CONTENTS

Contributors • vii
Preface • xi
Acknowledgments • xiii
Important Notice • xv

I. Ticks, Their Interactions with Hosts, and the Diseases They Transmit

1. Overview of Tick-Borne Infections of Humans • 3
 David T. Dennis and Joseph F. Piesman

2. The Biology of Tick Vectors of Human Disease • 12
 Daniel E. Sonenshine

3. The Tick: a Different Kind of Host for Human Pathogens • 37
 Ulrike G. Munderloh, Steven D. Jauron, and Timothy J. Kurtti

4. Management of Ticks and Tick-Borne Diseases • 65
 Howard S. Ginsberg and Kirby C. Stafford III

5. Clinical Approach to the Patient with a Possible Tick-Borne Illness • 87
 Jesse L. Goodman

6. The Human Reaction to Ticks • 102
 Uwe U. Müller-Dobles and Stephen K. Wikel

7. Tick Systematics and Identification • 123
 James E. Keirans and Lance A. Durden

II. Specific Diseases

8. Colorado Tick Fever and Related Coltivirus Infections • 143
 Anthony A. Marfin and Grant L. Campbell

9. Tick-Borne Encephalitis • 150
 Patricia A. Nuttall and Milan Labuda

10. Crimean-Congo Hemorrhagic Fever • 164
 Felicity J. Burt and Robert Swanepoel

11. Lyme Borreliosis • 176
 Allen C. Steere, Jenifer Coburn, and Lisa Glickstein

12. Tularemia • 207
 Edward B. Hayes

13. Human Granulocytic Anaplasmosis (Ehrlichiosis) • 218
 Jesse L. Goodman

14. Human Monocytotropic Ehrlichiosis • 239

15. Other Causes of Tick-Borne Ehrlichioses, Including Ehrlichia ewingii • 258
 Christopher D. Paddock, Allison M. Liddell, and Gregory A. Storch

16. Relapsing Fever • 268
 Alan G. Barbour

17. Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses • 292
 Kevin R. Macaluso and Abdu F. Azad
18. Mediterranean Spotted Fever and Other Tick-Borne Rickettsioses • 302
 Pierre-Edouard Fournier and Didier Raoult

19. Q Fever • 328
 Herbert A. Thompson, David T. Dennis, and Gregory A. Dasch

20. Human Babesiosis • 343
 Mary J. Homer and David H. Persing

Clinical and Pathologic Atlas of Tick-Borne Diseases • (see Color Map and Color Plate section)
 J. Stephen Dumler and Christopher D. Paddock

III. Color Atlases

21. Geographic Distributions of Tick-Borne Diseases and Their Vectors • 363
 Richard N. Brown, Robert S. Lane, and David T. Dennis

Index • 393
CONTRIBUTORS

Abdu F. Azad
Department of Microbiology and Immunology,
School of Medicine, University of Maryland,
Baltimore, Baltimore, Maryland 21201

Alan G. Barbour
Departments of Medicine and Microbiology and
Molecular Genetics, University of California, Irvine,
Irvine, California 92697-4025

Richard N. Brown
Department of Wildlife, Humboldt State University,
Arcata, California 95521-8222

Felicity J. Burt
Special Pathogens Unit, National Institute for
Communicable Diseases, Sandringham 2131,
Republic of South Africa

Grant L. Campbell
Division of Vector-Borne Infectious Diseases,
National Center for Infectious Diseases, Centers for
Disease Control and Prevention, Colorado State
University, Foothills Campus, Fort Collins,
Colorado 80521

J. E. Childs
Department of Biology, 2101 Rollins Basic Science
Building, 1510 Clifton Road NE, Atlanta, Georgia
30602

Jennifer Coburn
Division of Geographic Medicine and Infectious
Diseases, Tufts-New England Medical Center,
Boston, Massachusetts 02111

Gregory A. Dasch
Viral and Rickettsial Zoonoses Branch, Centers for
Disease Control and Prevention, 1600 Clifton
Road, Atlanta, Georgia 30333

W. R. Davidson
Southeastern Cooperative Wildlife Disease Study,
College of Veterinary Medicine, University of
Georgia, Athens, Georgia 30602

J. E. Dawson
Chelan-Douglas Health District, 200 Valley Mall
Parkway, East Wenatchee, Washington 98802

David T. Dennis
Division of Vector-Borne Infectious Diseases,
National Center for Infectious Diseases, Centers for
Disease Control and Prevention, P.O. Box 2087,
Fort Collins, Colorado 80522

J. Stephen Dumler
Division of Medical Microbiology, Department of
Pathology, The Johns Hopkins University School of
Medicine, 720 Rutland Avenue, Baltimore,
Maryland 21205

Lance A. Durden
Institute of Arthropodology and Parasitology,
Georgia Southern University, Statesboro, Georgia
30460-8056

S. A. Ewing
224 Veterinary Medicine, Oklahoma State
University, Stillwater, Oklahoma 74078

Pierre-Edouard Fournier
Unité des Rickettsies, CNRS UMR 6020, Faculté de
Médecine, Université de la Méditerranée, 27
Boulevard Jean Moulin, 13385 Marseille Cédex 05,
France

Howard S. Ginsberg
U.S. Geological Survey Patuxent Wildlife Research
Center, Coastal Field Station, University of Rhode
Island, Kingston, Rhode Island 02881
Contributors

Lisa Glickstein
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114

Jesse L. Goodman
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 1401 Rockville Pike, Suite 200N, HFM-1, Rockville, Maryland 20852

Edward B. Hayes
Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, P.O. Box 2087, Fort Collins, Colorado 80522

Mary J. Homer
Infectious Disease Research Institute, Seattle Life Sciences Center, 1124 Columbia Street, Seattle, Washington 98104

Steven D. Jauron
Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108

James E. Keirans
Institute of Arthropodology and Parasitology, Georgia Southern University, Statesboro, Georgia 30460-8056

Timothy J. Kurtti
Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108

Milan Labuda
Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava, Slovakia

Robert S. Lane
Department of Environmental Science, Policy, and Management, Division of Insect Biology, University of California, Berkeley, California 94720

Allison M. Liddell
InfectiousCare, 8320 Walnut Hill Lane, Suite 300 LB3, Dallas, Texas 75231

S. E. Little
Department of Microbiology and Parasitology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602

Kevin R. Macaluso
Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Berman Drive, Baton Rouge, Louisiana 70803

Anthony A. Marfin
Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Colorado State University, Foothills Campus, Fort Collins, Colorado 80521

Uwe U. Müller-Doblies
Center for Microbial Pathogenesis, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030

Ulrike G. Munderloh
Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108

Patricia A. Nuttall
Natural Environment Research Council (NERC) Centre for Ecology and Hydrology, Polaris House, North Star Avenue, Swindon SN2 1EU, United Kingdom

Christopher D. Paddock
Infectious Disease Pathology Activity, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333

David H. Persing
Corixa Corporation, 1900 9th Avenue, Seattle, Washington 98101

Joseph F. Piesman
Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, P.O. Box 2087, Fort Collins, Colorado 80522

Didier Raoult
Unité des Rickettsies, CNRS UMR 6020, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cédex 05, France

Daniel E. Sonenshine
Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529
Kirby C. Stafford III
Connecticut Agricultural Experiment Station,
P.O. Box 1106, New Haven, Connecticut 06549

S. M. Standaert
3525 Ensign Rd., NE, Suite 02, Olympia,
Washington 98506

Allen C. Steere
Center for Immunology and Inflammatory Diseases,
Division of Rheumatology, Massachusetts General
Hospital, Harvard Medical School, 55 Fruit Street,
Boston, Massachusetts 02114

Gregory A. Storch
Department of Pediatrics, Washington University
School of Medicine, St. Louis, Missouri 63110

Robert Swanepoel
Special Pathogens Unit, National Institute
for Communicable Diseases, Sandringham 2131,
Republic of South Africa

Herbert A. Thompson
Viral and Rickettsial Zoonoses Branch, Centers for
Disease Control and Prevention, 1600 Clifton
Road, Atlanta, Georgia 30333

Stephen K. Wikel
Center for Microbial Pathogenesis,
School of Medicine, University of Connecticut
Health Center, 263 Farmington Avenue,
Farmington, Connecticut 06030
This book assembles in one place a comprehensive discussion of the tick-borne diseases that affect humans. Most sources that consider tick-borne diseases focus on either the vectors or the diseases, one usually being addressed at the expense of the other. We aim in the present work to address both perspectives, including state-of-the-art information on disease epidemiology, transmission, and ecology; clinical and laboratory findings; diagnosis; and treatment and prevention. Each contributor has specialized knowledge, and many have pioneered the discovery and understanding of these diseases, including their causative agents and the ticks that spread them. The reader can reap the benefits of hearing directly from experts who are not simply reviewing the literature but sharing their perspectives on continuing stories of discovery in which they themselves are engaged, often on clinical, laboratory, and population levels.

Almost everyone would agree that humans would be better off without ticks. Yet ticks and humans are increasingly in contact as people both spread into new environments and travel more for work or for pleasure. This contact has resulted in a striking increase in the incidence and subsequent awareness of a broad array of tick-borne diseases, with resultant medical, social, public health, and economic impacts. Some important tick-borne infections and their causative agents, such as Lyme borreliosis, have been recognized only recently, while others are being discovered at an increasing pace, and surveillance, diagnosis, treatment, prevention, and control of such infections have become high priorities. Most tick-borne infections of humans afflict domestic and wild animals also and thus can be important in agriculture and veterinary medicine. It is therefore not surprising that many tick-borne diseases were initially described in animals and that human medicine has benefited greatly from the contributions of our veterinary colleagues (and their patients).

Tick-borne illnesses are extremely diverse, both biologically and clinically. They can be due to toxic and allergic processes or to infectious agents, including viruses, bacteria (gram-positive, gram-negative, and spirochetal forms), and protozoa. They cause diseases that can be of acute onset and rapidly fatal (such as Rocky Mountain spotted fever), recurrent (relapsing fever), or multisystemic and chronic (Lyme borreliosis). Symptoms are often nonspecific, making recognition and appropriate treatment challenging, yet critical, in preventing adverse outcomes. For these reasons, especially in an age of widespread travel and migration, clinicians must be familiar with the major disease syndromes and their diagnosis, even for diseases that occur mostly outside their areas of practice.

There are three major sections in this book—and each one can be useful alone or in concert with the others. Section I synthesizes cross-cutting and diverse information that is relevant to the full spectrum of tick-borne diseases, most of which has not been presented previously in an integrated manner. It provides an overview of the ticks themselves, including their biology and identification, the distribution of the diseases that they transmit, and strategies for their control. Studies in recent years have shown that the tick-pathogen interaction is finely tuned and that pathogens may switch their gene expression and behavior as they cycle from tick to zoonotic host or human and vice versa. Understanding of both the general themes and the complexities of these interactions is critical for better, science-based, treatment and prevention of disease and is reviewed, as is the reaction to tick bites, which can range from local inflammation to paralysis. This section also provides a comprehensive review of the clinical approach to a patient with a possible tick-borne illness that includes the clinical history, geographic considerations, differential diagnosis based on clinical and laboratory findings, and guidelines for...
treatment of acutely ill patients. Section II includes a series of chapters that each comprehensively considers a specific disease, including history, biology, epidemiology, ecology, transmission, clinical manifestations, diagnosis, and treatment and prevention. Section III introduces original color illustrations, including maps of vector and disease distribution and an atlas of clinical and pathologic images with clear examples of diagnostically important skin lesions, blood smears, and other useful material, referenced in the text. Look for the color section in the body of the book.

Who should use this book, and how should it be used?

• Practitioners, trainees, and students of human and veterinary medicine should find especially useful the general chapters on clinical and epidemiologic aspects of tick-borne diseases, including the color section as well as the chapters dealing with specific diseases and with tick identification. Those interested in learning more about the biology of the organisms and about the ticks themselves will find this information readily accessible.
• Public health practitioners, scientists, and students—including epidemiologists, ecologists, and medical entomologists—can use this book as both an introduction to the field and a ready reference source for complementing their specific areas of expertise, for example, with clinical information and with information about diseases occurring in other geographic areas.
• Microbiologists and other laboratory scientists who work on specific tick-borne pathogens or related organisms can learn more about ticks and about pathogen biology and disease pathogenesis, including interactions with tick, animal, and human hosts, and a broad array of infectious agents.
• Although much of this book is technical, the informed patient and the general public will find much of it accessible, including information about disease transmission, clinical and laboratory diagnosis and treatment, and the history of the infections of interest.

To all, welcome to what we trust will be an interesting and useful book! We look forward to your comments.

Jesse L. Goodman, Bethesda, Md.
David T. Dennis, Ft. Collins, Colo.
Daniel E. Sonenshine, Norfolk, Va.
ACKNOWLEDGMENTS

We thank our families, our mentors, and our colleagues for their inspiration and support. We thank Greg Payne of ASM Press, who first brought up the idea of a book, for his encouragement and patience. We thank all of the contributors and all of those involved in the production of this book.
IMPORTANT NOTICE

Medicine is a constantly changing science, and every patient is an individual with unique characteristics that must be taken into account in diagnosis, treatment, and, in particular, the choice and doses of drugs for treatment. Many of the drugs mentioned have not necessarily been approved by the Food and Drug Administration for the specific indications or regimens that are recommended. While typical doses of drugs and interpretations of diagnostic test results are provided by the authors, all decisions regarding clinical practice must be made by the treating physician, taking into account the individual patient and including such factors as past medical history, concurrent diseases, possible drug allergies and interactions, age, weight, organ function, and response to treatment. It is recommended that the most current and up-to-date manufacturer’s prescribing information, such as dose and drug interactions, be consulted for all drug therapies employed and that, if needed, appropriate specialists be consulted. The publisher, Editors, and authors do not assume any responsibility for any injury or damages resulting from improper treatment.
INDEX

Note: CP indicates a page on which a Color Plate concerning the subject is cited; CM indicates a page on which a Color Map is cited.

A
Acaricide control, host-targeted, as tick management method, 73–74, 75
Acridermatitis chronica atrophicans, 186
African tick-bite fever, 311–312, CP312, 302
distribution of, 234–244, 370
Amblyomma arboresus, 32
Amblyomma cajennense, CM370, 379, CM379
Amblyomma hebraeum, 25, CM370, 371, 379–380, CM380
Amblyomma Koch, 131
Amblyomma lepidum, 380, CM380
Amblyomma ticks, 312
morphology of, 132
Amblyomma triguttatum, 331–332
Amblyomma tuberculatum, 32
Amblyomma variegatum, 25, CM370, 371, 380, CM380
Aminoglycosides, in tularemia, 100
Ampicillin, in Lyme disease, 192–193
Anaplasma, 46, 47
immune evasion and antigenic variation of, 49–51
in vector culture, 47–49
Anaplasma marginale, 41, 46, 50, 51, 52
as model for development in tick, 46–47
host response to, 219–222
infection with, treatment of, 231, 232
life cycle of, in infected human cells, 220, 221, CP221
transmission of, and zoonotic hosts of, 223
pathogenesis of infection with, 219–222
Anaplasmosis (See also Ehrlichiosis), 101
human granulocytic, 218–238
agents and distribution of, 372–373
alternate routes of transmission of, 373
clinical manifestations of, 223–227
complications of, 226, CP226
diagnostic testing for, 228–230
differential diagnosis of, 228
distribution of cases in 2001, 224
epidemiology of, 224–225, 373
etiologic agent and biology of, 218–222
history of, 218–238
signs, and symptoms of, 226
laboratory and pathologic findings in, 227–228, CP227
overview of, 218
prevention of, 233–234
reported cases in 2002, 224
treatment of, 231–233
vectors and enzootic maintenance of, 373
Animal-tick cycles, Q fever and, 332–333
Antibodies, as host response to inactivate tick saliva, 109
Antibody response, early, in suspected tick-borne infection, 99
Antibody titers, in babesiosis, 353
Anticoagulants, tick, 105–106
A. arboreus, 27
Argas Latreille, 128
Argasid ticks (Argasidae), 123, 385–387
external anatomy of, 13–14
feeding by, physiology of, 103–104
internal anatomy of, 15
larval, scanning electron micrographs of, 127
life history of, 24
morphology of, 129
reproductive activity in, 24
Argasidae. See Argasid ticks (Argasidae)
Argasidae Canestrini, 128–131
Arthritis, antibiotic treatment-resistant, in Lyme borreliosis, 184–185
in Lyme borreliosis, 184
Lyme, western blot responses to *B. burgdorferi* in, 191, 193
severe destructive, *B. burgdorferi* vaccine-infection model of, 190
Astrakhan fever, 302, 310
Australian tick paralysis, clinical presentation of, 114
pathogenesis of, 114–115
treatment of, 115

B
Babesia, chronic carrier state and, 355–356
Babesia bigemina, 37
Babesia divergens, 343, 345, 348, 353, 354, 355, 378
Babesia gibsoni, 355
Babesia odocoieli, 343, 347
Babesia species, gender dimorphism and, 351–352
genetic susceptibility to, 351–352
grouping of, 344
host immunity to, 349–351
life cycle of, 345, 346–347
vectors and hosts of, 344–347
393
epidemiology of, 167–168, 366
etiologic agent and biology of, 164–165
history of, 164
pathogenesis of, 169–170
prevention of, 171
signs and symptoms of, 168–169
transmission of, alternate routes of, 366
treatment of, 171–172
vectors of, 366, CM366
Crimean-Congo hemorrhagic fever virus, acquisition by humans, 166–167
modes of transmission of, 166
vectors of, 165
zoonotic hosts of, 165–167
Czechoslovakian tick typhus, 371

D
Deer mice- and/or brush mice-tick cycle, Q fever and, 332
Deer tick virus, 150
Defensin(s), 15
Dermacentor albipictus, 23, 35
as vector for F. tularensis, 208–209
geographic distribution of, 145, CM364
Dermacentor-borne–necrosis-erythema lymphadenopathy, 312, CP312
Dermacentor Koch, 131–134
Dermacentor marginatus, 26–27, 134, 312, 332–333, CM364, 380, CM380
Dermacentor nuttalli, 380–381, CM380
Dermacentor occidentalis, CM367, CM370, 381, CM381, 332
Dermacentor reticulatus, CM364, 381, CM381
Dermacentor silvarum, CM364, CM365, 381, CM381
Dermacentor tick, 296–297
morphology of, 133
Dermacentor variabilis, 9, 17, 25, 26, 27, 29, 32, 33, 34, 42, 131, 265, 308, 314, CM368, 370, CM370, 381, CM381
as vector for F. tularensis, 208–209, 210
Diapause, 25–31
host-seeking, 25
morphogenic, 25
Disease control and prevention, 9
Doxycycline, in A. phagocytophilum infection, 231, 232
in B. burgdorferi infection, 231
in Lyme disease, 192–193
in Q fever, 338
in relapsing fever, 283
in tick-borne infections, 100
in tick-transmitted rickettsioses, 319
Dutton, J. E., 3

E
Ecdysis, 23
Ecology, of ticks, 31–35
Ehrlich, Paul, 37

Ehrlichia, 45–46, 56, 218
-host cell interaction, specific, 51–54
immune evasion and antigenic variation of, 49–51
in vector cell culture, 47, 49
Ehrlichia canis, 41, 46, 49, 56, 239
infection with, clinical manifestations of, 263
in animal and human cohorts, 261
laboratory findings in, 263
tick vectors of, 242
Ehrlichia ewingii, 46, 52, 258
caracterization of, 265
infection with, clinical manifestations of, 263
in animal and human cohorts, 261
laboratory findings in, 263
Ehrlichia phagocytophilum, 218
Ehrlichia ruminantium, 52, 53

Ehrlichiosis (See also Anaplasmosis), 77, 93, 97, 101
E. ewingii, alternate routes of transmission of, 373
biology of, 259–260
clinical manifestations of, 263
distribution of, CM260
in United States (2003), 260, 261
ecology and natural history of, 260–262
epidemiology of, 262–263, 373
etiologic agent of, 259
history of, 238
laboratory diagnosis of, 263, CP264
treatment and prevention of, 264
vectors and enzootic maintenance of, 373
human granulocytic. See Anaplasmosis, human granulocytic

human monocytotropic, 239–257
agents and distribution of, 372–373
alternate routes of transmission of, 373
animal models of, 241–242
asymptomatic infection with, 246
case definition for surveillance purposes, 250–251
cell culture in, 249
clinical course of, 248
clinical manifestations of, 247–249
coinfections and, 247
demographics and seasonality of, 245–246
differential diagnosis of, 249
diagnostic test for, 248
endemic and sporadic, 244
epidemiology of, 244–247, 373
etiologic agent of, biology of, 240–242
cellular localization and ultrastructure of, 240–241
classification of, 240
factors contributing to, 247
history of, 239–240
incidence of, 244–245
infection by antigenically related ehrlichiae, 246–247
laboratory diagnosis of, 249–250, CP249
laboratory findings in, 248
molecular diagnostics in, 250
national surveillance for, 244
natural history of, 242–244
organisms in blood and, 249, CP249
pathogenesis of infection in, 241, CP241
risk factors for, 246
serologic diagnosis of, 249–250
signs and symptoms of, 247–248
special considerations in, 248–249
treatment and prevention of, 251
vector-vertebrate reservoir-human interface and, 243–244
vertebrate hosts of, 243

Ehrlichiosis canis, infections caused by, 264–265

Encephalitis, tick-borne, 9, 77, 150–163
agents and distribution of, 363–364, CM364
clinical manifestations of, 159–160
diagnosis of, 160–161
distribution of, 156–157
ecology of, 156–157
epidemiology of, 156–157
etiologic agent and biology of, 151–153
factors influencing expression of, 158
geographic distribution of, CM157
history of, 150
life cycle and zoonotic hosts of, 153–156
nonviremic transmission of, 155
saliva-activated transmission of, 155
structure of, 151, 152
tick/host interaction and, 154
transmission of, 153–154
alternate routes of, 364–366
treatment of, 161
vectors of, 364, CM364

Envirochem, in Q fever, 338

Enzyme-linked immunosorbent assay, in tick-transmitted rickettsioses, 316

Epidemiology, 6–8
changes during 20th century, 9
persons affected and, 8
seasonality of, 7–8
transmission cycles and, 6–7

Erythema migrans, Western blot responses to B. burgdorferi in, 191, 193

Erythematolymphadenopathy, Dermacentor-borne-necrosis, 312, CP312

Erythrocyte exchange transfusion, in babesiosis, 355
Erythromycin, in relapsing fever, 283
Escherichia coli, 42
Esophagitis, Candida, 226, CP226
European sheep- and/or wildlife-tick cycles, Q fever and, 332

Ewing, Sidney A., 258

F
Fever(s), acute unexplained, laboratory evaluation in, 97–98
in relapsing fever, 280
recurrent, tick-borne and other causes of, 94
with neurologic manifestations, evaluation in, 95–97
tick-borne illness presenting as, 95–97

Flinders Island spotted fever, 302, 311
Flinders Island tick typhus, 372
Fluoroquinolones, in tick-transmitted rickettsioses, 319
in tularemia, 100

Francis, E., 4
Francisella tularensis, 38, 207
as etiologic agent for tularemia, 207–208
biology of, 207–208
ecology of, 208–209
four subspecies of, 208
growth and identification of, 213–214, CP213
tick vectors of, 208–209

Fungi, in tick control, 72

G
Gene expression, spirochetal, regulatory mechanisms of, 45

Gentamicin, in tularemia, 214
Glandular tularemia, 213
Granulocytic anaplasmosis agent, human (HGA), 45–46

Haemaphysalis concinna, CM364, 381, CM381
Haemaphysalis flava, 265, CM371, 381, CM381
Haemaphysalis humerosa, 329–330, 331
Haemaphysalis leporispalustris, 28
Haemaphysalis longicornis, CM370, 382, CM382
Haemaphysalis spingera, CM364, 382, CM382
Haemaphysalis japonica, 381–382, CM381
Haemaphysalis leachi, 382, CM382
Hamsters, B. burgdorferi infection of, 190
Health importance, medical and public, 8–9
Hemolymph, 15, 18–19
Hemorrhagic fever, Crimean-Congo. See Crimean-Congo hemorrhagic fever
Histamine, toxicity to ticks, 111
History and background, 3–4
Host(s), immune response of, to tick feeding, 68
mammalian, tick return to and survival in, 55
strategies for finding, 25
tick as, 41–55
Host resistance models, 107–108
Host specificity, 32–33
Human granulocytic anaplasmosis. See Anaplasmosis, human granulocytic

Hyalomma anatolicum, 382, CM382
Hyalomma asiaticum, 28, 32, 312, 382, CM382
Hyalomma dromedarii, 23, 25, 32, 333

Hyalomma Koch, 134
Hyalomma marginatum, 313, 366, CM366, 382, CM382
Hyalomma marginatum rufipes, 134
Hyalomma sp. tick, morphology of, 135

Hyalomma truncatum, 313

Hydroxychloroquine, in Q fever, 337–338

IFN-α/β, 110
IL-4 up-regulation, 110
Immune system, innate and adaptive, components of, 108
Immunity, in relapsing fever, 274–276
to babesial infection, 349–351
Immunofluorescence assay, indirect, in Rocky Mountain fever, 298
in tick-transmitted rickettsioses, 315–316
Immunostaining, in diagnosis of Rocky Mountain fever, 298
Infection, congenital, in *B. burgdorferi* transmission, 186
cutaneous, in Lyme borreliosis, 181–183, CP182
disseminated, in Lyme borreliosis, 183
persistent or progressive, in Lyme borreliosis, 184
Israeli spotted fever, 310
Ixodes cookei, CM364, 382–383, CM383
Ixodes granulatus, CM364, 383, CM383
Ixodes holocyclus, 311, CM372, 383, CM383
Ixodes Latreille, 134
Ixodes neitzi, 27
Ixodes occidentalis, 54, CM364, 383, CM383
geographic distribution of, CM364
Ixodes pacificus, 49, 88, 383, CM383
genealogic distribution of, CM364, CM373, CM374
Ixodes persulcatus, 265, CM364, 375, 383, CM383
genealogic distribution of, CM364, CM374
Ixodes scapularis, 17, 29, 32, 33, 38, 40, 49, 55, 69, 70, 71, 73, 74, 78, 88, 134, 179, 180, 375, 384, CM384
coinfaction caused by, 186
development of *Borrelia burgdorferi* and, 44–45, 179
genealogic distribution of, CM364, CM374
Ixodes sp. tick, morphology of, 136
Ixodes tasmani, 311
Ixodid ticks (*Ixodidae*), 123, 379–385
blood feeding by, 22–23
external anatomy of, 16
feeding by, physiology of, 103–104
internal anatomy of, 13, 14–15
larval, scanning electron micrographs of, 125
life history of, 22–24
line drawings of, 124
mating behavior of, 29, 30
nymphal, scanning electron micrographs of, 126
reproductive activity of, 23–24
Ixodidae Koch, 131–138

J
Japanese spotted fever, 302, 311
vectors and enzoetic maintenance of, 371
Jarisch-Herxheimer reaction, in relapsing fever, 283–284
Josamycin, in tick-transmitted rickettsioses, 319

K
Kangaroo rat-deer mice-tick cycle, Q fever and, 332
Kangaroo-tick cycle, Q fever and, 331
Kilbourne, Frederick, 3, 37
Killer cells, natural, 110
Koch, Robert, 37

L
Laboratory evaluation, in acute febrile illness, 97–98
Laboratory findings, suggestive of tick-borne infection, 97
Lectins, 15
Legionella pneumophila, 328
Lipid metabolites, tick feeding and, 107
Lipoproteins, outer surface (Osps), *Borrelia* and, 43
Lone star tick. See *Amblyomma americanum*
Louping ill virus, 150, 158
Lyme borreliosis, 4, 9, 77, 78–79, 90, 93, 176–206
agents and distribution of, 374, CM374
alternate routes of transmission of, 375–376
animal models of, 188–191
causative agents of, 176, 177
clinical characteristics of, 181–186, CP182
coinfection with *B. microti*, 355
comparison in North America and Eurasia, 181
diagnosis of, 191–192
ecology of, 374–375
epidemiology of, 180–181, 374–375
genealogic distribution of, 374, CM374
history of, 176
in endemic areas, unexplained findings and, 97
laboratory findings in, 98, CP98
manifestations of, by stage, 182
pathogenesis of, 186–188
prevention of, 195–196
treatment and outcome of, 191–195
treatment and vaccination regimens for, 194, 195–196
vectors of, 374
Lyme disease. See Lyme borreliosis
Lyme disease agent. See *Borrelia burgdorferi*
Lyme Disease National Surveillance Case Definition, 192
Lyme encephalopathy, 185
LYMESIM, 78–79
Lymphadenitis, tick-borne, 302, 312, CP312
Lysozyme, 15

M
Macrolides, in tick-transmitted rickettsioses, 319
Macrophage migration inhibitory factor (MIF), 110
Macrophages, reactive oxygen, and nitrogen metabolites, 109–110
Mast cells, and basophils, as primary effector cells, 111–112
Mediteranean spotted fever, 302–327, CP308, CM308
score for diagnosis of, 309
severe, risk factors for, 309–310
symptoms and signs of, 309, CP309
treatment of, 319
vectors and enzoetic maintenance of, 370–371, CM370
Microchem Plus, in Q fever, 338
Monocytotropic ehrlichiosis, human. See *Ehrlichiosis*, human monocytotropic
Mouse (mice), adaptive immune responses to *B. burgdorferi*, 189–190

Kumlinge disease, 150
Kyasanur Forest disease, 8, 364, 365
L
Laboratory evaluation, in acute febrile illness, 97–98
Laboratory findings, suggestive of tick-borne infection, 97
Lectins, 15
Legionella pneumophila, 328
Lipid metabolites, tick feeding and, 107
Lipoproteins, outer surface (Osps), *Borrelia* and, 43
Lone star tick. See *Amblyomma americanum*
Louping ill virus, 150, 158
Lyme borreliosis, 4, 9, 77, 78–79, 90, 93, 176–206
agents and distribution of, 374, CM374
alternate routes of transmission of, 375–376
animal models of, 188–191
causative agents of, 176, 177
clinical characteristics of, 181–186, CP182
coinfection with *B. microti*, 355
comparison in North America and Eurasia, 181
diagnosis of, 191–192
ecology of, 374–375
epidemiology of, 180–181, 374–375
genealogic distribution of, 374, CM374
history of, 176
in endemic areas, unexplained findings and, 97
laboratory findings in, 98, CP98
manifestations of, by stage, 182
pathogenesis of, 186–188
prevention of, 195–196
treatment and outcome of, 191–195
treatment and vaccination regimens for, 194, 195–196
vectors of, 374
Lyme disease. See Lyme borreliosis
Lyme disease agent. See *Borrelia burgdorferi*
Lyme Disease National Surveillance Case Definition, 192
Lyme encephalopathy, 185
LYMESIM, 78–79
Lymphadenitis, tick-borne, 302, 312, CP312
Lysozyme, 15

M
Macrolides, in tick-transmitted rickettsioses, 319
Macrophage migration inhibitory factor (MIF), 110
Macrophages, reactive oxygen, and nitrogen metabolites, 109–110
Mast cells, and basophils, as primary effector cells, 111–112
Mediteranean spotted fever, 302–327, CP308, CM308
score for diagnosis of, 309
severe, risk factors for, 309–310
symptoms and signs of, 309, CP309
treatment of, 319
vectors and enzoetic maintenance of, 370–371, CM370
Microchem Plus, in Q fever, 338
Monocytotropic ehrlichiosis, human. See *Ehrlichiosis*, human monocytotropic
Mouse (mice), adaptive immune responses to *B. burgdorferi*, 189–190
as model of Lyme disease, 189–190
innate immune responses to B. burgdorferi, 189–190
white-footed, B. microti in, 345, 354, 355

N
Nairoviruses, 164–165
Nematodes, pathogenic to ticks, 71–72
Neorickettsia risticii, 46
Neuroborreliosis, acute, in Lyme borreliosis, 183
chronic, in Lyme borreliosis, 185
in nonhuman primates, 190–191
Neurotropism, 272
Nine Mile fever, 115
Nucleic acid amplification, in suspected tick-borne infection, 98

O
Oculoglandular tularemia, 212–213
Odocoileus virginianus, 27, 242, 243
Omsk hemorrhagic fever, 8, 365
Oriental spotted fever, 311
vectors and enzootic maintenance of, 371
Orientia tsutsugamushi, 303, 315
Ornithodoros, 24, 376
life cycle and ecology of, 276–277
morphology of, 130
transmission of relapsing fever by, 270–273, 276
Ornithodoros asperus, 385–386, CM386
Ornithodoros erraticus sensu lato, 386, CM386
Ornithodoros hermsi, 277–278, CM377, 386, CM386
Ornithodoros kelleyi, 27, 32
Ornithodoros Koch, 128–131
Ornithodoros moubata, 15, 42, 128
Ornithodoros moubata sensu lato, 386, CM386
Ornithodoros parkeri, 277–278, CM377, 386–387
Ornithodoros tartakovskyi, 387, CM387
Ornithodoros tholozani, 29, 279, CM377, 387, CM387
Ornithodoros turicata, 277–279, 387, CM387
life cycle of, 276
Oralpharyngeal tularemia, 213, CP213
OspA, 43
OspC, 43
Ovipositioning, 29

P
Parasitoids, of ticks, 71
Parker, R. R., 4
Parasitoids, of ticks, 71
Pathogens, human, tick as host for, 37–64
PCR, detection of rickettsiae based on, 317–318
for detection of B. microti and B. divergens, 354
in human granulocytic anaplasmosis, 230–231
in relapsing fever, 282
in Rocky Mountain spotted fever, 299
in suspected tick-borne infection, 98
in tick-transmitted rickettsioses, 316
suicide, for detection of rickettsiae, 318
Pediculus humanus capitis, 276
Pediculus humanus corporis, 276
Penicillin G, in Lyme disease, 192–193
in relapsing fever, 283
Peromyscus leucopus, 345–347, 354, 355
Pheromone-mediated control methods, for tick management, 73–74, 75
Piroplasms, species of, phylogenetic tree representation of, 344
Plasmodium falciparum, 353
Pneumonic tularemia, 213
Powassan virus, 150
encephalitis and, 365
transmission of, 155–156
Predators, of ticks, 71
Primates, neuroborreliosis in, 190–191
Promyelocytic leukemia cell line HL60, in human granulocytic anaplasmosis, 231
Proteobacteria, 37
Proteus vulgaris, 315

Q
Q fever, 8, 328–342
agent and distribution of, 373–374
Australian strains of, studies of, 329–330
chronic, 336–337
clinical findings in, 336–337, CP336
differential diagnosis of, 337
discovery of, 328–330
epidemiologic features of, outbreak investigations and, 334–336
epidemiology of, 333–336
and alternate routes of transmission of, 374
in United States, 336
isolation and transmission studies of, 329
laboratory diagnosis of, 337, CP337
natural history and ecology of, 331–333
phylolaxis of, 338
sources of infection with, 333–334
treatment of, 337–338
vectors and enzootic maintenance of, 374
Queensland tick typhus, 310–311
Questing, 25
Quinine, in babesiosis, 354–355
QVax, in Q fever, 338

R
Relapsing fever, 268–291
antigenic variation during, 273–274, 275
arthropod-borne, 268
biology of, 268–269
central nervous system signs of, 280–281
clinical manifestations of, 280–281
differential diagnosis of, 281
diagnosis of, 281–283
epidemiology of, 277–280
etiologic agents of, 268–276
etiolahic routes of transmission of, 269–270, CP269
history of, 268
immunity in, 274–276
laboratory diagnostic procedures in, 281–283, CP282
laboratory findings in, 281
louse-borne, 271, 279–280
prevention of, 284
treatment of, 283
vectors of, 276
pathogenesis of, 270–273
pathologic findings of, 272–273
prevention of, 284
tick-borne, 268, 271
agents and distribution of, 376, 377
ecology of, 377–378
epidemiology of, 377–378
prevention of, 284
transmission of, alternate routes of, 378
treatment of, 283
vectors of, 276, 376–377, CM376
transmission of, 270–273, CP271
treatment of, 283–284
untreated, mortality rates of, 281

Reproduction, 29–31
Rhipicephalus appendiculatus, 25, 55, CM370, 384, CM384
Rhipicephalus evertsi, 384, CM384
geographic distribution of, CM364, CM370
Rhipicephalus Koch, 134–138
Rhipicephalus pumilio, 310, CM370, 384–385, CM385
Rhipicephalus sanguineus, 25, 138, 264, 265, 308, 309, 310, 314, 331, 385, CM385
Rhipicephalus sinus, 385, CM385
Rhipicephalus sp., morphology of, 137
Rhipicephalus turanicus, CM370, 385, CM385
Rickettsioses, description of, 302
tick-borne, 302–327
Ricketts, H. T., 3
Rickettsiales, bacteria in, genomics of, 304
pathophysiology of, 304–306
taxonomy and phylogeny of, 305, 306
Rickettsia, bacteria in genus of, 302–306
geographical distribution of, 308
in tribe Rickettsiae, 303–304
relationships between ticks and, 306–308
spotted fever group (SFG), 292
tick-transmitted, pathogenic, 306
Rickettsia aeschlimannii, 313, 317
infection due to, 313
Rickettsia africæ, 95, CP95, 304, 312, 313, 314, 317, 318, 371
Rickettsia akari, 292, 304, 313, 318
“Rickettsia amblyommii,” 314
Rickettsia australis, 311, 372
Rickettsia bennetti, 329
Rickettsia canadensis, 314
Rickettsia conorii, 95, CP95, 303, 304, 306, 308, 309, 310, 312, 313, 317, 318, 319, 371
Rickettsia diaporica, 329
Rickettsia felis, 292
“Rickettsia helongiangensis,” infection due to, 313
Rickettsia helvetica, 313, 317
infection due to, 313
Rickettsia honei, 311, 372
Rickettsia japonica, 311, 318, 371
Rickettsia massilæ, 313, 317
Rickettsia monacensis, 314, CP314
“Rickettsia mongolotimonae,” 313, 317
infection due to, 312–313
Rickettsia montanensis, 54, 304, 311, 319
Rickettsia parkeri, 9, 292, CP292, 313, 314
Rickettsia peacockii, 38, 54, 294, 295, 304
Rickettsia prowazekii, 296, 303, 304, 315
Rickettsia rhipicephali, 54, 304, 313, 319
Rickettsia rickettsi, 9, 16, 37, 54–55, 292, 303, 304, 309, 313, 316, 317, 318, CM370
ecology of, 295–296
Rocky Mountain spotted fever and, 292, CP292
transmission of, 296–297
Rickettsia slovaca, 312, 313, 316, 317, 318
Rickettsia(e), and vector ticks, 54–55
isolation of, in tick-transmitted rickettsioses, 316
of unknown pathogenicity, 307, 313
PCR-based detection of, in tick-transmitted rickettsioses, 316
spotted fever group, agents and distribution of, 368–370, CM390
tick-borne, associated with human disease, 369
Rickettsial diseases, 308–313
Rickettsial spotted fevers, 8
Rickettsiales, bacteria in, 302–306
taxonomy and phylogeny of, 303–304
Rickettsialpox, 292
Rickettsioses, spotted fever group, 292–301, 368–372
tick-transmitted, clinical presentation of, 315
diagnosis, 315–319
identification and differentiation of rickettsiae in, 318–319
immunological detection of rickettsiae in, 317
isolation of rickettsiae in, 316–317
laboratory findings in, 315
PCR-based detection of rickettsiae in, 317–318
serology of, 315–316
symptoms of, 309
Rifampin, in A. phagocytophilum infection, 232, 233
in tick-borne infections, 100
Rocky Mountain spotted fever, 1, 9, 292–301
clinical features of, 297–298, CP298
development of, within tick host, 294–295
diagnosis of, 298, CP298
ecology of, 370
etiological agent of, 293–294
geneic distribution of, 296, 297
incidence of, 296
laboratory findings in, 98, CP98
pathology of, 298, CP298
transmission of, routes of, 370
vectors and enzootic maintenance of, 370
S
SDS-PAGE protein analysis, to differentiate rickettsial species, 318
Seasonal activity, 33–35
Serologic testing, in human granulocytic anaplasmosis, 229–230
Serological testing, in rickettsial disease, 316
Siberian tick typhus, 310, CP310
Skin, diffuse petechial or hemorrhagic rash of,
etiologies of, 95
infection of, in Lyme borreliosis, 181–183, CP182
nonhemorrhagic conditions of, and differential
diagnosis of, 96
Smith, Theobold, 3, 37
Spirochaetes, 37
Spirochetes, in ticks, differential gene expression by, 44
Spotted fever, Flinders Island, 311
Israeli, 310
Japanese, 311
Mediterranean. See Mediterranean spotted fever
Oriental, 311
Staphylococcus aureus, 15
Streptomycin, in tularemia, 214
Survival, adaptations for, 31–32
T
T-cell cytokines, T cells and, 110–111
T cells, and T-cell cytokines, 110–111
Tache noir biopsy samples, for detection of rickettsiae, 318
Tetracyclines, in Q fever, 338
in relapsing fever, 283
Thai tick typhus, 311, 372
Theileria parva, 55
Thyroidal tularemia, 213
Tick-borne disease(s), clinical and laboratory
characteristics of, 89–92
clinical approach to patient with, 87–101
clinical syndromes of, 8
and findings suggestive of, 93–97
diagnosis of, 87
differential diagnosis of, 93–97
geographic considerations in, 88–93
geographic distributions of, 363–391
initial therapy in, 99–100
integrated pest management for prevention of, 77–79
laboratory findings suggestive of, 97
presenting as fever with neurologic manifestations,
95–97
presenting as fever with skin lesions, 94–95, CP95
presenting as unexplained febrile illness, 93–94
residence, occupation, and season as risks for, 87–88
ticks and, management of, 65–86
vaccination against, 69
vectors of, 379–387
Tick-borne encephalitis. See Encephalitis, tick-borne
Tick-borne lymphadenitis, 302, 312, CP312
Tick-borne pathogens, as tick pathogens, 55
Tick-borne relapsing fever, 8, 90, 93
Tick feeding, allergic reactions to, 112–113
alopecia areata associated with, 112
and inhibition of platelet aggregation, 106
blood coagulation and tick anticoagulants in, 105–106
calcreticulin and, 107
clinical findings in, 112
delayed-type hypersensitivity to, 113
histology of, 113–114
host immune response to, 68
human pathology associated with, 112–114
lipid metabolites and, 107
molecular and biochemical aspects of, 104–107
pain and itch as host response to, 105
physiology of, 103–104
proteases and protease inhibitors and, 104–105
type I hypersensitivity to, 113
Tick habitat, manipulation of, as tick management
method, 68–69
Tick-host interface, cell types at, 112
Tick management method(s), area-wide pesticide use for,
72–73
biological control in, 71–72
cattle breeding for tick-resistant strains, 68
host-centered approaches to, 66–68
host exclusion as, 70
host management in, 69
host-targeted acaricide control as, 73–74, 75
integrated pest management in, 76–79
lowering host populations in, 69–70
management of host diversity and, 70–71
manipulation of habitat as, 66, 67
pheromone-mediated control methods for, 74–76
precautions for, 65–66
self-protection as, 65
tick avoidance as, 65
vaccination as, 68–69
Tick pathogens, tick-borne pathogens as, 55
Tick toxicoses, 114–116
Tick typhus, 8
Tick vectors, biology of, 12–36
groupings of, 5
morphology of, 12–22
of A. phagocytophilum, 223
Ticks, actions of, for blood meal, 102
and tick-borne diseases, management of, 65–86
as hosts, 41–55
as hosts for human pathogens, 37–64
as parasitic, 123
as vectors of disease, 3, 123
behavior of, 24–31
bite of, anatomy of, CP113
chronic lesions caused by, 113
vaccination against, 68–69
blood digestion in, 18
capitulum of, 12–13
central nervous system of, 20–21
capitulum of, 12–13
control of, fungi in, 72
digestive system of, 41
diseases borne by, 4
studies of, 3–4
ecology of, 31–35
excretory system of, 21–22
external anatomy of, 12–15
habitats infested by, 3
hard, feeding by, physiology of, 103–104
human biting, adult stages of, 123–128
human pathogens transmitted by, 3, 4
human reaction to, 102–122
hunter strategy of, 25, 26
identification references of, 128
immune system of, 41–43
in transmission of *Francisella tularensis*, 208–209
innate immune system of, 15–17
integrated pest management for, 76–79
interactions with host immune system, 107–112
internal anatomy of, 15, 16, 17–22
larvae of, lesions caused by, 113
life cycles of, 5–6
life history of, 22–24
mating behavior of, 29, 30, 31
midgut of, 17–18, 20, 21
mouthparts of, 12–13
nematodes pathogenic to, 71–72
nidicolous, adaptation for survival, 31–32
nonnidicolous, adaptation for survival, 32
parasitoids of, 71
pathogenicity of bacteria against, 72
physiology of, 15
predators of, 71
problems caused by, 5
reproductive system of, 16, 18–20
return to and survival in mammalian host, 55
saliva of, 41, 102, 107, 109
salivary glands of, 16, 17, 18
soft, feeding by, physiology of, 103–104, CP103
species implicated in human toxicosis and paralysis, 115
systematics and identification of, 123–140
Transmission, cycles and pathways of, 6–7
Tularemia, 8, 9, 93, 95, CP95, 207–217
agents and distribution of, 367, CM367
clinical manifestations of, 211–213
description of, 207
diagnosis of, 213–214, CP213
disease outbreaks of, 209–211
epidemiology of, 209–211
etiologic agent for, 207–298
glandular, 213
in eastern Europe, 210–211
in Sweden, 210
in United States, 210–211
1999–2000, 212
oculoglandular, 212–213
oropharyngeal, 213, CP213
pneumonic, 213
prevention of, 214–215
transmission to humans, 209–211
treatment of, 214
typhoidal, 213
ulceroglandular, 212–213, CP212
vectors of, 367–368, CM368
Typhus, Czechoslovakian tick, 371
Queensland tick, 310–311
Siberian tick, 310, CP310
Thai tick, 311
U
Ulceroglandular tularemia, 212–213, CP212
V
Vaccination, against *B. burgdorferi*, 194, 195–196
as tick management method, 68–69
Vaccine, against tularemia, 215
Vector competency, 17
W
Weil-Felix test, 315
Western blot immunoassay, in tick-transmitted rickettsioses, 316
White-tailed deer, 242, 243
Wood scar, 302
Z
Zooanthroponoses, definition of, 3