To MPE, with love
Contents

Illustrations ix
Preface xi
Acknowledgments xiv

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Old Habits Die Hard</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Engineering Errors</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Recipes for Disaster</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>See No Evil</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>Cross-Contamination</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>Birth of a Pathogen</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>USDA, HACCP, and E. coli O157:H7</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>Crossing Over</td>
<td>133</td>
</tr>
<tr>
<td>9</td>
<td>When the Well Runs Dry</td>
<td>157</td>
</tr>
<tr>
<td>10</td>
<td>Mad Cows and Englishmen</td>
<td>179</td>
</tr>
<tr>
<td>11</td>
<td>The Politics of Prions—BSE and World Trade</td>
<td>197</td>
</tr>
<tr>
<td>12</td>
<td>Asymptomatic Carriers and Captive Audiences</td>
<td>217</td>
</tr>
<tr>
<td>13</td>
<td>Deliberately Contaminated Food</td>
<td>243</td>
</tr>
<tr>
<td>14</td>
<td>The Impact of Imports</td>
<td>253</td>
</tr>
</tbody>
</table>
chapter 15 A Raw Deal 273
chapter 16 The Media and the Message 295
chapter 17 Changing Old Habits 311
appendix A A Microbial Who’s Who 327
appendix B Glossary 373
appendix C Abbreviations and Acronyms 383
Index 387
Illustrations

Figures

Figure 2.1 Skim milk powder production sequence 15
Figure 2.2 Wiener production plant 21
Figure 3.1 Stages in the evolution of a shell egg 36–37
Figure 4.1 Producing cocoa liquor from raw cocoa beans 54
Figure 4.2 Finished chocolate production 55
Figure 6.1 Proposed evolution of E. coli O157:H7 92
Figure 9.1 Water treatment in Milwaukee, Wis., at the time of the 1993 Cryptosporidium outbreak 160
Figure 10.1 Annual incidence of confirmed BSE cases in the United Kingdom, 1988–June 2006 184
Figure 12.1 Frequency of reported outbreaks of gastroenteritis due to norovirus on cruise ships: 1994–2005 225
Figure 15.1 Raw milk processing and bottling at Young’s Jersey Dairy 274

Tables

Table 2.1 Outbreaks and recalls tied to powdered milk and powdered infant formula 17
Table 3.1 Examples of egg-associated outbreaks of S. enterica serotype Enteritidis food-borne illness since 1988 33
Table 4.1 Food-borne disease outbreaks associated with Salmonella-contaminated chocolate 59
Table 5.1 Summary of selected food-borne illness outbreaks confirmed or suspected to have been due to cross-contamination in a food service, restaurant, or retail food setting 77
Table 6.1 Domestic and wild animal reservoirs of E. coli O157 90
Table 6.2 The E. coli O157:H7 and E. coli O55:H7 clone complex 91
Table 6.3 Characteristics of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura 95
Table 6.4 Meat-borne disease outbreaks due to E. coli O157:H7 97
Table 7.1 Milestones in the development and adoption of HACCP as a food safety system 113
Table 7.2 E. coli O157:H7 U.S. meat recalls, 1994–2004 119
Table 8.1 Selected food-borne disease outbreaks associated with consumption of raw sprouts 137
Table 9.1 Other outbreaks of gastrointestinal illness traced to drinking or recreational use of untreated and inadequately treated water 159
Table 10.1 Major milestones in the United Kingdom BSE/vCJD outbreak and the government’s efforts to contain and control it 181
Table 11.1 Countries reporting cases of bovine spongiform encephalopathy (BSE) as of December 31, 2004 198
Table 11.2 Sequence of events in the BSE-related trade disputes among the United States, Canada, and Japan 202
Table 12.1 Hardee’s 1989 Salmonella outbreak: probable timeline 221
Table 12.2 Examples of nosocomial outbreaks of gastrointestinal disease 230
Table 14.1 Examples of food-borne disease outbreaks associated with imported foods 255–256
Table 15.1 Examples of food-borne illness attributed to raw milk and other dairy products made from unpasteurized milk 276
Table 15.2 Examples of food-borne illness attributed to uncooked cured, fermented, or dried meat or poultry products or to raw or undercooked meat or poultry 278
Table 15.3 Examples of food-borne illness attributed to uncooked cured or dried fish and shellfish products or to raw or undercooked fish and shellfish 279
Table 17.1 Food handling safety lapses reported in two Australian studies 312
Table 17.2 Countries that have adopted a unified agency approach to food safety regulation 318
Preface

When I was in my teens, one of my favorite writers was Frances Parkinson Keyes. A “romance novelist” who began her writing career as a journalist, Ms. Keyes imbued her stories with a strong sense of place and a believable set of characters, and swept her readers along with a strong and smooth narrative style. Unlike many other authors in the genre, she also prefaced each book with a detailed explanation of its evolution, deftly setting the scene for her “Gentle Readers.” Often, her prefaces were almost as interesting as the novels they introduced. While I can’t hope to match Ms. Keyes’s powers of observation and storytelling, I beg the indulgence of my own Gentle Readers as I sketch in some background to this book.

My involvement in food safety began in mid-1972, when I joined Canada’s Health Protection Branch (HPB). I began my career with HPB in the Winnipeg, Manitoba, regional laboratory and, in mid-1974, moved to the agency’s Quebec regional lab, based in the Montreal area. In 1975, I took over responsibility for managing HPB’s Montreal area microbiology group. The Regent Chocolate Salmonella outbreak described in chapter 4 took place while I was working in Winnipeg, and the investigation into the source of repeated contamination of milk powder production plants with Salmonella (chapter 2) was carried out while I was in Montreal. Many of the details included in the description of both of those events (those not supported by specific literature reference citations) are based on first-hand information.

In 1979 I left HPB and, with my husband, co-founded QA Laboratories (later QA Life Sciences). The description of the wiener processing facility in chapter 2 is based on first-hand information. I was the consultant hired by the company to determine the source of their ongoing post-process contamination program.

In 2003, I wrote a series of articles on food safety for the Del Mar Times, a Del Mar, CA, weekly newspaper. Some of the information and anecdotes that appeared in those articles are scattered through this book. Notably, the
story of Kevin Kowalcyk (chapter 6) and portions of the discussion of the BARF (raw food) diet for companion animals (chapter 15) first appeared in those Del Mar Times articles.

Gentle Readers should keep in mind that science doesn’t stand still. All cumulative totals of outbreaks, cases, etc. are valid as of June 2006. Likewise, statements in the text that relate to ongoing investigations or situations also are effective as of that same date. The continuing saga of U.S.-Japan trade talks aimed at reopening the Japanese market to American beef is an example of a situation that can change from day to day. Also, URLs (web page addresses) cited in the References at the end of each chapter were verified on the dates shown. Given the ephemeral nature of the Internet, these are also subject to change.

What is not—and never should become—subject to change is the responsibility of food producers and processors to put food safety concerns ahead of expediency when making decisions. Choosing to ignore unfavorable or inconvenient test results, opting for the least expensive, most “cost-effective” processing method, and establishing token food safety programs that look good on paper but are ineffective, are not the actions one would wish to associate with major food companies. Yet these choices are made again and again—not just by small food processors, but also by major, multinational food companies. As I write this Preface, Cadbury-Schweppes is facing possible prosecution for its involvement in a U.K. Salmonella outbreak traced to chocolate produced in the company’s Herefordshire production facility. Cadbury’s management waited five months before alerting British health authorities to a leaking pipe that had contaminated some of its chocolate crumb.

A major outbreak of Escherichia coli O157:H7 (183 cases and one death as of September 26, 2006) linked to spinach grown and packaged in the Salinas Valley area of California—unfolding as this book goes to press—is an example of what can happen when an industry chooses to stay with its old habits. Between 1995 and 2005, there were 19 outbreaks of E. coli O157:H7 tied by epidemiological evidence to spinach or lettuce; at least 8 of the outbreaks were traced to Salinas Valley produce. According to newspaper reports, in 2004 and 2005, the FDA advised farmers in California that their crops could become contaminated with E. coli O157:H7. Unfortunately, the growers closed their eyes and ears to the government’s warnings, and are now suffering the consequences—as are the 183 (or more) outbreak victims and their families.

Legislators and regulators also bear a responsibility for improving and maintaining food safety. Notwithstanding industry’s pleas for voluntary programs and self-regulation, government oversight is an essential part of the food safety mosaic. Just as drivers will push the speed limit when they know that they are not being monitored, so too will food processors push the limits of “voluntary compliance”—not maliciously or with intent
to harm the consumer, but simply because it’s human nature to do so. Self-regulation is an oxymoron.

The public, too, has an important role to play. All too often, food preparers and consumers engage in risky behavior—eating raw or undercooked meat, poultry, eggs, or seafood, drinking unpasteurized milk or cider, neglecting proper kitchen sanitation practices, or storing food at an incorrect temperature. Lapses on the part of large food companies can result in massive food-borne disease outbreaks, but these occur only occasionally. Far more common are the sporadic cases and small outbreaks of food-borne disease caused by mishandling of food on the part of food service workers and by individual food preparers in the home.

The need for a safe food supply is not debatable, but experts differ on the best ways to achieve and maintain that goal. Irradiation of raw meats and poultry, the role of microbiological testing, and the precise role that regulatory authorities should play are all areas of controversy. While I have received and considered the opinions of my reviewers, I alone am responsible for the accuracy and completeness of the contents of this book and for any opinions expressed therein.

Phyllis Entis
Acknowledgments

To Michael Entis, who gave me the original idea for the theme and orientation of this book, and whose constructive critique of the initial chapters set my feet on the correct path,

To Jeff Holtmeier of ASM Press for his enthusiastic support of this project,

To Ellie Tupper, my Production Editor, for skillfully guiding my book through the production process,

To Laura Ledbetter and the rest of the editorial, production, and marketing staff of ASM Press for their invaluable assistance,

To the libraries of the University of California at San Diego, the libraries of the University of Vermont, the San Diego Public Library, and the Stowe Free Library for access to their collections and on-line search services,

To Jeffrey Farber of Health Canada and Richard A. Holley of the University of Manitoba for obtaining on my behalf copies of several older articles that would not otherwise have been available to me,

To all those authors who so kindly responded to my requests for reprints of published research and review articles,

To Wallace H. Andrews, Steven C. Ingram, and Tom Montville for reviewing my book proposal,

To Kathryn J. Boor, Robert E. Brackett, Richard A. Holley, Lee-Ann Jaykus, and Ewen C. D. Todd for reviewing portions of this manuscript and offering their helpful corrections and constructive suggestions, and

To Dean O. Cliver, for his in-depth and extremely helpful review of my entire manuscript, including the Glossary and Appendix,

I extend my thanks and appreciation.

xiv
Index

A
Abbreviations, 383–385
Acidity, bacterial growth and, 141–144
Acronyms, 383–385
Advanced Meat Recovery systems, 204
Air conditioning equipment, *Listeria monocytogenes* in, 22–25
Algeria, bovine spongiform encephalopathy concerns in, 199
Almond Board of California, 257
Almonds, *Salmonella enterica* serotype Enteritidis in, 254, 256–258
American Meat Institute, 117
Amsterdam (Holland America Line), shipboard outbreaks, 225–228
Andrew & Williamson Sales Company, California, hepatitis A virus in, 262
Anemia, hemolytic
due to *Escherichia coli* O157:H7, 89, 93–98
due to *Shigella*, 95
Animal feed, bovine spongiform encephalopathy concerns in, 199
Animal Plant Health Inspection Service, 204
Anisakis simplex, in fish, 279
Antelope, Oregon, *Salmonella enterica* serotype Typhimurium in, deliberate contamination with, 244–245
Anthrax
as bioterrorist weapon, 246–248
as military weapon, 243
profile of, 328
Bacillus cereus, 137, 138, 328–329
Bahrain, bovine spongiform encephalopathy concerns in, 199
Baker, Josephine, 218
BARF (Biologically Appropriate Raw Food) diet, 281
Bean sprouts, *Escherichia coli* O157:H7 in, 132–139
Beba powdered formula (Nestlé), *Enterobacter sakazakii* in, 8
Beef
Escherichia coli in, 72–73
Escherichia coli O157:H7 in, 96–100
ground, see Hamburger
irradiated, 316–317
raw, pathogens in, 277–280
Salmonella in, 72–73
spongiform encephalopathy from, see Bovine spongiform encephalopathy
Arizona, hepatitis A virus in, in strawberries, 262
Aum Shinrikyo cult, 243
Australia
biosecurity plans of, 248
bovine spongiform encephalopathy concerns in, 198, 199, 201, 203, 204
economic impact of food-borne diseases in, 314
food safety survey in, 311–313
Salmonella enterica serotype Bredeney contamination in, of powdered milk, 17–18
Austria, bovine spongiform encephalopathy concerns in, 199
Avian flu virus, in poultry, embargoes related to, 263
Avigard, for *Salmonella enterica* serotype Enteritidis prevention, 38

B
Bacillus anthracis
as bioterrorist weapon, 246–248
as military weapon, 243
profile of, 328
Bacillus cereus, 137, 138, 328–329
Bahrain, bovine spongiform encephalopathy concerns in, 199
Baker, Josephine, 218
BARF (Biologically Appropriate Raw Food) diet, 281
Bean sprouts, *Escherichia coli* O157:H7 in, 132–139
Beba powdered formula (Nestlé), *Enterobacter sakazakii* in, 8
Beef
Escherichia coli in, 72–73
Escherichia coli O157:H7 in, 96–100
ground, see Hamburger
irradiated, 316–317
raw, pathogens in, 277–280
Salmonella in, 72–73
spongiform encephalopathy from, see Bovine spongiform encephalopathy
Belgium
 bovine spongiform encephalopathy concerns in, 200
 Enterobacter sakazakii in, in infant formula, 8
 food-borne diseases from imports, 255
 Salmonella enterica serotype Nima in, in chocolate, 57–58
Bernstein, Haylee, 140
Biesenthal, David, 168
Billinghurst, Ian, raw diet of, 281
Biofilms, *Salmonella enterica* serotype Typhi in, 219
Biologically Appropriate Raw Food (BARF) diet, 281
Bioterrorism
government preparation for, 246–248
organisms used in, 243
Birds, *Salmonella* from, 17
Blogs, food safety information on, 299–300
Bone meal, in animal feed, bovine spongiform encephalopathy due to, 182–183, 185–188, 197, 199–201
Bosnia, food-borne diseases from imports, 255
Boston, Massachusetts, *Escherichia coli* O157:H7 in, in apple cider, 143–144
Botulism, 41–43, 279, 330–331
Bovine spongiform encephalopathy, 179–195
 animal identification tags, for, 203, 204
diseases related to, 179
 in downer cows, 202–205
economic impact of, 207
 embargoes related to, 263
 first appearance of, 180
 first Canadian case, 202–203
 first United States case, 203–204
 history of, 181–184
 incidence of, 182–184, 197, 198
 infective dose for, 182
 origin of, 185–189
 ruminant feed and, 182–183, 185–188, 197, 199–201
 source of, 181
testing for, 201–202, 205–207
 transmission of
to beef-eating animals, 185
to humans, 183, 185, 189
 variant Creutzfeldt-Jakob disease from, 183, 185, 189, 207
 world trade impact of, 197–207
Brazil
 bovine spongiform encephalopathy concerns in, 199
 food-borne diseases from imports, 255
 Briggs, Herman, 218
 Broilact, for *Salmonella enterica* serotype Enteritidis prevention, 38
Brosnan, Pierce, 282
Brucella melitensis, in raw milk and dairy products, 276
Bush, George H. W., 112
C
Caliciviridae, 226
California
 Escherichia coli O157:H7 in, 97–100
 in apple cider, 144–148
 in irrigation water, 139–141
 in sprouts, 136–137
 raw milk sales in, 275, 277
 Salmonella enterica serotype Enteritidis in
 in almonds, 256–257
 in eggs, 33
Campylobacter
cross-contamination with, in food preparation, 74–77
 in fish, 279
 in hospitals, 229
 in meat, 72–74, 278
 in pets, 281
 profile of, 329–330
 in raw milk and dairy products, 276
 in restaurants, 76–77
Canada
 agricultural imports and exports of, 254–258
 bacterial contamination of hot dogs in, 20–22
 biosecurity plans of, 248
 bovine spongiform encephalopathy in, 199–207
 Clostridium difficile in, in hospitals, 229–232
 Escherichia coli in, in drinking water, 164–171
 Escherichia coli O157:H7 in, in apple cider, 94–96, 142–143
 food-borne diseases from imports, 255
 HACCP program and, 114
 Listeria outbreak in, 24
 norovirus in, 225–226
 ruminant feed ban in, 199
 Salmonella enterica serotype Eastbourne in, in chocolate, 53–59
 Salmonella enterica serotype Enteritidis in, in eggs, 33
 Salmonella in, in frogs legs, 253
 unified food safety framework in, 317
Canada–United States Free Trade Agreement (CUSTA), 201
Carriers
 of hepatitis A virus, 221–224
 of *Salmonella*, 220–221
 of *Salmonella enterica* serotype Typhimurium, 273–275
 of typhoid fever, 217–220
Cats
bovine spongiform encephalopathy transmission to, 183, 185
Salmonella in, 281
Cattle, see Beef
Centers for Disease Control and Prevention
food safety education from, 313
Salmonella in, 281
Vessel Sanitation Program of, 224
Working Group on Waterborne Cryptosporidiosis, 162–163
Chavez, Robert, 141
Cheese, unpasteurized, pathogens in, 275–277
Chennai, India, jewelry store food contamination in, 243
Chicago, Illinois, Escherichia coli O157:H7 in, 277–280
Chicken, see also Eggs
Campylobacter in
on cutting boards, 74–76
lettuce contamination from, 76–77
from free-range vs. caged animals, 301–302
in hot dog processing, bacterial contamination of, 20–22
Listeria monocytogenes in, 59–63
Salmonella in
cooking and refrigeration procedures and, 2–4
on cutting boards, 74–76
China
bovine spongiform encephalopathy concerns in, 199
food-borne diseases from imports, 255
Chocolate, Salmonella enterica serotype Eastbourne in, 53–59
Cholera
due to raw shellfish, 279
in London, 157–158
Chronic wasting disease of deer and elk, 179
Cider
Cryptosporidium parvum in, 145–146
Escherichia coli O157:H7 in, 94–95, 141–148
Salmonella enterica serotype Typhimurium in, 142
Cincinnati, Ohio, Salmonella in, in rare roast beef, 280
Citrobacter, 166
Clams, raw, pathogens in, 279
Clinton, Bill, 261
Clostridium botulinum toxin, 41–43, 142, 279, 330–331
Clostridium difficile
in hospitals, 229–232
profile of, 331–332
Clostridium perfringens, 4–6
in pets, 281
profile of, 332
Coler Memorial Hospital, New York, Salmonella enterica serotype Enteritidis in, in eggs, 32–33
Coliforms, see also Escherichia coli
in drinking water, 166
Colorado, Escherichia coli O157:H7 in
in frozen hamburger, 111–112
in meat, 120–126
Competitive exclusion, for Salmonella enterica serotype Enteritidis prevention, 35–38
ConAgra plant, Escherichia coli O157:H7 in, 120–126, 295
Connecticut
Escherichia coli O157:H7 in
in apple cider, 144–145
in lettuce, 140
raw milk sales in, 275
Contamination, see also Cross-contamination
Bacillus anthracis, food, 246–248
Clostridium botulinum, 41–43
coliforms, water, 166
Cryptosporidium parvum
apple cider, 145–146
water, 158–163
Cyclospora cayetanensis, berries, 258–260
deliberate, 243–251
Enterobacter sakazakii, infant formula, 6–9
Escherichia coli, water, 166
Escherichia coli O157:H7
apple cider, 94–95, 141–148
hamburger, see Hamburger
lettuce, 139–141
sprouts, 132–139
water, 158, 159, 163–171
Escherichia coli O121:H19, water, 158
Giardia, water, 158
hepatitis A virus
food, 221–224
strawberries, 262
from imported foods, see Imported foods
Listeria monocytogenes
deli meats, 59–62
hot dogs, 20–25
norovirus, cruise ship food, 224–229
Plesiomonas, water, 158, 159
prions, meat, see Bovine spongiform encephalopathy
Salmonella
eggs, see Eggs
in frogs legs, 253
water, 158, 159
Salmonella enterica, spray-dried milk, 14–18
Salmonella enterica serotype Eastbourne, chocolate, 53–58
Salmonella enterica serotype Enteritidis
almonds, 254, 256–258
chicken, 2–4
Salmonella enterica serotype Typhimurium
apple cider, 142
liquid milk, 18–20
salad bars, 244–245
Contamination (continued)

Shigella, water, 158, 159
Shigella dysenteriae, muffins, 245–246
Vibrio cholerae, water, 157–158
Corned beef, Clostridium perfringens in, 4–6
Corrective actions, in HACCP, 116
Cow share programs, for raw milk, 275
Cows, see Beef
Creutzfeldt-Jakob disease, 179, 183, 185
variant, 183, 185, 189, 207
Critical control points, in HACCP, 113, 116
Critical limits, in HACCP, 113, 116
Cross-contamination, 69–87
in egg handling, 39
in food service environment, 76–78
in home kitchen, 74–76
of ice cream with raw egg product, 69–71
in meat slaughtering and processing, 72–74
from meat thermometer, 297
in restaurants, 78–79
of salad bar items with meat, 78–79
Cruise ship outbreaks, 224–229
Cryptosporidium, profile of, 333
Cryptosporidium parvum in apple cider, 145–146
in drinking water, 158–163
as zoonosis, 2
CUSTA (Canada–United States Free Trade Agreement), 201
Cutting boards, cross-contamination from, 74–76
Cyclospora cayetanensis in berries, 258–260
profile of, 333–334
Cyprus, bovine spongiform encephalopathy concerns in, 199

D

Dairies and dairy products
Clostridium botulinum toxin in, 41–42
cross-contamination of, 69–71
Salmonella enterica serotype Newbrunswick in,
14–18
Salmonella enterica serotype Typhimurium in,
18–20, 273–275
Dallas, Texas, Shigella dysenteriae in, deliberate
contamination with, 245–246
D’Angelo Sandwich Shop, Massachusetts,
hepatitis A virus in, 222–224
Danny’s Deli, Ohio, Clostridium perfringens in, 4–6
Death, see Mortality
Deer, chronic wasting disease of, 179
Deli meats, Listeria monocytogenes in, 59–63
Denmark
bovine spongiform encephalopathy concerns in, 197
food-borne diseases from imports, 255
unified food safety framework in, 317

Diarrhea
Bacillus cereus, 138
Clostridium perfringens, 4–6, 332
Cryptosporidium parvum, 2, 145–146, 158–163
Escherichia coli, see Escherichia coli
Salmonella, see Salmonella
Disney Cruise Line, norovirus on, 227–228
Documentation, in HACCP, 116, 118–119
Dogs, Salmonella in, 281
Drinking water, see Water

E

E. Kahn’s Sons Company, Ohio, Salmonella in, in
rare roast beef, 280
Education, on food safety, 311–326
consolidation of framework for, 317–318
for habit change, 318–319
necessity for, 314
new technologies, 315–317
sharing information in, 314–315
sources for, 313

Eggs, Salmonella enterica serotype Enteritidis contamination of
dishes involved in, 32–34
egg development and, 34–35
emergence of, 32
in hospitals, 32–33
mechanism of, 37–39
prevention of, 34–41
raw, 39–40
refrigeration methods and, 39
in restaurants, 31–32
in truck transportation, 69–71

Egypt
bovine spongiform encephalopathy concerns in, 199

food-borne diseases from imports, 255
El Paso, Texas, botulism outbreak in, 42–43
Elk, chronic wasting disease of, 179
Embargoes, of contaminated foods,
263–264
Encephalopathy, bovine spongiform, see Bovine spongiform encephalopathy
Engineering errors
in hot dog brine treatment, 20–25
in milk pasteurization, Salmonella, 18–20
in spray drying of milk, Salmonella, 14–18

England, see United Kingdom
Entamoeba histolytica, 334–335
Enterobacter sakazakii in powdered infant formula, 6–9
profile of, 335–336

Enterococcus faecalis, see Escherichia coli (EHEC), 133, 134, 336
Enteroaggregative Escherichia coli (EAEC), 133,
134, 336
Enterohemorrhagic Escherichia coli (EHEC, verocytotoxigenic), 133, 134, 336–337;
see also Escherichia coli O157:H7
Enteroinvasive *Escherichia coli* (EIEC), 133, 134, 337–338

Enteropathogenic *Escherichia coli* (EPEC), 133, 134, 338–339

Enterotoxigenic *Escherichia coli* (ETEC), 133, 134, 339

Environmental Protection Agency, drinking water standards of, on *Cryptosporidium parvum*, 162–163

Equipment, food processing
 - hot dog brine treatment, 20–25
 - *Listeria monocytogenes* transfer with, 61
 - milk pasteurization, 18–20
 - new technologies for, 315–317
 - spray-drying, 14–18

Escherichia coli
 - cross-contamination with, 78
 - in drinking water, 166
 - enteroaggregative (EAEC), 133, 134, 336
 - enterohemorrhagic (EHEC, verocytotoxigenic), 133, 134, 336–337; see also *Escherichia coli* O157:H7
 - enteroinvasive (EIEC), 133, 134, 337–338
 - enteropathogenic (EPEC), 133, 134, 338–339
 - enterotoxigenic (ETEC), 133, 134, 339
 - in meat, 281
 - strains of, 133, 134
 - *Escherichia coli* O55:H7, 90–91
 - *Escherichia coli* O157:H7
 - in animals, 89–90
 - in apple cider, 94–95, 141–148
 - clonal variations of, 91, 93
 - in clone complex, 90–91
 - cross-contamination with, in food preparation, 74–76
 - discovery of, 89
 - in drinking water, 158, 159, 163–171
 - early outbreaks of, 96–97
 - evolution of, 89–93
 - in hamburger
 - ConAgra, 120–126, 295
 - Hudson Foods, 111–112, 119, 124
 - in irrigation water, 139–141
 - hemolytic uremic syndrome due to, 89, 93–98
 - index case of, 97–98
 - in lettuce, 139–141
 - in mayonnaise, 79
 - in meat, 72–74, 277–280
 - in nursing homes, 96, 97
 - prevention of, 99–100
 - in raw milk and dairy products, 276
 - in restaurants, 96–100
 - in salad materials, 78–79
 - in sprouts, 132–139
 - thrombotic thrombocytopenic purpura due to, 95, 99
 - toxins of, 91–93, 134

Escherichia coli O121:H19, in drinking water, 158

European Union
 - agricultural imports and exports of, 254, 256–258
 - biosecurity plans of, 248
 - bovine spongiform encephalopathy concerns in, 197–201

F

Fall River, Massachusetts, *Escherichia coli* O157:H7
 - in apple cider, 143–144

Fancy Cutt Farms, California, *Escherichia coli* O157:H7 in, in irrigation water, 139–141

Fetal familial insomnia, 179

Fecal coliforms, see also *Escherichia coli*
 - in drinking water, 166

Feed, animal
 - bovine spongiform encephalopathy due to, 182–183, 185–188, 197, 199–201

Feline spongiform encephalopathy, 183, 185

Fever, in salmonellosis, see *Salmonella*

Finland
 - bovine spongiform encephalopathy concerns in, 198

Salmonella enterica serotype Enteritidis in
 - in eggs, 35

Fish, raw
 - pathogens in, 279

Florida
 - *Cyclospora cayetanensis* in, in imported berries, 258–260
 - *Salmonella enterica* serotype Enteritidis in
 - in eggs, 39–40

Food and Drug Administration
 - bioterrorism preparedness responsibilities of, 246–248
 - Final Rule of, 41, 115
 - food safety education from, 313, 315
 - HACCP adoption by, 114, 115
 - imported food responsibilities of, 261
 - responsibilities of, 317–318

Food Safety and Inspection Service (USDA), 122–125, 317

Formula, infant, powdered, *Enterobacter sakazakii*
 - in, 6–9

Fox, Nichols, 282

France
 - bovine spongiform encephalopathy concerns in, 197–199
 - food-borne diseases from imports, 255

Franconia, Pennsylvania, *Listeria monocytogenes*
 - outbreak in, in deli meats, 59–62

Frogs legs, *Salmonella*

G

Gallegos, Sandra, 111

Galligan’s Wholesale Meat Co., 120, 124

Gallstones, *Salmonella enterica* serotype Typhi on, 219
Gastroenteritis, see also Diarrhea

Bacillus anthracis, 247

economic impact of, 314

Escherichia coli, see Escherichia coli

norovirus, 158, 159, 224–229

nosocomial, 229–232

Salmonella, see Salmonella

Genetically modified foods, embargoes of, 263

Georges, George, 5

Georgia, Cyclospora cayetanensis in, in imported berries, 260

Germany

bovine spongiform encephalopathy concerns in, 197–200

food-borne diseases from imports, 255

Gerstmann-Strässler-Scheinker syndrome, 179

Giardia

in drinking water, 158

profile of, 339–340

Gibson, Mel, 282

Glickman, Dan, 124

Goats, scrapie in, 179–182, 185, 188–189

Government Accountability Office, USDA review by, 123–124

Greeley, Colorado, Escherichia coli O157:H7 in, in meat, 120–126

Guatemala, food-borne diseases from imports, 255, 258–260

H

HACCP, see Hazard Analysis and Critical Control Points (HACCP)

Half Moon Bay, California, Escherichia coli O157:H7 in, in apple cider, 144–148

Hamburger, Escherichia coli O157:H7 in, 96–100, 111–112

ConAgra, 120–126, 295

Hudson Foods, 111–112, 119, 124

Jack in the Box, 96–100, 118–119

Hand washing

hepatitis A virus removal in, 223

inadequate, nosocomial infections due to, 223–224

Hardee’s restaurants, Minnesota, Salmonella enterica serotype Enteritidis in, 220–221

Hardeman, Ernie, 168

Harding, Lee, 111–112

Hazard Analysis and Critical Control Points (HACCP)

adoption of

by U.S. Department of Agriculture, 115

by Food and Drug Administration, 114

milestones in, 113

benefits of, 114

Canada regulations based on, 114

ConAgra, 120–126

in Escherichia coli O157:H7 monitoring, 117–126

failure of, 121–124

history of, 112–115

Jack in the Box, 100, 118–119

Listeria monocytogenes monitoring in, 62–63

opposition to, 117–118, 121

philosophy of, 115

for raspberries, 260

Sizzler restaurants, 79

step-by-step approach of, 114, 116

Hemolytic uremic syndrome

due to Escherichia coli O157:H7, 89, 93–98

due to Shigella, 95

Henderson, D. A., on bioterrorism, 246

Hens, see Chicken; Eggs

Hepatitis A virus

asymptomatic carriage of, 221–224

in fish, 279

profile of, 340

Hepatitis B virus, 223

Hepatitis C virus, 223

Hepatitis D virus, 223

Hepatitis E virus, 223, 341

Hepatitis F virus, 223

Hepatitis G virus, 223

Hillfarm dairy products, Salmonella enterica serotype Typhimurium in, 18–20

Hogs, see Pork

Holland America Line, norovirus on, 225–228

Home food handling

cross-contamination in, 74–76

refrigeration practices, 1–2

Honduras, food-borne diseases from imports, 255

Hong Kong, bovine spongiform encephalopathy concerns in, 199, 204

Hospitals

HACCP programs for, 114

infections acquired in, 229–232

Salmonella enterica serotype Enteritidis in, in eggs, 32–33

Hot dogs

Escherichia coli in, 20–25

Listeria monocytogenes in, 20–25, 295

Hudson Foods, Escherichia coli O157:H7 in, 111–112, 119, 124

Hughson Nut, Inc., California, Salmonella enterica serotype Enteritidis in, 256–257

Huntington’s disease, 179

Ice cream, Salmonella enterica serotype Enteritidis in, 39–40, 69–71

Idaho, Escherichia coli O157:H7 in, 98

Identification system, for cattle, 203

Illinois

Escherichia coli O157:H7 in, 277–280
Salmonella enterica serotype Typhimurium outbreak in, milk, 18–20
Immunization, see Vaccination
Immunocompromised persons, Cryptosporidium parvum effects on, 162
Immunohistochemistry test, for bovine spongiform encephalopathy, 205, 206
Imported foods, 253–271
Cyclospora cayetanensis in, in berries, 258–260
embargoes on, 263–264
hepatitis A virus in, in strawberries, 262
inspection of, 261
Salmonella enterica serotype Enteritidis in,
in almonds, 254, 256–258
statistics on, 253–254, 263–264
India
jewelry store, food contamination in, 243
shrimp from, 263
Indonesia, bovine spongiform encephalopathy concerns in, 203
Infant formula, powdered, Enterobacter sakazakii in, 6–9
Information resources, 295–309; see also Education blogs, 299–300
exaggeration in, 296
Internet, 298–300
journalists’ responsibility for, 302–303
on new technologies, 315–317
newspapers, 295–296
on recalls, 295–296
reliability of, 300–302
types of, 295–296, 313
U.S. Department of Agriculture, 297
Wikipedia, 298
Institute of Medicine, on unified food safety framework, 317
International Association for Food Protection, 119
Internet, food safety information on, 298–300
Iran, bovine spongiform encephalopathy concerns in, 199
Iraq, bovine spongiform encephalopathy concerns in, 199
Ireland
bovine spongiform encephalopathy concerns in, 197, 198, 200
unified food safety framework in, 317
Irradiation technology, 316–317
Irrigation water, Escherichia coli O157:H7 in,
in restaurants, 76–77
J
Jack in the Box, Escherichia coli O157:H7 in, 97–100, 118–119
Jackson County, Oklahoma, Campylobacter in,
in restaurants, 76–77
Jaffray, Brian, 165
Japan
Bacillus anthracis terrorism attempt in, 243
bovine spongiform encephalopathy concerns in, 198, 200, 203
Escherichia coli O157:H7 in, in sprouts, 132–139
food import regulations of, 263
Salmonella enterica serotype Enteritidis in,
in eggs, 33
Jewel Dairy, Illinois, Salmonella enterica serotype Typhimurium in, 18–20
Jewelry store, food contamination in, 243
JL Foods, New Jersey, Listeria monocytogenes in,
in deli meats, 59–63
Johans, Mike, 205
Johns Hopkins University, bioterrorism symposiums of, 246
Jordan, bovine spongiform encephalopathy concerns in, 199
K
Kennedy, John F., 113
Kidney failure due to Escherichia coli O157:H7, 89, 93–98
due to Shigella, 95
Kierzek, Mary, 18
Kings County, Washington, Escherichia coli O157:H7 in, 93–94
Klebsiella, 166
Koch’s postulates, 186, 188
Koebsel, Frank, 168–171
Koebsel, Stan, 164, 167–170
Koizumi, Prime Minister Junichiro, 200
Kolavic, Shellie A., 248
Kowalcyk, Kevin, 89
L
Lachapelle, Gerard, 16–17
Lairage area, bacterial cross-contamination in, 72–73
Lambeth Company, contaminated water supplied by, 157–158
Lettuce
Campylobacter in, 76–77
Escherichia coli O157:H7 in, 139–141
Levins, Thomas, 18
Liang, Arthur, 319
Listeria monocytogenes
control of, 24

cross-contamination with, 78
in deli meats, 59–63
in fish, 279
in mayonnaise, 79
profile of, 341–342
in raw milk and dairy products, 276, 277
Loeffl er, Friedrich, 186, 188

M
Mad cow disease, see Bovine spongiform encephalopathy
Magic (Disney Cruise Line), norovirus on, 227–228
Maine, hepatitis A virus in, in strawberries, 262
Major, John, 183
Malaysia, bovine spongiform encephalopathy concerns in, 204
Mallon, Mary (Typhoid Mary), 217–220
Malta, bovine spongiform encephalopathy concerns in, 199
Manuelidis, L., 186
Manure
on apples, 147
in drinking water supply, 164–171
in irrigation water, 139–141
Marler Clark law firm, food safety information from, 299
Marshall, Minnesota, Salmonella enterica in, in ice cream, 69–71
Maryland, Salmonella enterica serotype Enteritidis outbreaks in, in eggs, 31–32
Massachusetts
Escherichia coli O157:H7 in, in apple cider, 143–144
hepatitis A virus in, 222–224
Mayonnaise, bacterial growth in, 79
McDonald's, Escherichia coli O157:H7 in, 96, 99
Mead Johnson Portagen infant formula, Enterobacter sakazakii in, 6–9
Meat, see also specific types of meat
Campylobacter in, 72–74
Clostridium perfringens in, 4–6
Escherichia coli in, 20–25, 72–74
Escherichia coli O157:H7 in, 78–79, 96–100
HACCP programs for, 115–126
Listeria monocytogenes in, 20–25, 59–63, 295
raw, pathogens in, 277–280
safe cooking of, 297
Salmonella in, 72–74, 118
Meat and bone meal, bovine spongiform encephalopathy and, 199–201
Media resources, see Information resources
Meningitis, Enterobacter sakazakii, from powdered formula, 6–9
Mercola, Joseph, 300
Mexico
biosecurity plans of, 248
bovine spongiform encephalopathy concerns in, 199, 203
food-borne diseases from imports, 255
hepatitis A virus in, in strawberries, 262
Michigan
Escherichia coli O157:H7 in, 96, 136
hepatitis A virus in, in strawberries, 262
Microbial Outbreaks and Special Projects Laboratory, U.S. Department of Agriculture, 60
Milk
liquid, Salmonella enterica serotype Typhimurium in, 18–20
powdered, Salmonella enterica serotype Newbrunswick in, 14–18
raw, pathogens in, 273–277
Milwaukee, Wisconsin, Cryptosporidium parvum in, in drinking water, 158–163
Minnesota
Salmonella enterica in, in ice cream, 69–71
Salmonella enterica serotype Enteritidis in, carriers of, 69–71, 220–221
Monitoring, in HACCP, 113, 116
Montana Quality Foods, 120, 123, 124
Montfort Beef, 98
Montreal, Canada, Clostridium difficile in, in hospitals, 229–232
Moore, Demi, 282
Morocco, bovine spongiform encephalopathy concerns in, 198, 199
Mortality
in amebiasis, 335
in anthrax, 328
in Bacillus cereus infections, 329
in botulism, 41, 331
in Campylobacter infections, 330
in cholera, 347
in Clostridium difficile infections, 332
in Clostridium perfringens infections, 332
in cryptosporidiosis, 161, 333
in cyclosporiasis, 334
in Enterobacter sakazakii infections, 335–336
in Escherichia coli infections, 336–339
in Escherichia coli O157:H7 infections, 89, 94, 96–98
in drinking water, 164
in salad materials, 78–79
in sprouts, 135
in giardiasis, 340
in hepatitis A, 340
in hepatitis E, 341
from imported foods, 255–256
in listeriosis, 23, 59, 63, 342
in norovirus infections, 342–343
in *Providencia* infections, 343
in salmonellosis, 32, 344
in shigellosis, 346
in *Staphylococcus aureus* infections, 347
in typhoid fever, 345
from Typhoid Mary, 217–220
in *Vibrio parahaemolyticus* infections, 348
in *Vibrio vulnificus* infections, 349
in *Yersinia enterocolitica* infections, 349
Muffins, *Shigella dysenteriae* in, deliberate contamination, 245–246
Mycobacterium bovis, in raw milk and dairy products, 276

N
NAFTA (North American Free Trade Agreement), 201
Napoleon Bonaparte, food preservation competition of, 13
Natick Laboratories, 113
National Advisory Committee for Microbiological Criteria for Foods, 114–116
National Aeronautics and Space Administration, microbiologically safe food development for, 113
National Animal Identification System, 204
National Food Processors Association, 115
National Research Council
food safety report of, 114
on unified food safety framework, 317
National School Lunch Program, 262
Nausea and vomiting, in salmonellosis, see *Salmonella*
Neonates, *Enterobacter sakazakii* infections in, from powdered formula, 6–9
Nestlé Beba powdered formula, *Enterobacter sakazakii* in, 8
The Netherlands
bovine spongiform encephalopathy concerns in, 197, 198
food-borne diseases from imports, 255
Nevada, *Escherichia coli* O157:H7 in, 98
New Hampshire, *Salmonella enterica* serotype Enteritidis in, in eggs, 32
New Jersey
Listeria monocytogenes in, in deli meats, 59–63
Salmonella enterica in, in meat, 280–281
Salmonella enterica serotype Enteritidis in, in eggs, 32
Salmonella enterica serotype Typhimurium in, in apple cider, 142
New York
Cryptosporidium parvum in, in apple cider, 145–146

Salmonella enterica serotype Enteritidis in, in eggs, 32
New York City, *Salmonella enterica* serotype Typhi in, 218–220
New Zealand
bovine spongiform encephalopathy concerns in, 198, 199, 201, 203
home food handling in, 76
Norovirus
on cruise ships, 224–229
in drinking water, 158, 159
in fish, 279
in hospitals, 229
profile of, 342–343
North American Free Trade Agreement (NAFTA), 201
Norwalk, Ohio, norovirus in, 226
Nosocomial infections, 229–232
Nurmi concept (competitive exclusion), for *Salmonella enterica* serotype Enteritidis prevention, 35–38
Nursing homes, *Escherichia coli* O157:H7 in, 96, 97

O
O’Connor, Commissioner Dennis, 171
Odwalla, Inc., California, *Escherichia coli* O157:H7 in, in apple cider, 144–148
Ohio
Clostridium perfringens in, 4–6
norovirus in, 226
Salmonella enterica serotype Typhimurium in, in raw milk, 273–275
Salmonella in, in rare roast beef, 280
Okayama, Japan, *Escherichia coli* O157:H7 in, in sprouts, 135
Oklahoma
Campylobacter in, in restaurants, 76–77
Salmonella in, in school cafeteria, 2–4
Ontario, Canada, *Escherichia coli* in, in drinking water, 163–171
Oocysts, *Cryptosporidium parvum* in, in drinking water, 158–163
Oregon, *Escherichia coli* O157:H7 in, 78–79, 96
Orleans International, 98
O’Toole, T., 246
Ottawa, Canada, *Escherichia coli* in, in drinking water, 163–171
Oysters, raw, pathogens in, 279

P
 Paramount Farms, California, *Salmonella enterica* serotype Enteritidis in, in almonds, 257–258
Pasteur, Louis, appertization microbiology studies of, 13
Pasteurization, of milk
advantages and disadvantages of, 275, 277
defects in, *Salmonella enterica* serotype
Typhimurium contamination in, 18–20

Pennsylvania
Cyclospora cayetanensis in, in imported berries, 260
Listeria monocytogenes in, in deli meats, 59–63
Salmonella enterica in, in meat, 280–281

Pets, raw meat diets for, 281

pH, bacterial growth and, 141–144

Philadelphia, Pennsylvania, *Cyclospora cayetanensis*
in, in imported berries, 260

Phillips, Lord, 189

Pigs, *see* Pork

Pilgrim’s Pride, Pennsylvania, *Listeria monocytogenes*
in, in deli meats, 59–63

Pillsbury Company, microbiologically safe food
development by, 113, 114

Pitsham Farm, England, bovine spongiform
encephalopathy in, 180

Plesiomonas, in drinking water, 158, 159

Plurenden Manor Farm, England, bovine
encephalopathy in, 180

Poland, food-borne diseases from imports, 256

Pork
Campylobacter in, 72–73
Salmonella in, 72–73

Portagen infant formula, *Enterobacter sakazakii* in,
6–9

Portugal, bovine spongiform encephalopathy
concerns in, 197, 200

Potatoes, baked, *Clostridium botulinum* toxin in,
42–43

Poultry, *see also* Chicken
Campylobacter in, 72–74
Escherichia coli in, 72–74
Salmonella in, 72–74

Powdered milk, *Salmonella enterica* in, 14–18

Preempt, for *Salmonella enterica* serotype
Enteritidis prevention, 38

Premix, ice cream, cross-contamination of, 70–71

President’s Council on Food Safety, Egg Safety
Action Plan of, 40–41

Prions and prion diseases, *see also* Bovine
spongiform encephalopathy
human, 183, 185, 189
pathogenesis of, 189
scrapie, 179–182, 185, 188–189

Probiotics, for *Salmonella enterica* serotype
Enteritidis prevention, 35–38

Providencia, profile of, 343

Prusiner, Stanley, prion research of, 186

Pseudoterranova decipiens, in fish, 279

Public Health Security and Bioterrorism

PubMed online service, 299

Pure Food and Drug Act, 282

Q

Quebec
Salmonella enterica serotype Newport in, in milk,
16–18
Salmonella in, in frogs legs, 253

R

Rajneesh International, Oregon, *Salmonella enterica*
serotype Typhimurium attack by, 244–245

Raspberries, *Cyclospora cayetanensis* in, 258–260

Raw foods, 273–294
fish, 279
meat, 277–279
milk, 273–277
mystique of, 282
for pets, 281
seafood, 279

Recalls
of almonds, 254, 257
information on, 295–296
of meat products, 277, 279
authority for, 124–125
ConAgra, 120–126, 295
Galligan’s Wholesale Meat Co., 124, 125
Hudson Foods, 112, 119, 124
Montana Quality Foods, 124, 125
of sprouts, 136–137

Refrigeration
of baked potatoes, 43
of eggs, 39
raw food diet and, 282
room temperature cooling before, 1–2
thawing in, 2, 3
timing of, 5–6

Regent Chocolate, Canada, *Salmonella enterica*
serotype Eastbourne in, 53–59

Rendering, of meat waste products, bovine
spongiform encephalopathy due to,
182–183, 185–188

Research, on food safety, 315–317

Restaurants
Campylobacter in, 76–78
Clostridium botulinum toxin in, 42–43
on cruise ships, gastroenteritis outbreaks from,
224–229
Escherichia coli O157:H7 in, 96–100
hepatitis A virus in, 221–224
Salmonella enterica serotype Enteritidis in
in asymptomatic carrier, 220–221
in eggs, 31–32
Salmonella enterica serotype Typhimurium in,
deliberate contamination with, 244–245
Rice, Bacillus cereus in, 138
Richardson, Carol, 180
Riley, Robert, 19
Roosevelt, Theodore, 282
Rotaviruses, in hospitals, 229
Rudolph, Lauren, 97–98
Rudy's Country Store, Massachusetts, hepatitis A virus in, 222–224
Runoff, drinking water contamination from, 164–171
Russia
bovine spongiform encephalopathy concerns in, 199, 204
poultry export to, 263
Ryndam (Holland America Line), shipboard outbreaks, 225–228
Safe Tables Our Priority advocacy group, 100, 115
Sakai City, Japan, Escherichia coli O157:H7 in, in sprouts, 132–139
Salad bars, Salmonella enterica serotype Typhimurium in, deliberate contamination, 244–245
Salmonella
asymptomatic carriers of, 220–221
cross-contamination with, in food preparation, 74–76
in drinking water, 158, 159
in free-range vs. caged chickens, 301–302
in frogs legs, 253
in hospitals, 229
in imported foods, 255–256
inaccurate information on, 300
in mayonnaise, 79
in meat, 72–74, 118
in pets, 281
replication conditions for, 3
in sprouts, 137
as zoonosis, 2
Salmonella enterica
in fish, 279
in meat, 278, 280–281
profile of, 343–344
in raw milk and dairy products, 276
Salmonella enterica serotype Bredeney, in powdered milk, 17–18
Salmonella enterica serotype Choleraesuis, as zoonosis, 2
Salmonella enterica serotype Eastbourne, in chocolate, 53–59
Salmonella enterica serotype Enteritidis
in almonds, 254, 256–258
in eggs competitive exclusion for, 35–38
contamination mechanism in, 35–39
dishes involved in, 32–34
egg development and, 34–35
emergence of, 32
in hospitals, 32–33
ice cream cross-contamination from, 69–71
prevention of, 34–41
raw, 39–40
reduction methods and, 39
in restaurants, 31–32
vaccination for, 35
worldwide, 33
in ice cream, 69–71
Salmonella enterica serotype Gallinarum, in poultry flocks, 35
Salmonella enterica serotype Napoli, in chocolate, 57
Salmonella enterica serotype Newbrunswick, in powdered milk, 14–16
Salmonella enterica serotype Newport, in powdered milk, 16–18
Salmonella enterica serotype Nima, in chocolate, 57–58
Salmonella enterica serotype Senftenberg, in chocolate, 56
Salmonella enterica serotype Thompson, in ice cream, 69–70
Salmonella enterica serotype Typhi
asymptomatic carriage of, 217–220
profile of, 344–345
as zoonosis, 2
Salmonella enterica serotype Typhimurium
in apple cider, 142
in chocolate, 56
in milk, 18–20
in salad bars, deliberate contamination with, 244–245
San Diego, California, Escherichia coli O157:H7 in,
97–100
Saporovirus, 226
Sara Lee Corporation, BilMar Foods subsidiary,
hot dog processing plant of, Listeria monocytogenes in, 22–25, 295
Saudi Arabia, bovine spongiform encephalopathy concerns in, 199
School cafeterias
Escherichia coli O157:H7 in, in sprouts, 132–139
hepatitis A virus in, in strawberries, 262
Salmonella in, in chicken, 2–4
Schwan’s Sales Enterprises, Minnesota, Salmonella enterica serotype Enteritidis in, in ice cream, 69–71
Scrapie, 179–182, 185, 188–189
Seafood, raw, pathogens in, 279
Seattle, Washington, Escherichia coli O157:H7 in, salmon cross-contamination, 78–79
Seed sprouts, Escherichia coli O157:H7 in, 132–139
Service Packing, Escherichia coli O157:H7 in, 98
Shalala, Donna, 246
Sheela, Ma, 244–245
Sheep, scrapie in, 179–182, 185, 188–189
Shellfish, raw, pathogens in, 279
Sherbrooke, Canada, *Clostridium difficile* in, in hospitals, 229–232
Shigella
asymptomatic carriers of, 220–221
in drinking water, 158, 159
hemolytic uremic syndrome due to, 95 in hospitals, 229
profile of, 345–346
Shigella sonnei
in lettuce, 141
in raw milk and dairy products, 276
Shillam, Pam, 111
Shipboard outbreaks, 224–229
Disney Cruise Line, 227–228
Holland America Line, 225–228
statistics on, 224
Shrimp, embargoes of, 263
Singapore, bovine spongiform encephalopathy concerns in, 203, 204
Sizzler restaurants, Oregon, *Escherichia coli* O157:H7 in, from salad cross-contamination, 78–79
Skin milk, powdered, *Salmonella enterica* in, 14–18
Slaughter, bacterial cross-contamination in, 72–74
Smallpox, as military weapon, 243
Snow, John, 157–158
Soper, George, 217–218
Soto, Claudio, 187
South Africa, bovine spongiform encephalopathy concerns in, 198
South Korea, bovine spongiform encephalopathy concerns in, 203
Southward and Vauxhall Company, contaminated water supplied by, 157–158
Southwood Working Party, for bovine spongiform encephalopathy research, 182, 183
Spain
bovine spongiform encephalopathy concerns in, 200
food-borne diseases from imports, 256
Spongiform encephalopathy, bovine, see Bovine spongiform encephalopathy
Spongiform Encephalopathy Advisory Committee, 182
Spray-drying equipment, for powdered milk, contamination of, 14–18
Sprouts, *Escherichia coli* O157:H7 in, 132–139
Staphylococcus aureus, profile of, 346–347
Stent Family farm, England, bovine spongiform encephalopathy in, 180
Stillbirth, in listeriosis, 59
Strawberries, *Cyclospora cayetanensis* in, 258–260
Streptococcus zooepidemicus, in raw milk and dairy products, 276, 277
Stx1 and Stx2 toxins, *Escherichia coli* O157:H7, 91–93
Surface water, drinking water contamination from, 164–171
Swacina, Linda, 125
Swansea, Massachusetts, hepatitis A virus in, 222–224
Sweden
bovine spongiform encephalopathy concerns in, 198
economic impact of food-borne diseases in, 314
Salmonella enterica serotype Enteritidis in, in eggs, 333–336
Switzerland, bovine spongiform encephalopathy concerns in, 200
Syria, bovine spongiform encephalopathy concerns in, 199
Tai
Taiwan, bovine spongiform encephalopathy concerns in, 204
Tanker trucks, ice cream premix cross-contamination in, 70–71
Taplin, Jennifer, 17
Tennessee, *Enterobacter sakazakii* contaminated infant formula in, 6–9
Texas
botulism outbreak in, 42–43
Shigella dysenteriae in, deliberate contamination with, 245–246
Thailand
bovine spongiform encephalopathy concerns in, 198
food-borne diseases from imports, 256
Thames River, water supply from, 157–158
Thawing, chicken, *Salmonella* development during, 2–3
Theno, David, 118
Thompson, Diane, 245–246
Thompson, George, 217
Thrombocytopenia, in hemolytic uremic syndrome, 89, 93–98
Thrombotic thrombocytopenic purpura, due to *Escherichia coli* O157:H7, 95, 99
Tokyo, Japan, *Bacillus anthracis* terrorism attempt in, 243
Toronto, Canada, *Escherichia coli* O157:H7 in, 94–95
Toxins
Bacillus cereus, 138
Clostridium botulinum, 41–43, 142, 330–331
Clostridium difficile, 231–232
Escherichia coli, 133, 134
Escherichia coli O157:H7, 91–93
Transmissible spongiform encephalopathies, see also specific types, e.g., Bovine spongiform encephalopathy
scrapie, 179–182, 185, 188–189
types of, 179
Trichinella, in meat, 278
Trucks, ice cream premix cross-contamination in, 70–71
Tunisia, bovine spongiform encephalopathy concerns in, 199
Turbidity, of drinking water, Cryptosporidium parvum in, 161
Turkey
bovine spongiform encephalopathy concerns in, 199
food-borne diseases from imports, 256
Listeria monocytogenes in, 59–63
Typhoid fever, 2, 217–220, 344–345
Tyrrell Committee, for bovine spongiform encephalopathy advice, 182
United Arab Emirates, bovine spongiform encephalopathy concerns in, 199
United Kingdom
botulism outbreak in, 41–42
bovine spongiform encephalopathy in, 179–195, 197–201
cholera in, 157–158
Salmonella enterica serotype Enteritidis in, in eggs, 33, 40
scrapie in, 179–182, 185, 188–189
unified food safety framework in, 317
United States, see also U.S. Department of Agriculture; Food and Drug Administration; specific states
agricultural imports and exports of, 253
economic impact of food-borne diseases in, 314
Egg Safety Plan of, 40
food-borne diseases from imports, 256
unified food safety framework for, 317–318
U.S. Department of Agriculture
Animal Plant Health Inspection Service, 204
bioterrorism preparedness responsibilities of, 246–248
bovine spongiform encephalopathy actions of, 203–207
food safety education from, 313, 315
food safety information from, 297
HACCP adoption by, 115
HACCP implementation by, 119
Microbial Outbreaks and Special Projects Laboratory, 60
responsibilities of, 317
school lunch program of, 262
USDA, see U.S. Department of Agriculture

V
Vaccination
for Escherichia coli O157:H7, 94
for hepatitis A virus, in food handlers, 223
for Salmonella enterica serotype Enteritidis, 35–38
Vancouver, Canada, norovirus in, 225–226
Variant Creutzfeldt-Jakob disease, 183, 185, 189, 207
Variola virus, as military weapon, 243
Vearncombe, Mary, 232
Velasquez, Anita, 146
Veneman, Ann, 203, 204
Verification procedures, in HACCP, 116
Vessel Sanitation Program, 224, 315
Vibrio cholerae
in drinking water supply, 157–158
in fish, 279
profile of, 347
Vibrio parahaemolyticus
in fish, 279
profile of, 347–348
as zoonosis, 2
Vibrio vulnificus, profile of, 348–349
Virginia, Escherichia coli O157:H7 in, in sprouts, 136
Vons meat processing facility, Escherichia coli O157:H7 in, 98

W
Walkerton, Canada, Escherichia coli in, in drinking water, 164–171
Warren family, Typhoid Mary working for, 217–218
Washington, Escherichia coli O157:H7 in, 78–79, 98–99
Water
drinking
Campylobacter in, 164–165
Cryptosporidium parvum in, 158, 160–163
Escherichia coli in, 163–171
Escherichia coli O157:H7 in, 164
microorganisms found in, 158, 159
purification process for, 158, 160–161, 164
surface water contamination of, 164–171
testing of, 163–164
Vibrio cholerae in, 157–158
irrigation, Escherichia coli O157:H7 in, 139–141
for produce washing, Escherichia coli O157:H7 in, 140–141, 147
Weapons, biological, 243, 246–248
Weber, Kim, 98
Weiss, Karl, 230–231
Well water, surface water contamination of, 164–171
Western blot test, for bovine spongiform encephalopathy, 205, 206
Wiener's Escherichia coli in, 20–25
Listeria monocytogenes in, 20–25, 295
Wikipedia, food safety information on, 298
Wilesmith, John, 181–182
Williamson, Frederick, 262
Winona, Minnesota, Salmonella enterica serotype Enteritidis in, 220–221
Wisconsin
Cryptosporidium parvum in, in drinking water, 158–163
hepatitis A virus in, in strawberries, 262
World Health Organization, food safety education from, 313

Y
Yersinia enterocolitica, 349
Yogurt, Clostridium botulinum toxin in, 41–42
Young's Jersey Dairy, Ohio, Salmonella enterica serotype Typhimurium in, in raw milk, 273–275

Z
Zero tolerance, of visible fecal matter in meat, 117
Zoo animals, spongiform encephalopathies in, 185
Zoonosis, pathogens causing, 2