Cloning vector, 373–377, 409–410, 412
Clostridium, nitrogen fixation, 602
Coat color
 arctic fox, 280
 dogs, 212–213
 Labrador retrievers, 82–83, 272–275, 389
 Codeine, 408
 Codon, 269–272, 274
 Codon, 72–73, 76–77
 initiation, 77–78
 stop, 78
 Coevolution, 311
 crop plants and human societies, 571–572
 Coffee, decaffeinated, 450
 Cold sore, 487–488
 Colon cancer, 196–197, 483–484
 Colony, 376
 Color blindness, 485
 Commodity crops, 610–612, 645
 Community, 337–346
 Compartmentalization, intracellular, 46
 Competent cells, 305
 Complementary base pairs, 64–65, 68
 detecting specific base sequences in
 DNA, 363–365
 mismatch, 186–188, 199
 Complementary DNA (cDNA), 367–368, 407
 Complementary DNA (cDNA) library, 378
 Complementary proteins, 537
 Complete metamorphosis, 453
 Complete penetration, 266
 Complete protein, 537
 Complex genetic disease, 484
 Concentration, 139
Index 655

Concentration gradient, 140–141
Conditional mutant, 294
Congenital adrenal hyperplasia, 229–230, 516, 518
Conjugation, bacterial, 303–304, 315
Conjugative plasmid, 304
Conservation, DNA typing, 405–406
Consumers, 325–326
primary, 325–327
secondary, 325–327
tertiary, 327
Contagious disease, early detection, 479–482
Continuous cropping, 621–622
Continuous variation, 257–258, 275–276, 278, 290
Contour farming, 596
Cooking oils, making healthier oils, 542–547
Coordinated Framework for the Regulation of Biotechnology (1986), 467–468
Copper, human requirement, 536
Coral reef ecosystem, 321–322
Cotton, transgenic, 608
Cortisone, 133
Cornmeal, mycotoxins in, 551
Cord blood, 223, 502
Cord, 574, 575
Corduroya guainesis, 575
Coumarins, 447
Couroupita guainesis, 575
Cretinism, 128–129
Cretinism, 128–129
Creutzfeldt-Jakob disease, 101
Crick, Frances, 31
Crop(s), see also Plant entries
center of origin, 614–617
centers of diversity, 614–617
storage, 581
Crop diversification, 610–612
Crop genetic modification, 14, 19–32
Crop improvement, see also Transgenic crops
coevolution of crop plants and human societies, 571–572
decreasing allergenicity of foods, 553
decreasing saturated fatty acids in oils, 545
drought resistance, 597–600, 619
eliminating trans-fatty acids, 545–547
elite crop variety, 556
genetically improved varieties, 31–32, 585–588
healthier cooking oils, 542–547
high-yielding varieties, 586–588
improving nutrient uptake, 600–603
increasing essential amino acids adding new proteins to crops, 537–538
engineering of amino acid synthesis, 538–539
increasing micronutrients, 539–541
increasing nutraceuticals, 547–549
intended changes for future transgenic crops, 564–566
intended genetic changes in current crops, 561–564
making food healthier, 541–549
moving genes between species, 556–559
mutagenesis breeding, 555–556, 564, 586
pest resistance genes, 604–605
plant breeding, 26–31
recombinant DNA technology, 555–559
seed selection, 20
selective breeding, 26–29, 554–555, 563, 586
crossbreeding plants, 555
sterile cultivars, 576
unintended effects due to genetic modification, 566–568
use of germ plasm collections, 588–589
Crop productivity genetically improved varieties, 585–588
herbicides and, 584–585
irrigation, 594–598
machines and chemicals that improve, 582–584
natural pest control, 603–606
need to increase productivity, 609
Crop rotation, 622–623
Cropland acreage, 609
Crossing over, 252–253, 296, 302–303
Cross-pollination, 21, 24, 237, 573–574, 613
Crude oil, 538
Cryptosporidium, 436–437
Cultivars, 26
Cultural evolution, 572
Cultural values, technology development and, 12
Cyanide poisoning, 119
Cyanobacteria, 323–324, 648
nitrogen fixation, 335–336, 602
Cyanogenic glycosides, 447
Cystic fibrosis
gene changes in, 266–267
genetic tests, 516
inheritance, 266–267, 485
molecular defect, 153, 485
relationship of genotype and phenotype, 260, 262
variable expressivity, 267
Cytochrome c, evolution, 398–399
Cytokines, therapeutic uses, 491
Cytokinesis, 190, 192
Cytology, 245
Cyanobacteria, 323–324, 648
Cytokines, therapeutic uses, 491
Cytokinesis, 190, 192
Cytology, 245
discoveries related to heredity, 244–254
Cytomegalovirus-induced blindness, 417
Cytosinase, 39, 45
Cytosine, 30, 63–64, 184–185
Cytoskeleton, 381
D
d4T, 372
Daidzein, 548
Darwin, Charles, 236, 288–290, 313
Darwin, Erasmus, 313
Darwin’s finches, 291
ddC, 372
ddL, 372
Death rate, 338, 349–351
Decaffeinated coffee, 450
Decomposer, 326–327
Deciduization, 498–499, 534
Deductive reasoning, 11
Deforestation, 331–333, 354, 588
Dehydration, 12
Delusion, 294, 296–297, 476
Denaturation
DNA, 364–365
proteins, 100–101, 108
Density-dependent regulation, population size, 341–346
Density-independent regulation, population size, 341–346
Deoxyribonucleic acid, see DNA
Deoxyribonucleic acid, 63
Department of Agriculture, U.S. (USDA)
approval of Bt corn, 458
biotechnology product regulation, 469–471
Desaturases, 544–545
Designer diets, 560
Detritivore, 326–327
Developing countries, 426
population growth, 352–355
Downloaded from www.asmscience.org by IP: 54.70.40.11 On: Mon, 10 Dec 2018 23:22:10
Development, 205–232
C. elegans, 207–208
chicken, 208–209
differential gene expression, 214–217
establishing body plan, 217–220
frog, 208–209
fruit fly, 206–207, 217–220, 282, 381, 390
fundamental processes, 210–214
human, 210
mammals, 220–224
embryonic and extraembryonic tissues, 221–223
methods of studying, 206–210
model systems, 207–210
morphogenesis, 210, 212–214
mouse, 208–210
nutrition during, 280
sex differentiation, 224–231
zebrafish, 208–209
Developmental biology, 205
Dextran, 132
Diabetes insipidus, 178–179
Dextrans, 323–324
Mice, 289–293
Dietetics, 308–309
Differential reproduction, 307–310
Directional selection, 309
Diploid, 246
Directed mutagenesis, 635
Directed protein evolution, 637
Directional selection, 309
Discontinuous variation, 257–258, 275
Discrete-particle model, heredity, 23–26, 235, 241–244, 258
Disease, population growth and, 342–344
Disease screening, 510–521
risk/benefit ratio, 510–511
Disorder, biological systems, 314
Displacement, 40
Diverse DNA amplification, 368
DNA, 51, 62–68
Evolutionary scenario, 29–31
in archaeology, 401–402
ancient, 398–402
mitochondrial, 396–397, 405
for molecular phylogeny, 391–392
sequencing DNA, 370–373
Proofreading functions, 186–188
sequencing DNA, 370–373
DNA repair, 81, 187, 193, 200–201
DNA typing, 87, 396, 402–406
conservation and ecology, 405–406
DnaJ (heat shock protein), 425
DnaK (heat shock protein), 425
Mitochondrial DNA, 396–397, 405
parentage testing, 404–405
DNA-based vaccines, 505, 553
DNA-binding chemicals, 199–200
DNA-binding proteins, 66, 75, 215
two-domain, 99
Dogs
coat color, 212–213
dog breeding, 289, 389
evolution from wolves, 398
Dolly (cloned sheep), 431–435
Domestication, wild plants to crop plants, 19, 348–349, 571, 573
decrease in genetic diversity, 576–577
seed number, 576
Dominance, 268–271
codominance, 269–272, 274
incomplete, 269, 272
Dominant allele, 25, 242
Dominant trait, 268–271
Drought-responsive genes, 599
Drought-resistant plants, 597–600, 619
rice, 392–393
Insulin-dependent diabetes mellitus, 169, 170
insulin-dependent diabetes mellitus, 169
Insulin-like growth factor, 471
Insulin resistance, 170
Insulin sensitivity, 170
insulin receptors, 170
Insulin-like growth factor, 471
Insulin-like growth factor, 471
Doxycycline, 81
Drosophila melanogaster, 206–207, 217–220
Dystonia, 516
Dust Bowl, 585
Duplication, 294, 296–297
Duplication, 294, 296–297
Dystonia, 516
Index
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 10 Dec 2018 23:22:10
Ecologists, 319–320
Ecology, 320
DNA typing, 405–406
systems ecology, 321–327
Economic issues
drivers of economic growth, 7
sustainable agriculture, 592
technology development and, 5, 12, 420–421
transgenic crops, 607–608
Ecosystem, 321
carbon cycle, 328–332
energy flow through, 324–327
energy requirement, 321–324
materials cycle, 328–336
nitrogen cycle, 332–336
Ectoderm, 220
Embryonic stem cells, 222–223, 414, 497, 521–527
differentiation, 498–499
ethical issues, 524–527
gene replacement, 414–415
generation of culture of, 497
government policies, 528–534
obviating need to use embryos, 533–534
political aspects, 423–424
sources, 523–527, 533–534
state and private funding for research, 533
Emerging infectious disease, 422, 444
Emigration, 338
Emotional factors, risk perception, 443–448
Endangered species, cloning, 440
Endoderm, 220
Endoplasmic reticulum, 46, 79–80
Energy, see also ATP
alternative sources, 17, 19
from breakage of chemical bonds, 114–115
flow through ecosystems, 324–327
requirements of cells, 40–41, 111
use in agriculture, 593
Energy balance, 119
enzymatic reactions, 115
Energy pyramid, 327
Enhancer, 214–217
Environmental degradation, 344–346, 349
Environmental impact on phenotype, 278–285
Environmental monitoring, 648
Environmental pollution, 5
bioremediation, 133–134
caused by human activities, 627–650
Environmental Protection Agency
(EPA)
approval of Bt corn, 458
biotechnology product regulation, 469–472
regulation of transgenic food crops, 562
Environmental quality, technological advance and, 7
Environmental sustainability, 17, 627–650
Environmentalists, 320
Enzyme(s), 41, 60, see also Biocatalysts
artificial, 109
biotechnology applications, 129–135
commercial production, 132
defects, effects on metabolic pathways, 112–113, 125–129
directed protein evolution, 637
energy balance of enzymatic reactions, 115
extremophiles, 635–637
feedback inhibition, 121–122
industrial, 17, 107–109, 134–135
laundry detergent, 109, 135
metabolic pathways, 111–114, see also Metabolic pathway
substrates and products, 112
synthesis, regulation, 122–123
thermostability, 101, 108, 368
Enzyme replacement therapy, 491–492
Gaucher’s disease, 130
lactose intolerance, 154–155
EPA, see Environmental Protection Agency
Epidermal growth factor, 99, 496
Embryonic stem cells, 222–223, 414, 497, 521–527
differentiation, 498–499
evolutionary sources, 523–527
embryonic cell therapy, 521–527
Embryonic germ cells, 522–523
sources, 523, 527
Embryonic stem cells, 222–223, 414, 497, 521–527
differentiation, 498–499
evolutionary sources, 523–527
gene replacement, 414–415
generation of culture of, 497
government policies, 528–534
obviating need to use embryos, 533–534
political aspects, 423–424
sources, 523–527, 533–534
state and private funding for research, 533
Emerging infectious disease, 422, 444
Emigration, 338
Emotional factors, risk perception, 443–448
Endangered species, cloning, 440
Endoderm, 220
Endoplasmic reticulum, 46, 79–80
Energy, see also ATP
alternative sources, 17, 19
from breakage of chemical bonds, 114–115
flow through ecosystems, 324–327
requirements of cells, 40–41, 111
use in agriculture, 593
Energy balance, 119
enzymatic reactions, 115
Energy pyramid, 327
Enhancer, 214–217
Environmental degradation, 344–346, 349
Environmental impact on phenotype, 278–285
Environmental monitoring, 648
Environmental pollution, 5
bioremediation, 133–134
caused by human activities, 627–650
Environmental Protection Agency (EPA)
approval of Bt corn, 458
biotechnology product regulation, 469–472
regulation of transgenic food crops, 562
Environmental quality, technological advance and, 7
Environmental sustainability, 17, 627–650
Environmentalists, 320
Enzyme(s), 41, 60, see also Biocatalysts
artificial, 109
biotechnology applications, 129–135
commercial production, 132
defects, effects on metabolic pathways, 112–113, 125–129
directed protein evolution, 637
energy balance of enzymatic reactions, 115
extremophiles, 635–637
feedback inhibition, 121–122
industrial, 17, 107–109, 134–135
laundry detergent, 109, 135
metabolic pathways, 111–114, see also Metabolic pathway
substrates and products, 112
synthesis, regulation, 122–123
thermostability, 101, 108, 368
Enzyme replacement therapy, 491–492
Gaucher’s disease, 130
lactose intolerance, 154–155
EPA, see Environmental Protection Agency
Epidermal growth factor, 99, 496
Epidermal growth factor receptors, 202, 487
Epinephrine, 128–129
Epistasis, 272–275
Epithelial cells, 147
Epithelium
intestinal, 147–150
kidney, 173, 175–176
EPO, see Erythropoietin
erbB gene, 199
Erosion, see Soil erosion
Erythrocytosis, benign, 84–86
Erythrocytosis, benign, 84–86
Erythropoietin (EPO), 85–86
Erythropoietin (EPO) receptors, 85–86
Escherichia coli
food-borne illness, 549
lac genes, 161–162
mutants as tools for finding specific genes, 386–388
trp genes, 162
tryptophan synthesis, 122–123
Essential amino acids, 126, 536–539
Essential lipids, 536, 542
Estradiol, 228
Estragon(s), 57, 163–164, 212, 227
development of males and females, 228
functions, 164
Estrogen receptors, 164, 201–202, 487
Ethanol, 117, 150
commercial production, 132
fuel ethanol, 643–644
industrial uses, 132
Ethical issues, 509–534
embryonic stem cells, 524–527
parthenogenesis, 527
primordial germ cells, 527
technology development and, 5, 421
Etruscan culture, 401–402
Eubacteria, 47–48
Eukaryotic cells, 47–49, 81, 631
gene expression, 214–215
mitosis, 188
Eumelanin, 272–275
European corn borer, 457–460, 462–463
Evolution, 287–318
ancient DNA, 398–401
antibiotic resistance, 314–316
cultural, 572
cytochrome c, 398–399
definition, 288, 307
DNA and protein comparisons of different species, 398
genotype and genome comparisons, 397–402
historical development, 313
human, 398, 400–401
Madagascar’s mammals, 394–395
natural selection, see Natural selection
plants, 576–579
sources of genetic variation, 293–307
synthetic theory, 290
time frame, 244
time frame, 287–288
Excision repair, 200
Exercise burn, 118
Exon, 75–76
Experimentation, scientific, 6, 24
Exponential growth, 339–341
human population, 349–351, 590
Exponential growth curve, 339
Exposure, 449, 461–465, 613
Expressivity, 267, 513
External environment, cellular response to, 39
Extinction, 345
Extracellular environment, 137
Extracellular fluid, ion concentrations, 143, 151–152
Extraembryonic membranes, 221–222
Extremophiles, 631, 635–637
Extremozymes, 635–637
Eye
 color in humans, 276
 size in fruit fly, 282

F
F plasmid, 304
F′ plasmid, 304
Factor VIII, 414, 492
Factor IX, 99, 492
Factor V-Leiden, 516
Factor VIII, 414, 492
Factor IX, 99, 492
Familial disease, 484
Family (taxonomic level), 292–293
Familial disease, 484
Fanconi’s anemia, 516
False-positive test, 510
Fat(s), 55–56
Fat cells, insulin control of glucose uptake, 167
Fat-soluble vitamins, 536, 543
Fatty acids, 55–56
as energy sources, 116
metabolism, 38
structure, 55
Fat cells, insulin control of glucose uptake, 167
Fat-soluble vitamins, 536, 543
Fatty acids, 55–56
as energy sources, 117–118
metabolism, 116, 120
saturated, 56, 543–545
decreasing proportion in plant oils, 545
structure, 55
synthesis, 167, 543–545
unsaturated, 56, 543–545
Fermentors, 638
Fermentation, 638
Fermentons, 638
Ferritin, 539–540, 557
Fertilization (sexual reproduction), 40, 238, 246–247, 301–302
Fertilizer, 588–589
decreasing use, 600–603
nitrogen, 582
worldwide use, 601
Fetal tissue research, 530
Fibroblast growth factor, 496
Field testing, transgenic plants, 469
 large-scale, 470–471
 small-scale, 470
Finastrapide, 230
Fibroblast growth factor, 496
Finnec, Darwin’s, 291
“Finding of no significant impact” (FONSI), 470
First law of thermodynamics, 321
Flavodoxin, 44, 97–98
Flavonoids, 548
Flavonones, 548
Flavor enhancers, 132
Fog, 573–575
Flower color
garden pea, 24–26
snapdragon, 269
Fluid-blending model, heredity, 22–23, 235
Fluorouracil, 408
fms gene, 199
Folic acid, 536
Follicle-stimulating hormone, 163
Fomiviren, 417
FONSI statement, 470
Food(s)
carcinogens in, 446–448
enhancing nutritional value, 536–541
fermented, 131, 632
food-based vaccines, 506, 641
food and beverage industry, 17, 535–536
food and drug administration, 17, 535–536
Food and Drug Administration (FDA) biotechnology product regulation, 469, 471–472
regulation of transgenic food crops, 562
Food chain, 325–326
Food safety
 detecting pathogens before marketing food, 550–552
 improving, 549–553
 mycotoxins, 466
natural vs. synthetic products, 446–448
transgenic crops, 559–562
government policies, 562–563
Food-borne illness, 549–552
Forensic DNA typing, 404
Forestry/pulp and paper industry, 17
foam gene, 199
Fossils, 313, 332
Fossil fuels, 642–643
burning, 331–332, 642
use in agriculture, 583, 593, 598
Founder effect, 308
Foxglove, 565
Fragile X syndrome, 516
Frameshift mutation, 294
Frankia, nitrogen fixation, 602
Franklin, Rosalind, 30
Free radicals, 605
Frequency histogram, 257
Frog, development, 208–209
Fructose, 58, 117
Fruit, 573, 575–576
Fruit fly
development, 206–207, 217–220, 282, 381, 390
establishment of body plan, 217–220
eye size, 282
linkage map, 254
linked genes, 248–254
maternal genes, 218–219
mutants as tools for finding specific genes, 388
segmentation, 218–220
sex-linked inheritance, 248–250
trangensons, 388
Fuel ethanol, 643–644
Fumaric acid, 132
Fungi, 631
heterotrophic lifestyle, 327
mycorrhizal, 602–603
plant pathogens, 550, 595
predatory, 343
Fungicides, 584
Fur pigmentation, 212
Fusarium ear rot, 595
G
G. checkpoint, 193–194
G. check point, 193–194
G. phase, 192
G. phase, 192
G. phage, 192
Galactose, 58
Galactosemia, neonatal screening, 518
α-Galactosidase, 153
Gametes, formation, 245–248, 302
Garden pea
 flower color, 24–26
 Mendel’s experiments, 22, 24–26, 237–244, 257–259
pollination, 237
traits studied by Mendel, 238
Gasohol, 643
Gasoline, 583
burning, 114–115
Gasoline spill, bioremediation, 647
Gasometry, 220, 222, 522
Gated channel proteins, 141
Guacher cells, 129–130
Guacher’s disease, 129–131, 264, 485
enzymes replacement therapy, 130, 493
gene therapy, 130–131
genetic testing, 516
Gender identity, 230–231
Gene(s), 73
 chemical nature, 28–29
 cumulative pace of gene discovery, 262
 finding gene for specific trait homologs in related organisms, 390
 using mutants, 386–390
 function, 27–28, 30
 location on chromosomes, 248–254
 Mendel’s factors, 25
 misconceptions about, 258–268
 structure, 27–28
Gene chip, 16, 406
 analysis of genotypes, 406–407
 pharmacogenomic studies, 408
Gene expression, 66–67, 71–88
 analysis using gene chips, 407–409
 differential, 214–217
 eukaryotes, 214–215
 regulation, 629
 RNA interference, 416–417
 tissue-specific, 215–217
Gene flow, 307–308
 cross-pollination and, 613
 from transgenic crops to other plants, 612–620
 nature of adverse impacts, 617–620
 probability, 613–617
Gene gun, 375
Gene mutation, 295
 addition of new alleles, 295
 Gaucher’s disease, 130–131
 nongenetic diseases, 494
 replacement, 386–390
 via recombination, 301–307
 via mutation, 294–300
 via changes in chromosome number, 299–300
 via microinjection of DNA into fertilized eggs, 412–414
 cloning eukaryotic gene into prokaryote, 409–410
Gene(s), 73
 cloning eukaryotic gene into prokaryote, 409–410
Genetic engineering, 16, 406
 plants, 31–32, 410–413, 555–559
 Genetic heterogeneity, 265
 Genetic interactions between homologous alleles, 268–271
 epistasis, 272–275
 among nonhomologous genes, 271–278
 polygenic traits, 275–278
 Genetic marker, 389–390
 genetic testing, 391–393
 marker-assisted plant breeding, 391–393
 Genetic material
 chemical nature, 28–29
 eukaryotes, 214–215
 differential, 214–217
 analysis using gene chips, 406–407
 tissue-specific, 215–217
 analysis of genotypes, 406–407
 analysis of gene expression, 407–409
 by computer analysis of DNA sequence, 293–307
 via recombination, 301–307
 via mutation, 294–300
 via changes in chromosome number, 299–300
 via microinjection of DNA into fertilized eggs, 412–414
 cloning eukaryotic gene into prokaryote, 409–410
microorganisms, 409–410
 plants, 31–32, 410–413, 555–559
 Germ layers, 220
 Germ plasm collections, plants, 588–589
 Germinal mutation, 294
 Gleevec, 202, 488
 Gloma, 194
 Global warming, 332
 Globin gene family, 297
 Glucagon, 125, 163
 diseases associated with, 170
 regulation of blood glucose, 165–170
 stimulation of gluconeogenesis, 168
 structure, 165
 Glucagon receptors, 168
 Gluconeogenesis, 168
 Gluconoacetate, 132
 Glucoraphanin, 548
 Glucose, 57, 59, 116
 blood, 125, 142, 157, 487
 regulation, 165–170
 stimulation of insulin release, 166–167
 as energy source, 116–119
 intermediates from, 120
 structure, 54, 58
 transport from intestine into bloodstream, 148–149
 Glucose pump, 143
 intestinal epithelium, 149
 Glucose transporter, 142, 167
 Glucosinolates, 447, 548
 Glutamic acid, 132
 Glycogen, 58, 116
 liver, 167–168
 synthesis, 120
 Glycolysis, 117–118
 Glycosyltransferase, 270–271
 Glyphosate, 448
 Golden Rice, 540–541, 557
 Golgi apparatus, 46, 79–80
 Gonorrhea, rapid diagnosis, 480
 Gonorrhea, rapid diagnosis, 480
 Gonorrhea, rapid diagnosis, 480
 Government policies, see also
 Regulatory agencies
 controlling research through federal legislation, 531–532
 controlling research with funding bans, 530–531
 embryonic stem cell research and training, 532–533
 farm subsidy programs, 610, 622
 regulating research with laws, policies, and guidelines, 529–530
 regulation of transgenic food crops, 562–563
 research funding, 528–529
 Graft-versus-host disease, 223
 Grass family, 571–572, 578
 Grasshopper, gamete formation, 246
 Green algae, 323–324
 Green manure, 380, 382
 Green Revolution, 382
 Greenhouse effect, 645
660 Index

Griffith, Frederick, 28, 305
Gross primary productivity, 324
Groundwater, 594, 598, 647
Growth, cells, 37, 183–204
Growth factor(s), 163, 192–193, 496
Growth hormone, 163
Hapatocytes, 212
Hemophilia, 260, 414, 485, 492, 516
Hemoglobin gene family, 297
Hemoglobin, 212
Hemodialysis, 173
Hemochromatosis, 516
Helicase, 186, 200
Huntington's disease, 485, 493, 516
Hutton, James, 313
Hypothyroidism, neonatal screening, 442
Imatinib mesylate, 372
Imipramine, 408
Immigration, 338
Immune system, therapeutics that boost, 489–490
Immunization, risks, 426
Implantation, 221–222
In vitro fertilization, 439, 516, 523–527, 530
Inbreeding, 308
Incomplete dominance, 269, 272
Incompetent penetration, 266–268
Independent assortment, Mendel's law of, 241, 243, 302–303
Individual rights, 451–452
Induced mutation, 294
Inductive reasoning, 11
Industrial Revolution, agriculture and, 581–590
Industrial sustainability, 648–649
Industrialized countries, 426
Infectious disease, 351
Infertility, human cloning to overcome, 442
...
Inheritance, see Heredity
Initiation codon, 77–78
Initiation of replication, 186
Inner cell mass, 221–222, 497, 522–525
Inosine, 132
Insect(s)
amber-encased, 399–400
evasion of plant poisons, 158
Insect cell culture, 603
Insect control, 603, 605
evolution of resistance to pest control tactics, 620–625
history, 581
predatory insects, 604
Insect resistance management, 624
Insecticides, 466, 584, 589
resistance, 279, 620, 622–624
Insulin, see also Diabetes mellitus
biomanufacture, 641
breakdown, 80
excessive, 170
historical background, 165
recombinant human, 165
Intrinsic growth rate, 338–339
Intergeneric hybridization, 26–27
Interleukin-2, 491
Interleukin-12, 491
Intermediates, metabolic pathway, 112
accumulation, 112–113, 125–129
Internal combustion engine, 583
Interphase, 190–192
Interspecific hybridization, 26–27
Interstitial fluid, 142
Intestinal epithelium, 147–148
K
Kaibab Plateau, 345–346
Kaposi’s sarcoma, 481
Karyotype, 189, 476
Kerasin, 212
Kernel color
corn, 248, 300–301
wheat, 275–279
Kidney
biobybrid, 502
diabetes mellitus and, 173
functions, 172–174
solute transport, 172–174
Kidney epithelium, 173, 175–176
Kidney failure, 173
Kidney tubule, 173
Kinetochore, 188, 191
King, Mary-Claire, 396
Kingdom, 292–293
Kinelipid, 405
Klinefelter’s syndrome, 299
Koch, Robert, 396
Kreb cycle, 117–118
Kreplin protein, 219, 381
Kuru, 101
La
Labrador retrievers, coat color, 82–83, 274–275, 389
lac genes, E. coli, 161–162
lac repressor, 161–162
Lactase, 152–155
Lactic acid
commercial production, 132
exercise burn, 118
industrial uses, 132
Lactic acid bacteria, 538
Lactose, 57–58
breakdown in E. coli, 161–162
Lactose intolerance, 152–153, 157, 559
enzyme treatments, 154–155
Linkage map, 254, 519
Linked genes, 248–254, 265
Lions
behavioral-ecology studies, 405
genetic variability, 406
Lipase
commercial production, 132
in laundry detergent, 135
Lipid(s), 13, 54–57
animal fats, 544
building block molecules from, 116
catabolism, 115–116
dietary, 543
heart disease and, 542
as energy sources, 54–55, 116
essential, 536, 542
plant oils, 544
smallest repeating unit, 54
synthesis, 120
Lipid bilayer, 138
Listeria monocytogenes, food-borne illness, 549, 552
Lite beer, 134
Livistos breeding, 435–439
Locus, 242
Loggerhead turtles, kinship analysis, 405
Logistic growth, 342
Long QT syndrome, 145–146
Lung cancer, 486–487
Lupines, 447
Lutein, 548
Lycopene, 548–549
Lysozyme, bacteriophage T4, 108
Lytic infection, 306
Index 661
M
M checkpoint, 193–194
M phase, 192
Machinery, agricultural, 582–584
Macroevolution, 290
Macroinfection, 295–300
Macronutrients, 535–536
Mad cow disease, 101
Madagascar’s mammals, 394–395
MAD2 gene, 196–197, 484
Maugis, human requirement, 536
Male reproductive organs, development, 224–231
Maleness gene, 226
Melanocytes, 128–129, 212, 272–273
Melanocytes
Melanocyte-stimulating hormone
Melanin, 128–129, 212, 272–273
Melittin, 146
Melatonin, 127
Melanoma, 194
Melanoma cell culture, 637
Mammal(s)
Mammalian cell culture, 637
Mammogram, 478
Mammogram, 478
Mantyra, Zeno, 85–86
Mapa syrup urine disease, 518
Marker genes, 375–376
Marker-assisted plant breeding, 391–393
Market forces, technology development and, 3, 421
Maternal genes, fruit fly, 218–219
Maternity testing, 405
McClintock, Barbara, 248, 300–301
Mean, 290
Meat inspection, 552
Medical care, biotechnology applications, 475–534
Medical research, see Scientific research
Medicinal plants, 564–565
Meiosis, 245
Meiosis, 245
crossing over, 252–253
roundworms, 245
Melanin, 128–129, 212, 272–273
Melanocytes, 82–83, 212–213, 274
Melanocyte-stimulating hormone (MSH), 82–83, 163, 274
Melanocyte-stimulating hormone (MSH) receptors, 83, 98, 275
Melting temperature
DNA, 393
protein, 101
Mendel, Gregor, experiments with garden pea, 21–22, 24–26, 237–244, 257–259
Mendel’s Law of Independent Assortment, 241, 243, 302–303
Mendel’s Law of Segregation, 240, 243, 302–303
Mendelian genetics, 236–244
Mendelian trait, 277, 279
Mesoderms, 220
Messenger RNA (mRNA), 73
analysis of gene expression, 407–409
making cDNA from, 367–368
splicing, 75–76
synthesis, 73–75
translation, 76–77
Metabolic engineering, 538–539
Metabolic pathway, 41, 111–114
anabolic, 114–121
branching, 112–113, 118
feedback inhibition at branch points, 123
catabolic, 114–121
converging, 112
missing/defective steps, 112–113, 125–129
pathways shared by different organisms, 114
Metabolism, 27–28, 111–136
biotechnology applications, 129–135
errors, 125–129
regulation, 121–125
control of enzyme synthesis, 122–123
feedback inhibition, 121–122
hormonal, 124–125
Metallothionein, 539, 557
Metaphase, 189–191
Metaphase chromosomes, 189
Metastasis, 194, 483, 488
Methanol, 127
Methionine
high-methionine crops, 538–539
incomplete proteins in plants, 537
Methylene, 146
Microarray, see Gene chip
Microbes
biodegradation pathways, 641–648
biomanufacturing, 637–642
bioprocess technologies, 633–637
bioremediation, 133–134, 646–647
biotransformation, 131–133
definition, 631
extremophiles, 635–637
genealogical, 409–410
growth curve, 345
metabolic processes exploited by humans, 632–633
molecules produced by microbes and used by people, 630–631
mutants as tools for finding specific genes, 386–388
strains development, 634
types, 631
Microbial fermentation, 637
Microbial mats, 323
Microbial pesticides, 603
Microevolution, 290
Microinjection (DNA into cells), 375, 412–414
Micronutrients, 533–536
Microorganisms, see Microbes
Microscope, invention, 20, 35
Microvilli, intestinal, 147–148
Military personnel, DNA profiles of soldiers, 397
Milkwed
habitat and distribution, 463–464
monarch butterflies feeding on, 452–466
Mimicry, 344
Minerals, human requirements, 536
Minimum-till agriculture, 585
Miotics, 81
Mismatch, 186–188, 199
Mismatch repair, 187, 197
Missing children, identification, 396, 405
Mitochondria, 47–48
Mitochondrial DNA, 394
ancient, 400–401
DNA typing, 396–397, 405
dog/wolf evolution, 398
genetic diseases and, 441
inheritance, 396
Mitosis, 189–192, 245, 381
Model, scientific, 22, 248
Model systems, 207, 248
Modular proteins, 99–100
Molds, 631
Molecular cloning, 432–433
Molecular diagnostics, 477–488, 512–521
Molecules, see Biological molecules
Monarch butterflies
Bt corn and, 452–466
life cycle, 455–455
migration, 455
Monoclonal antibodies, 16
antibody-based sensors for environmental monitoring, 648
cancer detection, 479
diagnostics based on, 479–482, 488
production, 380, 433
targeted therapy with, 488–489
Monoclonal culture, 587
Monoculture, 581, 587
Monounsaturated fatty acids, 543–544
Monozygotic twins, 222
Morgan, Thomas Hunt, 206, 219, 248, 250–252, 254
Morphogenesis, 210, 212–214
apoptosis, 208, 213–214
cell migration, 212–213
Mouse
development, 208–210
genetically engineered, 222
knockout, 390, 415–416
mutants as tools for finding specific genes, 388–389
mRNA, see Messenger RNA
MSH, see Melanocyte-stimulating hormone
Muller, Hermann, 250
Mullerian duct, 226–229
Multifactorial disorder, 484
Multigenic disorder, 484
Multiple alleles, 269–270
Multiple-ovulation embryo transfer, 436–437
Muscle control of contraction by calcium ions, 144–145
exercise burn, 118
glucose uptake in response to insulin, 167
Muscular dystrophy, Duchenne, 485, 516
Myosin, 60, 212
Myoglobin gene, 297
Myocytes, 212
Mycotoxins, 466, 550–551, 562, 595
Mycorrhizae, 602–603
Mycelium, 327
myc gene, 199
Natural products, therapeutics, 489–490
National Institutes of Health (NIH), research funding, 529–531
National Science Foundation, research funding, 529
National Seed Storage Laboratory (USDA), 589
Natural products, therapeutics, 489–490
Natural selection, 289, 307–314, 628
acting on phenotypes, 312
differential reproduction, 307–310
directional selection, 309
disruptive selection, 309
from interaction of organism with its environment, 310–312
stabilizing selection, 309
traits that are not adaptive, 312–314
Natural technologies, 628–633
NCBI, see National Center for Biotechnology Information
Neanderthals, 400–401
Nectary, 575
Nectary, 311
Neonatal genetic testing, 517–518
Nerve growth factor, 496
Nerve impulse, 52, 144
Net primary productivity, 324–325
neu gene, 199
Neural crest cells, 212
Neural tube, 212
Neurofibromatosis, 516
Neural crest cells, 212
Neural tube, 212
Neurofibromatosis, 516
Neuron, 212
Neurotransmitters, 163, 212
Neutral mutation, 294–295
Neuron, 52
Newspaper reports, 10
Niacin, 536
Nightshade family, 579
Niacin, 536
Nuclear transfer, 379
Nuclear fusion, 438
No-till agriculture, 585, 589, 609
Normal frequency distribution, 290
No-till agriculture, 585, 589, 609
Nuclear fusion, 438
Nuclear magnetic resonance spectroscopy, proteins, 382–383
Nuclear transfer, 379
from embryonic cells, 437–438
somatic cell, see Somatic cell nuclear transfer
Nuclease, 200
Nucleic acids, 15, 62–68, see also DNA; RNA
metabolism, 38
smallest repeating unit, 54
Nucleotides, 63
commercial production, 132
structure, 63
terminology, 63–64
Nucleus, 45, 245
Nun moth, 459
Nutraceuticals, 547–549
Nutramics, 127
Nutrigenomics, 559–560
Nutrient depletion, soil, 579–580
Nutrient transport, across intestinal epithelium, 147–150
Nutrient uptake, plants, 600–603
Nutraceuticals, 559–560
Nutrition, during development, 280
effect on phenotypes, 280
Nutrition testing, transgenic crops, 471

O
Obesity, 541–542
Observation, scientific, 6, 11–12, 24
Oil refining, 5, 583
Oils (liquid fats), 55
Oilseed Brassica crops, 615–617
Olfactory receptors, 159
Oligonucleotides, 365
synthetic, 365, 367
Omnivore, 326
Oncogenes, 195–196, 199
Operator, 161, 629
Omnivores, 326
Oncogenes, 195–196, 199
Operator, 161, 629
Opportunistic species, 340–341, 571
Order (taxonomic level), 292–293
Organ transplantion, 494–495
Organelsenes, 48
Organic farming, 595
Organic matter in carbon cycle, 329
oil, 579
Osmoprotectants, plants, 599
Osmoreceptors, 159, 176–177
Osmosis, 151
Osmotic balance, 151–152
Osmotic protection, plants, 599
Ovarian cancer, 197–198, 263–264, 516
Overweight, 541
Oxalic acid, 447
Oxidative stress protection, plants, 599
Oxygen in electron transport pathway, 119
from photosynthesis, 330
Oxygen radicals, 599, 605

P
Palmitic acid, 55
Pancreas, artificial, 501
Pancreatic islet cells, 212
Pantothenic acid, 536
Papaya, PRSV-resistant, 413, 562
Papaya ringspot virus, 413, 562
Parasite, 326
Parasitism, population growth and, 342–344
Parasitoid, 326, 603–604, 606
Parkinson’s disease, 498
Parthenogenesis, 300, 527
Parthenenov, 527
“Partially hydrogenated” vegetable oil, 546
664 Index

Passion flower, 575
Pasteur, Louis, 351, 633
Paternity testing, 404–405
Pathogens, 343, 370
detection with polymerase chain reaction, 370
food-borne, 549–552
genetic variations, 487–488
identification, 488
Pathway, see Metabolic pathway
Pauling, Linus, 30
PCR, see Polymerase chain reaction
Peafowl, sexual selection, 309
Peax, 57
Pedigree analysis, 260
anomalous recessive trait, 266–267
with variable expressivity, 268
sex-linked trait, 260
Pellagra, 284
Penetrance, 266–267, 513
Peptide backbone, proteins, 90
Peptide bond, 90
Permanent hair wave, 102–103
Pest control
natural, 603–606
resistance of pests to, 620–625
Pesticides, 446, 582–583
microbial, 603
reduced usage with transgenic crops, 608
resistance, 620
Petroleum industry, 583, 642–643
Phaeomelanin, 272–274
Phenylalanine, 126–127
Phenylketonuria (PKU), 126–128, 484–485, 516
Phenylketones, 126–127
Phenylketonuria (PKU), 126–128, 484–485
Phenylalanine
phenotypic plasticity, 278–285
finding gene from phenotypic variation, 281
natural selection acts on, 312
relationship to genotype, 257–286
Phenotypic plasticity, 278–282
Phenylalanine, 47
Phenylalanine
commercial production, 132
metabolism, 128
Phenylketones, 126–127
Phenylketonuria (PKU), 126–128, 484–485
environmental effects on phenotype, 281
neonatal screening, 518
Phosphate group, 63
Phosphodiester bond, 64
Phospholipids, 56–57
cell membranes, 56–57, 137–138
structure, 56–57
Phosphorus
human requirement, 536
plant uptake, 600–601
Phoretectors, 158–159
Photosynthesis, 58, 281, 321–324, 643
carbon cycle, 329
reactions, 330–331
Phyllum, 292–293
Physical map, 519
Phytase, 557, 601
Phytochemicals, 547–548
Phytoplankton, 321–324
Phytotherapy, 647
Phytosterols, 548
Pigs, transgenic, 414
Pilus, 304
PKU, see Phenylketonuria
Plant(s), see also Crop entries
aluminum toxicity, 412
annual, 571
cloning, 432–433
domestication of wild species, 19, 348–349, 571, 573
domestication of wild species, 19, 348–349
environmental impacts, 278–285
insect poisons, 158
molecules produced by plants and used by people, 630
polyplody, 300
preserving genetic diversity, 588–589
reproductive strategies, 20–21, 572–576
domestic plants vs. wild relatives, 576–577
resistance to viral diseases, 412–413
secondary compounds, 446–448, 577–578, 605
toxins, 446–448
Plant breeding, 20–26, see also Crop improvement
marker-assisted, 391–393
science-based, 26–31
Plant cell(s), 47
Plant cell culture, 489
Plant defense mechanisms, 577–578, 605–606
Plant height, yarrow, 283
Plant oils
decreasing saturated fatty acid content, 545
decreasing trans-fatty acid content, 545–547
lipids, 544
making cooking oil healthier, 542–547
Plant pathogens, 581, 595, 603–604
Plant tissue culture, 411–412, 558
Plant-made pharmaceuticals, 564–565, 641–642
Plasma, ion concentrations, 152
Plasmid, 301, 641
cloning vectors, 373–377
drug resistance genes, 315–316
Plasmogen, 99
Plastic, biodegradable, 645
Plastocyanin, 97
Platelet-derived growth factor, 192, 195
Platelet-derived growth factor receptors, 193
Pleiotropy, 264–265, 566
Pluripotent cells, 210
Point mutation, 294–295
Poison, 81
Polar chemical bond, 91
Political issues, technology development and, 12–13, 422–424, 509–534
Pollination, 20–21, 24, 237, 573–574, 613
Pollinators, 574–575
Polyacrylamide gel electrophoresis, 362, 379–380
Polycystic kidney disease, 516
Polydactyly, 576–577
Polyunsaturated fatty acids, 56, 543–544, 546
Population, 293, 337–346
Population bottleneck, 308
Population genetics, 293
Population growth
exponential, 339
growth potential, 337–341
human, see Human population growth
microbial growth curve, 345
predation, parasitism, and disease and, 342–344
regulation, 341–346
Population growth rate, 338–339, 342
Population size, regulation, 341–346
Position effects, 299
Positive assortative mating, 308
Polyacrylamide gel electrophoresis, 362, 379–380
Potassium ions, 53
Plasmogen, 99
Potassium chloride, toxicity, 145
Potassium channels, defective, 146
Potassium chloride, toxicity, 145
Potassium ions, 53
human requirement, 536
intracellular and extracellular fluids, 143
nerve transmission, 144
Potato
increase essential amino acids, 537
toxins, 560
Poultry, antibiotics fed to, 316
Prader-Willi syndrome, 516
Prebiotics, 548
Precancerous condition, 483–484
Predation, population growth and, 342–343
Predator, 326
Predatory insects, 604
Prediction, scientific, 11
Preformation, 234–235
Pregnancy, home pregnancy tests, 381–385
Primary productivity, 324–325
Primary consumers, 325–327
Price support programs, 622
Preimplantation genetic testing, 516, 533
Preparation of primary productivity, 325
Precancerous condition, 483–484
Prebiotics, 548
Proanthocyanidins, 548
Private sources, funding of scientific research, 533
Prion, 101
Primate, 338
Primase, 186
Primary structure, proteins, 90–91, 100
Product, enzymatic reaction, 112
Producers, primary, 322–325, 327–328
Probiotics, 548
Prokaryotic cells, 47–48, 81, 188, 631
Programmed cell death, see Apoptosis
Progenitor cells, 497
Programmed cell death, see Apoptosis
Prokaryotic cells, 47–48, 81, 188, 631
Promoter, 75, 78, 124, 161, 214, 410, 629
Prophase, 189–190
Protective coloration, 344
Protein(s), 15, 60–62
amino acid address tags, 80
building block molecules from, 116
C terminus, 90
catabolism, 115–116
cellular fate, 78–80
complementary, 537
complete, 537
denaturation, 100–101, 108
detection with antibodies, 380–382
directed protein evolution, 637
dNA-protein interactions, 66
domains, 98–100, 138–139, 215
drawing, 97
electrophoresis, 379–380
as energy sources, 116
functions, 60–61
hydrophobic core, 93
lifetme, 80
membrane, 138–139
membrane-spanning domains, 138–139
metabolism, 38
modular, 99–100
N terminus, 90
primary structure, 72–73, 90–91, 100
quaternary structure, 100
secondary structure, 93–98, 100
smallest repeating unit, 54
structure, 44, 61–62
analysis of three-dimensional structure, 382–383
predicting, 106–107
public databases, 106–107
synthesis, 73–78, 120
regulation, 161–162
substances that block, 81
tertiary structure, 98–100
testing structure-function predictions, 107
tools for analysis, 379–383
Protein engineering, 16, 107–109, 634–635
Protein machine, 186
Protein replacement therapy, 491–492
Proteinase (protease)
commercial production, 132
in laundry detergent, 135
Proteomics, 406
Proton, 52
Protoplast fusion, 558
Provitamin A, 540–541
Protozoa, 323, 631
Protoplast fusion, 516
Pseudomyrmex ants, coevolution with Acacia plant, 311
Puberty, 228
Public hygiene, 351
Public policy, 424–425
Public opinion, 5
Public transportation, 424–425
Pumps, 142–144
intestinal epithelium, 148
Punnett square, 240
Purebred lines, 238
Punnett square, 240
Pyruvic acid, 117–118, 120
radius, 62
Raeder, 315–316
ras gene, 197, 199, 484
Ras protein, 192–193, 195, 202
rb gene, 199
Reactive oxygen species, 599, 605
Receptor proteins, 60, 62, 138, 158–164, see also specific types
Receptor-signal complex, 159–160
Recombinant(s), 253
Recombinant DNA, 363
voluntary moratorium on experiments (1975), 467
Recombinant DNA technology, 16, 31, 634
crop improvement, 555–559
vaccine development, 504
Recombination, 534
asexual reproduction and, 303–307
sexual reproduction and, 301–303
source of genetic variation, 301–307
Red blood cells, 212
benign erythrocytosis, 84–86
osmosis, 151
sickle-cell anemia, see Sickle-cell anemia
Red palm oil, 541
Red-spotted newt, sexual selection, 310
Reduced-calorie foods, 127, 134–135
Reducing agent, 102
Reduction division, see Meiosis
Regenerative medicine, 496–503
Regulatory agencies, 421, 448, 467–472
Bt corn, 452–466
Regulatory review
following product through, 468–470
stages, 470–472
Rehydration therapy, 153–154
Relative risk, 445, 450
Renin, 175, 178
Renin-angiotensin cascade, 176
Replacement gene therapy, 493–495
Replacement mutation, 294–295
Replication, DNA, 30, 39, 42, 66–67, 76, 81, 184–187
errors, 186–187
initiation, 186
RNA primer, 185–186
template strand, 185–186
Replication origin, 186
Replication terminators
antiviral drugs, 372
sequencing DNA with, 371–374, 519
Replicative transposition, 301
Repressor proteins, 99, 103–104, 124, 161–162, 629
Reproduction, differential, 307–310
Reproductive cloning, 441, 531–532
Reproductive isolating mechanisms, 586
Reproductive organs, development, 224–231
Reproductive potential, 337–338
inherent, 338–339
Reproductive strategies, plants, 572–576
Research funding, see Scientific research, government funding
Research laboratory, biotechnology, 385–418
Resource competition, 341–342

Q
Quantitative traits, see Polygenic traits
Quaternary structure, proteins, 100
Quinolone resistance, 316

R
R plasmid, 315–316
ras gene, 197, 199, 484
Ras protein, 192–193, 195, 202
rb gene, 199
Reactive oxygen species, 599, 605
Receptor proteins, 60, 62, 138, 158–164, see also specific types
Receptor-signal complex, 159–160
Recessive disorder, 485
Recessive gene, 25
Recessive trait, 238–239, 272
Recognition proteins, 138
Recombinant(s), 253
Recombinant DNA, 363
voluntary moratorium on experiments (1975), 467
Recombinant DNA technology, 16, 31, 634
crop improvement, 555–559
vaccine development, 504
Recombination, 534
asexual reproduction and, 303–307
sexual reproduction and, 301–303
source of genetic variation, 301–307
Red blood cells, 212
benign erythrocytosis, 84–86
osmosis, 151
sickle-cell anemia, see Sickle-cell anemia
Red palm oil, 541
Red-spotted newt, sexual selection, 310
Reduced-calorie foods, 127, 134–135
Reducing agent, 102
Reduction division, see Meiosis
Regenerative medicine, 496–503
Regulatory agencies, 421, 448, 467–472
Bt corn, 452–466
Regulatory review
following product through, 468–470
stages, 470–472
Rehydration therapy, 153–154
Relative risk, 445, 450
Renewable resources, 19
Renin, 175, 178
Renin-angiotensin cascade, 176
Replacement gene therapy, 493–495
Replacement mutation, 294–295
Replication, DNA, 30, 39, 42, 66–67, 76, 81, 184–187
errors, 186–187
initiation, 186
RNA primer, 185–186
template strand, 185–186
Replication origin, 186
Replication terminators
antiviral drugs, 372
sequencing DNA with, 371–374, 519
Replicative transposition, 301
Repressor proteins, 99, 103–104, 124, 161–162, 629
Reproduction, differential, 307–310
Reproductive cloning, 441, 531–532
Reproductive isolating mechanisms, 586
Reproductive organs, development, 224–231
Reproductive potential, 337–338
inherent, 338–339
Reproductive strategies, plants, 572–576
Research funding, see Scientific research, government funding
Research laboratory, biotechnology, 385–418
Resource competition, 341–342

Index 665
666 Index

Respiration, 116
carbon cycle, 329
Restriction enzymes (endonucleases), 361–362
applications, 31
discovery, 31
palindromic recognition sequences, 360–361
Restriction fragment, 361
locating specific DNA base sequences on, 365–366
Restriction fragment length polymorphism (RFLP), 395–397, 403
Restriction point, 192, 194
Reverse transcriptase, 367–368, 372
RFLP, see Restriction fragment length polymorphism
Rhizobial species, nitrogen fixation, 580
Ribosomal RNA, 51, 67–68
Risk perception, 443–448
Risk management, 449
Risk assessment, 448–449, 612
Risk-based, 448–449, 468
Risk assessment, 448–449, 612
biotechnology, 429–430
gene flow from transgenic crops to other plants, 612–620
Risk management, 449
Risk perception, 443–448
natural vs. synthetic processes/products, 445–448
understanding large numbers, 444
RNA, 51, 67–68
comparison of RNA and DNA, 67–68
messenger, see Messenger RNA
small interfering, 416–417
structure, 68
transfer, 73, 76–77
RNA interference, 416–417, 634
RNA polymerase, 75, 78
eukaryotic, 214–215
RNA primer, see Primer
Root hairs, 589
Roundworm, meiosis, 245
Runoff, from cropland and pastures, 580, 594
S
S phase, 192
Safeguards, 449
St. Croix sheep, 435
Salmonella, food-borne illness, 549, 552
Salt(s), 52, 150–153
Salt balance, 170–174
blood pressure and, 177–178
blood volume and, 172
failure, 178–180
regulation, 174–178
Sanitation, 351
Sapogenin, 548
Sarcoma, 194
Sarcoplasmic reticulum, 145–146
Saturated fatty acids, 56, 543–545
decreasing proportion in plant oils, 545
Scale-up, 422, 641
Scavenger, 326
Schizophrenia, 407–408
Scrapie, 101
Seasonal breeders, 280
Second law of thermodynamics, 326
Secondary consumers, 325–327
Secondary metabolites, 630
Secondary plant compounds, 446–448, 577–578, 605
Secondary structure, proteins, 93–98, 100
Secretion, protein, 78–80
Sedimentation, 594
Seed dispersal, 574–576, 618
domesticated crops vs. wild relatives, 577–578
Seed number, 576
Seed selection, 20
Seedling emergence, 579
Segmentation, fruit fly, 218–220
Segregation, Mendel’s Law of, 240, 243, 302–303
Selective herbicides, 584
Self-defense strategies, prey, 344
Self-pollination, 24–25, 237, 577
Senses, receptors involved in, 159
Sensitive plant, 39
Sensitivity, diagnostic test, 511
Severe combined immunodeficiency disease (SCID), 493–494
Sewage treatment, 642, 646
Sex determination, 244–231
primary, 224–226
secondary, 224
Sex differentiation, 224–231
variations, 229–230
Sex-linked disorder, 485
Sex-linked trait, 250, 260
fruit fly, 248–250
Sexual reproduction, recombination and, 301–303
Sexual selection, 308–310
Shingles, 306
SIADH, see Syndrome of inappropriate ADH
Sickle-cell anemia, 84–85, 261–262, 264, 272
gene testing, 391–392, 516
neonatal screening, 518
Signals, 158–164
chain reaction leading to response, 159–160
chemical, see Chemical signals
receptor-signaling complex, 159–160
Silencer, 215–216
Silent mutation, 82, 294–295
Simple genetic disease, 484–485
Single-nucleotide polymorphism (SNP), 396
sis gene, 199
Sister chromatids, 246–247
Site-specific mutagenesis, 635
Skeletal remains, see Human remains
Skin cancer, 199, 201
Slime mold amoeba, 162
Small interfering RNA, 416–417
Small-acreage crops, 610–612
Smoking, 199–200
Snapdragon, flower color, 269
SNP, see Single-nucleotide polymorphism
Social sustainability, 592
Societal issues, 419–442
regulation, 178–180
Social sustainability, 592
Societal issues, 419–442
genic testing, 515–517
science and technology and, 4–8, 12–13
Index 667

Sodium channel(s), defective, 146
Sodium channel blockers, 180
Sodium ions, 53
- human requirement, 536
- intracellular and extracellular fluids, 143
- nerve impulse transmission, 144
Sodium/potassium ATPase, 143–144, 149
Soft-centered chocolates, 134
Soil conservation, 584–585, 596
Soil erosion, 579–580, 584–585, 593–594, 596, 598, 609
Solane, 560
Solutes, 139
- transport in kidneys, 172–174
Solution, 139
Somatomedin, 263
Somato tropin, 163
Southern corn blight, 587
Soybean
- root nodules, 336
Specialist feeders, 454
Sperm sorter, 436
Sperm, 197
- production of embryonic stem cells, 526–527, 533–534
Sternale, 560
Solute, 139
Soybean
- altering fatty acid profile, 546–547
- corn-soybean rotation, 622–623
- gene flow from transgenic soybeans to wild relatives, 615
- increasing essential amino acids, 537–539
Stem cell therapy, 223
Steroid hormone(s), 57, 164, 211–212, 215–216
- development of males and females, 224–231
- Steroid hormone receptors, 164, 212, 216
Sterols, 57
- cell membranes, 57, 138
Stem cell(s), 85, 210–211, see also
- Adult stem cells; Embryonic stem cells
- differentiation research, 498–499
- immune-compatible, 502–503
- tissue engineering, 500–502
- tissue repair and regeneration, 496–500
- Soybean
- altering fatty acid profile, 546–547
- corn-soybean rotation, 622–623
- gene flow from transgenic soybeans to wild relatives, 615
- increasing essential amino acids, 537–539
- root nodules, 336
- transgenic, 608
Specialist feeders, 454
- Specialty compounds, 131–133
- Speciation, 290, 586
- Species, 288, 291–293, 586
- Specificity, diagnostic test, 511
- Spectral karyotype, 476
- Sperm sorter, 436
- Spinal muscular atrophy, 516
- Spindles fibers, 190–191, 381
- Spinocerebellar ataxia, 516
- Splicing, 75–76
- Spontaneous mutation, 294
- Sports drinks, 154
- Squash, 574
- src gene, 199
- SRY gene, 226, 229
- S-shaped curve, 342
- Stabilizing selection, 309
- Stanol, 548
- Starch, 57–59, 120
- State government, funding of scientific research, 533
- Stavudine, 372
- Stem cell(s), 85, 210–211, see also
- Adult stem cells; Embryonic stem cells
- Tamoxifen, 201–202, 487
- Tarcic acid, 132
- Taste receptors, 159
- Taxol, production, 490
- Taxonomy, 292–293
- Tay-Sachs disease, 516
- T-DNA, 375
- Technology, see also Biotechnology
- definition, 3, 6
- difference between science and technology, 6
- environmental impact, 7
- rate of technological change, 7–8
- science and, 6–8
- social impact, 7–8
- society and, 4–6
- Technology development, see also
- Biotechnology development
- science-based, 6–8
- Technology life cycle, 420
- Telophase, 190–191
- Temperature, effect on phenotype, 280–282
- Template DNA, 185–186
- Teosinte, 14, 614–615
- Terminally differentiated cells, 210
- Termination factor, 78
- Terminator, 75, 78
- Terracing, 596
- Tertiary consumers, 327
- Tertiary structure, proteins, 98–100
- Testosterone, 57, 212
- development of sexual identity, 230
- sex differentiation, 226–230
- Testosterone receptors, 229
- Tetracycline, 81
- resistance, 316
- Tetraploidy, 300
- Textile industry, 17
- Thalassemia, 485, 516
- Theory, scientific, 22, 288
- Therapeutic(s), 488–496
- biological, 488
- donated organs and cells, 494–496
- enzyme/protein replacement, 491–492
- gene therapy, see Gene therapy
- natural products, 489–490
- new production methods, 489
- plant-made pharmaceuticals, 564–565, 641–642
- specificity, 488
- stem cells, 497–498
- tailoring treatment to patient
- variation in molecular basis of disease, 487
- variation in pathogens, 487–488
- variation in patient response, 486–487
- that boost immune system, 489–490
- Therapeutic cloning, 442, 503, 532
- Thermodynamics
- first law of, 321
- second law of, 326
- Thiamin, 536
- Thirst, 177
- Thorns, 577–578
- Threonine, incomplete proteins in plants, 537
- Sperm, 197
- production of embryonic stem cells, 526–527, 533–534
- immune-compatible, 502–503
- somatic mutation, 294
- Somatostatin, 163
- Southern corn blight, 587
- Soybean
- altering fatty acid profile, 546–547
- corn-soybean rotation, 622–623
- gene flow from transgenic soybeans to wild relatives, 615
- increasing essential amino acids, 537–539
- root nodules, 336
- transgenic, 608
- Specialty compounds, 131–133
- Speciation, 290, 586
- Species, 288, 291–293, 586
- Specificity, diagnostic test, 511
- Spectral karyotype, 476
- Sperm sorter, 436
- Spinal muscular atrophy, 516
- Spindle fibers, 190–191, 381
- Spinocerebellar ataxia, 516
- Splicing, 75–76
- Spontaneous mutation, 294
- Sports drinks, 154
- Squash, 574
- src gene, 199
- SRY gene, 226, 229
- S-shaped curve, 342
- Stabilizing selection, 309
- Stanol, 548
- Starch, 57–59, 120
- State government, funding of scientific research, 533
- Stavudine, 372
- Stem cell(s), 85, 210–211, see also
- Adult stem cells; Embryonic stem cells
- Tamoxifen, 201–202, 487
- Tarcic acid, 132
- Taste receptors, 159
- Taxol, production, 490
- Taxonomy, 292–293
- Tay-Sachs disease, 516
- Sodium channel(s), defective, 146
- Sodium channel blockers, 180
- Sodium ions, 53
- human requirement, 536
- intracellular and extracellular fluids, 143
- nerve impulse transmission, 144
- Sodium/potassium ATPase, 143–144, 149
- Soft-centered chocolates, 134
- Soil conservation, 584–585, 596
- Soil erosion, 579–580, 584–585, 593–594, 596, 598, 609
- Solane, 560
- Solutes, 139
- transport in kidneys, 172–174
- Solution, 139
- Somatomedin, 263
- Somato tropin, 163
- Southern corn blight, 587
- Soybean
- altering fatty acid profile, 546–547
- corn-soybean rotation, 622–623
- gene flow from transgenic soybeans to wild relatives, 615
- increasing essential amino acids, 537–539
- root nodules, 336
- transgenic, 608
- Specialty compounds, 131–133
- Speciation, 290, 586
- Species, 288, 291–293, 586
- Specificity, diagnostic test, 511
- Spectral karyotype, 476
- Sperm sorter, 436
- Spinal muscular atrophy, 516
- Spindle fibers, 190–191, 381
- Spinocerebellar ataxia, 516
- Splicing, 75–76
- Spontaneous mutation, 294
- Sports drinks, 154
- Squash, 574
- src gene, 199
- SRY gene, 226, 229
- S-shaped curve, 342
- Stabilizing selection, 309
- Stanol, 548
- Starch, 57–59, 120
- State government, funding of scientific research, 533
- Stavudine, 372
- Stem cell(s), 85, 210–211, see also
- Adult stem cells; Embryonic stem cells
- Tamoxifen, 201–202, 487
- Tarcic acid, 132
- Taste receptors, 159
- Taxol, production, 490
- Taxonomy, 292–293
- Tay-Sachs disease, 516
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>668</td>
<td>Index</td>
</tr>
</tbody>
</table>

- Transgenic crops as bioreactors, 640–642
- Production, 533–539
- Transgenic proteins safety concerns, 562
- Toxicity and allergenicity, 562–563, 565
- Transient gene therapy, 494
- Translation, 30, 76–77
- Start and stop signals, 77–78
- Translocation mutant, 296–299, 476
- Transpiration, 598–599
- Transport proteins, 60, 138
- Functions, 144–145
- Intestinal epithelium, 148
- Types, 141–144
- Transposable genetic elements, 300–301
- Drug resistance genes, 315
- Transposition, 81, 301 nonreplicative, 301
- Repressors, 301
- Transposons, 301
- Fruit fly, 388
- Discovery, 248
- Tree frog, 628
- Triglycerides, 543
- Triose phosphate isomerase, 97–98
- Tripleid, 299
- tRNA, see Transfer RNA
- Trophic level, 326–327
- Trophoblast, 221–222, 497, 522
- Tropomycin, 145
- trp genes, E. coli, 162, 629
- trp repressor, 104–106, 124
- TRP-1 protein, 273–275
- TRP-2 protein, 273–275
- Tryptophan, see also trp repressor
- Incomplete proteins in plants, 537
- Synthesis in E. coli, 122–125
- Tuberculosis, 370
- Tumor, 194
- Tumor suppressor genes, 195–196, 199
- Inherited mutations, 197–198
- Turner's syndrome, 227, 299
- Twins
- monozygotic, 222
- Twin studies, 283–285
- Identical twins compared to fraternal twins, 284–285
- Identical twins reared apart, 284
- Tyrosine, metabolism, 128

V

- Vaccines, 504–506
 - Cancer, 491–492, 504–505
 - Development, 504
 - DNA-based, 505, 553
 - Edible, 506, 641
 - Production, 504
- Vacuole, 47
- Variable expressivity, 267
- Variance, 290
- Varicella virus, 306
- Vector cloning, 373–377, 409–410, 412
- Vertebrates
 - Bicoid-like genes, 218
 - Homeotic genes, 219–220
- Vesicles, 79–80
- Insulin-containing, 166–167
- Virus, 48, 631, see also Bacteriophage cloning vectors, 373–375
- Host specificity, 48
- Plant pathogens, 412–413
- Risks of xenotransplantation, 495
- Structure, 48
- Transduction, 305–307
- Vitamin(s)
 - Commercial production, 132
 - Fat-soluble, 536, 543
 - Water-soluble, 536
 - Vitamin A, 536, 543, 547
 - Golden Rice, 540–541
 - Vitamin B₁₂, see Riboflavin
 - Vitamin B₂, 536
 - Vitamin D₂, 132, 536
 - Vitamin C, 536, 547
 - Vitamin D, 536, 543
 - Vitamin E, 536, 543, 547, 549
 - Vitamin K, 536, 543

W

- Walking stick, sexual selection, 310
- Wallace, Alfred, 288–290, 313
- Warfarin, 408
- Warning coloration, 344
- Waste treatment, 17
- Water conservation in plants, 598–599
- Movement across cell membranes, 139, 150–153
- Polarization, 93
- Structure, 93
- Water balance, 150–153, 170–174
- Blood volume and, 172
- Failure, 178–180
- Regulation, 174–178
- "Water follows salt," 152–154
- Water buttercup, 281
- Water pollution, 594
- Water strider, 95
- Water-soluble vitamins, 536
- Watson, James, 31
- Weed control, 603–604, 608–609
evolution of resistance to pest control tactics, 620–625
herbicide tolerance and superweeds, 619–620
Weedy plants, opportunistic species, 340
Wheat
breeding of bread wheat, 26–27
global production, 572
high-yielding varieties, 586
kernel color, 275–279
Wild species, gene flow from transgenic crops to wild plants, 612–620
Wilkins, Maurice, 30
Wind erosion, 585, 594
Wind-dispersed seeds, 574–575
Wine, 131
Wolffian duct, 226–229
Workplace, genetic discrimination, 521, 528
Wormwood, 565

X
X chromosome, 224–228, 248–250
X ray, lung, 478
Xanthan gum, 132
Xanthophylls, 548
Xenotransplantation, 495
Xeroderma pigmentosum, 201
X-linked inheritance, 248–250
X-ray crystallography, proteins, 382–383
XX male, 226
XY female, 226, 229

Y
Y chromosome, 224–228, 250
Yarrow, plant height, 283
Yeasts, 631–632
mutants as tools for finding specific genes, 387–388
Yellow dwarf gemini virus, 581
Yogurt, 131

Z
Zebrafish, development, 208–209
Zidovudine, 372
Zinc, human requirement, 536
Zygote, 210