SECOND EDITION
DNA Repair and Mutagenesis
For Rhonda, Jan, Jenny, Enid, Lisa, and Mary
About the Authors

Errol C. Friedberg, MD, received his training as a medical student at the University of the Witwatersrand, Johannesburg, South Africa, and did postdoctoral training in pathology and in biochemistry at Case Western Reserve University, Cleveland, Ohio. Following 19 years on the faculty at Stanford University, he assumed his present position as the Senator Betty and Dr. Andy Andujar Distinguished Chair in Pathology at the University of Texas Southwestern Medical Center at Dallas in 1990. He is the author of DNA Repair and is the senior author of the first edition of DNA Repair and Mutagenesis. He also authored Cancer Answers—Encouraging Answers to 21 Questions You Were Always Afraid To Ask, Correcting the Blueprint of Life—an Historical Account of the Discovery of DNA Repair Mechanisms, and The Writing Life of James D. Watson, and he edited and annotated the work Sydney Brenner—My Life in Science. He is the recipient of the Rous-Whipple Award from the American Society of Investigative Pathology and is a Fellow of the American Academy of Microbiology. He has contributed over 300 papers to the scientific literature, mainly on biological responses to DNA damage.

Graham C. Walker, PhD, is a Professor in the Department of Biology at the Massachusetts Institute of Technology. He has worked in the area of DNA repair and mutagenesis for 30 years and also carries out research on the Rhizobiunm-legume symbiosis and its relationship to chronic Brucella pathogenesis. He has been named an American Cancer Society Research Professor for his contributions to basic research and an HHMI Professor for his contributions to undergraduate education. He has been elected to the American Academy of Arts and Sciences and to the American Academy of Microbiology. He served as the Editor in Chief of Journal of Bacteriology for 10 years and is a member of various editorial boards. Long active in undergraduate education, he was in charge of the undergraduate program in biology at MIT for 15 years, served as Housemaster of an MIT dormitory, was named a Margaret MacVicar Faculty Fellow for his undergraduate teaching, and has founded an HHMI Education Group. He has contributed over 250 papers to the scientific literature and is a coauthor of the first edition of DNA Repair and Mutagenesis.

Wolfram Siede, PhD, received his doctorate in microbiology from the University of Frankfurt, Frankfurt, Germany. He did his postdoctoral training in the Departments of Pathology at Stanford University and the University of Texas Southwestern Medical Center. In 1996, he became Assistant Professor in a joint appointment by the Department of Radiation Oncology and the Winship Cancer Institute at Emory University, Atlanta, Ga. He is currently Associate Professor and Graduate Advisor in the Department of Cell Biology and Genetics at the University of North Texas Health Science Center in Fort Worth. His research focus is on DNA repair, mutagenesis, and cell cycle regulation in yeast. He has published extensively on many aspects of eukaryotic DNA damage responses and is a coauthor of the first edition of DNA Repair and Mutagenesis.

Richard D. Wood, PhD, performed his graduate study in biophysics at the University of California, Berkeley, and obtained his PhD in 1981. This was followed by postdoctoral work at Yale University and at the Imperial Cancer Research Fund (ICRF) in the United Kingdom. After leading a research group at the Clare Hall Laboratories of the ICRF until 2001, he was appointed the Richard Cyert Professor of Molecular Oncology at the University of Pittsburgh. His research has focused on the molecular biology and biochemistry of DNA repair and mutagenesis. He is a recipient of the Meyenburg Prize for Cancer Research, an elected member of the European Molecular Biology Organization (EMBO), and a Fellow of the Royal Society.

Roger A. Schultz, PhD, performed his graduate training in an interdepartmental program in genetics at Michigan State University in East Lansing in 1980. Following postdoctoral work in the Department of Pathology at Stanford University, he assumed a faculty position at the University of Maryland at Baltimore in the Division of Human Genetics in the School of Medicine. He moved to the McDermott Center for Human Growth and Development and the Department of Pathology at the University of Texas Southwestern Medical Center at Dallas in 1993. He has focused his research interests on human diseases with relevance to genomic instability. He served as Director of the Chromosome 15 DNA Sequencing Project within the Genome Sciences and Technology Center at UT Southwestern, again with a focus on human genomic integrity. More recently, he has added a more clinical focus to his activities as Associate Director of the Veripath Clinical Cytogenetic Laboratory at UT Southwestern.

Tom Ellenberger, DVM PhD, was trained as a veterinarian at Iowa State University before pursuing graduate studies in molecular biology and pharmacology at Harvard Medical School. Following postdoctoral studies in structural biology at Harvard College, he joined the faculty of Harvard Medical School in 1993, where he is the Hsien Wu and Daisy Yen Wu Professor of Biological Chemistry and Molecular Pharmacology. His research interests are focused on the structural enzymology of DNA repair, replication, and recombination processes.
Contents

Preface xxv
Abbreviations xxix

PART 1
Sources and Consequences of DNA Damage 1

1 Introduction: Biological Responses to DNA Damage 3
Historical Reflections
The Problem of Constant Genomic Insult 4
Biological Responses to DNA Damage 4
DNA Repair 4
DNA Damage Tolerance and Mutagenesis 5
Other Responses to DNA Damage 6
Disease States Associated with Defective Responses to DNA Damage 6

2 DNA Damage 9
Endogenous DNA Damage
Spontaneous Alterations in DNA Base Chemistry 9
Mismatches Created by DNA Replication Errors 24

Environmental DNA Damage
DNA Damage by Radiation 25
Chemical Agents That Damage DNA 35

DNA Damage and Chromatin Structure
UV Photoproduct Formation Is Influenced by Chromatin Structure and Binding of Other Proteins 48
Chromosomal Structure and Bound Proteins Can Protect against DNA Damage in Bacteria 49

Detection of DNA Damage by Proteins
Structural Information Is Encoded in DNA 50
Binding to Single-Stranded DNA 54
Locating Sites of DNA Damage 55

Summary and Conclusions 57
3 Introduction to Mutagenesis 71

Mutations and Mutants: Some Definitions 71

Point Mutations and Other Classes of Mutations 73

Base Substitution Mutations 73

Mutations Resulting from the Addition or Deletion of Small Numbers of Base Pairs 74

Systems Used To Detect and Analyze Mutations 75

Early Systems for the Analysis of Mutagenesis 75

The Ames Salmonella Test: a Widely Used Reversion System 76

E. coli LacI: an Example of a Forward Mutational System 77

Other Examples of Forward Mutational Systems 78

Special Systems To Detect Frameshift or Deletion Mutations 78

Analysis of Mutagenesis in Mammalian Cells 79

Use of Site-Specific Adducts 85

Replication Fidelity and DNA Polymerase Structure 86

Templated Information in DNA 86

Energetics of Base Pairing 87

Geometric Selection of Nucleotides during DNA Synthesis 87

A Two-Metal-Ion Mechanism for DNA Synthesis 90

Open and Closed Conformations of DNA Polymerases 92

Importance of Base-Pairing Geometry versus Hydrogen Bonds 92

Selection against Ribonucleotides 93

Proofreading during DNA Synthesis 93

Lesion Bypass by Error-Prone DNA Polymerases 95

Conclusions about Replicative Fidelity 98

Mechanisms Contributing to Spontaneous Mutagenesis 98

Base Substitution Mutations Resulting from Misincorporation during DNA Synthesis 98

Mutations Resulting from Misalignments during DNA Synthesis 99

PART 2
Correcting Altered Bases in DNA: DNA Repair 107

4 Reversal of Base Damage Caused by UV Radiation 109

Direct Reversal Is an Efficient Strategy for Repairing Some Types of Base Damage Caused by UV Radiation 109

Enzymatic Photoreactivation of Base Damage Caused by UV Radiation 109

Not All Light-Dependent Recovery Effects Are Enzyme Catalyzed 110

Enzymatic Photoreactivation Was Discovered by Accident 110

Enzymes That Catalyze Photoreactivation of Cyclobutane Pyrimidine Dimers Are Members of an Extended Family of Blue-Light Receptor Proteins 112

Pyrimidine Dimer-DNA Photolyases 112

Distribution of Pyrimidine Dimer-DNA Photolyases in Nature 112

Measuring and Quantitating Pyrimidine Dimer-DNA Photolyase Activity 113

Properties and Mechanism of Action of Pyrimidine Dimer-DNA Photolyases 114

Structural Studies of Pyrimidine Dimer-DNA Photolyases 119

DNA Substrate Recognition and Electron Transfer by Photoproduct-DNA Photolyases 121

Pyrimidine Dimer-DNA Photolyases from Other Organisms 123

Therapeutic Use of Pyrimidine Dimer-DNA Photolyase for Protection against Sunlight 127

(6-4) Photoproduct-DNA Photolyases 128

(6-4) Photoproduct-DNA Photolyases Are Ubiquitous 128
Mechanism of Action of (6-4) Photoproduct-DNA Photolyases 129
The C-Terminal Region of (6-4) Photoproduct-DNA Photolyases Is Conserved 129
Reduced Dihydroflavin Adenine Dinucleotide Is the Active Form of (6-4) Photoproduct-
DNA Photolyase 131

Photolyase/Blue-Light Receptor Family 131
Phylogenetic Relationships 132
Repair of Thymine Dimers by a Deoxyribozyme? 132
Photoreactivation of RNA 133
Reversal of Spore Photoproduct in DNA 133
Formation of Spore Photoproduct 133
Repair of Spore Photoproduct 134

5 Reversal of Alkylation Damage in DNA 139
Adaptive Response to Alkylation Damage in Bacteria 139
A Bit of History 139
The Adaptive Response Defined 140
Adaptation to Cell Killing and Adaptation to Mutagenesis Are Independent Processes 140
Repair of O^6-Alkylguanine and O^4-Alkylthymine in DNA 141
A New DNA Repair Mechanism 141
O^6-Alkylguanine-DNA Alkyltransferases of E. coli 142
Role of Ada Protein in the Adaptive Response to Mutagenesis 146
O^6-Alkylguanine-DNA Alkyltransferase II 150
DNA Alkyltransferases in Other Organisms 152
Repair of N1-Methyladenine and N3-Methylcytosine in DNA 157
$alkB^+$ Gene of E. coli 157
Therapeutic Applications and Implications of the Repair of Alkylation Damage in DNA 161
Genetic Polymorphisms in the O^6-MGMT Gene 162
Teleological Considerations Concerning the Reversal of Alkylation Base Damage in DNA 162
Repair of a Specific Type of Single-Stranded DNA Break by Direct Reversal 162
Summary and Conclusions 163

6 Base Excision Repair 169
DNA Glycosylases 169
Many DNA Glycosylases Are in the Helix-Hairpin-Helix Superfamily 171
Uracil-DNA Glycosylases Remove Uracil from DNA 173
Some DNA Glycosylases Remove Methylated Bases 180
Several Enzymes Function To Limit Oxidized and Fragmented Purine Residues 186
DNA Glycosylases That Remove Oxidized and Fragmented Pyrimidine Residues 191
Some Organisms Have Pyrimidine Dimer-DNA Glycosylases 192
Summary Comments on DNA Glycosylases 196
Apurinic/Apyrimidinic Endonucleases 197
Exonuclease III (XthA) Family of AP Endonucleases 198
Endonuclease IV (Nfo) Family of AP Endonucleases 200
Postincision Events during Base Excision Repair 202
Gap Filling and Deoxyribosephosphate Removal in E. coli 202
Gap Filling and Deoxyribosephosphate Removal in Mammalian Cells 203
Several Mechanisms Control the Fidelity of Base Excision Repair in Mammalian Cells 204
Structure and Mechanism of DNA Ligases 204
7 Nucleotide Excision Repair: General Features and the Process in Prokaryotes 227

Introduction to Nucleotide Excision Repair 227
- Historical Perspectives and Terminology 227
- Revised Nomenclature for Nucleotide Excision Repair 228

Nucleotide Excision Repair in E. coli 228
- UvrABC DNA Damage-Specific Endonuclease of E. coli 229
- Damage-Specific Incision of DNA during Nucleotide Excision Repair in E. coli 229
- Recognition of Base Damage during Nucleotide Excision Repair in E. coli 238
- DNA Incision Is Bimodal during Nucleotide Excision Repair In Prokaryotes 244
- A Second Endonuclease Can Catalyze 3′ DNA Incision during Nucleotide Excision Repair in E. coli 245
- Further Considerations about Nucleotide Excision Repair in Prokaryotes 247
- Postincisional Events during Nucleotide Excision Repair: Excision of Damaged Nucleotides, Repair Synthesis, and DNA Ligation 249
- Long-Patch Excision Repair of DNA 252
- DNA Ligation 253
- Miscellaneous Functions Possibly Associated with Nucleotide Excision Repair 253

Nucleotide Excision Repair in Other Prokaryotes 253
- Micrococcus luteus 253
- Deinococcus radiodurans 253
- Other Organisms 254
- Nucleotide Excision Repair Proteins Can Be Visualized in B. subtilis 254
- Nucleotide Excision Repair Occurs in Some Members of the Archaea 255

Coupling of Transcription and Nucleotide Excision Repair in E. coli 255
- mfd" Gene and Transcription Repair Coupling Factor 255
- Transcription Repair Coupling Factor Is Involved in Transcription Functions in the Absence of DNA Damage 257

Detection and Measurement of Nucleotide Excision Repair in Prokaryotes 257
- Excision of Damaged Bases 257
- Measurement of Repair Synthesis 258

Summary 260

8 Nucleotide Excision Repair in Eukaryotes: Cell Biology and Genetics 267

Cell Biology of Nucleotide Excision Repair in Eukaryotes 269
- Experimental Demonstration of Nucleotide Excision Repair in Eukaryotic Cells 269
- Kinetics of Nucleotide Excision Repair in Eukaryotic Cells 274

Genetics of Nucleotide Excision Repair in Eukaryotic Cells 274
- Mammalian Cells 274
- Genetics of Nucleotide Excision Repair in the Yeast S. cerevisiae 276
- Genetics of Nucleotide Excision Repair in Other Eukaryotes 278

Genes and Proteins Involved in Nucleotide Excision Repair in Eukaryotes 281
- Mammalian XPA and Its Yeast Ortholog RAD14 281
- Replication Protein A 282
- Budding Yeast RAD1 and RAD10, and the Mammalian Orthologs XPF and ERCCI 284
- Yeast RAD2 and Its Mammalian Ortholog, XPG 291
- Yeast RAD4, Mammalian XPC, and Their Association with Rad23 Homologs 292
Yeast and Mammalian Genes That Encode Subunits of TFIIH 296
MMS19 Gene and MMS19 Protein 299
Yeast RAD7 and RAD16 Genes and Rad7 and Rad16 Proteins 299
DNA Damage-Binding Protein and the Gene Defective in XP Group E 301
Understanding the Mechanism of Nucleotide Excision Repair 303

9 Mechanism of Nucleotide Excision Repair in Eukaryotes 317
Biochemical Strategies for Dissection of the Nucleotide Excision Repair
Mechanism 318
Nucleotide Excision Repair in Cell Extracts 318
Permeabilized Cell Systems Can Identify Factors Involved in Nucleotide Excision
Repair 320
Microinjection of DNA Repair Factors 321
Reconstitution of Nucleotide Excision Repair Defines the Minimal
Components 322
Nucleotide Excision Repair in Mammalian Cells Can Be Reconstituted with Purified
Components 322
Reconstitution of the Incision Reaction of Nucleotide Excision Repair in S. cerevisiae with
Purified Components 323
TFIIH in Nucleotide Excision Repair: Creation of an Open Intermediate for
Dual Incision 323
TFIIH Functions Independently in Nucleotide Excision Repair and in Transcription
Initiation 323
TFIIH Harbors 10 Subunits and Two Enzymatic Activities 324
Core TFIIH Contains a Ring-Like Structure 325
TFIIH Performs Helix Opening in Transcription Initiation 325
TFIIH Performs Helix Opening during Nucleotide Excision Repair 326
Additional Functions of TFIIH 326
DNA Damage Recognition Mechanism in Nucleotide Excision Repair 327
Different Lesions Have Different Repair Efficiencies and Sites of Dual Incision 327
XPC-RAD23B as a Distortion Recognition Factor in Nucleotide Excision Repair 328
Bipartite Mechanism of DNA Damage Recognition during Nucleotide Excision
Repair 328
Role of DDB Protein in Nucleotide Excision Repair 331
Mechanisms of Assembly and Action of the Nucleotide Excision Repair
Machinery 331
Interactions between the Protein Components of Nucleotide Excision Repair 331
Nucleotide Excision Repair Subassemblies and Order of Action In Vitro 332
In Vivo Dynamics of Nucleotide Excision Repair 334
Repair Synthesis during Nucleotide Excision Repair 336
DNA Polymerases δ and ε and Their Participation in Nucleotide Excision Repair 336
Proliferating-Cell Nuclear Antigen in Nucleotide Excision Repair 337
Replication Factor C in Nucleotide Excision Repair 338
Oligonucleotide Excision and Ligation in Nucleotide Excision Repair 339
Oligonucleotide Excision during Nucleotide Excision Repair in Eukaryotes 339
DNA Ligation during Nucleotide Excision Repair in Eukaryotes 339
DNA Topoisomerases and Nucleotide Excision Repair 339
Modulation and Regulation of Nucleotide Excision Repair in Eukaryotes 340
The Proteasome and Regulation of Nucleotide Excision Repair 340
Protein Phosphorylation Influences Nucleotide Excision Repair 342
Evolution of the Eukaryotic Nucleotide Excision Repair System 343
Eukaryotic and Prokaryotic Nucleotide Excision Repair Mechanisms Use Similar
Strategies 343
Most Eukaryotic Nucleotide Excision Repair Proteins Also Have Functions in Other Aspects of DNA Metabolism 343

10 Heterogeneity of Nucleotide Excision Repair in Eukaryotic Genomes 351
Influence of Chromatin and Higher-Order Structure on Nucleotide Excision Repair in Mammalian Cells 351
Chromatin Is Compactly Organized yet Subject to Dynamic Reorganization 351
Chromatin Remodeling and Nucleotide Excision Repair 354
Chromatin Reassembly Coupled to Nucleotide Excision Repair 356
Other Aspects of Intragenomic Heterogeneity of Nucleotide Excision Repair 358
Nucleotide Excision Repair in Transcribed versus Nontranscribed Regions 359
Introduction and Definition of Terms 359
Transcription-Coupled Nucleotide Excision Repair 360
Proteins That Participate in Transcription-Coupled Nucleotide Excision Repair 363
Cells Have Several Strategies To Deal with Stalled RNA Polymerase II 365
Biological Importance of Transcription-Coupled Nucleotide Excision Repair 368
Other Aspects of Transcription-Coupled Nucleotide Excision Repair 369
Summary 371

11 Alternative Excision Repair of DNA 379
Alternative Excision Repair Involving Endonuclease V 379
Endonuclease V of E. coli 379
Deoxyinosine 3’ Endonuclease of E. coli 380
Endonuclease V and Deoxyinosine 3’ Endonuclease of E. coli Are the Same Protein, Encoded by the E. coli nfi” Gene 380
Endonuclease V of E. coli Is Conserved 380
Mammalian Homolog of Endonuclease V 381
Endonuclease V of E. coli Prevents Mutations Associated with Deamination of Bases 382
Nitrosating Agents Can Damage DNA 382
Endonuclease V of E. coli Prevents Cell Death Associated with the Presence of Hydroxylaminopurine in DNA 383
How Does Endonuclease V-Mediated Alternative Excision Repair Occur? 383
Alternative Excision Repair Mediated by Other Endonucleases 383
S. pombe DNA Endonuclease 383
S. pombe DNA Endonuclease in Other Organisms 384
What Is the Substrate Specificity of UVDE-Type Endonucleases? 385
Other Substrates Recognized by UVDE-Type Endonucleases 385
Uve1-Dependent Alternative Excision Repair of Mitochondrial DNA in S. pombe 385
How Does Uve1-Dependent Alternative Excision Repair Transpire? 386
Other Alternative Excision Repair Pathways? 386
Tyrosyl-DNA Phosphodiesterase: a Repair Reaction for Topoisomerase-DNA Complexes 387
Summary 387

12 Mismatch Repair 389
Early Biological Evidence for the Existence of Mismatch Repair 390
Genetic Phenomena Suggesting the Existence of Mismatch Repair 390
DNA Mismatch Repair in Prokaryotes 390
Mismatch Repair after Transformation of S. pneumoniae 391
In Vivo Analyses of Methyl-Directed Mismatch Repair in E. coli 392
Biochemical Pathway of *E. coli* Methyl-Directed Mismatch Repair 396

DNA Mismatch Repair in Eukaryotes 402
- Early In Vivo Evidence Suggesting the Existence of Mismatch Repair in Yeasts and Fungi 402
- MutS and MutL Homologs in Eukaryotic Cells 403
- Defects in Mismatch Repair Genes Are Associated with Hereditary Nonpolyposis Colon Cancer 406
- In Vitro Analyses of Mismatch Repair in Eukaryotic Cells 406

Relationship of Structure to Function of Mismatch Repair Proteins 409
- MutS Structure 409
- MutH Structure 411
- MutL Structure 412

Unresolved Issues Concerning the Mechanism of Mismatch Repair 413
- Molecular Basis of Strand Discrimination during Mismatch Repair 413
- How Are Downstream Events Signaled in Mismatch Repair? 413

Effects of DNA Mismatch Repair on Genetic Recombination 416
- Effect of Mismatch Repair on Recombination between Highly Homologous Sequences 416
- Effects of Mismatch Repair on Recombination between Substantially Diverged Sequences 417

Effects of Mismatch Repair on Speciation, Adaptation, and Evolution 422
- Possible Role for Mismatch Repair in Speciation 422
- Cyclic Loss and Reacquisition of Mismatch Repair Play a Role in the Evolution of Bacterial Populations 422
- Effects of Mismatch Repair on Adaptive Mutagenesis 423
- Special Implications of Mismatch Repair Status for Pathogenic Bacteria 424

Mismatch Repair and Meiosis 424
- Roles for Mismatch Repair Proteins in Gene Conversion and Antirecombination during Meiosis 424
- Roles for Mismatch Repair Proteins in Promoting Crossovers during Meiosis 424

Mismatch Repair Proteins and DNA Damage Recognition 427
- Mismatch Repair Proteins and Alkylation Damage 427
- Oxidative DNA Damage and Mismatch Repair 429
- Cisplatin DNA Damage and Mismatch Repair 429
- Mismatch Repair and Other Forms of DNA Damage 429

Roles of Mismatch Repair Proteins in Somatic Hypermutation and Class Switch Recombination in the Immune Response 429
- Somatic Hypermutation 430
- Class Switch Recombination 430
- Are the Effects of Mismatch Repair Proteins on Somatic Hypermutation and Class Switch Recombination Direct or Indirect? 430

Mismatch Repair and Cadmium Toxicity 430

Specialized Mismatch Repair Systems 431
- Very-Short-Patch Mismatch Correction in *E. coli* Corrects G-T Mismatches Generated by Deamination of 5-Methylcytosine 431
- Correction of G-T Mismatches Generated by Deamination of 5-Methylcytosine in Eukaryotes 433
- MutY-Dependent Mismatch Repair 433

Repair of Mitochondrial DNA Damage 449

Mitochondrial DNA 449
- The Mitochondrial Genome 449
- Mitochondrial Mutagenesis 449
DNA Damage in the Mitochondrial Genome 451

Mitochondrial DNA Repair 451

Reversal of Base Damage in Mitochondrial DNA 452
Mitochondrial Base Excision Repair 452
Monitoring Loss of Damage from Mitochondrial DNA 453
Removal of Oxidative Damage from Mitochondrial DNA 453
Enzymes for Base Excision Repair in Mitochondrial Extracts 454
Short-Patch Base Excision Repair of Mitochondrial DNA 455
Age-Related Studies of Mitochondrial DNA Repair 455
Alternative Excision Repair Pathway in Mitochondria? 456
Recombinational Repair in Mitochondrial DNA? 457

Summary 457

PART 3
DNA Damage Tolerance and Mutagenesis 461

14 The SOS Responses of Prokaryotes to DNA Damage 463
The SOS Responses 463

Current Model for Transcriptional Control of the SOS Response 464

Physiological and Genetic Studies Indicate the Existence of the SOS System 465
Induced Responses 465
Genetic Studies of recA and lexA 466

Essential Elements of SOS Transcriptional Regulation 469
Proteolytic Cleavage of λ Repressor during SOS Induction 470
Induction of RecA Protein 471
LexA Protein Represses Both the recA + and lexA + Genes 471
LexA Protein Is Proteolytically Cleaved in a RecA-Dependent Fashion 472
Mechanism of LexA Repressor Cleavage 473

Similarities between LexA, λ Repressor, UmuD, and Signal Peptidase 476
Nature of the RecA Interactions Necessary for LexA, UmuD, and λ Repressor Cleavage 477

Identification of Genes in the SOS Network 478
Identifying SOS Genes by the Use of Fusions 478
Identifying SOS Genes by Searching for Potential LexA-Binding Sites 479
Identifying SOS Genes by Expression Microarray Analysis 479

Generation of the SOS-Inducing Signal In Vivo 481
Double-Strand Breaks Are Processed by the RecBCD Nuclease/Helicase To Give Single-Stranded DNA Needed for SOS Induction 483
Generation of Single-Stranded DNA by Bacteriophage, Plasmids, or Transposons Leads to SOS Induction 483
An SOS-Inducing Signal Is Generated when Cells Attempt To Replicate Damaged DNA 484
Regions of Single-Stranded DNA in Undamaged Cells 485
SOS Induction Caused by Mutations That Affect the Normal Processing of DNA 485
The Special Case of Phage φ80 Induction 486
Modeling the SOS Signal 486

Additional Subtleties in the Transcriptional Regulation of the SOS Responses 486
Strength and Location of SOS Boxes 486
DinI, RecX, and PsiB Proteins and isfA Affect SOS Regulation by Modulating RecA-Mediated Cleavage Reactions 488
Other Regulatory Systems Can Affect the Expression of SOS-Regulated Genes 489
Physiological Considerations of the SOS Regulatory Circuit 489

Levels of Control of the SOS Response besides Transcriptional Regulation 491

A Physiological Look at the SOS Responses 491
SOS-Induced Responses That Promote Survival while Maintaining the Genetic Integrity of the Genome 491
SOS-Induced Responses That Promote Survival while Destabilizing the Genetic Integrity of the Genome 492
SOS-Induced Responses That Destabilize the Genetic Integrity of the Genome 493
SOS-Induced Cell Cycle Checkpoints 495
Miscellaneous Physiological Effects of SOS Induction 495

SOS Responses in Pathogenesis and Toxicology 496
Relationships of the SOS Responses to Pathogenesis 496
Use of Fusions to SOS Genes To Detect Genotoxic Agents 497

SOS Responses in Other Bacteria 497

15 Mutagenesis and Translesion Synthesis in Prokaryotes 509

SOS-Dependent Mutagenesis: Requirements for Particular Gene Products 510
SOS Mutagenesis by UV Radiation and Most Chemicals Is Not a Passive Process 510
UmuD and UmuC Proteins Are Important for UV Radiation and Chemical Mutagenesis 511
Multiple Levels of Post-Translational Regulation of UmuD Protein: New Dimensions to SOS Regulation 514

Inferences about the Mechanism of SOS Mutagenesis Based on Mutational Spectra and Site-Directed Adduct Studies 523
The Original lacI System: a Purely Genetic Means of Determining Mutational Spectra 523
Mutational Spectra Obtained by Direct DNA Sequencing 524
Factors Influencing the Mutational Spectrum for a Given Mutagen 524
Influence of Transcription-Coupled Excision Repair on Mutational Spectra 525
Identification of Premutagenic Lesions 525
More Complex Lesions as Premutagenic Lesions 532
SOS Mutator Effect 534

The Road to Discovering the Molecular Mechanism of SOS Mutagenesis 535
A Further Requirement for RecA Protein in SOS Mutagenesis besides Facilitating LexA and UmuD Cleavage 535
DNA Polymerases I and II Are Not Required for SOS Mutagenesis 536
Evidence Relating DNA Polymerase III to SOS Mutagenesis 536
Influence of the “Two-Step” Model for SOS Mutagenesis 537
Initial Efforts To Establish an In Vitro System for SOS Mutagenesis 537
UmuC-Related Proteins Are Found in All Three Kingdoms of Life 538
dinB, umuDC, and mucAB Encode Members of the Y Family of Translesion DNA Polymerases 539
Rev1 Catalyzes the Formation of Phosphodiester Bonds: Rad30 and Xeroderma Pigmentosum Variant Protein Are DNA Polymerases 539
DinB Is a DNA Polymerase 539
umuDC Encodes a Translesion DNA Polymerase, DNA Pol V, That Requires Accessory Proteins 540
mucAB Encodes a Translesion DNA Polymerase, DNA Pol R1, That Requires Accessory Proteins 542
The Structure of Family Y DNA Polymerases Accounts for Their Special Ability To Carry Out Translesion Synthesis 543
Multiple SOS-Induced DNA Polymerases Can Contribute to SOS-Induced Mutagenesis 543

Protein-Protein Interactions That Control the Activities of the umuDC and dinB Gene Products 543
 RecA and SSB Interactions with DNA Pol V 545
 Interactions of the β Sliding Clamp with DNA Polymerases V and IV 546
 Interactions of UmuD and UmuD’ with Components of DNA Polymerase III 548
 How Is Polymerase Switching Controlled? 549

What Is the Biological Significance of SOS Mutagenesis and Translesion Synthesis by Specialized DNA Polymerases? 551
 Translesion DNA Polymerases Can Contribute to Fitness and Survival in Two Ways 551
 Action of Translesion DNA Polymerases in Stationary Phase, Aging, and Stressed Bacteria 551

SOS-Independent Mutagenesis 554
 Lesions That Do Not Require Induction of SOS Functions To Be Mutagenic 554
 The UVM (UV Modulation of UV Mutagenesis) Response 555
 Mutagenesis Resulting from the Misincorporation of Damaged Nucleotides 555

16 Recombinational Repair, Replication Fork Repair, and DNA Damage Tolerance 569
 DNA Damage Can Interfere with the Progress of Replication Forks and Lead to the Generation of Various Structures 570
 Formal Considerations 570
 The In Vivo Situation Is More Complicated 571
 Transient Partial Inhibition of DNA Replication after DNA Damage 573
 Various DNA Structures Resulting Directly or Indirectly from DNA Damage Can Be Processed by Homologous Recombination Proteins 574
 RecA Protein: a Protein with Mechanistic Roles in Homologous Recombination and DNA Repair 574
 Other Key Proteins with Roles in Homologous Recombination 579
 Recombinational Repair of Double-Strand Breaks in E. coli 584
 Model for Damage Tolerance Involving the Recombinational Repair of Daughter Strand Gaps 586
 Evidence Supporting the Model for Recombinational Repair of Daughter Strand Gaps 586
 Perspectives on Daughter Strand Gap Repair 590
 An Error-Free Process(es) Involving Recombination Functions Predominate above Mutagenic Translesion Replication in a Model In Vivo System 592
 Homologous Recombination Functions Play Critical Roles in the Stabilization and Recovery of Arrested or Collapsed Replication Forks 593
 Recognition of Fundamental Relationships between Replication and Recombination 593
 Possible Mechanisms for Regressing Replication Forks 598
 Models of Nonmutagenic Mechanisms for Restarting Regressed DNA Replication Forks Arrested by a Lesion Affecting Only One Strand of the DNA Template 599
 Models of Nonmutagenic Mechanisms for Restarting Regressed DNA Replication Forks Arrested by a Lesion or Blocks Affecting Both Strands of the DNA Template 602
 Recovery of DNA Replication after DNA Damage: “Inducible Replisome Reactivation/Replication Restart” 603
 Polymerases Participating in Inducible Replisome Reactivation/Replication Restart Revisited 603

17 DNA Damage Tolerance and Mutagenesis in Eukaryotic Cells 613
 Phenomenology of UV Radiation-Induced Mutagenesis in the Yeast Saccharomyces cerevisiae 613
Insights from Mutational Spectra: the SUP4-0 System 613
Studies with Photoproducts at Defined Sites 615
Untargeted Mutagenesis in S. cerevisiae Cells Exposed to UV Radiation 616
Timing and Regulation of UV Radiation-Induced Mutagenesis 616

Phenomenology of UV Radiation-Induced Mutagenesis in Mammalian Cells 617
DNA Replication in UV-Irradiated Cells 617
Inducibility of Mutagenic Processes in Mammalian Cells? 621
Mutational Specificity of UV Radiation-Induced Lesions 622
Summary and Conclusions 629

Molecular Mechanisms of Eukaryotic DNA Damage Tolerance and Mutagenesis 629
Genetic Framework in S. cerevisiae 629
DNA Polymerase η 631
DNA Polymerase η 632
Other Vertebrate Lesion Bypass Polymerases 636
Handling of DNA Lesions by Bypass Polymerases: Synopsis and Comparison with In Vivo Data 638
Somatic Hypermutation 639
The RAD6 Epistasis Group Dissected: Defining Error-Prone and Error-Free Tolerance Mechanisms 642
Role of PCNA in Orchestrating the Choice of Damage Tolerance Pathways 647
Summary and Conclusions 649

Managing DNA Strand Breaks in Eukaryotic Cells: Repair Pathway Overview and Homologous Recombination 663
Overview of Various Pathways for Double-Strand Break Repair in Eukaryotes 663
Saccharomyces cerevisiae as a Model System for Detecting Double-Strand Breaks and Their Repair 665
Experimental Systems To Study Responses to Localized DNA Double-Strand Breaks 668
The HO Endonuclease System 668
Generation of Double-Strand Breaks in Conditional Dicentric Chromosomes 668
I-SceI-Induced Targeted Double-Strand Breaks 669
Homologous Recombination 671
End Processing as the Initiating Step 671
Pairing and Exchanging of Homologous DNA: Rad51, Its Orthologs, Paralogs, and Interacting Partners 671
Role of Cohesin Proteins 681
The BRCA/Fanconi Pathway 682
Holliday Structure Resolution 685
Synthesis-Dependent Strand Annealing and Break-Induced Replication 687
Single-Strand Annealing 688
Transcription and Recombination 689
UV Radiation-Stimulated Recombination 690
Repair of DNA Interstrand Cross-Links 690
Interstrand Cross-Link Repair in E. coli 691
Interstrand Cross-Link Repair in S. cerevisiae 692
Interstrand Cross-Link Repair in Higher Eukaryotes 695
Summary 696
19 Managing DNA Strand Breaks in Eukaryotic Cells: Nonhomologous End Joining and Other Pathways 711

Nonhomologous End Joining 711
Introduction 711
V(D)J Recombination 712
Class Switch Recombination 714
Roles of the Ku Proteins 715
DNA-Dependent Protein Kinase 718
Artemis: a Human SCID Syndrome Reveals a Player in Nonhomologous End Joining 721
Ligation Step of Nonhomologous End Joining 722
Synopsis: Model for Vertebrate Nonhomologous End Joining 724

The Mre11-Rad50-NBS1/Xrs2 Complex 724
Yeast Rad50, Mre11, and Xrs2 Function in Double-Strand Break Repair and Meiosis but Are Not Essential for Homologous Recombination 725
Two MRN Complex Components Are Associated with Human Genomic Instability Syndromes 726
Null Mutations of MRN Components Are Lethal in Mammalian Cells, and Hypomorphic Mutations Result in Severe Developmental Consequences 726
Focus Formation of the MRN Complex at Sites of Double-Strand Breaks 727
In Vitro DNA-Processing Activities of the MRN Complex 727
The MRN Complex in Nonhomologous DNA End Joining: a Major Role in S. cerevisiae but Possibly Not in Vertebrates 728
Role of the MRN Complex in Homologous Recombination 730
Significance of Nuclease Activity 731
Special Roles of the MRN Complex in Replication and Telomere Maintenance 731
“Molecular Velcro” and Beyond: Models for MRN Action Based on Structural Analysis 733
Conclusions 734

Histone Modifications and Double-Strand Breaks 735
Histone Phosphorylation 735
Histone Acetylation 736

Regulation of Pathway Choice 736

Repair of Single-Strand Breaks 737
Sources and Significance of Single-Strand Breaks 737
Poly(ADP-Ribose) Polymerase as a Nick Sensor 738
XRCC1 Is a Scaffold Protein Orchestrating Interactions among Multiple Single-Strand Break Repair Proteins 738

PART 4
Regulatory Responses to DNA Damage in Eukaryotes 751

20 Cell Cycle Checkpoints: General Introduction and Mechanisms of DNA Damage Sensing 753
Cell Cycle Basics and the Emergence of the Checkpoint Concept 753
Studying Checkpoints 757

DNA Damage Sensing 758
Defining Checkpoint-Triggering Damage and Sensor Proteins 758
The ATM Protein as a Damage Sensor 760
ATR Protein and Its Targeting Subunit 762
PCNA- and RFC-Like Clamp and Clamp Loader Complexes 764
21 Cell Cycle Checkpoints: Signal Transmission and Effector Targets 779

Generation and Transmission of a Checkpoint-Activating Signal 779
The Rad53Sc/Cds1Sp/CHK2Hs Kinase 779
Mediators Are Important for Activation of Rad53Sc/Cds1Sp/CHK2Hs through DNA Structure Sensors 781
Possible Mammalian Rad9Sc Homologs 782
S-Phase-Specific Activation of Rad53Sc/Cds1Sp/CHK2Hs 783
Chk1 Kinase: Different Roles in Different Organisms 783
Activation of Chk1 Kinase in S. pombe, X. laevis, and Humans 784
Summary: Pathways of Generating a Transmittable Damage Signal 784

Downstream Targets and Mechanisms That Regulate Cell Cycle Progression 785
p53 as a Target of DNA Checkpoint Pathways 785
DNA Damage-Induced G1/S Arrest 791
Modulation of S Phase in the Presence of DNA Damage 794
DNA Damage-Induced G2/M Arrest 798
DNA Damage and the Regulation of M Phase 801
Summary 802

Effector Targets That Modulate DNA Repair 802
Repair Targets in Yeasts 802
Repair Targets in Mammalian Cells 803
Other Regulatory Responses to DNA Damage 803
Summary 804

22 Transcriptional Responses to DNA Damage 817

Introduction 817
Phenotypic Characterization of Pathway Inducibility 817
Analysis of Individual Genes 817
Differential Screening 818
Screens of Genome Arrays 818
Saccharomyces cerevisiae Genes Regulated in Response to DNA-Damaging Agents 818
Regulation of Ribonucleotide Reductase 818
Inducibility of Genes Involved in DNA Repair and Damage Tolerance: a Look at Various Pathways 820
Genome-Wide Approaches 823
Synopsis: No Satisfying Answer to the Question of Significance 827
Vertebrate Genes Regulated in Response to DNA-Damaging Agents 828
Overview 828
p53 as a Transcription Factor 828
E2F Transcription Factor Family 830
Mammalian UV Radiation Response 831
Transcriptional Response to Ionizing Radiation 835
Summary and Conclusions 837
23 DNA Damage and the Regulation of Cell Fate 845
Adaptation and Cell Cycle Restart 846
Damage Signaling and Adaptation in Saccharomyces cerevisiae 846
Adaptation and Cell Cycle Restart by Silencing of Downstream Effectors 847
Recovery in Multicellular Eukaryotes 847
Regulation of Apoptosis 848
Introduction to Apoptotic Pathways 848
Activation of the Apoptosis Pathway by DNA Damage: the Roles of p53 Revisited 850
Role of DNA Damage Sensors and Transducers in Apoptosis 852
Additional Elements of DNA Damage-Induced Apoptosis 853
Senescence, Cancer, and the DNA Damage Connection 854
Checkpoints and Cancer Therapy 856

PART 5
Disease States Associated with Defective Biological Responses to DNA Damage 863

24 Xeroderma Pigmentosum: a Disease Associated with Defective Nucleotide Excision Repair or Defective Translesion DNA Synthesis 865
A Huge Literature on Xeroderma Pigmentosum 865
Primary Clinical Features 866
Other Clinical Features 867
Incidence and Demographics 867
Skin Cancer Associated with Xeroderma Pigmentosum 868
Phenotypes of Xeroderma Pigmentosum Cells 868
Chromosomal Abnormalities 868
Sensitivity to Killing by DNA-Damaging Agents 869
Hypermutability 869
Source of Mutations 869
Defective Nucleotide Excision Repair 870
Repair of Oxidative Damage and Its Relationship to Neurological Disorders in Xeroderma Pigmentosum 872
Defective Repair of Purine Cyclodeoxynucleosides 873
Genetic Complexity of Xeroderma Pigmentosum 874
The Xeroderma Pigmentosum Heterozygous State 875
Molecular Pathology 875
Xeroderma Pigmentosum from Genetic Complementation Group A 875
Xeroderma Pigmentosum from Genetic Complementation Group B 876
Xeroderma Pigmentosum from Genetic Complementation Group C 877
Xeroderma Pigmentosum from Genetic Complementation Group D 878
Xeroderma Pigmentosum from Genetic Complementation Group E 880
Mutations Have Only Been Found in the DDB2 Gene in XP-E Group Cells 880
Xeroderma Pigmentosum from Genetic Complementation Group F 880
Xeroderma Pigmentosum from Genetic Complementation Group G 881
Summary 881
Unexplained Features of Xeroderma Pigmentosum 881
Cancer in Other Organs in Xeroderma Pigmentosum Individuals 881
Cancer Risk Assessment 882
Pathogenesis of Neurological Complications 882
Therapy 882
Mouse Models of Defective Nucleotide Excision Repair 882
 Mice Defective in the Xpa Gene 883
 Mice Defective in the Xpc Gene 884
 Mice Defective in the Xpd Gene 886
 Mice Defective in the Xpe Gene 886
 Mice Defective in the Xpf Gene 887
 Mice Defective in the Xpg Gene 887
 Mice Defective in the Ercc1 Gene 887
 Mice Defective in the Rad23A and Rad23B Genes 887

Summary 887

25 Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA 895

Cockayne Syndrome 895
 Introduction 895
 Clinical Phenotypes 895
 Cellular Phenotypes 896
 Genetics 898

Other Clinical Entities Associated with Mutations in Cockayne Syndrome or XP Genes 905
 Cerebro-Oculo-Facio-Skeletal Syndrome 905
 UV Sensitive Syndrome 905
 Combined XP/CS Complex 906
 Allelic Heterogeneity in Xeroderma Pigmentosum 906
 Trichothiodystrophy 907
 The “Transcription Syndrome” Hypothesis of XP/CS and Trichothiodystrophy 909
 Direct Observations of Defective Transcription 910
 Molecular Defects in XP/CS and Trichothiodystrophy Cells 910
 Allele-Specific and Gene Dosage Effects in This Group of Diseases 912
 Skin Cancer in the Transcription Syndromes 913

Summary 913

26 Diseases Associated with Defective Responses to DNA Strand Breaks 919

Ataxia Telangiectasia (Louis-Bar Syndrome) 919
 Clinical Features 919
 Cellular Phenotypes 920
 Identification of the Ataxia Telangiectasia-Mutated (ATM) Gene 924
 ATM Mutant Mice 926

Nijmegen Breakage Syndrome 928
 Clinical Features 928
 Cellular Characteristics 928
 Identification of the Gene Mutated in Nijmegen Breakage Syndrome (NBS1) 929
 Nbs1 Mutant Mice 929
 Genetic Heterogeneity 929
 Heterozygosity and Cancer Predisposition 930

Ataxia Telangiectasia-Like Disorder 930

DNA Ligase IV Mutations and Human Disease 930

Seckel Syndrome 930

Severe Combined Immunodeficiency 932
 Clinical Features 933
Molecular Causes 934
Recombinase-Activating Gene Deficiencies (RAG1- or RAG2-Deficient Severe Combined Immunodeficiency) 935
Animal Models 935
Spinocerebellar Ataxia with Axonal Neuropathy 935

27 Diseases Associated with Disordered DNA Helicase Function 947
Biochemistry of RecQ Helicases 947
Crystal Structures of DNA Helicases 949
Fluorescence Resonance Energy Transfer 950
DNA Helicases That Participate in DNA Replication 952
RecQ Helicases and Human Disease 953
RecQ Helicases in Model Organisms 953
RecQ Protein in *E. coli* 953
Yeast Homologs of RecQ 954

Bloom Syndrome 954
Clinical Features of Bloom Syndrome Include a Marked Cancer Predisposition 955
Autosomal Recessive Genetics of Bloom Syndrome 955
Chromosome Instability as a Hallmark of Bloom Syndrome Cells 955
Bloom Syndrome Cells Exhibit Defects Associated with the S Phase of the Cell Cycle 956
Bloom Syndrome Cells Manifest a Diversity of Subtle Defects in Enzymes Involved in DNA Repair 957
Somatic Recombination Events in Bloom Syndrome Cells Facilitate Mapping and Cloning of the *BLM* Gene 958
Interallelic Recombination and Its Potential Relevance to Bloom Syndrome 958
The *BLM* Gene Is a Member of the RecQ Family 958
Bloom Syndrome Heterozygotes May Be Predisposed to Cancer 959
The *BLM* Gene Product Is a RecQ-Like Helicase 960
BLM Gene Expression 960
BLM Protein Localization 961
Modulation of Sister Chromatid Exchange 961
Association of *BLM* with Other DNA Repair Functions 962
Models for the Study of *BLM* Function 963
The Molecular Function of BLM Protein 964

Werner Syndrome 965
Clinical Features 965
Genetics 966
Cellular Phenotype of Werner Syndrome Cells 966
Identification of the *WRN* Gene 966
WRN Protein Contains DNA Helicase and Exonuclease Activities 967
WRN Protein Interactions 967
WRN Expression 968
WRN Protein Function 968

Mutations in *RECQL4* Are Associated with Rothmund-Thomson Syndrome and RAPADILINO Syndrome 968
Clinical Features of Rothmund-Thomson Syndrome 968
Cellular Characteristics of Rothmund-Thomson Syndrome 968
Rothmund-Thomson Syndrome Patients Have Mutations in *RECQL4* 969
RAPADILINO Syndrome 969
Summary of Human Diseases Associated with Defects in the RecQ Family of DNA Helicase 971
28 Additional Diseases Associated with Defective Responses to DNA Damage 979

Hereditary Nonpolyposis Colon Cancer 980
 Clinical Presentation 980
 Hereditary Nonpolyposis Colon Cancer and Microsatellite Instability 980
 Hereditary Nonpolyposis Colon Cancer and Mismatch Repair 981
 How Do Heterozygous Mutations Cause Cancer? 984
 Mouse Models with Defects in Mismatch Repair Genes 985
 Tumors in Homozygous Mutant Mice 985

Fanconi Anemia 986
 Clinical Phenotypes 987
 Genetics 988
 Cellular Features 988
 DNA Repair in Fanconi Anemia Cells 989
 Genetic Complexity 989
 Mouse Models 993
 Final Comments 994

29 Hereditary Diseases That Implicate Defective Responses to DNA Damage 1001

Hereditary Cancer Predisposition Syndromes 1001
 Retinoblastoma 1004
 Li-Fraumeni Syndrome 1006
 Breast Cancer Predisposition Syndromes 1007
 Predisposition to Gastrointestinal Tumors 1008
 Skin Cancer Syndromes 1016
 Additional Cancer Predisposition Syndromes 1018

Disorders with Alterations in Chromatin Structure 1021
 Immunodeficiency-Centromeric Instability-Facial Anomalies Syndrome 1021
 Roberts Syndrome 1023
 Alpha-Thalassemia/Mental Retardation Syndrome, X-Linked 1025
 Rett Syndrome 1025
 Rubinstein-Taybi Syndrome 1026
 Coffin-Lowry Syndrome 1026
 Saethre-Chotzen Syndrome 1026
 Dyskeratosis Congenita 1027

DNA Repair and Its Association with Aging 1028
 Aging and the Age-Related Decline in DNA Repair 1028
 Reversal of Aging and DNA Repair 1030
 Array Analysis of Aging in Mammals 1030
 Engineered Mouse Models for Aging 1030
 Telomeres and Aging 1031
 Hutchinson-Gilford Progeria Syndrome (Progeria) 1032
 Down Syndrome (Trisomy 21) 1033

30 DNA Polymorphisms in Gatekeeper and Guardian Genes 1049

Human Genetic Variation 1050

DNA Structure/Repair-Related Methodologies for Single-Nucleotide Polymorphism Detection 1052
 Oligonucleotide Arrays 1052
 Mismatch Repair Detection 1054
 TDG/MutY Glycosylase Mismatch Detection 1054
CONTENTS

MassEXTEND 1054
Stabilized Double D-Loops 1054

Assessing the Role of DNA Repair Gene Polymorphisms in Disease 1056
Statistics and Population-Based Studies 1056
Variability in DNA Repair Capacity 1057
Heterozygosity and DNA Repair Gene Mutations 1059
Heterozygosity for Genes Associated with Dominantly Inherited Disorders 1059
Heterozygosity for Genes Associated with Recessive Disorders 1061
Summarizing the Role of Heterozygosity 1061

DNA Repair Gene Polymorphisms 1062
DNA Repair Gene Single-Nucleotide Polymorphism Discovery 1062
Polymorphisms That Impact the Levels of Chemical-Induced DNA Damage 1062
Cytochrome P-450 Monooxygenase Gene 1062
Glutathione S-Transferase M1 Gene 1063
N-Acetyltransferase 2 Gene 1063
DNA Repair Gene Polymorphisms and Putative Cancer Risk 1064
Pharmacogenomics and DNA Repair Gene Polymorphisms 1067
Polymorphic Alleles and Functional Defects 1067
Summary 1070

Appendix 1081
Table 1 Nomenclature of DNA repair genes 1081
Table 2 Human hereditary diseases and defective cellular responses to DNA damage 1087

Index 1091
It has been a decade since the publication of the first edition of *DNA Repair and Mutagenesis*. It was noted in the preface then that “[I]n very recent times, progress in the DNA repair and mutagenesis fields has been particularly rapid. . . .” In fact, in recognition of the importance of mutagenesis as a fundamental aspect of DNA metabolism and the impressive gains made in our understanding of the intricate relationships between DNA repair and mutagenesis, the authors of the first edition elaborated the title *DNA Repair* used for the book published by W. H. Freeman in 1984.

The unabated progress of the DNA damage response field is reflected in further major changes in the present edition. The field has progressed to the point that a comprehensive treatment of the manifold responses to DNA damage (including sensing and signaling the presence of damage and other perturbations of DNA metabolism) now requires the efforts of an author group with expertise in multiple and diverse areas. Richard D. (Rick) Wood and Roger A. Schultz were invited to provide such expertise to bolster the team that wrote the first edition. Additionally, the inclusion of structural biologist Tom Ellenberger reflects our desire to incorporate the considerable recent contributions of protein structure to biology in general and the DNA repair field in particular. The six authors have labored to achieve a text that is seamlessly integrated.

The second edition of *DNA Repair and Mutagenesis* was initiated in late 1999. Our efforts to keep the final product manageable for the average reader notwithstanding, the size of the present work appropriately reflects the substantial growth of the field in the past decade. This edition is more a rewriting than a revision, and little of the text from the first edition remains. The first edition of *DNA Repair and Mutagenesis* comprised 14 chapters and contained about 400 illustrations. The present edition consists of 30 chapters divided into five major sections, and the text is adorned with more than 700 illustrations, including more than 80 structural representations. Additionally, more than ten thousand primary literature references are provided in full, reflecting the massive increase in the scientific literature through 2004.

We have strived to present readers with a comprehensive survey of the field, stressing basic principles wherever feasible but mainly describing the extensive progress achieved to date and highlighting the many problems remaining to be solved. We trust that our desire to represent the dynamic state of this active field of research will not hinder the primary educational purpose of this book, a basic text for advanced undergraduate and graduate students and a reference source for all students of DNA metabolism.

As was the case in the first edition, we have continued to present the field in a historical context, with the intent of sensitizing and inspiring students (and others) to the realities of how research progress unfolds and how ideas develop and attain maturity—or not. We have refrained
wherever possible from unadulterated dogma and from presenting the field of biological responses to DNA damage as anywhere near total clarification. While we are aware of presenting viewpoints that are sometimes controversial and even conflicting, we trust that readers, especially students, are not unduly confused or frustrated by our reluctance to always provide the final word, as it were. Rather, it is our hope that such controversies and complexities will inspire further studies.

The names of genes and their polypeptide products sometimes change with good reason as more is known about them and the families they belong to. Additionally, the value and utility of long-standing terminology are often challenged by new information. A textbook provides a valuable opportunity to address such revisions, and we have done so in some areas. However, we have consciously retained much original nomenclature in deference to historic recognition and popular usage.

No work of this sort can come to fruition without special assistance at every level. We owe an enormous debt of gratitude to many individuals for the help they have provided at every level of this labor. We have enjoyed scientific dialogues with an outstanding cadre of professional colleagues who have given unstintingly of their time, energy, and knowledge to review and discuss every chapter with us. In this respect, we owe particular thanks to Rafael Alvarez-Gonzalez, Carl Anderson, Daniel Bogenhagen, Rhona Borts, Vilhelm Bohr, Anne Casper, Stuart Clarkson, James Cleaver, Nils Confer, Richard Cunningham, Bruce Demple, Friederike Eckardt-Schupp, Andre Eker, Paula Fischhaber, Ann Ganesan, Myron Goodman, Thomas Glover, Philip Hanawalt, Ian Hickson, Peggy Hsieh, Sue Jinks-Robertson, Caroline Kisker, Beate Köberle, Nicole Kosarek, Y. W. Kow, Kenneth Kraemer, Susan LeDoux, Alan Lehmann, Michael Lieber, Tomas Lindahl, Sue Lovett, Carolina Marchetto, Lisa McDaniel, M. Stephen Meyn, Paul Modrich, Harvey Mohrenweiser, Robb Moses, Laura Niedernhofer, Shwetal Patel, Tony Pegg, Dean Rupp, Aziz Sancar, Gwen Sancar, Barbara Sedgwick, the late Erling Seeberg, Mutsuo Sekiguchi, Michael Smerdon, Kendric Smith, Robert Sobol, David Stern, James Stivers, John Tainer, Gail Thomlinson, Takeshi Todo, Bennett van Houten, Harry van Steeg, Greg Verdine, Zhigang Wang, Bernard Weiss, Dale Wigley, Sam Wilson, Birgitte Wittschien, John Wittschien, Roger Woodgate, and Akira Yasui. Final responsibility naturally rests with us, and we apologize for any inaccuracies and omissions that remain in this publication. Readers are encouraged to inform us of these if and when they are discovered.

We particularly wish to acknowledge the outstanding artistic talent and the dedication and commitment of Marty Burgin, who also worked as illustrator for the first edition. This book is as much hers as ours. We are also extremely grateful to Patrick Lane, whose technological wizardry solved tricky problems in the rendering of crystal structures in shades of just two colors. We thank Jeff Holtmeier of ASM Press for providing his strong personal commitment and that of his staff throughout the production of this work. The magnificent job of editing of the manuscript by Yvonne Strong merits special mention. Thanks are also due to Susan Birch, Production Manager at ASM Press, and to Cathy Balogh and Susan Schmidler.

Each of us owes special thanks to particular individuals who provided indispensable logistical and spiritual support. E.C.F. thanks Angela Ceplis and Meredith Thomas for extraordinary secretarial and editorial assistance and Angela for her invaluable help in coordinating author meetings held in various parts of the country. He also thanks Rhonda Friedberg for editorial assistance and for unstinting moral support. For belief in the importance of the project and for help in bringing it to fruition, R.D.W. thanks his research group, as well as Enid Wood, Patrick Moore, Yuan Chang, Vesna Rapic-Otrin, Ron Herberman, and Arthur Levine. R.S. thanks Lisa McDaniel for extensive editorial assistance and expert help in coordinating and citing the literature and Carmencita Ordu for her invaluable secretarial support. G.W. thanks Jan and Gordon Walker for their cheerleading and understanding, Marianne White for her always cheerful help, Evelyn Witkin for her inspiration, and Priscilla Cooper, Judi Neal, Bill Broughton, and Anne Hills for their constant support. W.S. offers special thanks to Nina Patel and Gulnaz Bachlani.
Over the course of many meetings, most of which took place over weekends, as well as innumerable phone calls and e-mails, each of us came to know and respect our fellow authors from unique perspectives. We are unanimous in our view that the camaraderie and friendships forged through these meetings have enormously enriched our lives, not to mention our taste in fine beverages and the musical pursuits of some of us—such as they are!

Errol C. Friedberg
Graham C. Walker
Wolffram Siede
Richard D. Wood
Roger A. Schultz
Tom Ellenberger
December 2004
Abbreviations

This text employs many standard (and some not so standard) abbreviations. In an effort to reduce confusion for the reader, abbreviations are spelled out in full when first employed in each chapter. Additionally, the following list includes the abbreviations most frequently used.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF</td>
<td>Acetylamino-fluorine</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoblastic leukemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute myeloid leukemia</td>
</tr>
<tr>
<td>AT</td>
<td>Ataxia telangiectasia</td>
</tr>
<tr>
<td>BER</td>
<td>Base excision repair</td>
</tr>
<tr>
<td>BIR</td>
<td>Break-induced replication</td>
</tr>
<tr>
<td>BPDE</td>
<td>Benzo[a]pyrene-diol-epoxide</td>
</tr>
<tr>
<td>BrdU</td>
<td>5-Bromodeoxyuridine</td>
</tr>
<tr>
<td>BrU</td>
<td>5-Bromouracil</td>
</tr>
<tr>
<td>BS</td>
<td>Bloom syndrome</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CPD</td>
<td>Cyclobutane pyrimidine dimer(s)</td>
</tr>
<tr>
<td>CS</td>
<td>Cockayne syndrome</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleoside triphosphate(s)</td>
</tr>
<tr>
<td>DSB</td>
<td>Double-strand break(s)</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded DNA</td>
</tr>
<tr>
<td>EMS</td>
<td>Ethyl methanesulfonate</td>
</tr>
<tr>
<td>ESS</td>
<td>Enzyme-sensitive site(s)</td>
</tr>
<tr>
<td>FA</td>
<td>Fanconi anemia</td>
</tr>
<tr>
<td>FdU</td>
<td>5-Fluorodeoxyuridine</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>HNPCCC</td>
<td>Hereditary nonpolyposis colon cancer</td>
</tr>
<tr>
<td>HR</td>
<td>Homologous recombination</td>
</tr>
<tr>
<td>HU</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>ICL</td>
<td>Interstrand cross-link(s)</td>
</tr>
<tr>
<td>IR</td>
<td>Ionizing radiation</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse embryonic fibroblast(s)</td>
</tr>
<tr>
<td>MMC</td>
<td>Mitomycin C</td>
</tr>
<tr>
<td>MMR</td>
<td>Mismatch repair</td>
</tr>
<tr>
<td>MMS</td>
<td>Methyl methanesulfonate</td>
</tr>
<tr>
<td>MNase</td>
<td>Micrococcal nuclease</td>
</tr>
<tr>
<td>MSI</td>
<td>Microsatellite instability</td>
</tr>
<tr>
<td>NER</td>
<td>Nucleotide excision repair</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Nonhomologous end joining</td>
</tr>
<tr>
<td>4-NQO</td>
<td>4-Nitroquinoline 1-oxide</td>
</tr>
<tr>
<td>NTP</td>
<td>Nucleoside triphosphate(s)</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame(s)</td>
</tr>
<tr>
<td>Pol</td>
<td>Polymerase</td>
</tr>
<tr>
<td>(6-4)PP</td>
<td>(6-4) photoproduct(s)</td>
</tr>
<tr>
<td>RNAPII</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RR</td>
<td>Risk ratio</td>
</tr>
<tr>
<td>RS</td>
<td>Roberts syndrome</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>SCE</td>
<td>Sister chromatid exchange(s)</td>
</tr>
<tr>
<td>SNP</td>
<td>Single-nucleotide polymorphism(s)</td>
</tr>
<tr>
<td>SSA</td>
<td>Single-strand annealing</td>
</tr>
<tr>
<td>SSB</td>
<td>Single-strand break(s)</td>
</tr>
<tr>
<td>ssDNA</td>
<td>Single-stranded DNA</td>
</tr>
<tr>
<td>TC-NER</td>
<td>Transcription-coupled nucleotide excision repair</td>
</tr>
<tr>
<td>TLS</td>
<td>Translesion DNA synthesis</td>
</tr>
<tr>
<td>TTD</td>
<td>Trichothiodystrophy</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activating sequence(s)</td>
</tr>
<tr>
<td>WS</td>
<td>Werner syndrome</td>
</tr>
<tr>
<td>XP</td>
<td>Xeroderma pigmentosum</td>
</tr>
</tbody>
</table>
Appendix

Table 1 Nomenclature of DNA repair genes

<table>
<thead>
<tr>
<th>Pathway</th>
<th>E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base excision repair (BER) DNA glycosylases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ung<sup>a</sup></td>
<td>UNG1</td>
<td>ung1<sup>b</sup></td>
<td>—</td>
<td>—</td>
<td>UNG</td>
<td>U or hydroxymethyl U</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CG5285</td>
<td>SMUG1</td>
<td>—</td>
<td>U or T opposite G at CpG sequences</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MBD4 (MED1)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>mag<sup>a</sup></td>
<td>—</td>
<td>thp1<sup>c</sup></td>
<td>Thd1</td>
<td>TDG</td>
<td>—</td>
<td>U, T, or ethenoC opposite G</td>
</tr>
<tr>
<td>fpg<sup>c</sup> (mutM<sup>c</sup>)</td>
<td>OGG1</td>
<td>Ogg1</td>
<td>OGG1</td>
<td>—</td>
<td>8-oxoG opposite C</td>
<td></td>
</tr>
<tr>
<td>mutY<sup>a</sup></td>
<td>—</td>
<td>myh1<sup>c</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>nth<sup>a</sup></td>
<td>NTG1, NTG2</td>
<td>nth1<sup>c</sup></td>
<td>CG9272</td>
<td>NTHL1 (NTH1)</td>
<td>—</td>
<td>Ring-saturated or fragmented pyrimidines</td>
</tr>
<tr>
<td>alkA<sup>c</sup>, tagA<sup>c</sup></td>
<td>MAG1</td>
<td>mag1<sup>c</sup>, SPBC23G7.11</td>
<td>—</td>
<td>MPG (MAG, AAG)</td>
<td>—</td>
<td>3-meA, ethenoA, hypoxanthine</td>
</tr>
<tr>
<td>nei<sup>a</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>NEIL1</td>
<td>—</td>
<td>Thymine glycol</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>NEIL2</td>
<td>—</td>
<td>Oxidative products of C, U</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>NEIL3</td>
<td>—</td>
<td>Not known</td>
</tr>
<tr>
<td>Other BER factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xthA<sup>a</sup></td>
<td>APN2 (ETH1)</td>
<td>apn2<sup>c</sup></td>
<td>Rrp1</td>
<td>APEX1 (HAP1, APE1, REF1)</td>
<td>—</td>
<td>AP endonuclease</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>AplII</td>
<td>APEX2 (APE2)</td>
<td>—</td>
<td>AP endonuclease</td>
</tr>
<tr>
<td>nfo<sup>a</sup></td>
<td>APN1</td>
<td>apn1<sup>c</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>AP endonuclease</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CG17227</td>
<td>LIG3</td>
<td>—</td>
<td>DNA ligase</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>XRCCI</td>
<td>XRCC1</td>
<td>—</td>
<td>Accessory factor for LIG3 and BER</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Parp</td>
<td>PARP1 (ADPRT)</td>
<td>—</td>
<td>Poly(ADP-ribose) polymerase</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>PARP2 (ADPRT2)</td>
<td>—</td>
<td>ADPRT-like enzyme</td>
</tr>
<tr>
<td>Direct reversal of damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phr<sup>a</sup>A</td>
<td>PHR1</td>
<td>—</td>
<td>phr</td>
<td>—</td>
<td>—</td>
<td>CPD photolyase</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>phr6-4</td>
<td>—</td>
<td>—</td>
<td>(6-4) photolyase</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>uve1<sup>c</sup> (uvde<sup>c</sup>)</td>
<td>—</td>
<td>—</td>
<td>UV damage endonuclease</td>
</tr>
<tr>
<td>ada<sup>a</sup>, qgt<sup>c</sup></td>
<td>MGT1</td>
<td>SPAC1250.04c</td>
<td>qgt</td>
<td>MGMT (AGT)</td>
<td>—</td>
<td>O<sup>6</sup>-meG alkyltransferase</td>
</tr>
<tr>
<td>alkB<sup>a</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ABH2</td>
<td>—</td>
<td>Reversal of alkylation damage (1-meA and 3-meC)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Pathway</th>
<th>E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Gene(s) in</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair of DNA-protein cross-links</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDP1</td>
<td>TDP1</td>
<td>SPCP31B10.05</td>
<td>Tdp1</td>
<td>TDP1</td>
<td></td>
<td>Removes covalently bound Topo I-DNA complexes</td>
</tr>
<tr>
<td>Mismatch repair (MMR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mutS <sup>+</sup></td>
<td>MSH2</td>
<td>swi8<sup>+</sup></td>
<td>spell (spellchecker1)</td>
<td>MSH2</td>
<td></td>
<td>Mismatch and loop recognition</td>
</tr>
<tr>
<td>mutL <sup>+</sup></td>
<td>PMS1</td>
<td>mlh1<sup>+</sup></td>
<td>pms2</td>
<td>PMS1</td>
<td></td>
<td>MutL homologs, forming dimer</td>
</tr>
<tr>
<td>mutH <sup>+</sup></td>
<td>SSL2</td>
<td>ercc3sp<sup>+</sup></td>
<td>hae (haywire)</td>
<td>XPB (ERCC3)</td>
<td>3<sup>’</sup>–to–5<sup>’</sup> DNA helicase TFIH subunit</td>
<td></td>
</tr>
<tr>
<td>Nucleotide excision repair (NER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA binding</td>
<td>RAD4</td>
<td>rhp41<sup>+</sup>, rhp42<sup>+</sup>, mus210</td>
<td>XPC</td>
<td></td>
<td></td>
<td>Binds distorted DNA as complex</td>
</tr>
<tr>
<td>RAD23</td>
<td>rhp23<sup>+</sup></td>
<td>Rad23</td>
<td>RAD23B (HR23B)</td>
<td></td>
<td>RAD23B paralog</td>
<td></td>
</tr>
<tr>
<td>RAD14</td>
<td>rhp14<sup>+</sup></td>
<td>Xpc</td>
<td>RAD23A (HR23A)</td>
<td></td>
<td>Binds DNA and proteins in preincision complex</td>
<td></td>
</tr>
<tr>
<td>uvrA <sup>+</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Catalyzes unwinding in preincision complex</td>
<td></td>
</tr>
<tr>
<td>uvrB <sup>+</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFIH subunits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL2 (RAD25)</td>
<td>ercc3sp<sup>+</sup></td>
<td>hae (haywire)</td>
<td>XPB (ERCC3)</td>
<td></td>
<td>3<sup>’</sup>–to–5<sup>’</sup> DNA helicase TFIH subunit</td>
<td></td>
</tr>
<tr>
<td>RAD3</td>
<td>rad15<sup>+</sup> (rad5<sup>+</sup>)</td>
<td>Xpd</td>
<td>XPD (ERCC2)</td>
<td></td>
<td>5<sup>’</sup>–to–3<sup>’</sup> DNA helicase TFIH subunit</td>
<td></td>
</tr>
<tr>
<td>TFB1</td>
<td>tbf1<sup>+</sup></td>
<td>Tbf1</td>
<td>GTF2H1</td>
<td></td>
<td>TFIH subunit p62</td>
<td></td>
</tr>
<tr>
<td>SSL1</td>
<td>ssl1<sup>+</sup></td>
<td>Ssl1</td>
<td>GTF2H2</td>
<td></td>
<td>TFIH subunit p44</td>
<td></td>
</tr>
<tr>
<td>TFB4</td>
<td>tbf4<sup>+</sup></td>
<td>Tbf4</td>
<td>GTF2H3</td>
<td></td>
<td>TFIH subunit p34</td>
<td></td>
</tr>
<tr>
<td>TFB2</td>
<td>tbf2<sup>+</sup></td>
<td>Tbf2</td>
<td>GTF2H4</td>
<td></td>
<td>TFIH subunit p52</td>
<td></td>
</tr>
<tr>
<td>TFB5</td>
<td>CG1917</td>
<td>GTF2H5 (TTDA)</td>
<td></td>
<td></td>
<td>TFIH subunit p8</td>
<td></td>
</tr>
<tr>
<td>KIN28</td>
<td>—</td>
<td>Cdk7</td>
<td>CDK7</td>
<td></td>
<td>Kinase subunits of TFIH</td>
<td></td>
</tr>
<tr>
<td>CCL1</td>
<td>—</td>
<td>CyCh</td>
<td>CCNH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFB3</td>
<td>—</td>
<td>Mat1</td>
<td>MNAT1 (MAT1)</td>
<td></td>
<td>TFIH subunit</td>
<td></td>
</tr>
<tr>
<td>NER nucleases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uvrC<sup>+</sup>, cho<sup>+</sup></td>
<td>RAD2</td>
<td>rad13<sup>+</sup>, mus201</td>
<td>XPG (ERCC5)</td>
<td></td>
<td>3’ and 5’ incision nuclease</td>
<td></td>
</tr>
<tr>
<td>RAD10</td>
<td>swi10<sup>+</sup></td>
<td>Ercc1</td>
<td>ERCC1</td>
<td></td>
<td>3’ incision nuclease</td>
<td></td>
</tr>
<tr>
<td>RAD1</td>
<td>rad16<sup>+</sup></td>
<td>met9</td>
<td>XPF (ERCC4)</td>
<td></td>
<td>5’ incision nuclease</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAD28</td>
<td>—</td>
<td>—</td>
<td></td>
<td>CSA (CKN1, ERCC8)</td>
<td>Cockayne syndrome; needed for TC-NER</td>
</tr>
<tr>
<td>mfd/</td>
<td>RAD26</td>
<td>rhp26</td>
<td>—</td>
<td></td>
<td>CSB (ERCC6)</td>
<td>Cockayne syndrome; needed for TC-NER</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>ddb1+</td>
<td>Ddb1</td>
<td>DDB1</td>
<td>p127 subunit of DDB</td>
</tr>
<tr>
<td></td>
<td>RAD7</td>
<td>rhp7+</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>RAD16</td>
<td>rhp16+</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>MMS19</td>
<td>Mms19</td>
<td>—</td>
<td>MMS19L (MMS19)</td>
<td>Transcription and NER</td>
<td></td>
</tr>
<tr>
<td>DNA ligase I</td>
<td>lgiA+</td>
<td>CDC9</td>
<td>cdc17+</td>
<td>DNA-ligI</td>
<td>LIG1</td>
<td>DNA joining</td>
</tr>
<tr>
<td>Single-stranded-DNA-binding protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssb+</td>
<td>RFA1</td>
<td>ssb1+</td>
<td>Rpa-70</td>
<td>RPA1</td>
<td></td>
<td>Binds ssDNA intermediates in recombination, NER, and gap-filling pathways</td>
</tr>
<tr>
<td></td>
<td>RFA2</td>
<td>ssb2+</td>
<td>Rpa-30</td>
<td>RPA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFA3</td>
<td>ssb3+</td>
<td>Rpa-8</td>
<td>RPA3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homologous recombination (HR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recA+</td>
<td>RAD51</td>
<td>rhp51+</td>
<td>Rad51 (spn-A)</td>
<td>RAD51</td>
<td>Formation of protein filament to mediate homologous pairing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spn-D</td>
<td>RAD51L (RAD51B)</td>
<td>RAD51C (RAD51L2)</td>
<td>RAD51 paralog</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMC1</td>
<td>dmc1+</td>
<td>—</td>
<td>DMC1</td>
<td>RAD51 paralog for meiosis</td>
<td></td>
</tr>
<tr>
<td>recB+, recC+, recD+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Generation of ssDNA to allow formation of RecA filament</td>
</tr>
<tr>
<td>recF+, recO+, recR+</td>
<td>RAD52</td>
<td>rhp22+</td>
<td>(rad22a+), rti1+</td>
<td>RAD52</td>
<td>Accessory factor for recombination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spn-B</td>
<td>Xrcc3</td>
<td>Xrcc3</td>
<td>DNA break and cross-link repair</td>
<td></td>
</tr>
<tr>
<td>recF+, recO+, recR+</td>
<td>RAD54</td>
<td>rhp54</td>
<td>okra</td>
<td>RAD54L</td>
<td>Accessory factor for recombination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>RAD54B</td>
<td>Recombination mediator function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RDH54 (TID1)</td>
<td>rhp55</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>RAD55</td>
<td>rhp57</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>RAD59</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>RHCI8</td>
<td>rad18</td>
<td>—</td>
<td>BRCA1</td>
<td>Recombination; E3 ubiquitin ligase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRCA2 (FANCD1)</td>
<td>Cooperation with RAD51, essential function</td>
<td></td>
</tr>
<tr>
<td>sbeC+</td>
<td>RAD50</td>
<td>rad50</td>
<td>rad50</td>
<td>RAD50</td>
<td>ATPase in complex with MRE11A, NBS1</td>
<td></td>
</tr>
<tr>
<td>sbeD+</td>
<td>MRE11</td>
<td>mre11</td>
<td>MRE11A</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>XRS2</td>
<td>nbs1+</td>
<td>nbs</td>
<td>NBS1</td>
<td>Mutated in Nijmegen breakage syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ruvA, ruvB</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Branch migration of Holliday junctions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ruvC</td>
<td>(mus81-eme1)</td>
<td>—</td>
<td>—</td>
<td>Nuclease to cleave Holliday junctions</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 1 Nomenclature of DNA repair genes (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonhomologous end joining (NHEJ)</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>S. cerevisiae</td>
</tr>
<tr>
<td>YKU70 (HDF1)</td>
<td>pku70<sup>a</sup></td>
</tr>
<tr>
<td>YKU80 (HDF2)</td>
<td>pku80<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation of nucleotide pools</td>
<td></td>
</tr>
<tr>
<td>MutT<sup>a</sup></td>
<td>—</td>
</tr>
<tr>
<td>Dut<sup>a</sup></td>
<td>—</td>
</tr>
<tr>
<td>DNA polymerases (catalytic subunits)</td>
<td></td>
</tr>
<tr>
<td>polB<sup>a</sup> (dinA, pol II)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIP1</td>
</tr>
<tr>
<td></td>
<td>CDC2 (POL3)</td>
</tr>
<tr>
<td></td>
<td>POL2</td>
</tr>
<tr>
<td></td>
<td>REV3</td>
</tr>
<tr>
<td></td>
<td>REV7</td>
</tr>
<tr>
<td></td>
<td>REV1</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>RAD30</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td>dinB<sup>a</sup> (Pol IV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL4</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>POL5</td>
</tr>
<tr>
<td>DNA polymerase accessory factors</td>
<td></td>
</tr>
<tr>
<td>dnaN<sup>a</sup></td>
<td>POL30</td>
</tr>
<tr>
<td>dnaX<sup>a</sup> (γ-δ) complex</td>
<td>CDC44</td>
</tr>
<tr>
<td>Processing nucleases</td>
<td></td>
</tr>
<tr>
<td>mus81<sup>+</sup></td>
<td>MUS81</td>
</tr>
<tr>
<td>eme1<sup>+</sup></td>
<td>MMS4</td>
</tr>
<tr>
<td>rad2<sup>a</sup> (5’ to 3’ exo)</td>
<td>RAD27 (RTH1)</td>
</tr>
<tr>
<td></td>
<td>TREX1 (Dnase III)</td>
</tr>
<tr>
<td></td>
<td>TREX2</td>
</tr>
<tr>
<td>eso1<sup>+</sup>, Exo1<sup>+</sup></td>
<td>EXO1</td>
</tr>
</tbody>
</table>

^a Table continued on next page
Table 1 (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene(s) in:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recombination endonuclease</td>
<td>SPO11</td>
<td>—</td>
<td>meiW-68</td>
<td>—</td>
<td>SPO11</td>
<td></td>
</tr>
<tr>
<td>Incision 3′ of hypoxanthine and uracil</td>
<td>nfi^+ (EndoV^+</td>
<td>—</td>
<td>SPAC1F12.06c</td>
<td>—</td>
<td>ENDOV (FLJ35220)</td>
<td></td>
</tr>
<tr>
<td>E2 ubiquitin-conjugating enzyme</td>
<td>RAD6</td>
<td>Ubc6</td>
<td>UBE2A (RAD6A)</td>
<td>—</td>
<td>UBE2B (RAD6B)</td>
<td></td>
</tr>
<tr>
<td>E2 ubiquitin-conjugating enzyme</td>
<td>RAD18</td>
<td>rhp18^+</td>
<td>RAD18</td>
<td>—</td>
<td>RING domain E3 ubiquitin ligase</td>
<td></td>
</tr>
<tr>
<td>RING domain E3 ubiquitin ligase</td>
<td>HPR5 (SNR1, RADH)</td>
<td>sir2^+</td>
<td>RAD5 (SNM2, REV2)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DNA helicase</td>
<td>MMS2</td>
<td>—</td>
<td>UBE2V2 (MMS2)</td>
<td>—</td>
<td>DNA helicase</td>
<td></td>
</tr>
<tr>
<td>E2 ubiquitin-conjugating complex</td>
<td>UBC13</td>
<td>—</td>
<td>UBE2N (UBC13, BTG1)</td>
<td>—</td>
<td>E2 ubiquitin-conjugating complex</td>
<td></td>
</tr>
<tr>
<td>Bloom syndrome helicase</td>
<td>recQ^+</td>
<td>SGS1</td>
<td>npl1^+ (hus1^+, rad12^+)</td>
<td>mus309</td>
<td>BLM</td>
<td></td>
</tr>
<tr>
<td>Werner syndrome helicase / 3′-exonuclease</td>
<td>—</td>
<td>—</td>
<td>CG7670 (exo only)</td>
<td>WRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rothmund-Thomson syndrome</td>
<td>RecQ4</td>
<td>—</td>
<td>—</td>
<td>RECQL4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ataxia telangiectasia</td>
<td>TEL1</td>
<td>tefu tel1^+</td>
<td>CG6535</td>
<td>ATM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ataxia-oculomotor apraxia syndrome (aprataxin; interaction with XRCC1, XRCC4)</td>
<td>HNT3</td>
<td>SPCC18.09c</td>
<td>CG3316</td>
<td>APTX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia gene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FANCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia gene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FANCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia gene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FANCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia gene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia gene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FANCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia gene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FANCG (XRCC9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubiquitin ligase for monoubiquitination of FANCD2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CG12812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dna cross-link repair nuclease</td>
<td>PSO2 (SNM1)</td>
<td>mus322</td>
<td>DCLRE1A (PSO2, SNM1)</td>
<td>—</td>
<td>DNA cross-link repair nuclease</td>
<td></td>
</tr>
<tr>
<td>Related to SNM1</td>
<td>—</td>
<td>—</td>
<td>SNM1B (DCLRE1B)</td>
<td>—</td>
<td>Related to SNM1</td>
<td></td>
</tr>
<tr>
<td>Converts some DNA breaks to ligatable ends</td>
<td>—</td>
<td>—</td>
<td>PNKP (PNK)</td>
<td>—</td>
<td>Converts some DNA breaks to ligatable ends</td>
<td></td>
</tr>
<tr>
<td>Similar to helicase domain of Mus308</td>
<td>—</td>
<td>—</td>
<td>mus301 (spin-C)</td>
<td>HEL308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histone, phosphorylated after DNA damage</td>
<td>H2A</td>
<td>hta1^+, hta2^+</td>
<td>His2av</td>
<td>H2AFX (H2AX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transcription factor and DNA binding</td>
<td>—</td>
<td>—</td>
<td>p53</td>
<td>p53 (TP53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATM- and PI3K-like essential kinase</td>
<td>MEC1</td>
<td>rad3^+</td>
<td>mei-41</td>
<td>ATR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 1 Nomenclature of DNA repair genes\(^a\) (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD1 (DDC2)</td>
<td>rad26(^a)</td>
<td>mus304</td>
<td>ATRIP</td>
<td>ATR interacting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAD17</td>
<td>rad1(^a)</td>
<td>rad1</td>
<td>RAD1</td>
<td>PCNA-like DNA damage sensor (9-1-1 complex)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDC1</td>
<td>rad9(^a)</td>
<td>rad9</td>
<td>RAD9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC3</td>
<td>hus1(^a)</td>
<td>Hus1-like</td>
<td>HUS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAD24</td>
<td>rad17(^a)</td>
<td>Rad17</td>
<td>RAD17</td>
<td>RFC1-like DNA damage sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAD9</td>
<td>crb2(^a) (rhp9(^a))</td>
<td></td>
<td></td>
<td>Checkpoint function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHK1</td>
<td>chk1(^a) (rad27(^a))</td>
<td>grp (grapes)</td>
<td>CHEK1 (CHK1)</td>
<td>Effector kinase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAD53</td>
<td>cds1(^a)</td>
<td>lok (loki)</td>
<td>CHK2 (CHEK2)</td>
<td>Effector kinase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Entries in Table 1 are organized according to DNA repair pathway, emphasizing functional orthologs. In many cases, but not all, these are also sequence or structural homologs. Caution is recommended in this respect, and the text should be consulted for details, together with public DNA sequence databases. For example, the major DNA glycosylase for removal of 7,8-dihydro-8-oxoquinine (8-oxoG) from DNA is encoded by fpg in Escherichia coli and OGG1 in human cells, but the two gene products are not related by amino acid sequence and do not fall into the same structural family. The symbol “\(^a\)” indicates that no ortholog is detected.

Some DNA repair genes play roles in more than one pathway but are listed here only once for simplicity. HUGO-approved gene names (http://www.gene.ucl.ac.uk/nomenclature) are presented in nearly all cases, with a few of the commonly used synonyms provided in parentheses. The name used most commonly in this book is usually presented first here. See also the table “Human DNA Repair Genes” (http://www.cgal.icnet.uk/DNA_Repair_Genes.html). For Drosophila, official gene names from http://flybase.bio.indiana.edu are used. For Schizosaccharomyces pombe, official gene names from http://www.genedb.org/genedb/pombe/index.jsp are used. For Saccharomyces cerevisiae, official gene names from http://www.yeastgenome.org/ are used. For E. coli, official gene names from http://www.ncbi.nlm.nih.gov/ are used.

\(^a\)Dashes indicate that no gene exists. Blank spaces indicate that the status is unknown.
Table 2 Human hereditary diseases and defective cellular responses to DNA damage

A. Human hereditary diseases with defective cellular responses to DNA damage

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeroderma pigmentosum (XP)</td>
<td>XPA–XPG; XPV</td>
<td>Nucleotide excision repair (NER); translesion DNA synthesis</td>
<td>Dermatitis, freckling, skin cancer, sometimes neurological defects</td>
</tr>
<tr>
<td>Cockayne syndrome (CS)</td>
<td>CSA, CSB</td>
<td>Transcription-coupled NER</td>
<td>Post-natal developmental defects, neurological defects</td>
</tr>
<tr>
<td>Combined XP/CS complex</td>
<td>XPB, XPD, XPG</td>
<td>NER and basal transcription by RNA polymerase II</td>
<td>Features of both XP and CS</td>
</tr>
<tr>
<td>Trichothiodystrophy (TTD)</td>
<td>XPB, XPD, TTDA</td>
<td>NER and basal transcription by RNA polymerase II</td>
<td>Photosensitivity, brittle hair, post-natal developmental defects, neurological defects</td>
</tr>
<tr>
<td>Cerebro-oculo-lacio-skeletal (COFS) syndrome</td>
<td>CSB</td>
<td>Transcription-coupled NER</td>
<td>Post-natal developmental defects, neurological defects</td>
</tr>
<tr>
<td>UV-sensitive (UV') syndrome</td>
<td>CSB</td>
<td>Transcription-coupled NER</td>
<td>Photosensitivity</td>
</tr>
<tr>
<td>Ataxia telangiectasia (AT)</td>
<td>ATM</td>
<td>Repair of DNA strand breaks</td>
<td>Cerebellar ataxia, defective immune function, neurological problems, predisposition to hematolymphoid cancer</td>
</tr>
<tr>
<td>Nijmegen breakage syndrome</td>
<td>NBS1</td>
<td>Repair of DNA strand breaks</td>
<td>Developmental abnormalities, growth retardation, cancer predisposition</td>
</tr>
<tr>
<td>AT-like disorder (ATLD)</td>
<td>MRE11A</td>
<td>Repair of DNA strand breaks</td>
<td>Defective immune function, neurological problems, predisposition to hematolymphoid cancer</td>
</tr>
<tr>
<td>LIG4 syndrome</td>
<td>LIG4</td>
<td>Repair of DNA strand breaks</td>
<td>Defective immune function, neurological problems, predisposition to hematolymphoid cancer</td>
</tr>
<tr>
<td>Seckel syndrome</td>
<td>ATR</td>
<td>Chromosome stability in response to specific treatments</td>
<td>Developmental, immunological, and hematolymphoid abnormalities</td>
</tr>
<tr>
<td>Severe combined immunodeficiency (SCID)</td>
<td>RAG1, RAG2, SNM1C (Artemis)</td>
<td>V(D)J recombination</td>
<td>Severe immunodeficiency</td>
</tr>
<tr>
<td>Spinocerebellar ataxia with axonal neuropathy (SCAN1)</td>
<td>TDP1</td>
<td>Processing of topoisomerase-DNA intermediates</td>
<td>Neurodegeneration</td>
</tr>
<tr>
<td>Ataxia-ocular apraxia 1 (AOA1)</td>
<td>APTX (Aprataxin)</td>
<td>None known; possibly double-strand break repair</td>
<td>Neurodegeneration</td>
</tr>
<tr>
<td>Bloom syndrome (BS)</td>
<td>BLM</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Dwarfism, immunodeficiency, cancer predisposition</td>
</tr>
<tr>
<td>Werner syndrome (WS)</td>
<td>WRN</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Premature aging, cancer predisposition</td>
</tr>
<tr>
<td>Rothmund-Thomson syndrome (RTS)</td>
<td>RECQL4</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Skin, hair, and skeletal abnormalities, cancer</td>
</tr>
</tbody>
</table>

(continued)
Table 2 Human hereditary diseases with defective cellular responses to DNA damage (continued)

A. Human hereditary diseases and defective cellular responses to DNA damage (continued)

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPADILINO syndrome (RS)</td>
<td>RECQL4</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Skeletal abnormalities</td>
</tr>
<tr>
<td>46BR syndrome</td>
<td>LIG1</td>
<td>Modest chromosome instability</td>
<td>Immunodeficiency, cancer</td>
</tr>
<tr>
<td>Hereditary nonpolyposis colon cancer</td>
<td>MLH1, MSH2, MSH6, PMS1, PMS2, MLH3, EXO1</td>
<td>Mismatch repair</td>
<td>Colon and other cancers</td>
</tr>
<tr>
<td>Fanconi anemia (FA)</td>
<td>FANCA, FANCB, FANCC, FANCD1, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANC1, FANCI, FANCl</td>
<td>Chromosomal stability, spontaneous and in response to cross-linking agents</td>
<td>Limb defects, anemia, cancer disposition</td>
</tr>
<tr>
<td>Hyper-IgM syndrome</td>
<td>UNG</td>
<td>Removal of uracil during class switch recombination</td>
<td>Immune deficiency</td>
</tr>
</tbody>
</table>

B. Human hereditary diseases implicated in defective cellular responses to DNA damage

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinoblastoma (RB)</td>
<td>RB1</td>
<td>Cell cycle response to DNA damage</td>
<td>Retinoblastoma and other cancers</td>
</tr>
<tr>
<td>Li-Fraumeni syndrome (LFS)</td>
<td>p53, CHEK2</td>
<td>Cell cycle response to DNA damage</td>
<td>Broad spectrum of cancer</td>
</tr>
<tr>
<td>Hereditary breast cancer</td>
<td>BRCA1, BRCA2</td>
<td>Cell cycle response to DNA damage</td>
<td>Breast and ovarian cancer</td>
</tr>
<tr>
<td>Familial adenomatous polyposis (FAP)</td>
<td>APC</td>
<td>Cell proliferation and chromosomal stability</td>
<td>Gastrointestinal cancer and thyroid cancer</td>
</tr>
<tr>
<td>MYH-associated polyposis (MAP)</td>
<td>MYH</td>
<td>None noted, despite mutations in a base excision repair gene</td>
<td>Gastrointestinal cancer</td>
</tr>
<tr>
<td>Juvenile polyposis syndrome (JPS)</td>
<td>SMAD4, BMPRIA</td>
<td>Cell-signaling and "landscaper" functions</td>
<td>Juvenile polyps and gastrointestinal malignancy</td>
</tr>
<tr>
<td>Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome</td>
<td>PTEN</td>
<td>Cell cycle responses and apoptosis (but not in response to DNA damage)</td>
<td>Breast, thyroid, and endometrial cancer</td>
</tr>
<tr>
<td>Peutz-Jeghers syndrome (PJS)</td>
<td>STK11</td>
<td>Cell cycle responses and apoptosis</td>
<td>Hamartomas, gastrointestinal and non-gastrointestinal tumors</td>
</tr>
<tr>
<td>Basal cell nevus syndrome (BCNS)</td>
<td>PTCH2</td>
<td>Cell-signaling pathways</td>
<td>Malignant melanoma</td>
</tr>
<tr>
<td>Cutaneous malignant melanoma</td>
<td>CDKN2A, CDK4</td>
<td>Cell cycle responses and apoptosis</td>
<td>Malignant melanoma</td>
</tr>
</tbody>
</table>
Table 2 (continued)

B. Human hereditary diseases implicated in defective cellular responses to DNA damage

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilm's tumor (WT)</td>
<td>WT1</td>
<td>Transcriptional regulation</td>
<td>Pediatric kidney tumors</td>
</tr>
<tr>
<td>Hereditary papillary renal cell carcinoma (HPRCC)</td>
<td>MET</td>
<td>Cell signaling</td>
<td>Papillary renal cell carcinoma</td>
</tr>
<tr>
<td>von Hippel-Lindau (VHL)</td>
<td>VHL</td>
<td>Multiple associated functions, possibly defective in cell cycle regulation</td>
<td>Renal cell and other cancers</td>
</tr>
<tr>
<td>TSC Tuberous sclerosis complex</td>
<td>TSC1, TSC2</td>
<td>Cytoskeleton maintenance</td>
<td>Multiple hamartomas, renal cell cancer</td>
</tr>
<tr>
<td>Neurofibromatose type 1 and type 2 (NF1, NF2)</td>
<td>NF1, NF2</td>
<td>RAS protein regulation or cytoskeleton maintenance</td>
<td>Neurofibrosarcoma and other tumors</td>
</tr>
</tbody>
</table>

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Tue, 30 Oct 2018 04:38:53
Index

A
A-rules, 615
Abasic residues, See AP sites
ABC transporter, 230
Abf1 protein, *S. cerevisiae*, 342
ABH genes, human, 157, 159, 161
Acetaldehyde, 38–39
Acetophenone, 34
N-Acetoxy-2-acetyl-2-aminofluorene, 318, 358, 571, 896
N-2-Acetyl-2-aminofluorene, 41–42, 245, 247, 513
Acetylation
histones, 354–355, 736, 790, 1005
p53 protein, 790
Acetyltransferase, 41
N-Acetyltransferase, polymorphisms, 1063–1064
Achondroplasia, 1027
Acrolein, 40
Activation loop, 780
Activation-induced cytidine deaminase, 14, 641, 714
Active rolling model, RecQ helicase activity, 951
AD32 (intercalating agent), 247
Ada box, 147, 149
ADA gene, human, 934
ada gene, *E. coli*, 140, 146–153, 183
Salmonella, 153
Ada protein, see also O^6^-Alkylguanine-DNA alkyltransferase
E. coli, 146–150, 234
ada regulon, 147, 149
alkylated, 146–147
conversion to transcriptional activator, 147–149
C-terminal domain, 147, 150–151
N-terminal domain, 147–148
regulatory function, 146
specificity, 149
Ada regulon, *E. coli*, 147, 149
adaA gene, *B. subtilis*, 152
adaB gene, *B. subtilis*, 153
Adaptation, 759, 845
cell cycle restart and, 846–847
multicellular eukaryotes, 847
S. cerevisiae, 846–847
Adaptive mutagenesis, 423–424, 552–553
Adaptive mutation, 422, 639
Adaptive response to alkylation damage, bacteria, 139–150
adaptation to cell killing, 140
adaptation to mutagenesis, 140, 146–150
AlkA protein in, 182–184
definition, 140
 evolutionary significance, 153
historical review, 139–140
termination, 150
Adaptor proteins, 848
Adenine
deamination, 9–11, 14–15
imidazole ring opening, 19
Adenosyl radical, 134
S-Adenosylmethionine, 4, 16, 37, 134
Aflatoxin(s), 43–44
Aflatoxin B1, 44
mutagenicity, 76, 532
Aflatoxin B1-8,9-epoxide, 44
Aging, 854–856
array analysis of aging in mammals, 1030
DNA repair and, 7, 1028–1034
age-related decline in DNA repair, 1028–1030
reversal of aging and DNA repair, 1030
mitochondrial theory, 455–456
mouse models, 1030–1031
oxidative DNA damage and, 22–23
somatic mutation theory, 854–855
termination, 150
mammalian cells, 154
mtDNA, 451–452
repair, 139–168
O^6^-alkylguanine, 141–157
O^4^-alkylthymine, 141–157
1-methyladenine, 157–162
3-methylcytosine, 157–162
teleological considerations, 162
therapeutic applications and implications, 161–162
RNA, 160
Alkylination resistance
mammals, 427–429
single-celled organisms, 427
3-Alkylcytosine, 37
O^3^-Alkylcytosine, 37
O^6^-Alkylguanine, 37
mammalian cells and tissues, 154–155
premutagenic lesion, 554
repair, 141–157
enzyme-catalyzed reversal, 139–168
Cancer predisposition, (continued)

HO-induced, 687
S. cerevisiae, 687

Breast cancer, 204, 453, 1058, 1062, 1064
ATM mutations, 926
hereditary, 682, 1088
predisposition syndromes, 1002, 1007–1008
Brittle-hair syndromes, 907–909
5-Bromodeoxyuridine, 258–260
O-(4-Bromoethyl)guanine, 161
5-Bromouracil, 13, 35, 258–260, 395

BrU-photolysis, 35
BS, see Bloom syndrome
Butter yellow, see N,N-Dimethyl-4-aminobenzene
t-Butyl hydroperoxide, 200, 385
O'-Butylguanine, mtDNA, 452

Bystander effect, 41

Caretker genes/proteins, 855, 1001
Carmustine, 161
Carney complex, 1002
Casein kinase I, 789, 819
Casein kinase II, 789
β-CASP family, 693
Caspase, 848
Caspase-2, 853
Caspase-3, 428, 849–850, 852
Caspase-7, 849
Caspase-8, 848
Caspase-9, 849–850
Catalse, 21, 22–23, 989
xeroderma pigmentosum, 873
Cataract–microcephaly–failure-to-thrive–
kyphocoleiosis syndrome, 910
Catechol estrogens, 45–46
β-Catenin, 1010–1011
CBP acetyltransferase, 851
CC-1065, 247
CC1D protein, mammalian, 719
CCNH protein, mammalian, 324–325
CCNH gene, human, 279
CCL1 protein, 823
CC-1065, 247
CBP acetyltransferase, 851

Cdk1 protein, S. cerevisiae, 279
Cdk2 protein, S. cerevisiae, 324–325
CCNH gene, human, 279
CCNH protein, mammalian, 324
CD3D gene, human, 934
CD45 gene, human, 934
cdc1 protein, S. pombe, 1007
CDC2 protein, S. cerevisiae, 336
Cdc2 protein, mammalian, 798
S. pombe, 798–799, 847
Cdc5 protein, S. cerevisiae, 801
CDC7 protein, CDC7-DBF4 complex, 794
CDC8 gene, S. cerevisiae, 278, 823
CDC9 gene, S. cerevisiae, 207, 272–273,
278–279, 755, 823
CDC13 gene, S. cerevisiae, 755, 759
CDC17 gene, S. cerevisiae, 823
Cdc20 protein, S. cerevisiae, 801
Cdc25 protein, mammalian, G1/M arrest, 799
Cdc25 protein, S. pombe, 798–799
Cdc25A protein, vertebrates, 794
Cdc28 protein, S. cerevisiae, 801
Cdk inhibitors (Cki), 754, 792
Cdk1 protein, vertebrates, 792
Cdk2 kinase, vertebrates, 792–794
Cdk4 gene, human, 1018
Cdk4 kinase, vertebrates, 793
Cdk7 gene, human, 279
Cdk7 protein, mammalian, 324
CDKNA2/CDKN2A gene, human, 1018
Cds1 protein
S. pombe, 779–780, 783
X. laevis, 780
caa* gene, E. coli, 487, 489
Cell cycle
ataxia telangiectasia, 925–926
Double-strand break repair and, 736–737
S. cerevisiae, 737, 754–757
Cell cycle checkpoints
DNA damage-induced G1/M arrest, 798–801
G1/S arrest, 791–794
inhibition, 22
regulation, 785–802

regulation of M phase, 801–802
S-phase response to DNA damage, 794–798
checkpoint-triggering damage, 758–760
DNA damage sensing, 758–771
ATM protein, 760–762
ATR protein, 762–763
ATRIP-RPA interactions, 763–764
cross talk between sensors, 765–766
interactions of checkpoint clamp and clamp loader, 765
MRN complex, 766–767
9-1-1 complex, 764–765, 769–771
PCNA, 764
RFC-like clamp loader, 765
S phase, 769–771
DNA damage sensor proteins, 758–760
effecter targets
downstream targets, 785–802
modulation of DNA repair, 802–803
p53, 785–791
emergence of checkpoint concept, 753–758
Fanconi anemia, 990
mammalian Rad9 homologs, 782–783
methods of study, 757–758
synchronization of cells, 757
sensing UV radiation damage, 768–769
signal transmission, 758
Chkl kinase, 783–784
generation and transmission of checkpoint-activating signal, 779
mediators, 781–782
Rad53/Cds1/CHK2 kinase, 779–800, 783
summary, 784–785
SOS-induced, 495
transcriptional response to DNA damage and, 823, 826
Xenopus, 759–760
Cell cycle restart
adaptation and, 846–847
S. cerevisiae, 847
Cell division, control by SOS-induced checkpoint, 495
Cell late, DNA damage effect, 845–862
Cell size checkpoint, 804
CENPF protein, 1004
Centrin 2, 294–295
Centrosome amplification, 845
Cerebro-oculo-facio-skeletal (COFS) syndrome, 905, 1087
CKF-activating kinase, phosphorylation of p53 protein, 789
Charcot-Marie-Tooth disorder, 1033
CHEK2 gene, human, 1007
Chemicals, metabolism, 72, 1062–1071
Chemical mutagenesis, 72
Chi site, 580, 594
Chiasmata, 425
Chicken foot structure, Holliday junction, 571, 575, 595, 597, 601
Chinese hamster ovary cells, nucleotide
cell cycle progression, 922–923
DNA damage-induced G1/M arrest, 798–801

INDEX

1094

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Tue, 30 Oct 2018 04:38:53
Cyclobutane pyrimidine dimers, (continued)
local structure of DNA, 30
locating in DNA, 31–32
loss of radiolabeled dimers from DNA, 257–258
mtDNA, 452
nucleotide excision repair in eukaryotes, 274
photoreactivation, 109–127
photoreversal, 110
photosensitized reactions, 34–35
as pretumorigenic lesion, 525–529
repair, see also Base excision repair;
Nucleotide excision repair repair by deoxyribonuclease, 132
RNA, 133
sunlight-induced, 35
trans-syn form, 30, 115, 528, 615
UV irradiation of mammalian cells, 624
UV radiation-induced mutagenesis of Sup35-o in yeast, 615
xeroderma pigmentosum cells, 869
8,5'-Cyclodeoxyadenosine, 23, 27
8,5'-Cyclodeoxyguanosine, 24, 27
Cyclohexylcarbodiimide, 247
Cyclobutane dimers, 36
Cyclophosphamide, 36
Cyclohexylcarbodiimide, 247
Cyclophosphamide, 36
Cyclopurine DNA adducts, 23, 873–874
Cyclophosphamide, 36
Cytosine hydrate, 16, 33, 191
Cytosine glycol, 22
Cytosine DNA methyltransferase, 56
Cytosine deamination, 49
Cytosine DNA methyltransferase, 56
Cytosine glycol, 22
Cytosine hydrate, 16, 33, 191

D
Dacarbazine, 36, 161, 428
dam' gene, E. coli, 393–395, 399, 402, 427, 429, 485–486
Dark repair, 227
dat1' gene, B. subtilis, 152–153
Daughter strand gap repair, 485, 593
evidence for gaps in new DNA, 587–589
evidence for recombinational events,
589–590
gap size, 588
in vivo system, 592–593
perspectives, 590–592
protein in, 590
RecA protein, 578, 586
recombination repair, 586–593
DBF4 protein, CDC7-DBF4 complex, 794
dbSNP (database), 1051
dcm' gene, E. coli, 431–432
Dcm methylase, 432
dCMP deaminase, 12
dry gene, Drosophila, 131
dCTP deaminase, 12–13
dDdi1 gene, S. cerevisiae, 821
dDBB protein
mammalian, 342, 356
nucleotide excision repair, 331
dDDB1 gene, human, 279, 830, 880
DDB1 protein
homologs, 302–303
human, 902–903
mammalian, 302–303, 333
regulation, 301
ubiquitin ligase, 301–302, 331
DDB2 gene
human, 279, 880
mammalian, 301, 830, 837
DDB2 protein, mammalian, 301–302, 333
Ddc1 protein, S. cerevisiae, 764, 769
DDB gene, S. cerevisiae, 823–824
Deamination, 382
adenine, 9–11, 14–15
bisulfite-induced, 12
cytosine, 4, 9–14, 16, 432, 641
deoxyadenosine, 382
deoxyctydine, 382
deoxyguanosine, 382
guanine, 9–10, 14–15
5-hydroxymethylcytosine, 14
5-methylcytosine, 9–10, 14, 16, 390,
431–433
nitrous acid-induced, 12
Death receptors, 848, 850
Death-inducing signaling complex, 848
Debrisoquine, 1062
Death-inducing signaling complex, 848
Dectin1 protein, 846
DeoR protein
mammalian, 302–303
in vivo system, 592–593
gap size, 588
removal, 192, 387
5,6-Dihydrouracil-6-sulfonate, 12
5,6-Dihydrouracil, 385
Dicer, 846
removal, 387
5,6-Dihydro-5-(α-thymyl)-thymine, see Spec photoprod
Dehydroascorbic acid, 385
removal, 387
5,6-Dihydro-5-sulfate, 12
Dihydroascorbic acid, 385
removal, 387
5,6-Dihydrouracil-6-sulfonate, 12
Dihydrides, 11
5,6-Dihydrosphingosine, 22
5,6-Dihydrouracil, 11
5,6-Dihydroxythymidine, see Thymine glycol
Dimethyl sulfoxide, 180, 451
N,N-Dimethyl-4-aminoazobenzene, 41
4-Dimethylbenzimidazole, 93
1,2-Dimethylglycine, 37
Dimethyl sulfoxide, 180, 451
N,N-Dimethyl-4-aminoazobenzene, 41
4-Dimethylbenzimidazole, 93
1,2-Dimethylglycine, 37
Dimethyl sulfoxide, 180, 451
N,N-Dimethyl-4-aminoazobenzene, 41
4-Dimethylbenzimidazole, 93
1,2-Dimethylglycine, 37
Dimethyl sulfoxide, 180, 451
N,N-Dimethyl-4-aminoazobenzene, 41
4-Dimethylbenzimidazole, 93
1,2-Dimethylglycine, 37
DIN genes, S. cerevisiae, 823–824
din' genes, E. coli, 487–488, 492, 494, 496, 538, 543, 553
DinB protein
E. coli, 538–539, 553
S. cerevisiae, 632
DinI protein, E. coli, 491, 521
regulation of RecA-mediated cleavage
reactions, 488–489
DinF protein, E. coli, 383
Dioxygenases, 157
Direct photoreversal, 110
Dislocation mutagenesis, 99
Distamycin, 51
Ditercalanium, 247
div' gene, E. coli, 486, 495
DKC1 gene, human, 1027–1028
D-loop, 594, 596, 602–603, 680
DNA
ancient, 23–24
A-tract sequences, 53
flexible molecule, 52–53
DNA polymerase III, (continued)
SOS-dependent mutagenesis, 536–537
UVM response, 555
DNA polymerase 4, 543–551
interaction with β sliding clamp, 546–547
protein-protein interactions that control, 543–551
translesion DNA synthesis, 543
DNA polymerase V, E. coli, 492, 494, 496, 509, 540–543, 551–552
inducible replisome/repllication restart, 604–605
interaction with β sliding clamp, 546–547
interaction with RecA and single-stranded DNA-binding proteins, 545–546
protein-protein interactions that control, 543–551
SOS-dependent mutagenesis, 543
DNA polymerase α, 336, 830
S. cerevisiae, 339
DNA polymerase β, 204, 208, 211–212, 214
in cancer, 204
deoxyribophosphate lyase activity, 203
errors, 204
mammalian cells, 88–89, 92
single-strand break repair, 738–739
translesion synthesis, 638
DNA polymerase γ, 204
DNA polymerase δ, 203, 318
human, 336–337
mismatch repair, 496
DNA polymerase ε, 318, 819
DNA damage sensing, 771
human, 336–337
nucleotide excision repair, 322, 336–338
S. cerevisiae, 336–337, 339
DNA polymerase θ, 321–322
human, 573–574
nucleotide excision repair, 573–574
DNA repair enzymes, 387–393
see also specific enzymes
DNA repair genes, 393–397
DNA repair, see also specific enzymes, 397–400
DNA repair synthesis, 397–400
DNA repair synthesis, 397–400
DNA polymerase processivity protein, 496
DNA polymorphisms, 1049–1080, see also
Single-nucleotide polymorphisms
N-acetyltransferase 2 gene, 1063–1064
cytocrome P-450 monoxygenase gene, 1062–1063
DNA repair genes, 5056–5057
glutathione S-transferase M1 gene, 1063
human genetic variation, 1050–1052
impacting levels of chemical-induced DNA damage, 1062–1071
restriction fragment length polymorphisms, 1050
short tandem repeat sequences, 1050
DNA repair, see also specific types
aging and, 1028–1034
ataxia telangiectasia, 923
Bloom syndrome, 957
cancer predisposition and, 1057–1059
chromatin structure and, 50–57
Cockayne syndrome, 897
direct reversal of DNA damage, 5
alkylation damage, 139–146
base damage, 107, 109–138
repair of single-stranded DNA breaks, 162–163
E. coli, RecA protein, 574–579
error-free, 6
error-prone, 6
excision of damage, 5
Fanconi anemia, 989
mammalian cells, 803
nomenclature of repair genes, 1081–1086
somatic hypermutation and, 641
trichothiodystrophy, 908–909
yeast, 802–803
DNA repair enzymes, see also specific enzymes
activity on undamaged DNA, 114
assay of individual enzymes, 319
base-flipping, 56–57
binding to single-stranded DNA, 54
facilitated diffusion on DNA, 55
interactions with p53 protein, 790
levels in cells, 114–115
locating sites of DNA damage, 55–57
recognition of mismatched base pairs, 57
regulation of expression, 114
substrate selection, 55–56
DNA repair genes
heterozygosity, 1059
genomes for dominantly inherited disorders, 1059–1060
genomes for recessive disorders, 1061
polymorphisms, 1062–1071
functional defects, 1067–1070
pharmacogenomics, 1067
putative cancer risk, 1064–1067
role in disease, 1056–1057
statistics and population-based studies, 1056–1057
variability in DNA repair capacity, 1056–1057
single-nucleotide polymorphisms, 1062
DNA sequence
indirect readout, 53–54
local structure of double helix, 50–51
DNA sequencing
bisulfite procedure, 12
determination of mutational spectra, 524
mutation identification, 85
DNA synthesis, see also DNA polymerases
arrested, 461, 465
Cockayne syndrome, 897
DNA helicase in, 952–955
geometric selection of nucleotides, 87–90
importance of base-pairing geometry vs.
hydrogen bonds, 92–93
incorporation of damaged nucleotide precursors, 25
incorporation of incorrect bases, 24–25,
98–99
mammalian cells exposed to DNA-damaging agents, 618–620
MRN complex, 731–732
mtDNA, 450
non-semiconservative, see Repair synthesis
oriC-independent, 594, 603
prime-template misalignment, 99–100
radioresistant, see Radioreistant DNA synthesis
recovery after DNA damage, 603–605
relationship between replication and recombination, 593–598
repair synthesis, see Repair synthesis
replication errors, 72, 389
replication of damaged DNA, SOS induction, 484–485
S. cerevisiae, 823
selection against ribonucleotides, 93
template information in DNA, 86–87
transcriptional response to DNA damage, 823
transient inhibition after DNA damage, 573–574
translesion, see Translesion DNA synthesis
two-metal-ion mechanism, 90–92, 98
uracil incorporation, 12–13
after UV irradiation, 573–574
DNA topoisomerase
association with RecQ protein, 954
DNA topoisomerase-DNA complex, 393–394
repair reaction, 387
nucleotide excision repair, 339–340
DNA topoisomerase I, 213, 339, 770
ataxia telangiectasia, 921
interaction with WRN protein, 967
nucleotide excision repair, 253
source of single-strand breaks, 737
DNA topoisomerase II, 213, 339, 770, 847
ataxia telangiectasia, 921
Bloom syndrome, 957
G5/S arrest, 794
DNA topoisomerase III, 924, 963
DNA topoisomerase inhibitors, 47, 961
dnaB+ gene, E. coli, 954
DnaB protein, E. coli, 595–597, 952
DNA-binding assay, pyrimidine dimer-DNA photolyase, 113
DNA-binding proteins
detection of DNA damage, 50–57
DNA flexibility and, 52–53
facilitated diffusion on DNA, 55
indirect readout of DNA sequence, 53–54
sequence-specific, 50–52
DNA topoisomerase inhibitors, 593–594
DNA topoisomerase processivity protein, 496
DNA topoisomerases, 591–595
DNA topoisomerases
alkylation damage, 139–146
base damage, 107, 109–138
repair of single-stranded DNA breaks, 162–163
single-stranded, see Single-stranded-DNA-binding proteins
UvrA, 230–231
dnaC gene, E. coli, 484, 604
DnaC protein, E. coli, 595–597
DNA-deoxyribophosphodiesterase, 169–170
DNA-dependent protein kinase
apoptosis, 852
cell cycle regulation, 803
DNA damage sensor, 768
histone phosphorylation, 735
interaction with DNA, 719–720
mouse scd mutant, 718–719
mammalian, 847
nonhomologous end joining, 718–721, 724
phenotype of mice defective in, 720–721
phosphorylation of p53 protein, 788
phenotype of mice defective in, 720–721
S. cerevisiae radiation-induced, 27–28
S. cerevisiae generation at replication fork, 570
S. cerevisiae experimental systems, 668–670
S. cerevisiae conditional dicentric chromosomes, 668–669
S. cerevisiae HO endonuclease, 668–669
S. cerevisiae I-SceI-induced targeted, 669–670
S. cerevisiae generation at replication fork, 570
S. cerevisiae processing by RecBCD nuclease/helicase, 483
S. cerevisiae radiation-induced, 27–28
S. cerevisiae embryonic development, 7
S. cerevisiae embryonic viability
Bim mutant mice, 963–964
DNA polymerase ζ and, 631
S. cerevisiae mice defective in DNA ligation, 723
S. cerevisiae Emery-Dreifuss muscular dystrophy, 1033
S. cerevisiae End-joining pathway function, Rad1-Rad10 enzyme, 286–287
S. cerevisiae End-labeling method, detection of NER at site-specific, 668–669
S. cerevisiae Double-strand break repair, 4–5, 28, 509, see also Homologous recombination;
Nonhomologous end joining
S. cerevisiae cell cycle stage-dependent, 736–737
S. cerevisiae eukaryotes, 663–665, 711–750
S. cerevisiae histone modification, 735–736
S. cerevisiae MRN complex, 724–735
S. cerevisiae nonhomologous end joining, 664, 711–724
S. cerevisiae polymorphisms in repair genes, 1066
S. cerevisiae recombinational repair, 584–585
S. cerevisiae regulation of pathway choice, 726–727
S. cerevisiae V(D)J recombination and, 714

Down syndrome, premature aging, 1029, 1033–1034
Doxorubicin, 247
Dph protein, S. cerevisiae, 771
DpiAB two-component system, 497
Dps protein, E. coli, 49
dr1819 gene, D. radiodurans, 254
Drcl protein, S. cerevisiae, 771
Drug metabolism, 72, 1062–1071
DST1 gene, S. cerevisiae, 366
dTMPase, 13
Dulbecco, Renato, 111
dUMP, incorporation into DNA, 12–13, 176
dUMP kinase, 13
dUTP pyrophosphatase, 17
DUTPase, 12
Dynamic recognition, base damage, 329
Dyschromatosis symmetrica hereditaria, 214
Dysplastic nevus syndrome, 1018
E
E7 protein, human papillomavirus, 793
Early-onset ataxia with ocular motor apraxia, 936
EcoRI, induction of SOS response, 486
Effector caspase, 848
Effector kinase, 759
Effector protein, 779
Electron microscopy, repair synthesis patches, 319–320
Electron transport chain, 449–450
Electrophilic reactants, DNA damage, 41–46
Elongation factor, FACT, 789
Elongin C, 301, 342
Elutriation, 757
Embryonic development, 7
Embryonic viability
Bim mutant mice, 963–964
DNA polymerase ζ and, 631
S. cerevisiae mice defective in DNA ligation, 723
S. cerevisiae Emery-Dreifuss muscular dystrophy, 1033
S. cerevisiae End-joining pathway function, Rad1-Rad10 enzyme, 286–287
S. cerevisiae End-labeling method, detection of NER at site-specific, 668–669
S. cerevisiae Double-strand break repair, 4–5, 28, 509, see also Homologous recombination;
Nonhomologous end joining
S. cerevisiae cell cycle stage-dependent, 736–737
S. cerevisiae eukaryotes, 663–665, 711–750
S. cerevisiae histone modification, 735–736
S. cerevisiae MRN complex, 724–735
S. cerevisiae nonhomologous end joining, 664, 711–724
S. cerevisiae polymorphisms in repair genes, 1066
S. cerevisiae recombinational repair, 584–585
S. cerevisiae regulation of pathway choice, 726–727
S. cerevisiae V(D)J recombination and, 714

E. coli, 379–383
homologs, 380–382
preventing cell death with hydroxy-laminopurine, 383
preventing mutations associated with base deamination, 382
mammalian, 381–382
T. maritima, 380–381
Endonuclease VI, see Exonuclease III (Xih)
Endonuclease VIII (Nci), E. coli, 172, 186, 192
Endonuclease VIII-like DNA glycosylase 1, 172
Endonuclease VIII-like DNA glycosylase 2, 172
Endonuclease VIII-like DNA glycosylase 3, 172
Endonuclease VIII-like proteins, mammalian, 192
Enediyynes, 46
Environmental stress response, 826
Enzymatic photoreactivation, see Photoreactivation
Episomal shuttle vector, 81
Epistasis, 276–278
1,2-Epoxy-3-butene, 1063
3,4-Epoxy cyclopenta[cd]pyrene, 532
2,3-Epoxy-4-hydroxynonenal, 21
ERCC genes, human, 275–276
ERCC1 gene
human, 279, 285, 881, 1051
mammalian, 285–288, 837
ERCC1 protein
interstrand cross-link repair, 695
mammalian, 285–288, 332
binding and positioning DNA substrate, 290–291
ERCC1-XPZ enzyme, 286–287, 318, 326–327, 333–334, 336, 360
helix-hairpin-helix domain, 290
protein domain structure, 288–291
reconstitution of nucleotide excision repair, 322
sequence similarity to XPZ proteins, 289
ERCC2 gene, see XPD gene
ERCC3 gene, see XPB gene
ERCC5 gene, see XPG gene
ERCC6 gene, see CSB gene
Ergosterol desaturase, 693
ERK motif, 288–289
ERK1 gene, mammalian, 832
Error-prone DNA repair, 510
Escherichia coli, see also specific genes
DNA damage tolerance, 569–612
homologous recombination, 569–612
interstrand cross-link repair, 691–692
mismatch repair, 390–402
methyl-directed, 392–402
very-short-patch repair, 431–432
nucleotide excision repair, 228–253, 343
SOS response and, 491–492
(6–4) photoproduct-DNA photolyase, 214
pyrimidine dimer-DNA photolyase, 185–186
binding to substrate, 116–117
chromophores, 118–119
enzymatic efficiency, 118
Facilitated diffusion, proteins along DNA, 55
FADD adaptor, 848, 850
Familial adenomatous polyposis, 189–190, 980, 1002, 1008–1012
progression from adenoma to carcinoma, 1013
Familial atypical multiple mole and melanoma syndrome, 1018
Familial partial lipodystrophy, 1033
FANCA gene, human, 989–991
FANCC gene, human, 990
FANCD1 gene, human, 696, 992–993
FANC D2 gene, human, 932, 992, 1051
S-phase arrest, 797
FANC D2 protein, 685
FANCE gene, human, 992
FANCF gene, human, 992–993
FANCL gene, human, 993
Fanconi anemia (FA), 696, 727, 797, 929, 979, 986–994, 1088
apoptosis, 989
BRC2A2 protein connection, 685
cancer predisposition, 987–988
clinical features, 987–989. Color Plate 10
complementation groups, 989–990, 1007
DNA repair, 989
genetics, 988–993
heterozygotes, 1061
homologous recombination defect, 685
mouse models, 993–994
oxidative stress response, 989
FaPy-DNA glycosylase, 172
Far assay, 667
FAS receptor, 850
FEN1 protein, 292–293
base excision repair, 203, 212, 214
mammalian, 337, 714
Fenton reaction, 18, 21
FGFR genes, human, 1027
FHA domain, 780, 783
Filamentation, E. coli, UV-induced,
465–466
Flap endonuclease, 170, 383, 803
FLAP endonuclease 1, see FEN1 protein
Flavin adenine dinucleotide (FAD)
(6–4) photoproduction-DNA photolyase,
129–131
pyrimidine dimer-DNA photolyase, 112,
115–116, 118–119
Fluorescence-activated cell sorting, 757
multiparameter, 757–758
Fluorescence resonance energy transfer
study, RecQ helicase, 950–952
Fluorescently tagged proteins, visualization
of nucleotide excision repair, 334–335
5-Fluorouracil, 465
removal, 175, 178
Folate metabolism, 13
Folic acid deficiency, 13
Formamidopyrimidine(s), 34, 186
Formamidopyrimidine-DNA glycosylase
E. coli, 186–188
T. thermophiles, 187
N-Formamidourée, 24, 26
5-Formyl-DUTP, 555
Forward mutation, 72
Forward mutational system, 77–79
FOS gene
human, 966
mammalian, 831–832, 834–835
14-3-3 protein
G2/M arrest, 799–801
S. pombe, 799
Fowlpox virus, pyrimidine dimer-DNA
photolyase, 127
fps1 gene, E. coli, 55, 172, 186–188, 202
Fragile-site expression, Seckel syndrome,
932–933
Fragile X syndrome, 421
Frameshift mutation, 73–75, 639–640
detection, 78–79
from primer-template misalignment, 99
Free-radical-based DNA-cleaving agents, 46
fsl1 gene, E. coli, 496
fsk1 gene, E. coli, 486, 495
FtsZ protein, E. coli, 495
Fungi, mismatch repair, 402–406
FUSE-binding protein, 911
G
G1 arrest, 757, 759, 766, 786
G2 arrest, 763
G2 checkpoint, 769–770
G1 cyclin, 791
G2/M arrest, 755–756, 759, 766, 768, 782,
784, 798–801
Cdc2 of S. pombe, 798–799
CDC25 protein, 799
mammalian cells, 799–802
S. cerevisiae, 846
transcriptional targets of p53, 799–801
G2/M checkpoint, ataxia telangiectasia, 922
G1/S arrest, 791–794
vertebrates, 791–794
RB1 tumor suppressor, 793
two-wave response, 794–795
yeast, 791
G2/S checkpoint, ataxia telangiectasia, 922
GADD45 gene, vertebrates, 791
GADD45 protein
G2/M arrest, 799–801
vertebrates, 802, 828, 830
Gain-of-function mutation, 73
gatK gene, E. coli, 80–81
Gamma rays, 26
Gardner syndrome, 1009
Gastrointestinal tumors, predisposition
 syndromes, 1008–1016
GATC sites, methylation, 393–394
Gatekeeper genes/proteins, 855, 1001
DNA polymorphisms, 1049–1080
Gcn4 protein, S. cerevisiae, 831–832
GCTM1 gene, human, 1062
Gene conversion, 390, 402–403, 417, 419,
424–427, 646, 665, 670
Gene dosage effects, transcription
synromes, 912–913
Genetic diversification, by mutation, 145
Genetic instability, nonhomologous end
joining and, 723
Genetic variation, human, 1050–1053
Genome, 71
constant genomic insult, 4
Genome integrity, role of SOS system,
491–492
EXO1 gene
human, 982–983
S. cerevisiae, 408
Exol gene, mouse, 427
Exocyclic etheno adducts, 20–21
Exonuclease, 169
Exonuclease 1
eukaryotes, 408–409
yeast, 403, 427
Exonuclease I, E. coli, 400–403
Exonuclease III (Xth), 198–200
E. coli, 198–199
homologs in other organisms, 199–200
structure, 200
repair of AP sites, 198–199
Exonuclease VII, E. coli, 400–403
Exonuclease X, E. coli, 400–403
Escherichia coli, (continued)
kinetics and thermodynamics of
photoreactivation, 115
light requirement, 115–116
mechanism of action, 116–117, 119
model substrates, 118
nucleotide excision repair, 117–118
protein, 115
rate constants for photoreactivation, 116
reactivation of RNA, 133
structure, 119–121, 125–126
Shiga toxin, 496
SOS system, 463–497
Exosome, 169
Exonuclease, 169
Exonuclease VII, 198–200
Exonuclease, 169
Exocyclic etheno adducts, 20–21
Exo1 3-, O3-Ethyldeoxycytidine, 158
S3-Ethyladenine, removal, 181
Ethyl carbamate, 176
1, Estrogen receptor alpha, 176, 326
Estrogen(s), DNA damage, 45–46
ESS assay, 258
Esophageal cancer, 162, 1064, 1067
gene, human, 1025
Esophageal cancer, 162, 1064, 1067
gene, human, 1025
E. coli
S. cerevisiae
human, 982–983
removal, 181
removal, 184–185, 203
removal, 176, 178
UVM response, 555
Ethyl carbamate, 176
Ethyl methanesulfonate, 35–36, 513, 554,
738
3-Ethyladenine, removal, 181
S-Ethylethylene, 143
3-Ethyledeoxyctydine, 158
O3-Ethylguanine
mitDNA, 452–453
repair, 142–143
N-Ethyl-N-nitrosourea, 36–37, 154
Ethylpyrimidine adducts, 363
Etoposide, 47, 339, 429, 794, 963, 966
Ets1 protein, 326
Evolution
bacteria, 422–423
cyclical loss and reacquisition of mismatch
repair, 422–423
inducible mutagenesis, 551
nucleotide excision repair, 343
Excision repair, see Alternative excision
repair; Base excision repair;
Nucleotide excision repair
EXO1 gene
human, 982–983
S. cerevisiae, 408
Exol gene, mouse, 427
Exocyclic etheno adducts, 20–21
Exonuclease, 169
Exonuclease 1
eukaryotes, 408–409
yeast, 403, 427
Exonuclease I, E. coli, 400–403
Exonuclease III (Xth), 198–200
E. coli, 198–199
homologs in other organisms, 199–200
structure, 200
repair of AP sites, 198–199
Exonuclease VII, E. coli, 400–403
Exonuclease X, E. coli, 400–403
3-Methylthymine, 158

Methyltartronylurea, 24, 26

Methylpurine-DNA glycosylase

Methylphosphotriesters, 142

O6 gene, mouse, 157

Mgmt gene, yeast, 457

1104

Mismatch repair, 4–5, 25, 57, 107, 157, 1052–1054

Mitochondrial DNA repair, 451–459

Mitochondrial DNA (mtDNA), 19

Mitochondria, p53 in mitochondrial replication, 450

Mitochondrial DNA (mtDNA), 19 damage in, 451–452
defects in human diseases, 450 human, 449

maternal inheritance, 449

mitochondrial genome, 449–450

mutagenesis, 449–451

oxidative damage, 22–23, 451–454, 456 replication, 450

Mitochondrial DNA repair, 451–459

age-related, 455–456

alternative excision repair, 385–386, 456–457

base excision repair, 451–455

short-patch, 455

Down syndrome, 1034

monitoring, 453

recombination repair, 457

removal of oxidative damage, 453–454

reversal of base damage, 452

Mitochondrial proteins, 449

Mitogen-activated protein kinase pathway

G2/M arrest, 799

ionizing-radiation response in mammals, 835

phosphorylation of p53 protein, 789

UV response in mammals, 832–834

Mitomycin C, 36, 38, 200, 229, 247, 250,

253–254, 429, 465, 494, 585, 686,

929, 931, 989–991

response in E. coli, 481

Mitosin, 1004

Mitosis, human cells, 802

Mitotic catastrophe, 845

Mitotic death, 845

Mitotic recombination, 419, 690

MRN mutants, 731

Rad1-Rad10 complex, 286–287

Mitotic spindle, 757

Mitotic spindle checkpoint, 802, 1005

Mlh gene, mouse, 987

Mlh proteins, S. cerevisiae, 403–404, 425

MLH genes

mammalian, 426–427, 430

S. cerevisiae, 405, 417, 419, 982

MLH1 gene, human, 982–985, 1021, 1060

MLH1 protein, human, 768, 962

MLH3 gene, human, 982–983

MMS2 gene, S. cerevisiae, 822

Mms2 protein, S. cerevisiae, 645

MMS19 gene, S. cerevisiae, 278–279, 299

MnAT1 gene, human, 279

MnAT1 protein

human, 299

mammalian, 324–325

mol genes, E. coli, 383

Molecular chaperones, 491

Molecular matchmakers in DNA metabolism, 239

Uvra protein, 238–239

Molybdopterin guanine dinucleotide, 383

Monoallelic mutation analysis, 1011–1012

Mosaic mutant clones, S. cerevisiae, 616–617

Mouse models

aging, 1030–1031

ataxia telangiectasia, 926–928

Bloom syndrome, 963–964

Cockayne syndrome, 903–905, 912

Fanconi anemia, 993–994

hereditary nonpolyposis colon cancer, 985–986

tumors in homozygous mutant mice, 985–986

retinoblastoma, 1005–1006

scid mouse, 718–719, 721, 935

xeroderma pigmentosum, 882–887

MPG gene

human, 172

mammalian, 184

Mpy gene, mouse, 184–185

Mrc1 protein, S. cerevisiae, 783

MRE11 protein, mammalian, 726–727

Mre11 protein, S. cerevisiae, 725

MRE11A gene, human, 930
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurospora crassa, alternative excision repair</td>
<td>387</td>
</tr>
<tr>
<td>Neutral filter elution, double-strand break repair in S. cerevisiae</td>
<td>665–667</td>
</tr>
<tr>
<td>Neutral mutation</td>
<td>73</td>
</tr>
<tr>
<td>Neutral sucrose density gradient, double-strand break repair in S. cerevisiae</td>
<td>665–667</td>
</tr>
<tr>
<td>Nevoid basal cell carcinoma</td>
<td>1003</td>
</tr>
<tr>
<td>NF-kB</td>
<td>850</td>
</tr>
<tr>
<td>apoptosis, 853</td>
<td>835–836</td>
</tr>
<tr>
<td>ataxia telangiectasia, 924</td>
<td>835–836</td>
</tr>
<tr>
<td>ionizing radiation response in mammals, 835–836</td>
<td>835–836</td>
</tr>
<tr>
<td>UV response in mammals, 834–835</td>
<td>835–836</td>
</tr>
<tr>
<td>NFI gene, human</td>
<td>1021</td>
</tr>
<tr>
<td>NF2 gene, human</td>
<td>1021</td>
</tr>
<tr>
<td>NOXA protein</td>
<td>850</td>
</tr>
<tr>
<td>Novobiocin</td>
<td>339, 921</td>
</tr>
<tr>
<td>NOXA protein, 850</td>
<td>921</td>
</tr>
<tr>
<td>4-Nitroquinoline 1-oxide, 45, 247, 253, 320–321</td>
<td>247, 253</td>
</tr>
<tr>
<td>Nitrogen mustard, 35–36, 38, 229, 247, 253</td>
<td>247, 253</td>
</tr>
<tr>
<td>Nitric oxide synthase, 19, 837</td>
<td>18–19, 496, 837</td>
</tr>
<tr>
<td>Nitric oxide, 18–19, 496, 837</td>
<td>18–19, 496, 837</td>
</tr>
<tr>
<td>9-1-1 complex, 764–765, 769–771, 781, 796, 803</td>
<td>764–765, 769–771, 781, 796, 803</td>
</tr>
<tr>
<td>Nijmegen breakage syndrome (NBS), 725–726, 929</td>
<td>725–726</td>
</tr>
<tr>
<td>Nick translation, 244, 252</td>
<td>244, 252</td>
</tr>
<tr>
<td>Nocodazole</td>
<td>827</td>
</tr>
<tr>
<td>Nitrous acid, 12, 38, 382</td>
<td>12, 38, 382</td>
</tr>
<tr>
<td>Nitrosoguanidine</td>
<td>824</td>
</tr>
<tr>
<td>Nitrosation, chemical</td>
<td>146</td>
</tr>
<tr>
<td>Nitrosating agents</td>
<td>382–383</td>
</tr>
<tr>
<td>Nitrosamines, tobacco-specific</td>
<td>44–45</td>
</tr>
<tr>
<td>Nitrotating agents, 382–383</td>
<td>382–383</td>
</tr>
<tr>
<td>Nitrosochemical, 146</td>
<td>146</td>
</tr>
<tr>
<td>Nitrosoguanidine</td>
<td>824</td>
</tr>
<tr>
<td>Nitrous acid, 12, 38, 382</td>
<td>12, 38, 382</td>
</tr>
<tr>
<td>Nocodazole</td>
<td>827, 929</td>
</tr>
<tr>
<td>Noncrossovers, 425–426</td>
<td>425–426</td>
</tr>
<tr>
<td>Nonthomologous end joining, 5, 664, 670, 688, 930</td>
<td>5, 664, 670, 688, 930</td>
</tr>
<tr>
<td>antibody genes, 14</td>
<td>14</td>
</tr>
<tr>
<td>class switch recombination, 714</td>
<td>714</td>
</tr>
<tr>
<td>DNA ligase IV, 722</td>
<td>722</td>
</tr>
<tr>
<td>DNA-dependent protein kinase, 718–721, 724</td>
<td>718–721, 724</td>
</tr>
<tr>
<td>double-strand break repair, 736–737</td>
<td>736–737</td>
</tr>
<tr>
<td>eukaryotes, 711–750</td>
<td>711–750</td>
</tr>
<tr>
<td>Ku proteins, 715–718, 724</td>
<td>715–718, 724</td>
</tr>
<tr>
<td>ligation step, 722–723</td>
<td>722–723</td>
</tr>
<tr>
<td>MRN complex, 728–730</td>
<td>728–730</td>
</tr>
<tr>
<td>in vivo studies, 728–739</td>
<td>728–739</td>
</tr>
<tr>
<td>nomenclature of genes, 1084</td>
<td>1084</td>
</tr>
<tr>
<td>S. cerevisiae, 712</td>
<td>712</td>
</tr>
<tr>
<td>V(D)J recombination, 712–714</td>
<td>712–714</td>
</tr>
<tr>
<td>vertebrate model, 724</td>
<td>724</td>
</tr>
<tr>
<td>vertebrates, 712</td>
<td>712</td>
</tr>
<tr>
<td>Xenopus</td>
<td>712</td>
</tr>
<tr>
<td>XRC4 protein, 722–723</td>
<td>722–723</td>
</tr>
<tr>
<td>Nonsense mutation, 73–74</td>
<td>73–74</td>
</tr>
<tr>
<td>Nonsense suppressor, 73–74</td>
<td>73–74</td>
</tr>
<tr>
<td>Novobiocin, 339, 921</td>
<td>339, 921</td>
</tr>
<tr>
<td>NOXA protein, 850</td>
<td>850</td>
</tr>
<tr>
<td>mrda” gene, E. coli, 481</td>
<td>481</td>
</tr>
<tr>
<td>NGT1 gene, S. cerevisiae, 172, 825</td>
<td>172, 825</td>
</tr>
<tr>
<td>Ngf1 protein, yeast, 453</td>
<td>453</td>
</tr>
<tr>
<td>NGT2 gene, S. cerevisiae, 172, 825</td>
<td>172, 825</td>
</tr>
<tr>
<td>nth” gene, E. coli, 172, 191–192, 532</td>
<td>172, 191–192, 532</td>
</tr>
<tr>
<td>NTHL1 gene, human</td>
<td>172</td>
</tr>
<tr>
<td>Nuclear irradiation, colocalization of NER proteins at repair sites, 335–336</td>
<td>335–336</td>
</tr>
<tr>
<td>Nuclear receptors</td>
<td>335–336</td>
</tr>
<tr>
<td>interaction with thymine-DNA glycosylase, 176</td>
<td>176</td>
</tr>
<tr>
<td>transactivation by TFIIH, 326–327</td>
<td>326–327</td>
</tr>
<tr>
<td>Nuclear scaffold, 352–353</td>
<td>352–353</td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td>1106</td>
</tr>
<tr>
<td>NOXA protein, 850</td>
<td>850</td>
</tr>
<tr>
<td>apoptosis, 853</td>
<td>835–836</td>
</tr>
<tr>
<td>ataxia telangiectasia, 924</td>
<td>835–836</td>
</tr>
<tr>
<td>ionizing radiation response in mammals, 835–836</td>
<td>835–836</td>
</tr>
<tr>
<td>UV response in mammals, 834–835</td>
<td>834–835</td>
</tr>
<tr>
<td>NFI gene, human</td>
<td>1021</td>
</tr>
<tr>
<td>NF2 gene, human</td>
<td>1021</td>
</tr>
<tr>
<td>NOXA protein</td>
<td>850</td>
</tr>
<tr>
<td>apoptosis, 853</td>
<td>835–836</td>
</tr>
<tr>
<td>ataxia telangiectasia, 924</td>
<td>835–836</td>
</tr>
<tr>
<td>ionizing radiation response in mammals, 835–836</td>
<td>835–836</td>
</tr>
<tr>
<td>UV response in mammals, 834–835</td>
<td>834–835</td>
</tr>
<tr>
<td>NFI gene, human</td>
<td>1021</td>
</tr>
<tr>
<td>NF2 gene, human</td>
<td>1021</td>
</tr>
<tr>
<td>NOXA protein</td>
<td>850</td>
</tr>
<tr>
<td>apoptosis, 853</td>
<td>835–836</td>
</tr>
<tr>
<td>ataxia telangiectasia, 924</td>
<td>835–836</td>
</tr>
<tr>
<td>ionizing radiation response in mammals, 835–836</td>
<td>835–836</td>
</tr>
<tr>
<td>UV response in mammals, 834–835</td>
<td>834–835</td>
</tr>
</tbody>
</table>
Oligonucleotide excision, nucleotide excision repair, 339
Oligonucleotide fragments, 228
Oligonucleotide-binding fold, 54, 205, 208, 283
Ommen syndrome, 935
Omp proteins, E. coli, 471, 497
Oncogene, 627
orgC gene, E. coli, 481
oriC site, 574
oriC-independent DNA replication, 594, 603
Origin recognition complex, S. cerevisiae, 771
Osimum tetroxide, 82
Oxazolopyridocarbazole, 395
Oxidative damage, 10, 16–23, 34–35, 46, 386
aging and, 1030
alternative excision repair, 386–387
cellular defenses against, 21–22
mismatch repair, 429
mtDNA, 451–454, 456
repair in Cockayne syndrome, 903
senescence and, 854
oxerodera pigmentosum, 872–873
Oxidative stress
ataxia telangiectasia, 923
Down syndrome, 1034
Fanconi anemia, 989
S. cerevisiae, transcriptional response, 826
UV response, 555
8-OxoA, 22, 190
8-Oxo-dATP, 189
8-Oxo-dGTP, 555
control of effects of, 187–189
incorporation into DNA, 25
mtDNA, 452–456
oxidation products, 555
premutagenic lesion, 555
repair, 903
8-OxoG-DNA glycosylase, 172
2-Oxoglutarate oxygenase, 158
8-Oxo-GMP, 189
8-Oxo-GTP, 189
8-Oxoguanosine, 87
Oxygen effect, 28
Oxygen paradox, 16
Oxygen radicals, see Reactive oxygen species
oXr regulon, 22

P
p14ARF oncogene, 788
p21 protein
G2/M arrest, 799–801
G2/S arrest, 791–793
knockout mice, 793
mammalian, binding to PCNA, 338
senescent cells, 855
transcriptional response to DNA damage, 903
UV response, 834
p34 protein, 797
p38 protein, 832, 853
p53 gene, 14, 156
cancer cells, 856–857
hot spot, 628–629
human
heterozygotes, 1059–1060
mutations, 82, 1068
mouse, 84
skin cancer, 82, 627–629, 638, 877–878
p53 protein, 421, 428
accumulation in Bloom syndrome, 960
acetylation, 790
activation after UV exposure, 769
adaptation in multicellular eukaryotes, 847
apoptosis, 850–853
cell cycle checkpoint arrest, 759
DNA repair, 803
functions, 786
G1/M arrest, 799–801
G2/S arrest, 791, 793
homologous recombination, 803
interacting partners, 790–791
Li-Fraumeni syndrome, 1006–1007,
1064–1066
mitochondrial, 851–852
NEDDylation, 788
paralogs and orthologs, 852
phosphorylation, 788–790
post-translational regulation, 786–790
radioadaptation, 837
regulation by MDM2, 787–788, 793
regulation of nucleotide excision repair, 829–830
regulation of ribonucleotide reductase, 819
repression by, 829
senescent cells, 855
structure, 786
sumoylation, 788
target of checkpoint pathways, 785–791
as transcription factor, 828–830, 835,
850–851
cell fate decisions, 851
transcriptional activator, 786, 799–801
ubiquitination, 787–788, 790
p53-inducible genes, 851
p63 protein, apoptosis, 852
p73 protein, apoptosis, 852
PAG608 protein, 851
Pancyclopin, Fanconi anemia, 987
Papillary renal cell carcinoma, hereditary,
1002, 1020
Paraganglioma and phaeochromocytoma, hereditary, 1002
Paranemic joints, 578
Parquat, see Methyl viologen
PARPi gene, human, polymorphisms, 1067
Parp1 gene, mouse, 921
Partial-loss-of-function mutation, 73
Pathogenic bacteria
mismatch repair, 424
SOS response, 496–497
PCNA, see Proliferating-cell nuclear antigen
Pds protein, S. cerevisiae, 801
Penetration, 1056–1057
Pentoxifylline, 857
Pepididyl-propyl isomerase, phosphorylation of p53 protein, 789
Per1 gene, mouse, 131
Peroxidase, 21
Peroxiredoxin, 21–22
Peroxynitrite anion, 19, 22

O
oat* gene, E. coli, 146, 153
Oculotrichodysplasia, 910
Odds ratio, 1057
OGG1 gene
human, 56, 172, 903
mammalian, 453–456
S. cerevisiae, 172
Ogg1 gene, mouse, 190–191
OGG1-DNA glycosylase, 202, 903
helix-hairpin-helix motif, 190
human, 191
knockout mice, 190–191
reaction catalyzed, 190
removal of 7,8-dihydro-8-oxoguanine, 190–191
ogt* gene, E. coli, 151–152
Okadaic acid, 342
PERP protein, 850–851
Peutz-Jeghers syndrome, 1003, 1015–1016
Pfeiffer syndrome, 1027
Phage, SOS mutator effect, 535
Phage 480, induction, 486
Phage-dX174, SOS mutator effect, 535
Phage 434, repressor protein, 54
Phage λ, prophage induction, 465–466
recombination, 417
repressor protein, 52
UV-irradiated, 465–466, 510–511
Phage M13, SOS mutator effect, 535
Phage T2, UV-inactivated, 193
Phage T4, repressor protein, 54
Phage 434, repressor protein, 54
Phage M13, SOS mutator effect, 535
Phage 480, induction, 486
repressor protein, 52
recombination, 417
repressor protein, 52
UV-irradiated, 465–466, 510–511
Pharmacogenomics, 1067
Phage T2, UV-inactivated, 193
Phage T4
den V protein, 50, 882
mutagenesis, 75
pyrimidine dimer-DNA glycosylase, 193–196
UV-inactivated, 193
Pharmacogenomics, 1067
Phenazine methosulfate, 201
Phenotype, 72
Phorbol-12-myristate-13-acetate, 156
Phosphatidylinositol 3-kinase family, 719, 735, 760–762, 781
3′ Phosphodiesterase, 170
Phosphorylation
BRCAl protein, 682, 797
histones, 735–736
p53 protein, 788–790
Phototransition antenna, 119
Photoblinking technique, 334–335
Photocatalyst, 119
Photodynamic effect, 34
Photolyase/cryptochrome genes, 112
(6-4) Photoproduct, 30, 247
Photoreactivation, 107–111, 128–131
as premutagenic lesion, 529–530, 639
distribution in chromatin, 48–49
handling by bypass polymerases, 638–639
lacI gene, 32
mtDNA, 452
nucleotide excision repair in eukaryotes, 274
photoroactivation, 107–112, 128–131
as premutagenic lesion, 529–530
simian virus 40 DNA, 32–33
UV irradiation of mammalian cells, 624
UV radiation, 32–33
xeroderma pigmentosus cells, 869
(6-4) Photoproduction-DNA photolyase, 112, 127–130
active form, 131
chromatin, 128–129
C-terminal region, 129
D. melanogaster, 128
in different kingdoms, 131
DNA substrate recognition, 121–123
e. coli, 121–123
electron transfer, 121–123
homologs, 131
mechanism of action, 129–130
oxetane intermediate, 131
phylogenetic relationships, 132
ubiquitous nature, 128–129
X. laevis, 129, 131
zebrafish, 129
photoreactivation, 109–112, 227, see also
(6-4) Photoproduction-DNA photolyase; Pyrimidine dimer-DNA photolyase
discovery, 110–112
enzymes that catalyze, 112
RNA, 133
Phox protein, 51, 882
phox protein, 50, 882
photoreactivation, 109–112, 227, see also
(6-4) Photoproduction-DNA photolyase; Pyrimidine dimer-DNA photolyase
discovery, 110–112
enzymes that catalyze, 112
RNA, 133
photoreversal, 194
direct, 110
indirect, 110
sensitized, 110
Photosensitization, 34–35
Photosensitizer, 35
PhtO gene, E. coli, 114, 118, 479
PHR1 gene, S. cerevisiae, 123–124, 820
regulators, 124–125
transcriptional regulation, 123–124
Phylogenetic relationships, photolyases, 132
PIBDS syndrome, 908–909
PIDD protein, 853–856
PJS gene, human, 1015–1016
Plants
blue-light receptor genes, 131
nucleotide excision repair, 280–281
pyrimidine dimer-DNA photolyase, 127
Plasmid, with DNA damage, nucleotide excision repair by host cells, 273–274, 318–319
Plasmid pKM101, 77, 513–514, 517, 542
Plasmid-based assays, double-strand break repair, 668–670
Pleiotropic mutation, 72
Plurabagin, 201
PML body, 593, 961
Pms genes, mouse, 84–85, 987
PMS1 gene
human, 982–984, 1060
S. cerevisiae, 398, 404–405, 417, 419, 427, 823, 982
PMS1 protein
human, 768
mammalian, 406
Pms1 protein, S. cerevisiae, 404, 425
PMS2 gene, human, 983–984, 1060
PMS2 protein, human, 768
Poikiloderma, 698
Point mutation, 73
SOS mutator effects, 494
POL2 gene, S. cerevisiae, 337
POL32 gene, S. cerevisiae, 638
polA gene, E. coli, 140, 182, 229, 234, 249, 397, 495–496, 494, 604
polAex, 252
polE gene, E. coli, 252, 479–480, 487, 491–492, 495–496, 543, 552
polC gene, E. coli, 252
POLH gene, human, 1061
PolK gene, mouse, 637
Polo-like kinase
Cdc5, 801
PLX1, 801
POLQ gene, mouse, 696
Poly(ADP-ribose) polymerase (PARP), 1030
apoptosis, 849–850
base excision repair, 210–213
PARP1, 208, 211–214, 719, 738, 849–850, 921
DNA damage sensor, 768
PARP2, 208, 211, 738
single-strand break repair, 738
sister chromatid exchange formation, 961
Poly(ADP-ribosylation), inhibitors, 212
Polycyclic aromatic hydrocarbons, 43–44, 1062
Polymerase chain reaction (PCR)
detection of NER at nucleotide resolution, 270–271
ligation-mediated, assay of nucleotide excision repair, 270–271
quantitative, assay of nucleotide excision repair, 258, 270
sequencing primed target genes, 81–82
Polymorphisms, see DNA polymorphisms
Polynucleotide kinase, 208, 723, 738
Polynucleotide kinase phosphatase, base excision repair, 210–211
PolyPhen (algorithm), 1067
Post-meiotic segregation, 402, 417
Postnatal development, 7
Post-replication repair, 586, 642
interstrand cross-link repair, 57, 692–693, 696
Post-replicative gap filling, 4
Post-switching segregation, mating type in yeast, 402–403
ppGpp, 489
Prxl gene, mouse, 21
Premature aging, see also specific syndromes
progeroid syndromes, 23, 1029, 1032–1034
Premature centromere separation, 1023–1024
Premutagenic lesion, 72, 85–86
O²-alkylguanine, 554
O²-alkylthymine, 554–555
AP sites, 530–532
complex
affecting both strands of DNA, 533
closely spaced opposing photoproducts, 532–533
cyclobutane pyrimidine dimers, 525–529
identification, 525–532
O³-methylguanine, 554
8-oxoG, 555
(6-4) Photoproduction, 529–530
Prerelaxation complex, 793
Presynapsis, Rad51 protein of S. cerevisiae, 123–124, 820
priA gene, E. coli, 485–486, 595, 604
limited viability of mutants, 595, 597
PriA protein, E. coli, 596, 600–603
oriC-independent replication, 594
restart of relaxed replication fork, 603
restart primosome, 595
PriB protein, E. coli, 595–596
PriC protein, E. coli, 595–596
Primer-template misalignment, 99–100
Primosome, 595
restart, 595
Procarbazine, 36, 428–429
homologous pairing and strand exchange, 578–579
homologs, 577
in mitochondria, 457
in other bacteria, 497–498
inducible replisome reactivation/repli-
cation restart, 603–605
induction, 471, 585
interaction with DNA polymerase V, 545–546
maintaining integrity of replication fork, 594
N-terminal domain, 574
oriC-independent replication, 594
recombination reactions, 574–579
regulation of RecA-mediated cleavage, 488–489
repair of daughter strand gaps, 578
replication fork regression, 598–600
SOS-dependent mutagenesis, 514–515, 535
structure, 574
structure-function relationships, 577–578
translesion DNA synthesis, 542
recA gene, E. coli, 202, 585
RecBCD nuclease/helicase
homologous recombination, 574, 580
processing double-strand breaks, 483
recC gene, E. coli, 585
recF gene, E. coli, 577, 585, 594, 601, 604
RecF protein, E. coli, 570
daughter strand gap repair, 590
homologous recombination, 574
RecA-ssDNA nucleoprotein filament for-
mation, 576–577
recG gene, E. coli, 583, 601
RecG helicase, 952–953
RecG protein
E. coli, 257, 597
daughter strand gap repair, 590
homologous recombination, 583–584
replication fork regression, 598–599
T. maritima, 584
recJ gene, E. coli, 202, 585, 594, 601
RecJ nuclease, 400–403
homologous recombination, 581
recK gene, E. coli, 479, 481, 487, 490, 496, 585
recO gene, E. coli, 600, 604
RecO protein, E. coli, 596
RecA-ssDNA nucleoprotein filament for-
mation, 576–577
Rec-less DNA degradation, 594
recQ gene, E. coli, 594, 601, 953–954
RecQ helicase
arginine finger, 948–949
association with topoisomerases, 954
B. stearothermophilus, 949–950
biochemistry, 947–953
BLM gene product, 958–960
crystal structure, 949–950
defects in human hereditary diseases, 947–978
E. coli, 948, 953–954
fluorescence resonance energy transfer study, 950–952
heterozygous cells, 1061
homologous recombination, 581, 685
model organisms, 953–954
RecA-type fold, 948
WRN protein, 966–967
yeast homologs, 954
RECQL4 gene, human
RAPADILINO syndrome, 968–969
Rothmund-Thomson syndrome, 968–969
RECQL5 gene, human, 968
RecR gene, E. coli, 594, 601, 604
RecR protein, E. coli, 596
RecA-ssDNA nucleoprotein filament for-
mation, 576–577
Regulation of RecA-mediated cleavage reactions, 488–489
Recombination, 5
Bloom syndrome, 958
ERCC1-XPF complex, 287
homologous, see Homologous recombi-
nation
mismatch repair and, 416–422
in highly homologous sequences, 416–417
in substantially divergent sequences, 417–422
Rad1-Rad10 complex, 286–287
Recombination proteins, stabilization and recovery of arrested/collapsed replication for-
k, 593–598
Recombinational repair, 5, 569–612
Recombination proteins, stabilization and recovery of arrested/collapsed replication for-
k, 593–598
Recombinational repair, 5, 569–612
daughter strand gaps, 586–593
double-strand breaks, 584–585
E. coli, 584–585
mtDNA, 457
Recombination-dependent DNA replica-
tion, 594
REF-1 protein, 790
Rem phenotype, rad3 mutants of yeast, 298
Remote carcinogenesis, 41
Renal cell carcinoma, hereditary papillary, 1002, 1020
Rep helicase, E. coli, 595, 950, 952
Repair synthesis, 25, 169, 251–252
cell extracts, 319
DNA in nucleosomes, 319
measurement, 258–260
nuclear excision repair in eukaryotes, 267–270, 336–339
patches visualized by electron microscopy, 319–320
repair patch size, 251
xeroderma pigmentosum, 870–871, 874
Repairsome, 334
Replicative DNA, nucleotide excision repair, 358
Replication, see DNA synthesis
Replication factor C, see RFC protein
Replication factory, 592
Replication fidelity, 24–25
Replication fork, 146, 214, 413, 770–771
arrested/collapsed, 570–571
cells not exposed to DNA-damaging agents, 597
evidence for regression, 597–598
homologous recombination in stabi-
zation and recovery, 593–598
lesion affecting one strand of DNA template, 599–602
mechanism for regression, 598–603
arrested/stalled, 571
blockage by RNA polymerase, 573
blocked, 569–612
collapsed, 570
encounters with damaged DNA
formation of complex DNA structures, 570–574
generation of double-strand breaks, 570–574
generation of single-strand gaps, 570–571, 586
lesions in double-stranded templates, 571–572
lesions in single-stranded templates, 571
fork catastrophe, 796
Mac1/Rad53-dependent stabilization, 796
regressed
access of repair system to lesion, 599–601
lesion affecting both strands of DNA template, 602–603
nonmutagenic mechanisms for restart-
ing, 599–603
template switch mechanism, 601–602
regression, 4, 6, 571, 594–595
relationship of DNA lesions to, 591
Replication fork regression, 4, 6, 571, 594–595
Replication protein A, see RPA protein
Replication restart, 573, 603–605
Replication-coupling assembly factor, 358
Replication initiation, mammalian cells, 618–619
Repilosome, 550
inducible replisome reactivation/
replication restart, 573, 603–605
Reprimo gene, 801
Resolvase, 665
eukaryotes, 685–687
Resolvase A, 686
Respiration arrest, SOS response, 496
Restart prinosome, 595
Restriction endonucleases, 55
SOS response and, 495–496
Restriction-enzyme analysis, pyrimidine
dimer-DNA photolyase, 114
Restriction fragment length polymor-
phisms, human genetic variation, 1050
Restriction point, 791
Retinoblastoma (RB), 1001, 1003–1006,
1088
chromosome instability, 1004
mouse model, 1005–1006
Retinoic acid receptor, 176, 326
Retrovirus, defense against, 13–14
REV1 gene, S. cerevisiae, 823
Rev1 protein, S. cerevisiae, 509, 539,
631–632, 638–639
REV3 gene, S. cerevisiae, 629–631, 693, 823
Rev3 protein, S. cerevisiae, DNA polymerase 1, 629–631, 639
REV7 gene, S. cerevisiae, 629–631
Rev7 protein, S. cerevisiae, DNA polymerase 1, 629–631
S. cerevisiae
INDEX

mitochondrial, 455
Shuttle vector
analysis of mutagenesis in mammalian
cells, 79–81
episomal, 81
integrated, 81
mutational spectra of UV-induced
lesions, 622
reactivation, 621–622
transiently replicating, 80–81
SIFT (algorithm), 1067
Signal joint, V(D)J recombination, 712–714
Signal peptidase, 475–477
Signal joint, V(D)J recombination, 712–714
Signal transduction, 6
cell cycle checkpoints, 758
Signalosomes, 902–903
Silent mutation, 73
Single-end invasion intermediate, 425
Single-nucleotide polymorphisms
detection
MassEXTEND, 1054
mismatch repair detection, 1054–1055
oligonucleotide arrays, 1052–1054
stabilized double-D-loop method,
1054–1056
TDG/MutY glycosylase mismatch
method, 1054
DNA repair genes, 1062
human genetic variation, 1051–1052
Single-strand annealing, 663, 665, 688–689
Single-strand break(s), 665
radiation-induced, 27–28, 162
recombinogenic effect, 667
repair by direct rejoicing, 162–163
sources and significance, 737–738
Single-strand break repair, 4–5, 737–739
poly(ADP-ribose) polymerase, 738
XRCC1 protein, 738–739
Single-strand gap
generation at replication fork, 570–571, 586
repair, 509
Single-strand invasion, 665
Single-stranded DNA (ssDNA)
cell cycle checkpoint arrest, 759
RecA-ssDNA nucleoprotein filaments,
464–465, 474, 477–478, 518, 542,
545–546, 575–577
SOS induction, 483–485
undamaged cells, 485
Single-stranded-DNA-binding proteins, 54,
397, 402–403, 596
interaction with DNA polymerase V,
545–546
oligonucleotide/oligosaccharide-binding
fold, 54
replication protein A, 282–284
Singlet states, 34
Sir proteins, S. cerevisiae, 717
SIR2 deacetylase, 790
Sister chromatid(s), repair involving, 681
Sister chromatid cohesion, 730, 1025
Sister chromatid exchange, 868
Bloom syndrome, 954–956, 958, 961–962, 1061
Site-specific adduct, 85–86
Site-specific double-strand breaks, 668–669
Sjögren-Larsson syndrome, 910
Skin cancer, 161, 1064–1065
p53 gene in, 627–629, 638, 877–878
predisposition syndromes, 1016–1018
transcription syndromes, 913
xeroderma pigmentosum, 627, 866–868,
882, 913, 1017
Xpa mouse, 883
Xpc Tyr5 mouse, 885–886
SMAD4 gene, human, 1014
Small acid-soluble proteins, 133–134
SMC proteins, 733, 802
cohesins, 681
SMC1 gene, vertebrates, 796–797
Sm1 protein, S. cerevisiae, 819
SMO gene, human, 1018
SMUG1 DNA glycosylase, 172
SMUG1 gene, human, 172
SNM genes, S. cerevisiae, 693
homologs in higher eukaryotes, 696
SNM1 protein, mammalian, 782
Smn1 protein
mouse, 721
yeast, 721
Sod2 gene, mouse, 1030
Sodium bisulfite, 12
Somatic hypermutation, 14, 429–430,
639–642
DNA repair and, 641
Somatic mutation
aging and, 854
significance of DNA damage for, 641–642
translesion synthesis and, 641
Somatic recombination, Bloom syndrome,
958
SOS box, 230, 464, 471, 490
LexA binding, 472–473
strength and location, 486–487
SOS chromostest, 497
SOS genes, 230, 478–481
detection of genotoxic agents, 497
identification
expression microarray analysis, 479–481
searching for LexA-binding sites, 479
use of fusogens, 478–479
plasmid-encoded gene, 479
SOS mutator effect, 494
cells not exposed to exogenous DNA-
damaging agents, 543
chromosomal loci, 534–535
F’ plasmid, 534–535
single- and double-stranded phages, 535
SOS system, 248, 250, 252, 383, 463
B. subtilis, 498
E. coli, 463–497
bacterial persistence, 497
destabilization of genome, 492–495
double-strand breaks processed by
RecBCD nuclease/helicase, 483
essential elements, 469–478
fully induced, 489–490
fully repressed, 489–490
generation of inducing signal in vivo,
481–486
genetic studies, 465–469
increased excision of transposable ele-
ments, 493–494
increased transposition, 493–494
indirect induction, 484, 491
induced responses, 465–466
induction by ssDNA, 483–485
induction during replication of dam-
aged DNA, 484–485
induction of cell cycle checkpoints,
495
induction of RecA protein, 471
LexA cleavage, 472–476
LexA protein binds to SOS boxes,
472–473
maintenance of genome integrity,
491–492
model for transcriptional control,
464–465
modeling SOS signal, 486
mutations in stationary-phase/aging
cells, 494
phase δ80 induction, 486
physiological considerations, 465–469,
489–496
post-translational control, 491
proteolytic cleavage of λ repressor,
470–471
respiratory arrest, 496
restriction endonucleases and,
495–496
similarities between LexA, λ repressor,
UmuD, and signal peptidase,
475–477
stimulation of interspecies mating in
cells, 494–495
umuDC genes, 513
gram-negative bacteria, 497–498
induction, 490
by mutations that affect DNA process-
ing, 485–486
M. tuberculosis, 498
pathogenic bacteria, 496–497
split phenotypes, 490
SOS-dependent mutagenesis
bacterial, 511
biological significance, 551–553
DNA polymerase III, 526–527
in vitro system, 537–538
induction, 510–511
mechanism, 522–539
mutational spectra, 523–535
post-translational regulation of UmuD,
514–523
RecA protein, 514–515, 535
RecA-mediated cleavage of UmuD,
516–517
requirements for particular gene prod-
ucts, 510–523
site-directed adduct studies, 523–535
SOS-induced DNA polymerase, 543–544
translational regulation of UmuD,
517–518
two-step model, 537
UmuD and UmuC protein, 511–514, 518
SOS-independent mutagenesis, 554–555
soxRS regulon, 22
SP lyase, B. subtilis, 134
SPI protein, ionizing radiation response in
mammals, 835
Spdl1 protein, 302
Speciation, mismatch repair in, 422
Spi” gene, B. subtilis, 134
Spi+ selection, 83–84
Spinocerebellar ataxia with axonal neu-
ropathy, 47, 387, 935–937, 1087
Split phenotypes, SOS response, 490
INDEX

Transcription syndromes, 909–910
allele-specific and gene dosage effects, 912–913
skin cancer, 913
Transcriptional regulation, 753
Ada protein, 146–150
SOS response, 464–465
Transcriptional response to DNA damage, 817–844
analysis of individual genes, 817–818
cell cycle checkpoints and, 823, 826
differential screening, 818
mammals
ionizing radiation, 835–837
radioadaptation, 846–847
transcription factors, 835–836
pathway inducibility, 817
S. cerevisiae, 818–828
base excision repair, 821
checkpoint pathway, 823, 826
DDR checkpoint pathway, 823, 826
DNA polymerase η, 632–636
DNA polymerases, 539–543, 638
handling of AP sites, 639
handling of photoproducts, 638–639
handling of spontaneous DNA damage, 638–639
induction, 510–511
interstrand cross-link repair, 692–693
protein-protein interactions that control, 543–551
replicative polymerases, 638
somatic hypermutation and, 641
UV-irradiated mammalian cells, 620–621
transcription syndrome, 909–910
Tumor suppressor gene, 627
Tumorigenesis, 604
Ultimate carcinogen, 42
UmbC gene, 820
Um6 protein, S. cerevisiae, 820
UmuC gene, E. coli, 511–514
homologs on pKM101, 513–514
isolation and characterization of mutants, 512
phenotype of mutants, 512–513
UmUC protein, E. coli
in DNA damage checkpoint, 519–520
inhibition of homologous recombination, 518
post-translational control, 521–523
purification, 537–538
related proteins in three kingdoms of life, 538–540
SOS control, 513
SOS-dependent mutagenesis, 511–514
UmuD gene, E. coli, 511–514
homologs on pKM101, 513–514
isolation and characterization of mutants, 512
phenotype of mutants, 512–513
UmuD protein
E. coli, 465, 491, 496
autodigestion, 491
in DNA damage checkpoint, 519–520
inhibition of homologous recombination, 514
inducible replisome/repllication restart, 604
interaction with DNA polymerase III, 548–549

U
UBC13 gene, S. cerevisiae, 822
Ubc13 protein, S. cerevisiae, 645
UBI14 gene, S. cerevisiae, 642, 822–823
Ubiquitin, 294, 822
Ubiquitin ligase, 367
E2, S. cerevisiae, 642–644
E3, 300–302, 331, 342, 683, 754, 788, 809
parkin-like, 787–788
Ubiquitination
BRCA1 protein, 683
MMs2-Ubc13-Rad5 system, 645
p53 protein, 787–788, 790
PCNA, 647–649
RNA polymerase II, 900–901
Ubiquitination pathway, 340–342
Ubiquitin-conjugating enzyme variant proteins, 645
UBR1 gene, S. cerevisiae, 642
UCN01, 857
UDP-glucuronosyltransferase, 41
u-gene reactivation, 193
ugi-gene, PBS phage, 179–180
Ultimate carcinogen, 42
UME6 gene, S. cerevisiae, 124
Ume6 protein, S. cerevisiae, 820
umuC gene, E. coli, 511–514
homologs on pKM101, 513–514
isolation and characterization of mutants, 512
phenotype of mutants, 512–513
UmUC protein, E. coli
in DNA damage checkpoint, 519–520
inhibition of homologous recombination, 518
post-translational control, 521–523
purification, 537–538
related proteins in three kingdoms of life, 538–540
SOS control, 513
SOS-dependent mutagenesis, 511–514
umuD gene, E. coli, 511–514
homologs on pKM101, 513–514
isolation and characterization of mutants, 512
phenotype of mutants, 512–513
UmuD protein
E. coli, 465, 491, 496
autodigestion, 491
in DNA damage checkpoint, 519–520
inhibition of homologous recombination, 514
inducible replisome/repllication restart, 604
interaction with DNA polymerase III, 548–549
INDEX

Umud protein, (continued)
post-translational regulation, 514–523, 551
SOS control, 513
SOS-dependent mutagenesis, 511–514
structurally related proteins, 475–476
structure of Umud and Umud', 520–521
translation regulation, 517–518
Umud', 515, 517–518
Umud' inhibition of homologous recombination, 518
S. marcescens, 517

umuDC operon, E. coli, 479, 487–488, 490–492, 494–495, 497, 535–539

induction for SOS mutagenesis, 518
replication restart, 603
SOS control, 513
UmudDC protein, E. coli, 535–539

translesion DNA polymerase, 540–542
UNG gene, human, 172, 175
ung' gene, E. coli, 12, 172–173, 175
UNG1 gene, S. cerevisiae, 172

Unscheduled DNA synthesis, see Repair synthesis

Untargeted mutation, 72
UV irradiation of mammalian cells, 622
UV irradiation of S. cerevisiae, 616
Upstream activating sequence, 820
Upstream repressing sequence, 820–821
Uracil, in DNA, 9–14, 385
folate metabolism and, 432
from deamination of cytosine, 9–14, 432
innoculation promoters, 233–234
interstrand cross-link repair, 691–692
recognition, 248
formation in treated cells, 616–620
specificity of induced lesions, 622–629
UV radiation-induced mutagenesis
mammalian cells, 617–629
chromosomal genes, 625–627
cyclobutane pyrimidine dimers, 624
DNA polymerase ζ, 631
hot spots, 624
Hprt1 gene, 625–626
inducibility of mutagenic process, 621–622
mutator index in S phase, 617–618
nucleotide excision repair and, 624–625
(6-4) photoproducts, 624
replication in treated cells, 616–620
specificity of induced lesions, 622–629
targeted mutations, 622–623
transition mutations, 623–624
translesion synthesis, 620–621
untargeted mutations, 622
rodent cells, 626–627
S. cerevisiae, 613–617
photoproducts at defined sites, 615
SUP4-o system, 613–615
timing and regulation, 616–617
untargeted mutagenesis, 616
two-hit kinetics, 468
UV response, mammalian, 831–835
AP-1 and, 831–832, 834
cytosolic vs. DNA damage signals, 834–835
immediate-early response genes, 831
intermediate-response genes, 831
NK-xB, 834–835
signals originating in cell membrane, 832–834
slow-response genes, 831
UVDE endonuclease
N. crassa, 386
S. pombe, 383–386
substrate specificity, 385
UVDE-like endonuclease, mitochondrial, 454
uvrA gene, S. pombe, 384–386
UvE1 protein, S. pombe, 456–457, 820
UVM response, E. coli, 555
UV-mimetic, 896
uvrA' gene
B. subtilis, 493, 586–587, 591

D. radiodurans, 254
E. coli, 229–230, 479, 486–487, 490–492, 601

UvrA protein
B. subtilis, localization within cells, 255
E. coli, 230–233, 343
aminoglycoside sensitivity, 230–231

ATP binding, 232

ATPase activity, 230–231
binding of dimer to DNA, 232–233

binding to various types of base damage, 233
dimerization, 232
DNA helicase activity of (UvrA)_2UvrB, 241, 243
DNA-binding protein, 230–232

helix-turn-helix motif, 230–232
interaction with UvrB, 238
loading UvrB on damaged DNA, 240
molecular matchmaker, 238–239
nucleotide excision repair, 228–243

orthologs, 253–254
translocation of (UvrA)2UvrB complex, 241

(UvrA)2UvrB complex, 239–243
zinc finger motif, 230–232

UvrABC DNA damage-specific endonuclease, see UvrABC endonuclease
UvrABC endonuclease, 228, 484
cross-link recognition, 248
E. coli, 229–253
substrates, 247
interstrand cross-link repair, 691–692
uvrB' gene, E. coli, 229, 233–234, 484, 486–487, 490, 492

promoters, 233–234

UvrB protein
B. caldotenax, 235
crystal structure, 235–237
E. coli, 231, 234, 343
aminoglycoside sequence, 235
β-hairpin structure, 242
binding to DNA, 248
conformation change in DNA, 240
cryptic ATPase activity, 241, 243
damage-specific binding, 243
delivery to sites of DNA damage, 240
DNA helicase activity of (UvrA)2UvrB, 241, 243

homology to UvER, 234
interaction with UvrA, 238
monomer or dimer, 234–235
nucleotide excision repair, 228–253

orthologs, 253–254
protolytic cleavage site, 234
structure, 234
translocation of (UvrA)_2UvrB complex, 241
(UvrA)_2UvrB complex, 239–243
UvrBC complex, 244
UvrB-damaged DNA preincision complex, 239–240, 243
UvrB-DNA preincision complex, 239–240, 243, 248
T. thermophilus, 234–235
uvrC gene, vertebrates, 791–792
Vsr endonuclease, 431–433
VP16, 921
Viral probe, 438
Vinyl chloride, 176
VHL gene, human, 1020
Very-short-patch mismatch repair, 57, 62
Vertebrates, nucleotide excision repair, 228–253
orthologs, 247–254
UvrBC complex, 244
UvrD protein, E. coli, see DNA helicase II, E. coli
uvrY gene, E. coli, 491
UV-sensitive syndrome, 905–906, 1087
V(D)J recombination, 639–640, 718, 720, 724, 930, 935
antibody genes, 712–714
Xeroderma pigmentosum (XP), 82, 95, 267, 865–894, 979, 1087, see also XP/CS complex
X chromosomes, 868–874
clinical features, 868–874
repair of oxidative damage, 872–873
skin cancer, 872, 874
therapy, 872, 882
unexplained features, 881
variant form, 621, 696, 875, 1061
DNA polymerase η, 632–634
Xeroderma pigmentosum variant protein, 539
XP, see Xeroderma pigmentosum
XP/CS complex, 865, 876, 878, 906, 1087
allelic-specific and gene dosage effects, 912–913
cancer proneness, 913
clinical features, Color Plate 3
molecular defects, 1091–912
transcription syndrome, 909–910
XPA gene, human, 275, 279, 875–876, 881
mammalian, 281
Xpd gene, mouse, 883–884
XPA protein, mammalian, 281, 317, 326, 331–333, 336, 343, 360, 367
binding to DNA, 281–282
fluorescently tagged, 335
reconstitution of nucleotide excision repair, 322
XPG gene, human, 275–276, 279, 875–877, 881, 906–907, 911, 1034
trichothiodystrophy, 907, 909
mammalian, 298–299
XPB protein, mammalian, 317, 324–326, 336
phosphorylation, 343
XPC gene, human, 275, 279, 875, 877–878, 881, 906–907, 910, 911, 1034
polymorphisms, 1069–1071
mammalian, 293–294, 837
vertebrates, 830
Xpc gene, mouse, 884–886
spontaneous mutagenesis, 886
XPC protein, human, 294
mammalian, 292–296, 326, 333, 343, 363, 368–369
fluorescently tagged, 335
proteosomal degradation, 342
reconstitution of nucleotide excision repair, 322
XPC-RAD23B complex, 176, 295, 317, 328, 331–335, 356, 363
COPS syndrome, 905
polymorphisms, 1064–1069, 1071
trichothiodystrophy, 907, 909
mammalian, 296–298
Xpf gene, mouse, 886
XPD protein, human, 913
mammalian, 298, 317, 324, 326, 329
XPE gene, human, 275, 301, 875, 880
Xpg gene, mouse, 886
XPF gene, mammalian, 275, 279, 285–288, 875, 880–881
Xpg gene, mouse, 887
XPF protein, mammalian, 332
ERCC1-XPF enzyme, 286–287, 318, 326–327, 333–334, 336, 360
interstrand cross-link repair, 695
N terminus, 288
nuclease domain, 288–289
reconstitution of nucleotide excision repair, 322
sequence similarity to ERCC1 protein, 289
XPF protein, mammalian, (continued)
structural organization of XPF nuclease family, 289–290
XPF-like nucleases, 289–290
XPG gene
human, 275–276, 279, 875, 881, 906–907, 910–912
polymorphisms, 1066
mammalian, 292–293
isolation, 291–292
mutations, 292
Xpg gene, mouse, 887, 912
XPG protein
human, 912
reconstitution of nucleotide excision repair, 322
structure-specific nuclease, 282
XPV gene, human, 275, 633–634, 875
XRCC1 gene
human, 738, 1034
polymorphisms, 1064, 1067–1069
mammalian, 837
XRCC1 protein
base excision repair, 207–208, 211–214
single-strand break repair, 738–739
sister chromatid exchange formation, 961
vertebrates
activities, 678–679
targeted deletions, 678
XRCC2 protein, vertebrates, 677–679
XRCC3 gene, human, 1066, 1069
XRCC3 protein, vertebrates, 677–679
activities, 678–679
targeted deletions, 678
XRCC4 protein
nonhomologous end joining, 722–723
XRCC4 protein-ligase IV complex, 722–723
XRCC7 gene, mammalian, 719
XRCC9 gene, human, 991
Xrs2 protein, see also MRN complex
S. cerevisiae, 725, 729
xthA gene, E. coli, 198–200, 453, 532

Y
yaf genes, E. coli, 538
ydfM gene, E. coli, 487
ydfQ gene, E. coli, 243–247, 492
Yeast, see Saccharomyces cerevisiae, Schizosaccharomyces pombe
yeeF gene, E. coli, 481
Yin yang 1 protein, 788
Yku proteins, S. cerevisiae, 716–718
ysdAB gene, E. coli, 496

Z
Zinc finger domain
Ada protein, 147
UvrA protein, 230–232
Zinc hook, MRN complex, 734–735
Zip proteins, S. cerevisiae, 426