SECOND EDITION

DNA Repair and Mutagenesis
SECOND EDITION

DNA Repair and Mutagenesis

Errol C. Friedberg
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas

Graham C. Walker
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts

Wolfram Siede
Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas

Richard D. Wood
Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania

Roger A. Schultz
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas

Tom Ellenberger
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
DNA repair and mutagenesis / Errol C. Friedberg . . . [et al.].—2nd ed.
 p. cm.
 First ed. published in 1995, entered: Friedberg, Errol C.
 Includes bibliographical references and index.
 ISBN 1-55581-319-4
 1. DNA repair. 2. Mutagenesis. I. Friedberg, Errol C. II. Friedberg, Errol C.
 DNA repair and mutagenesis.

OH467.F753 2005
572.8'6459—dc22
2005045353

10 9 8 7 6 5 4 3 2 1

All rights reserved
Printed in the United States of America

Cover and interior design: Susan Brown Schmidler
Art rendering: Marty Burgin and Patrick Lane

Cover illustration: The MutS protein (red and white ribbon) is a sensor of mismatched base pairs in DNA (gold), coupling ATP turnover with mismatch recognition (1, 2). The disk-shaped MutS dimer encircles the bound DNA and stabilizes a sharp kink in the double helix. ATP binds to the dimer interface (bottom of figure) opposite the DNA and allosterically regulates DNA-binding affinity.

For Rhonda, Jan, Jenny, Enid, Lisa, and Mary
About the Authors

Errol C. Friedberg, MD, received his training as a medical student at the University of the Witwatersrand, Johannesburg, South Africa, and did postdoctoral training in pathology and in biochemistry at Case Western Reserve University, Cleveland, Ohio. Following 19 years on the faculty at Stanford University, he assumed his present position as the Senator Betty and Dr. Andy Andujar Distinguished Chair in Pathology at the University of Texas Southwestern Medical Center at Dallas in 1990. He is the author of DNA Repair and is the senior author of the first edition of DNA Repair and Mutagenesis. He also authored Cancer Answers—Encouraging Answers to 21 Questions You Were Always Afraid To Ask, Correcting the Blueprint of Life—an Historical Account of the Discovery of DNA Repair Mechanisms, and The Writing Life of James D. Watson, and he edited and annotated the work Sydney Brenner—My Life in Science. He is the recipient of the Rous-Whipple Award from the American Society of Investigative Pathology and is a Fellow of the American Academy of Microbiology. He has contributed over 300 papers to the scientific literature, mainly on biological responses to DNA damage.

Graham C. Walker, PhD, is a Professor in the Department of Biology at the Massachusetts Institute of Technology. He has worked in the area of DNA repair and mutagenesis for 30 years and also carries out research on the Rhizobium-legume symbiosis and its relationship to chronic Brucella pathogenesis. He has been named an American Cancer Society Research Professor for his contributions to basic research and an HHMI Professor for his contributions to undergraduate education. He has been elected to the American Academy of Arts and Sciences and to the American Academy of Microbiology. He served as the Editor in Chief of Journal of Bacteriology for 10 years and is a member of various editorial boards. Long active in undergraduate education, he was in charge of the undergraduate program in biology at MIT for 15 years, served as Housemaster of an MIT dormitory, was named a Margaret MacVicar Faculty Fellow for his undergraduate teaching, and has founded an HHMI Education Group. He has contributed over 250 papers to the scientific literature and is a coauthor of the first edition of DNA Repair and Mutagenesis.

Wolfram Siede, PhD, received his doctorate in microbiology from the University of Frankfurt, Frankfurt, Germany. He did his postdoctoral training in the Departments of Pathology at Stanford University and the University of Texas Southwestern Medical Center. In 1996, he became Assistant Professor in a joint appointment by the Department of Radiation Oncology and the Winship Cancer Institute at Emory University, Atlanta, Ga. He is currently Associate Professor and Graduate Advisor in the Department of Cell Biology and Genetics at the University of North Texas Health Science Center in Fort Worth. His research focus is on DNA repair, mutagenesis, and cell cycle regulation in yeast. He has published extensively on many aspects of eukaryotic DNA damage responses and is a coauthor of the first edition of DNA Repair and Mutagenesis.

Richard D. Wood, PhD, performed his graduate study in biophysics at the University of California, Berkeley, and obtained his PhD in 1981. This was followed by postdoctoral work at Yale University and at the Imperial Cancer Research Fund (ICRF) in the United Kingdom. After leading a research group at the Clare Hall Laboratories of the ICRF until 2001, he was appointed the Richard Cyert Professor of Molecular Oncology at the University of Pittsburgh. His research has focused on the molecular biology and biochemistry of DNA repair and mutagenesis. He is a recipient of the Meyenburg Prize for Cancer Research, an elected member of the European Molecular Biology Organization (EMBO), and a Fellow of the Royal Society.

Roger A. Schultz, PhD, performed his graduate training in an interdepartmental program in genetics at Michigan State University in East Lansing in 1980. Following postdoctoral work in the Department of Pathology at Stanford University, he assumed a faculty position at the University of Maryland at Baltimore in the Division of Human Genetics in the School of Medicine. He moved to the McDermott Center for Human Growth and Development and the Department of Pathology at the University of Texas Southwestern Medical Center at Dallas in 1993. He has focused his research interests on human diseases with relevance to genomic instability. He served as Director of the Chromosome 15 DNA Sequencing Project within the Genome Sciences and Technology Center at UT Southwestern, again with a focus on human genomic integrity. More recently, he has added a more clinical focus to his activities as Associate Director of the Veripath Clinical Cytogenetic Laboratory at UT Southwestern.

Tom Ellenberger, DVM PhD, was trained as a veterinarian at Iowa State University before pursuing graduate studies in molecular biology and pharmacology at Harvard Medical School. Following postdoctoral studies in structural biology at Harvard College, he joined the faculty of Harvard Medical School in 1993, where he is the Hsien Wu and Daisy Yen Wu Professor of Biological Chemistry and Molecular Pharmacology. His research interests are focused on the structural enzymology of DNA repair, replication, and recombination processes.

(Left to right) Tom Ellenberger, Rick Wood, Roger Schultz, Errol Friedberg, Wolfram Siede, Graham Walker
Contents

Preface xxv
Abbreviations xxix

PART 1
Sources and Consequences of DNA Damage 1

1. **Introduction: Biological Responses to DNA Damage** 3
 - Historical Reflections 3
 - The Problem of Constant Genomic Insult 4
 - Biological Responses to DNA Damage 4
 - DNA Repair 4
 - DNA Damage Tolerance and Mutagenesis 5
 - Other Responses to DNA Damage 6
 - Disease States Associated with Defective Responses to DNA Damage 6

2. **DNA Damage** 9
 - Endogenous DNA Damage 9
 - Spontaneous Alterations in DNA Base Chemistry 9
 - Mismatches Created by DNA Replication Errors 24
 - Environmental DNA Damage 25
 - DNA Damage by Radiation 25
 - Chemical Agents That Damage DNA 35
 - DNA Damage and Chromatin Structure 48
 - UV Photoprotect Formation Is Influenced by Chromatin Structure and Binding of Other Proteins 48
 - Chromosomal Structure and Bound Proteins Can Protect against DNA Damage in Bacteria 49
 - Detection of DNA Damage by Proteins 50
 - Structural Information Is Encoded in DNA 50
 - Binding to Single-Stranded DNA 54
 - Locating Sites of DNA Damage 55
 - Summary and Conclusions 57
3 Introduction to Mutagenesis 71

Mutations and Mutants: Some Definitions 71
Point Mutations and Other Classes of Mutations 73
Base Substitution Mutations 73
Mutations Resulting from the Addition or Deletion of Small Numbers of Base Pairs 74

Systems Used To Detect and Analyze Mutations 75
Early Systems for the Analysis of Mutagenesis 75
The Ames Salmonella Test: a Widely Used Reversion System 76
E. coli LacI: an Example of a Forward Mutational System 77
Other Examples of Forward Mutational Systems 78
Special Systems To Detect Frameshift or Deletion Mutations 78
Analysis of Mutagenesis in Mammalian Cells 79

Use of Site-Specific Adducts 85

Replication Fidelity and DNA Polymerase Structure 86
Templated Information in DNA 86
Energetics of Base Pairing 87
Geometric Selection of Nucleotides during DNA Synthesis 87
A Two-Metal-Ion Mechanism for DNA Synthesis 90
Open and Closed Conformations of DNA Polymerases 92
Importance of Base-Pairing Geometry versus Hydrogen Bonds 92
Selection against Ribonucleotides 93
Proofreading during DNA Synthesis 93
Lesion Bypass by Error-Prone DNA Polymerases 95
Conclusions about Replicative Fidelity 98

Mechanisms Contributing to Spontaneous Mutagenesis 98
Base Substitution Mutations Resulting from Misincorporation during DNA Synthesis 98
Mutations Resulting from Misalignments during DNA Synthesis 99

PART 2 Correcting Altered Bases in DNA: DNA Repair 107

4 Reversal of Base Damage Caused by UV Radiation 109
Direct Reversal Is an Efficient Strategy for Repairing Some Types of Base Damage Caused by UV Radiation 109

Enzymatic Photoreactivation of Base Damage Caused by UV Radiation 109
Not All Light-Dependent Recovery Effects Are Enzyme Catalyzed 110
Enzymatic Photoreactivation Was Discovered by Accident 110
Enzymes That Catalyze Photoreactivation of Cyclobutane Pyrimidine Dimers Are Members of an Extended Family of Blue-Light Receptor Proteins 112

Pyrimidine Dimer-DNA Photolyases 112
Distribution of Pyrimidine Dimer-DNA Photolyases in Nature 112
Measuring and Quantitating Pyrimidine Dimer-DNA Photolyase Activity 113
Properties and Mechanism of Action of Pyrimidine Dimer-DNA Photolyases 114
Structural Studies of Pyrimidine Dimer-DNA Photolyases 119
DNA Substrate Recognition and Electron Transfer by Photoproduct-DNA Photolyases 121
Pyrimidine Dimer-DNA Photolyases from Other Organisms 123
Therapeutic Use of Pyrimidine Dimer-DNA Photolyase for Protection against Sunlight 127

(6-4) Photoproduct-DNA Photolyases 128
(6-4) Photoproduct-DNA Photolyases Are Ubiquitous 128
Mechanism of Action of (6-4) Photoproduct-DNA Photolyases 129
The C-Terminal Region of (6-4) Photoproduct-DNA Photolyases Is Conserved 129
Reduced Dihydroflavin Adenine Dinucleotide Is the Active Form of (6-4) Photoproduct-DNA Photolyase 131
Photolyase/Blue-Light Receptor Family 131
Phylogenetic Relationships 132
Repair of Thymine Dimers by a Deoxyribozyme? 132
Photoreactivation of RNA 133
Reversal of Spore Photoproduct in DNA 133
Formation of Spore Photoproduct 133
Repair of Spore Photoproduct 134

5 Reversal of Alkylation Damage in DNA 139
Adaptive Response to Alkylation Damage in Bacteria 139
A Bit of History 139
The Adaptive Response Defined 140
Adaptation to Cell Killing and Adaptation to Mutagenesis Are Independent Processes 140
Repair of O^6-Alkylguanine and O^4-Alkylthymine in DNA 141
A New DNA Repair Mechanism 141
O^6-Alkylguanine-DNA Alkyltransferases of E. coli 142
Role of Ada Protein in the Adaptive Response to Mutagenesis 146
O^6-Alkylguanine-DNA Alkyltransferase II 150
DNA Alkyltransferases in Other Organisms 152
Repair of N1-Methyladenine and N3-Methylcytosine in DNA 157
$alkB^+$ Gene of E. coli 157
Therapeutic Applications and Implications of the Repair of Alkylation Damage in DNA 161
Genetic Polymorphisms in the O^6-MGMT Gene 162
Teleological Considerations Concerning the Reversal of Alkylation Base Damage in DNA 162
Repair of a Specific Type of Single-Stranded DNA Break by Direct Reversal 162
Summary and Conclusions 163

6 Base Excision Repair 169
DNA Glycosylases 169
Many DNA Glycosylases Are in the Helix-Hairpin-Helix Superfamily 171
Uracil-DNA Glycosylases Remove Uracil from DNA 173
Some DNA Glycosylases Remove Methylated Bases 180
Several Enzymes Function To Limit Oxidized and Fragmented Purine Residues 186
DNA Glycosylases That Remove Oxidized and Fragmented Pyrimidine Residues 191
Some Organisms Have Pyrimidine Dimer-DNA Glycosylases 192
Summary Comments on DNA Glycosylases 196
Apurinic/Apyrimidinic Endonucleases 197
Exonuclease III (XthA) Family of AP Endonucleases 198
Endonuclease IV (Nfo) Family of AP Endonucleases 200
Postincision Events during Base Excision Repair 202
Gap Filling and Deoxyribosephosphate Removal in E. coli 202
Gap Filling and Deoxyribosephosphate Removal in Mammalian Cells 203
Several Mechanisms Control the Fidelity of Base Excision Repair in Mammalian Cells 204
Structure and Mechanism of DNA Ligases 204
CONTENTS

Polynucleotide Kinase Phosphatase in Base Excision Repair 210
Poly(ADP-Ribose) Polymerases in Base Excision Repair 210
Sequential Interactions between Proteins in Base Excision Repair 213
Base Excision Repair and Chromatin 214

7 Nucleotide Excision Repair: General Features and the Process in Prokaryotes 227
Introduction to Nucleotide Excision Repair 227
 Historical Perspectives and Terminology 227
 Revised Nomenclature for Nucleotide Excision Repair 228
Nucleotide Excision Repair in E. coli 228
 UvrABC DNA Damage-Specific Endonuclease of E. coli 229
 Damage-Specific Incision of DNA during Nucleotide Excision Repair in E. coli 229
 Recognition of Base Damage during Nucleotide Excision Repair in E. coli 238
 DNA Incision Is Bimodal during Nucleotide Excision Repair In Prokaryotes 244
 A Second Endonuclease Can Catalyze 3’ DNA Incision during Nucleotide Excision Repair in E. coli 245
 Further Considerations about Nucleotide Excision Repair in Prokaryotes 247
 Postincisional Events during Nucleotide Excision Repair: Excision of Damaged Nucleotides, Repair Synthesis, and DNA Ligation 249
 Long-Patch Excision Repair of DNA 252
 DNA Ligation 253
 Miscellaneous Functions Possibly Associated with Nucleotide Excision Repair 253
Nucleotide Excision Repair in Other Prokaryotes 253
 Micrococcus luteus 253
 Deinococcus radiodurans 253
 Other Organisms 254
 Nucleotide Excision Repair Proteins Can Be Visualized in B. subtilis 254
 Nucleotide Excision Repair Occurs in Some Members of the Archaea 255
Coupling of Transcription and Nucleotide Excision Repair in E. coli 255
 mfd” Gene and Transcription Repair Coupling Factor 255
 Transcription Repair Coupling Factor Is Involved in Transcription Functions in the Absence of DNA Damage 257
Detection and Measurement of Nucleotide Excision Repair in Prokaryotes 257
 Excision of Damaged Bases 257
 Measurement of Repair Synthesis 258
Summary 260

8 Nucleotide Excision Repair in Eukaryotes: Cell Biology and Genetics 267
Cell Biology of Nucleotide Excision Repair in Eukaryotes 269
 Experimental Demonstration of Nucleotide Excision Repair in Eukaryotic Cells 269
 Kinetics of Nucleotide Excision Repair in Eukaryotic Cells 274
Genetics of Nucleotide Excision Repair in Eukaryotic Cells 274
 Mammalian Cells 274
 Genetics of Nucleotide Excision Repair in the Yeast S. cerevisiae 276
 Genetics of Nucleotide Excision Repair in Other Eukaryotes 278
Genes and Proteins Involved in Nucleotide Excision Repair in Eukaryotes 281
 Mammalian XPA and Its Yeast Ortholog RAD14 281
 Replication Protein A 282
 Budding Yeast RAD1 and RAD10, and the Mammalian Orthologs XPF and ERCCI 284
 Yeast RAD2 and Its Mammalian Ortholog, XPG 291
 Yeast RAD4, Mammalian XPC, and Their Association with Rad23 Homologs 292
9 Mechanism of Nucleotide Excision Repair in Eukaryotes 317

Biochemical Strategies for Dissection of the Nucleotide Excision Repair Mechanism 318

Nucleotide Excision Repair in Cell Extracts 318
Permeabilized Cell Systems Can Identify Factors Involved in Nucleotide Excision Repair 320
Microinjection of DNA Repair Factors 321
Reconstitution of Nucleotide Excision Repair Defines the Minimal Components 322
Nucleotide Excision Repair in Mammalian Cells Can Be Reconstituted with Purified Components 322
Reconstitution of the Incision Reaction of Nucleotide Excision Repair in \(S. \text{aerei} \) with Purified Components 323
TFIIH in Nucleotide Excision Repair: Creation of an Open Intermediate for Dual Incision 323
TFIIH Functions Independently in Nucleotide Excision Repair and in Transcription Initiation 323
TFIIH Harbors 10 Subunits and Two Enzymatic Activities 324
Core TFIIH Contains a Ring-Like Structure 325
TFIIH Performs Helix Opening in Transcription Initiation 325
TFIIH Performs Helix Opening during Nucleotide Excision Repair 326
Additional Functions of TFIIH 326

DNA Damage Recognition Mechanism in Nucleotide Excision Repair 327
Different Lesions Have Different Repair Efficiencies and Sites of Dual Incision 327
XPC-RAD23B as a Distortion Recognition Factor in Nucleotide Excision Repair 328
Bipartite Mechanism of DNA Damage Recognition during Nucleotide Excision Repair 328
Role of DDB Protein in Nucleotide Excision Repair 331

Mechanisms of Assembly and Action of the Nucleotide Excision Repair Machinery 331
Interactions between the Protein Components of Nucleotide Excision Repair 331
Nucleotide Excision Repair Subassemblies and Order of Action In Vitro 332
In Vivo Dynamics of Nucleotide Excision Repair 334

Repair Synthesis during Nucleotide Excision Repair 336
DNA Polymerases \(\delta \) and \(\varepsilon \) and Their Participation in Nucleotide Excision Repair 336
Proliferating-Cell Nuclear Antigen in Nucleotide Excision Repair 337
Replication Factor C in Nucleotide Excision Repair 338

Oligonucleotide Excision and Ligation in Nucleotide Excision Repair 339
Oligonucleotide Excision during Nucleotide Excision Repair in Eukaryotes 339
DNA Ligation during Nucleotide Excision Repair in Eukaryotes 339

DNA Topoisomerases and Nucleotide Excision Repair 339
Modulation and Regulation of Nucleotide Excision Repair in Eukaryotes 340
The Proteasome and Regulation of Nucleotide Excision Repair 340
Protein Phosphorylation Influences Nucleotide Excision Repair 342

Evolution of the Eukaryotic Nucleotide Excision Repair System 343
Eukaryotic and Prokaryotic Nucleotide Excision Repair Mechanisms Use Similar Strategies 343
Biochemical Pathway of \textit{E. coli} Methyl-Directed Mismatch Repair 396

DNA Mismatch Repair in Eukaryotes 402
 - Early In Vivo Evidence Suggesting the Existence of Mismatch Repair in Yeasts and Fungi 402
 - MutS and MutL Homologs in Eukaryotic Cells 403
 - Defects in Mismatch Repair Genes Are Associated with Hereditary Nonpolyposis Colon Cancer 406
 - In Vitro Analyses of Mismatch Repair in Eukaryotic Cells 406

Relationship of Structure to Function of Mismatch Repair Proteins 409
 - MutS Structure 409
 - MutH Structure 411
 - MutL Structure 412

Unresolved Issues Concerning the Mechanism of Mismatch Repair 413
 - Molecular Basis of Strand Discrimination during Mismatch Repair 413
 - How Are Downstream Events Signaled in Mismatch Repair? 413

Effects of DNA Mismatch Repair on Genetic Recombination 416
 - Effect of Mismatch Repair on Recombination between Highly Homologous Sequences 416
 - Effects of Mismatch Repair on Recombination between Substantially Diverged Sequences 417

Effects of Mismatch Repair on Speciation, Adaptation, and Evolution 422
 - Possible Role for Mismatch Repair in Speciation 422
 - Cyclical Loss and Reacquisition of Mismatch Repair Play a Role in the Evolution of Bacterial Populations 422
 - Effects of Mismatch Repair on Adaptive Mutagenesis 423
 - Special Implications of Mismatch Repair Status for Pathogenic Bacteria 424

Mismatch Repair and Meiosis 424
 - Roles for Mismatch Repair Proteins in Gene Conversion and Antirecombination during Meiosis 424
 - Roles for Mismatch Repair Proteins in Promoting Crossovers during Meiosis 424

Mismatch Repair Proteins and DNA Damage Recognition 427
 - Mismatch Repair Proteins and Alkylation Damage 427
 - Oxidative DNA Damage and Mismatch Repair 429
 - Cisplatin DNA Damage and Mismatch Repair 429
 - Mismatch Repair and Other Forms of DNA Damage 429

Roles of Mismatch Repair Proteins in Somatic Hypermutation and Class Switch Recombination in the Immune Response 429
 - Somatic Hypermutation 430
 - Class Switch Recombination 430
 - Are the Effects of Mismatch Repair Proteins on Somatic Hypermutation and Class Switch Recombination Direct or Indirect? 430

Mismatch Repair and Cadmium Toxicity 430

Specialized Mismatch Repair Systems 431
 - Very-Short-Patch Mismatch Correction in \textit{E. coli} Corrects G-T Mismatches Generated by Deamination of 5-Methylcytosine 431
 - Correction of G-T Mismatches Generated by Deamination of 5-Methylcytosine in Eukaryotes 433
 - MutY-Dependent Mismatch Repair 433

Repair of Mitochondrial DNA Damage 449

Mitochondrial DNA 449
 - The Mitochondrial Genome 449
 - Mitochondrial Mutagenesis 449
DNA Damage in the Mitochondrial Genome 451

Mitochondrial DNA Repair 451
Reversal of Base Damage in Mitochondrial DNA 452
Mitochondrial Base Excision Repair 452
Monitoring Loss of Damage from Mitochondrial DNA 453
Removal of Oxidative Damage from Mitochondrial DNA 453
Enzymes for Base Excision Repair in Mitochondrial Extracts 454
Short-Patch Base Excision Repair of Mitochondrial DNA 455
Age-Related Studies of Mitochondrial DNA Repair 455
Alternative Excision Repair Pathway in Mitochondria? 456
Recombinational Repair in Mitochondrial DNA? 457

Summary 457

PART 3
DNA Damage Tolerance and Mutagenesis 461

14 The SOS Responses of Prokaryotes to DNA Damage 463
The SOS Responses 463
Current Model for Transcriptional Control of the SOS Response 464
Physiological and Genetic Studies Indicate the Existence of the SOS System 465
Induced Responses 465
Genetic Studies of recA and lexA 466

Essential Elements of SOS Transcriptional Regulation 469
Proteolytic Cleavage of λ Repressor during SOS Induction 470
Induction of RecA Protein 471
LexA Protein Represses Both the recA+ and lexA+ Genes 471
LexA Protein Is Proteolytically Cleaved in a RecA-Dependent Fashion 472
Mechanism of LexA Repressor Cleavage 473
Similarities between LexA, λ Repressor, UmuD, and Signal Peptidase 476
Nature of the RecA Interactions Necessary for LexA, UmuD, and λ Repressor Cleavage 477

Identification of Genes in the SOS Network 478
Identifying SOS Genes by the Use of Fusions 478
Identifying SOS Genes by Searching for Potential LexA-Binding Sites 479
Identifying SOS Genes by Expression Microarray Analysis 479

Generation of the SOS-Inducing Signal In Vivo 481
Double-Strand Breaks Are Processed by the RecBCD Nuclease/Helicase To Give Single-Stranded DNA Needed for SOS Induction 483
Generation of Single-Stranded DNA by Bacteriophage, Plasmids, or Transposons Leads to SOS Induction 483
An SOS-Inducing Signal Is Generated when Cells Attempt To Replicate Damaged DNA 484
Regions of Single-Stranded DNA in Undamaged Cells 485
SOS Induction Caused by Mutations That Affect the Normal Processing of DNA 485
The Special Case of Phage φ80 Induction 486
Modeling the SOS Signal 486

Additional Subtleties in the Transcriptional Regulation of the SOS Responses 486
Strength and Location of SOS Boxes 486
DinI, RecX, and PsiB Proteins and isfA Affect SOS Regulation by Modulating RecA-Mediated Cleavage Reactions 488
Other Regulatory Systems Can Affect the Expression of SOS-Regulated Genes 489
Physiological Considerations of the SOS Regulatory Circuit 489
Levels of Control of the SOS Response besides Transcriptional Regulation 491
A Physiological Look at the SOS Responses 491
SOS-Induced Responses That Promote Survival while Maintaining the Genetic Integrity of the Genome 491
SOS-Induced Responses That Promote Survival while Destabilizing the Genetic Integrity of the Genome 492
SOS-Induced Responses That Destabilize the Genetic Integrity of the Genome 493
SOS-Induced Cell Cycle Checkpoints 495
Miscellaneous Physiological Effects of SOS Induction 495
SOS Responses in Pathogenesis and Toxicology 496
Relationships of the SOS Responses to Pathogenesis 496
Use of Fusions to SOS Genes To Detect Genotoxic Agents 497
SOS Responses in Other Bacteria 497

15 Mutagenesis and Translesion Synthesis in Prokaryotes 509
SOS-Dependent Mutagenesis: Requirements for Particular Gene Products 510
SOS Mutagenesis by UV Radiation and Most Chemicals Is Not a Passive Process 510
UmuD and UmuC Proteins Are Important for UV Radiation and Chemical Mutagenesis 511
Multiple Levels of Post-Translational Regulation of UmuD Protein: New Dimensions to SOS Regulation 514
Inferences about the Mechanism of SOS Mutagenesis Based on Mutational Spectra and Site-Directed Adduct Studies 523
The Original lacI System: a Purely Genetic Means of Determining Mutational Spectra 523
Mutational Spectra Obtained by Direct DNA Sequencing 524
Factors Influencing the Mutational Spectrum for a Given Mutagen 524
Influence of Transcription-Coupled Excision Repair on Mutational Spectra 525
Identification of Premutagenic Lesions 525
More Complex Lesions as Premutagenic Lesions 532
SOS Mutator Effect 534
The Road to Discovering the Molecular Mechanism of SOS Mutagenesis 535
A Further Requirement for RecA Protein in SOS Mutagenesis besides Facilitating LexA and UmuD Cleavage 535
DNA Polymerases I and II Are Not Required for SOS Mutagenesis 536
Evidence Relating DNA Polymerase III to SOS Mutagenesis 536
Influence of the “Two-Step” Model for SOS Mutagenesis 537
Initial Efforts To Establish an In Vitro System for SOS Mutagenesis 537
UmuC-Related Proteins Are Found in All Three Kingdoms of Life 538
dinB, umuDC, and mucAB Encode Members of the Y Family of Translesion DNA Polymerases 539
Rev1 Catalyzes the Formation of Phosphodiester Bonds; Rad30 and Xeroderma Pigmentosum Variant Protein Are DNA Polymerases 539
DinB Is a DNA Polymerase 539
umuDC Encodes a Translesion DNA Polymerase, DNA Pol V, That Requires Accessory Proteins 540
mucAB Encodes a Translesion DNA Polymerase, DNA Pol R1, That Requires Accessory Proteins 542
The Structure of Family Y DNA Polymerases Accounts for Their Special Ability To Carry Out Translesion Synthesis 543
Multiple SOS-Induced DNA Polymerases Can Contribute to SOS-Induced Mutagenesis 543

Protein-Protein Interactions That Control the Activities of the *umuDC* and *dinB* Gene Products 543
 - RecA and SSB Interactions with DNA Pol V 545
 - Interactions of the β Sliding Clamp with DNA Polymerases V and IV 546
 - Interactions of UmuD and UmuD’ with Components of DNA Polymerase III 548
 - How Is Polymerase Switching Controlled? 549

What Is the Biological Significance of SOS Mutagenesis and Translesion Synthesis by Specialized DNA Polymerases? 551
 - Translesion DNA Polymerases Can Contribute to Fitness and Survival in Two Ways 551
 - Action of Translesion DNA Polymerases in Stationary Phase, Aging, and Stressed Bacteria 551

SOS-Independent Mutagenesis 554
 - Lesions That Do Not Require Induction of SOS Functions To Be Mutagenic 554
 - The UVM (UV Modulation of UV Mutagenesis) Response 555
 - Mutagenesis Resulting from the Misincorporation of Damaged Nucleotides 555

16 Recombinational Repair, Replication Fork Repair, and DNA Damage Tolerance 569
DNA Damage Can Interfere with the Progress of Replication Forks and Lead to the Generation of Various Structures 570
 - Formal Considerations 570
 - The In Vivo Situation Is More Complicated 571
 - Transient Partial Inhibition of DNA Replication after DNA Damage 573

Various DNA Structures Resulting Directly or Indirectly from DNA Damage Can Be Processed by Homologous Recombination Proteins 574
 - RecA Protein: a Protein with Mechanistic Roles in Homologous Recombination and DNA Repair 574
 - Other Key Proteins with Roles in Homologous Recombination 579

Recombinational Repair of Double-Strand Breaks in *E. coli* 584
Model for Damage Tolerance Involving the Recombinational Repair of Daughter Strand Gaps 586
 - Evidence Supporting the Model for Recombinational Repair of Daughter Strand Gaps 586
 - Perspectives on Daughter Strand Gap Repair 590
 - An Error-Free Process(es) Involving Recombination Functions Predominaates over Mutagenic Translesion Replication in a Model In Vivo System 592

Homologous Recombination Functions Play Critical Roles in the Stabilization and Recovery of Arrested or Collapsed Replication Forks 593
 - Recognition of Fundamental Relationships between Replication and Recombination 593

Possible Mechanisms for Regressing Replication Forks 598
 - Models of Nonmutagenic Mechanisms for Restarting Regressed DNA Replication Forks Arrested by a Lesion Affecting Only One Strand of the DNA Template 599
 - Models of Nonmutagenic Mechanisms for Restarting Regressed DNA Replication Forks Arrested by a Lesion or Blocks Affecting Both Strands of the DNA Template 602

Recovery of DNA Replication after DNA Damage: “Inducible Replisome Reactivation/Replication Restart” 603
 - Polymerases Participating in Inducible Replisome Reactivation/Replication Restart Revisited 603

17 DNA Damage Tolerance and Mutagenesis in Eukaryotic Cells 613
Phenomenology of UV Radiation-Induced Mutagenesis in the Yeast *Saccharomyces cerevisiae* 613
18 Managing DNA Strand Breaks in Eukaryotic Cells: Repair Pathway Overview and Homologous Recombination 663
Overview of Various Pathways for Double-Strand Break Repair in Eukaryotes 663
Saccharomyces cerevisiae as a Model System for Detecting Double-Strand Breaks and Their Repair 665
Experimental Systems To Study Responses to Localized DNA Double-Strand Breaks 668
The HO Endonuclease System 668
Generation of Double-Strand Breaks in Conditional Dicentric Chromosomes 668
I-SceI-Induced Targeted Double-Strand Breaks 669
Homologous Recombination 671
End Processing as the Initiating Step 671
Pairing and Exchanging of Homologous DNA: Rad51, Its Orthologs, Paralogs, and Interacting Partners 671
Role of Cohesin Proteins 681
The BRCA/Fanconi Pathway 682
Holliday Structure Resolution 685
Synthesis-Dependent Strand Annealing and Break-Induced Replication 687
Single-Strand Annealing 688
Transcription and Recombination 689
UV Radiation-Stimulated Recombination 690
Repair of DNA Interstrand Cross-Links 690
Interstrand Cross-Link Repair in *E. coli* 691
Interstrand Cross-Link Repair in *S. cerevisiae* 692
Interstrand Cross-Link Repair in Higher Eukaryotes 695
Summary 696
Managing DNA Strand Breaks in Eukaryotic Cells: Nonhomologous End Joining and Other Pathways 711

Nonhomologous End Joining 711
 Introduction 711
 V(D)J Recombination 712
 Class Switch Recombination 714
 Roles of the Ku Proteins 715
 DNA-Dependent Protein Kinase 718
 Artemis: a Human SCID Syndrome Reveals a Player in Nonhomologous End Joining 721
 Ligation Step of Nonhomologous End Joining 722
 Synopsis: Model for Vertebrate Nonhomologous End Joining 724

The Mre11-Rad50-NBS1/Xrs2 Complex 724
 Yeast Rad50, Mre11, and Xrs2 Function in Double-Strand Break Repair and Meiosis but Are Not Essential for Homologous Recombination 725
 Two MRN Complex Components Are Associated with Human Genomic Instability Syndromes 726
 Null Mutations of MRN Components Are Lethal in Mammalian Cells, and Hypomorphic Mutations Result in Severe Developmental Consequences 726
 Focus Formation of the MRN Complex at Sites of Double-Strand Breaks 727
 In Vitro DNA-Processing Activities of the MRN Complex 727
 The MRN Complex in Nonhomologous DNA End Joining: a Major Role in S. cerevisiae but Possibly Not in Vertebrates 728
 Role of the MRN Complex in Homologous Recombination 730
 Significance of Nuclease Activity 731
 Special Roles of the MRN Complex in Replication and Telomere Maintenance 731
 “Molecular Velcro” and Beyond: Models for MRN Action Based on Structural Analysis 733
 Conclusions 734

Histone Modifications and Double-Strand Breaks 735
 Histone Phosphorylation 735
 Histone Acetylation 736

Regulation of Pathway Choice 736

Repair of Single-Strand Breaks 737
 Sources and Significance of Single-Strand Breaks 737
 Poly(ADP-Ribose) Polymerase as a Nick Sensor 738
 XRCC1 Is a Scaffold Protein Orchestrating Interactions among Multiple Single-Strand Break Repair Proteins 738

PART 4
Regulatory Responses to DNA Damage in Eukaryotes 751

Cell Cycle Checkpoints: General Introduction and Mechanisms of DNA Damage Sensing 753
 Cell Cycle Basics and the Emergence of the Checkpoint Concept 753
 Studying Checkpoints 757
 DNA Damage Sensing 758
 Defining Checkpoint-Triggering Damage and Sensor Proteins 758
 The ATM Protein as a Damage Sensor 760
 ATR Protein and Its Targeting Subunit 762
 PCNA- and RFC-Like Clamp and Clamp Loader Complexes 764
Cross Talk between Sensors 765
The MRN Complex Plays an Additional Role in Checkpoint Arrests 766
Synopsis: Independent but Communicating Sensors Are Brought Together by Common Requirements 767
Other Sensor Candidates 768
Sensing UV Radiation Damage 768
Damage Sensing in S Phase 769

21 Cell Cycle Checkpoints: Signal Transmission and Effector Targets 779
Generation and Transmission of a Checkpoint-Activating Signal 779
The Rad53Sc/Cds1Sp/CHK2Hs Kinase 779
Mediators Are Important for Activation of Rad53Sc/Cds1Sp/CHK2Hs through DNA Structure Sensors 781
Possible Mammalian Rad9Sc Homologs 782
S-Phase-Specific Activation of Rad53Sc/Cds1Sp/CHK2Hs 783
Chk1 Kinase: Different Roles in Different Organisms 783
Activation of Chk1 Kinase in S. pombe, X. laevis, and Humans 784
Summary: Pathways of Generating a Transmittable Damage Signal 784
Downstream Targets and Mechanisms That Regulate Cell Cycle Progression 785
p53 as a Target of DNA Checkpoint Pathways 785
DNA Damage-Induced G1/S Arrest 791
Modulation of S Phase in the Presence of DNA Damage 794
DNA Damage-Induced G2/M Arrest 798
DNA Damage and the Regulation of M Phase 801
Synopsis 802
Effector Targets That Modulate DNA Repair 802
Repair Targets in Yeasts 802
Repair Targets in Mammalian Cells 803
Other Regulatory Responses to DNA Damage 803
Summary 804

22 Transcriptional Responses to DNA Damage 817
Introduction 817
Phenotypic Characterization of Pathway Inducibility 817
Analysis of Individual Genes 817
Differential Screening 818
Screens of Genome Arrays 818
Saccharomyces cerevisiae Genes Regulated in Response to DNA-Damaging Agents 818
Regulation of Ribonucleotide Reductase 818
Inducibility of Genes Involved in DNA Repair and Damage Tolerance: a Look at Various Pathways 820
Genome-Wide Approaches 823
Synopsis: No Satisfying Answer to the Question of Significance 827
Vertebrate Genes Regulated in Response to DNA-Damaging Agents 828
Overview 828
p53 as a Transcription Factor 828
E2F Transcription Factor Family 830
Mammalian UV Radiation Response 831
Transcriptional Response to Ionizing Radiation 835
Summary and Conclusions 837
23 DNA Damage and the Regulation of Cell Fate 845
Adaptation and Cell Cycle Restart 846
 Damage Signaling and Adaptation in Saccharomyces cerevisiae 846
 Adaptation and Cell Cycle Restart by Silencing of Downstream Effectors 847
 Recovery in Multicellular Eukaryotes 847
Regulation of Apoptosis 848
 Introduction to Apoptotic Pathways 848
 Activation of the Apoptosis Pathway by DNA Damage: the Roles of p53 Revisited 850
 Role of DNA Damage Sensors and Transducers in Apoptosis 852
 Additional Elements of DNA Damage-Induced Apoptosis 853
Senescence, Cancer, and the DNA Damage Connection 854
Checkpoints and Cancer Therapy 856

PART 5 Disease States Associated with Defective Biological Responses to DNA Damage 863

24 Xeroderma Pigmentosum: a Disease Associated with Defective Nucleotide Excision Repair or Defective Translesion DNA Synthesis 865
 A Huge Literature on Xeroderma Pigmentosum 865
 Primary Clinical Features 866
 Other Clinical Features 867
 Incidence and Demographics 867
 Skin Cancer Associated with Xeroderma Pigmentosum 868
 Phenotypes of Xeroderma Pigmentosum Cells 868
 Chromosomal Abnormalities 868
 Sensitivity to Killing by DNA-Damaging Agents 869
 Hypermutability 869
 Source of Mutations 869
 Defective Nucleotide Excision Repair 870
 Repair of Oxidative Damage and Its Relationship to Neurological Disorders in Xeroderma Pigmentosum 872
 Defective Repair of Purine Cyclodeoxynucleosides 873
 Genetic Complexity of Xeroderma Pigmentosum 874
 The Xeroderma Pigmentosum Heterozygous State 875
 Molecular Pathology 875
 Xeroderma Pigmentosum from Genetic Complementation Group A 875
 Xeroderma Pigmentosum from Genetic Complementation Group B 876
 Xeroderma Pigmentosum from Genetic Complementation Group C 877
 Xeroderma Pigmentosum from Genetic Complementation Group D 878
 Xeroderma Pigmentosum from Genetic Complementation Group E 880
 Mutations Have Only Been Found in the DDB2 Gene in XP-E Group Cells 880
 Xeroderma Pigmentosum from Genetic Complementation Group F 880
 Xeroderma Pigmentosum from Genetic Complementation Group G 881
 Summary 881
 Unexplained Features of Xeroderma Pigmentosum 881
 Cancer in Other Organs in Xeroderma Pigmentosum Individuals 881
 Cancer Risk Assessment 882
 Pathogenesis of Neurological Complications 882
 Therapy 882
Mouse Models of Defective Nucleotide Excision Repair 882
 Mice Defective in the Xpa Gene 883
 Mice Defective in the Xpc Gene 884
 Mice Defective in the Xpd Gene 886
 Mice Defective in the Xpe Gene 886
 Mice Defective in the Xpf Gene 887
 Mice Defective in the Xpg Gene 887
 Mice Defective in the Ercc1 Gene 887
 Mice Defective in the Rad23A and Rad23B Genes 887
Summary 887

25 Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA 895
 Cockayne Syndrome 895
 Introduction 895
 Clinical Phenotypes 895
 Cellular Phenotypes 896
 Genetics 898
 Other Clinical Entities Associated with Mutations in Cockayne Syndrome or XP Genes 905
 Cerebro-Oculo-Facio-Skeletal Syndrome 905
 UV Sensitive Syndrome 905
 Combined XP/CS Complex 906
 Allelic Heterogeneity in Xeroderma Pigmentosum 906
 Trichothiodystrophy 907
 The “Transcription Syndrome” Hypothesis of XP/CS and Trichothiodystrophy 909
 Direct Observations of Defective Transcription 910
 Molecular Defects in XP/CS and Trichothiodystrophy Cells 910
 Allele-Specific and Gene Dosage Effects in This Group of Diseases 912
 Skin Cancer in the Transcription Syndromes 913
Summary 913

26 Diseases Associated with Defective Responses to DNA Strand Breaks 919
 Ataxia Telangiectasia (Louis-Bar Syndrome) 919
 Clinical Features 919
 Cellular Phenotypes 920
 Identification of the Ataxia Telangiectasia-Mutated (ATM) Gene 924
 Atm Mutant Mice 926
 Nijmegen Breakage Syndrome 928
 Clinical Features 928
 Cellular Characteristics 928
 Identification of the Gene Mutated in Nijmegen Breakage Syndrome (NBS1) 929
 Nbs1 Mutant Mice 929
 Genetic Heterogeneity 929
 Heterozygosity and Cancer Predisposition 930
 Ataxia Telangiectasia-Like Disorder 930
 DNA Ligase IV Mutations and Human Disease 930
 Seckel Syndrome 930
 Severe Combined Immunodeficiency 932
 Clinical Features 933
Molecular Causes 934
Recombinase-Activating Gene Deficiencies (RAG1- or RAG2-Deficient Severe Combined Immunodeficiency) 935
Animal Models 935
Spinocerebellar Ataxia with Axonal Neuropathy 935

27 Diseases Associated with Disordered DNA Helicase Function 947
Biochemistry of RecQ Helicases 947
Crystal Structures of DNA Helicases 949
Fluorescence Resonance Energy Transfer 950
DNA Helicases That Participate in DNA Replication 952
RecQ Helicases and Human Disease 953
RecQ Helicases in Model Organisms 953
RecQ Protein in E. coli 953
Yeast Homologs of RecQ 954
Bloom Syndrome 954
Clinical Features of Bloom Syndrome Include a Marked Cancer Predisposition 955
Autosomal Recessive Genetics of Bloom Syndrome 955
Chromosome Instability as a Hallmark of Bloom Syndrome Cells 955
Bloom Syndrome Cells Exhibit Defects Associated with the S Phase of the Cell Cycle 956
Bloom Syndrome Cells Manifest a Diversity of Subtle Defects in Enzymes Involved in DNA Repair 957
Somatic Recombination Events in Bloom Syndrome Cells Facilitate Mapping and Cloning of the BLM Gene 958
Interallelic Recombination and Its Potential Relevance to Bloom Syndrome 958
The BLM Gene Is a Member of the RecQ Family 958
Bloom Syndrome Heterozygotes May Be Predisposed to Cancer 959
The BLM Gene Product Is a RecQ-Like Helicase 960
BLM Gene Expression 960
BLM Protein Localization 961
Modulation of Sister Chromatid Exchange 961
Association of BLM with Other DNA Repair Functions 962
Models for the Study of BLM Function 963
The Molecular Function of BLM Protein 964
Werner Syndrome 965
Clinical Features 965
Genetics 966
Cellular Phenotype of Werner Syndrome Cells 966
Identification of the WRN Gene 966
WRN Protein Contains DNA Helicase and Exonuclease Activities 967
WRN Protein Interactions 967
WRN Expression 968
WRN Protein Function 968
Mutations in RECQL4 Are Associated with Rothmund-Thomson Syndrome and RAPADILINO Syndrome 968
Clinical Features of Rothmund-Thomson Syndrome 968
Cellular Characteristics of Rothmund-Thomson Syndrome 968
Rothmund-Thomson Syndrome Patients Have Mutations in RECQL4 969
RAPADILINO Syndrome 969
Summary of Human Diseases Associated with Defects in the RecQ Family of DNA Helicase 971
MassEXTEND 1054
Stabilized Double D-Loops 1054

Assessing the Role of DNA Repair Gene Polymorphisms in Disease 1056
Statistics and Population-Based Studies 1056
Variability in DNA Repair Capacity 1057
Heterozygosity and DNA Repair Gene Mutations 1059
Heterozygosity for Genes Associated with Dominantly Inherited Disorders 1059
Heterozygosity for Genes Associated with Recessive Disorders 1061
Summarizing the Role of Heterozygosity 1061

DNA Repair Gene Polymorphisms 1062
DNA Repair Gene Single-Nucleotide Polymorphism Discovery 1062
Polymorphisms That Impact the Levels of Chemical-Induced DNA Damage 1062
Cytochrome P-450 Monooxygenase Gene 1062
Glutathione S-Transferase M1 Gene 1063
N-Acetyltransferase 2 Gene 1063
DNA Repair Gene Polymorphisms and Putative Cancer Risk 1064
Pharmacogenomics and DNA Repair Gene Polymorphisms 1067
Polymorphic Alleles and Functional Defects 1067
Summary 1070

Appendix 1081
Table 1 Nomenclature of DNA repair genes 1081
Table 2 Human hereditary diseases and defective cellular responses to DNA damage 1087

Index 1091
Preface

It has been a decade since the publication of the first edition of *DNA Repair and Mutagenesis*. It was noted in the preface then that “In very recent times, progress in the DNA repair and mutagenesis fields has been particularly rapid. . . .” In fact, in recognition of the importance of mutagenesis as a fundamental aspect of DNA metabolism and the impressive gains made in our understanding of the intricate relationships between DNA repair and mutagenesis, the authors of the first edition elaborated the title *DNA Repair* used for the book published by W. H. Freeman in 1984.

The unabated progress of the DNA damage response field is reflected in further major changes in the present edition. The field has progressed to the point that a comprehensive treatment of the manifold responses to DNA damage (including sensing and signaling the presence of damage and other perturbations of DNA metabolism) now requires the efforts of an author group with expertise in multiple and diverse areas. Richard D. (Rick) Wood and Roger A. Schultz were invited to provide such expertise to bolster the team that wrote the first edition. Additionally, the inclusion of structural biologist Tom Ellenberger reflects our desire to incorporate the considerable recent contributions of protein structure to biology in general and the DNA repair field in particular. The six authors have labored to achieve a text that is seamlessly integrated.

The second edition of *DNA Repair and Mutagenesis* was initiated in late 1999. Our efforts to keep the final product manageable for the average reader notwithstanding, the size of the present work appropriately reflects the substantial growth of the field in the past decade. This edition is more a rewriting than a revision, and little of the text from the first edition remains. The first edition of *DNA Repair and Mutagenesis* comprised 14 chapters and contained about 400 illustrations. The present edition consists of 30 chapters divided into five major sections, and the text is adorned with more than 700 illustrations, including more than 80 structural representations. Additionally, more than ten thousand primary literature references are provided in full, reflecting the massive increase in the scientific literature through 2004.

We have strived to present readers with a comprehensive survey of the field, stressing basic principles wherever feasible but mainly describing the extensive progress achieved to date and highlighting the many problems remaining to be solved. We trust that our desire to represent the dynamic state of this active field of research will not hinder the primary educational purpose of this book, a basic text for advanced undergraduate and graduate students and a reference source for all students of DNA metabolism.

As was the case in the first edition, we have continued to present the field in a historical context, with the intent of sensitizing and inspiring students (and others) to the realities of how research progress unfolds and how ideas develop and attain maturity—or not. We have refrained
wherever possible from unadulterated dogma and from presenting the field of biological responses to DNA damage as anywhere near total clarification. While we are aware of presenting viewpoints that are sometimes controversial and even conflicting, we trust that readers, especially students, are not unduly confused or frustrated by our reluctance to always provide the final word, as it were. Rather, it is our hope that such controversies and complexities will inspire further studies.

The names of genes and their polypeptide products sometimes change with good reason as more is known about them and the families they belong to. Additionally, the value and utility of long-standing terminology are often challenged by new information. A textbook provides a valuable opportunity to address such revisions, and we have done so in some areas. However, we have consciously retained much original nomenclature in deference to historic recognition and popular usage.

No work of this sort can come to fruition without special assistance at every level. We owe an enormous debt of gratitude to many individuals for the help they have provided at every level of this labor. We have enjoyed scientific dialogues with an outstanding cadre of professional colleagues who have given unstintingly of their time, energy, and knowledge to review and discuss every chapter with us. In this respect, we owe particular thanks to Rafael Alvarez-Gonzalez, Carl Anderson, Daniel Bogenhagen, Rhona Borts, Vilhelm Bohr, Anne Casper, Stuart Clarkson, James Cleaver, Nils Confer, Richard Cunningham, Bruce Demple, Friederike Eckardt-Schupp, Andre Eker, Paula Fischhaber, Ann Ganesan, Myron Goodman, Thomas Glover, Philip Hanawalt, Ian Hickson, Peggy Hsieh, Sue Jinks-Robertson, Caroline Kisker, Beate Köberle, Nicole Kosarek, Y. W. Kow, Kenneth Kraemer, Susan LeDoux, Alan Lehmann, Michael Lieber, Tomas Lindahl, Sue Lovett, Carolina Marchetto, Lisa McDaniel, M. Stephen Meyn, Paul Modrich, Harvey Mohrenweiser, Robb Moses, Laura Niedermhofer, Shwetal Patel, Tony Pegg, Dean Rupp, Aziz Sancar, Gwen Sancar, Barbara Sedgwick, the late Erling Seeberg, Mutsuo Sekiguchi, Michael Smerdon, Kencrid Smith, Robert Sobol, David Stern, James Stivers, John Tainer, Gail Thomlinson, Takeshi Todo, Bennett van Houten, Harry van Steeg, Greg Verdine, Zhigang Wang, Bernard Weiss, Dale Wigley, Sam Wilson, Birgitte Wittschieben, John Wittschieben, Roger Woodgate, and Akira Yasui. Final responsibility naturally rests with us, and we apologize for any inaccuracies and omissions that remain in this publication.

Readers are encouraged to inform us of these if and when they are discovered.

We particularly wish to acknowledge the outstanding artistic talent and the dedication and commitment of Marty Burgin, who also worked as illustrator for the first edition. This book is as much hers as ours. We are also extremely grateful to Patrick Lane, whose technological wizardry solved tricky problems in the rendering of crystal structures in shades of just two colors. We thank Jeff Holtmeier of ASM Press for providing his strong personal commitment and that of his staff throughout the production of this work. The magnificent job of editing of the manuscript by Yvonne Strong merits special mention. Thanks are also due to Susan Birch, Production Manager at ASM Press, and to Cathy Balogh and Susan Schmidler.

Each of us owes special thanks to particular individuals who provided indispensable logistical and spiritual support. E.C.F. thanks Angela Ceplis and Meredith Thomas for extraordinary secretarial and editorial assistance and Angela for her invaluable help in coordinating author meetings held in various parts of the country. He also thanks Rhonda Friedberg for editorial assistance and for unstinting moral support. For belief in the importance of the project and for help in bringing it to fruition, R.D.W. thanks his research group, as well as Enid Wood, Patrick Moore, Yuan Chang, Vesna Rapic-Otrin, Ron Herberman, and Arthur Levine. R.S. thanks Lisa McDaniel for extensive editorial assistance and expert help in coordinating and citing the literature and Carmencita Ordu for her invaluable secretarial support. G.W. thanks Jan and Gordon Walker for their cheerleading and understanding, Marianne White for her always cheerful help, Evelyn Witkin for her inspiration, and Priscilla Cooper, Judi Neal, Bill Broughton, and Anne Hills for their constant support. W.S. offers special thanks to Nina Patel and Gulnaz Bachelani.
Over the course of many meetings, most of which took place over weekends, as well as innumerable phone calls and e-mails, each of us came to know and respect our fellow authors from unique perspectives. We are unanimous in our view that the camaraderie and friendships forged through these meetings have enormously enriched our lives, not to mention our taste in fine beverages and the musical pursuits of some of us—such as they are!

Errol C. Friedberg
Graham C. Walker
Wolfram Siede
Richard D. Wood
Roger A. Schultz
Tom Ellenberger
December 2004
Abbreviations

This text employs many standard (and some not so standard) abbreviations. In an effort to reduce confusion for the reader, abbreviations are spelled out in full when first employed in each chapter. Additionally, the following list includes the abbreviations most frequently used.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF</td>
<td>Acetylaminofluorine</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoblastic leukemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute myeloid leukemia</td>
</tr>
<tr>
<td>AT</td>
<td>Ataxia telangiectasia</td>
</tr>
<tr>
<td>BER</td>
<td>Base excision repair</td>
</tr>
<tr>
<td>BIR</td>
<td>Break-induced replication</td>
</tr>
<tr>
<td>BPDE</td>
<td>Benzo[a]pyrene-diol-epoxide</td>
</tr>
<tr>
<td>BrdU</td>
<td>5-Bromodeoxyuridine</td>
</tr>
<tr>
<td>BrU</td>
<td>5-Bromouracil</td>
</tr>
<tr>
<td>BS</td>
<td>Bloom syndrome</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CPD</td>
<td>Cyclobutane pyrimidine dimer(s)</td>
</tr>
<tr>
<td>CS</td>
<td>Cockayne syndrome</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleoside triphosphate(s)</td>
</tr>
<tr>
<td>DSB</td>
<td>Double-strand break(s)</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded DNA</td>
</tr>
<tr>
<td>EMS</td>
<td>Ethyl methanesulfonate</td>
</tr>
<tr>
<td>ESS</td>
<td>Enzyme-sensitive site(s)</td>
</tr>
<tr>
<td>FA</td>
<td>Fanconi anemia</td>
</tr>
<tr>
<td>FdU</td>
<td>5-Fluorodeoxyuridine</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>HNPCC</td>
<td>Hereditary nonpolyposis colon cancer</td>
</tr>
<tr>
<td>HR</td>
<td>Homologous recombination</td>
</tr>
<tr>
<td>HU</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>ICL</td>
<td>Interstrand cross-link(s)</td>
</tr>
<tr>
<td>IR</td>
<td>Ionizing radiation</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse embryonic fibroblast(s)</td>
</tr>
<tr>
<td>MMC</td>
<td>Mitomycin C</td>
</tr>
<tr>
<td>MMR</td>
<td>Mismatch repair</td>
</tr>
<tr>
<td>MMS</td>
<td>Methyl methanesulfonate</td>
</tr>
<tr>
<td>MNase</td>
<td>Micrococcal nuclease</td>
</tr>
<tr>
<td>MSI</td>
<td>Microsatellite instability</td>
</tr>
<tr>
<td>NER</td>
<td>Nucleotide excision repair</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Nonhomologous end joining</td>
</tr>
<tr>
<td>4-NQO</td>
<td>4-Nitroquinoline 1-oxide</td>
</tr>
<tr>
<td>NTP</td>
<td>Nucleoside triphosphate(s)</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame(s)</td>
</tr>
<tr>
<td>Pol</td>
<td>Polymerase</td>
</tr>
<tr>
<td>(6-4)PP</td>
<td>(6-4) photoproduct(s)</td>
</tr>
<tr>
<td>RNAPII</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RR</td>
<td>Risk ratio</td>
</tr>
<tr>
<td>RS</td>
<td>Roberts syndrome</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>SCE</td>
<td>Sister chromatid exchange(s)</td>
</tr>
<tr>
<td>SNP</td>
<td>Single-nucleotide polymorphism(s)</td>
</tr>
<tr>
<td>SSA</td>
<td>Single-strand annealing</td>
</tr>
<tr>
<td>SSB</td>
<td>Single-strand break(s)</td>
</tr>
<tr>
<td>ssDNA</td>
<td>Single-stranded DNA</td>
</tr>
<tr>
<td>TC-NER</td>
<td>Transcription-coupled nucleotide excision repair</td>
</tr>
<tr>
<td>TLS</td>
<td>Translesion DNA synthesis</td>
</tr>
<tr>
<td>TTD</td>
<td>Trichothiodystrophy</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activating sequence(s)</td>
</tr>
<tr>
<td>WS</td>
<td>Werner syndrome</td>
</tr>
<tr>
<td>XP</td>
<td>Xeroderma pigmentosum</td>
</tr>
</tbody>
</table>
Appendix

Table 1 Nomenclature of DNA repair genes^a

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in<sup>b</sup></th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base excision repair (BER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA glycosylases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base excision repair (BER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA glycosylases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other BER factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct reversal of damage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base excision repair (BER) DNA glycosylases

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in<sup>b</sup></th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base excision repair (BER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA glycosylases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other BER factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct reversal of damage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aGene nomenclature for DNA repair genes in *E. coli*, *S. cerevisiae*, *S. pombe*, Drosophila, and Human.

^bGene(s) in species.

Table 1: Nomenclature of DNA repair genes

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in<sup>b</sup></th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base excision repair (BER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA glycosylases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other BER factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct reversal of damage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aGene nomenclature for DNA repair genes in *E. coli*, *S. cerevisiae*, *S. pombe*, Drosophila, and Human.

^bGene(s) in species.

Table 1: Nomenclature of DNA repair genes

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in<sup>b</sup></th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base excision repair (BER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA glycosylases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other BER factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct reversal of damage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aGene nomenclature for DNA repair genes in *E. coli*, *S. cerevisiae*, *S. pombe*, Drosophila, and Human.

^bGene(s) in species.

Table 1: Nomenclature of DNA repair genes

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in<sup>b</sup></th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base excision repair (BER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA glycosylases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other BER factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct reversal of damage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aGene nomenclature for DNA repair genes in *E. coli*, *S. cerevisiae*, *S. pombe*, Drosophila, and Human.

^bGene(s) in species.
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair of DNA-protein cross-links</td>
<td>TDP1</td>
<td>SPCP31B10.05</td>
<td>Tdp1</td>
<td>TDP1</td>
<td></td>
<td>Removes covalently bound Topo I-DNA complexes</td>
</tr>
<tr>
<td>Mismatch repair (MMR)</td>
<td>mutS</td>
<td>MSH2</td>
<td>swi8</td>
<td>spell (spellchecker1)</td>
<td>MSH2</td>
<td>Mismatch and loop recognition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MutS homologs specialized for meiosis</td>
</tr>
<tr>
<td></td>
<td>mutL</td>
<td>mlh1</td>
<td>mlh1</td>
<td>pms2</td>
<td>MLH1</td>
<td>MutL homologs, forming dimer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MutL homologs of unknown function</td>
</tr>
<tr>
<td></td>
<td>mutH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GATC recognition</td>
</tr>
<tr>
<td>uvrD∗ (mutU∗)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Helicase aiding excision in MMR and NER</td>
</tr>
<tr>
<td>Nucleotide excision repair (NER)</td>
<td>RAD4</td>
<td>rhp41, rhp42</td>
<td>mus210</td>
<td>XPC</td>
<td></td>
<td>Binds distorted DNA as complex</td>
</tr>
<tr>
<td>DNA binding</td>
<td>RAD23</td>
<td>rhp23</td>
<td>Rad23</td>
<td>RAD23B (HR23B)</td>
<td>RADB23A (HR23A)</td>
<td>RAD23B paralog</td>
</tr>
<tr>
<td></td>
<td>RAD14</td>
<td>rhp14</td>
<td>Xpa</td>
<td>XPA</td>
<td></td>
<td>Binds DNA and proteins in preincision complex</td>
</tr>
<tr>
<td>uvrA∗</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>Binds damaged DNA in complex with UvrB</td>
</tr>
<tr>
<td>uvrB∗</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>Catalyzes unwinding in preincision complex</td>
</tr>
<tr>
<td>TFIH subunits</td>
<td>SSL2 (RAD25)</td>
<td>ercc3pr</td>
<td>hay (haywire)</td>
<td>XPB (ERCC3)</td>
<td></td>
<td>3′−to−5′ DNA helicase TFIH subunit</td>
</tr>
<tr>
<td></td>
<td>RAD3</td>
<td>rad15∗ (rad5∗)</td>
<td>Xpd</td>
<td>XPD (ERCC2)</td>
<td></td>
<td>5′−to−3′ DNA helicase TFIH subunit</td>
</tr>
<tr>
<td></td>
<td>TFB1</td>
<td>tfb1†</td>
<td>Tfb1</td>
<td>GTF2H1</td>
<td></td>
<td>TFIH subunit p62</td>
</tr>
<tr>
<td></td>
<td>SSL1</td>
<td>ssl1†</td>
<td>Ssl1</td>
<td>GTF2H2</td>
<td></td>
<td>TFIH subunit p44</td>
</tr>
<tr>
<td></td>
<td>TFB4</td>
<td>tfb4†</td>
<td>Tfb4</td>
<td>GTF2H3</td>
<td></td>
<td>TFIH subunit p34</td>
</tr>
<tr>
<td></td>
<td>TFB2</td>
<td>tfb2†</td>
<td>Tfb2</td>
<td>GTF2H4</td>
<td></td>
<td>TFIH subunit p52</td>
</tr>
<tr>
<td></td>
<td>TFB5</td>
<td></td>
<td>CG1917</td>
<td>GTF2H5 (TTDA)</td>
<td></td>
<td>TFIH subunit p8</td>
</tr>
<tr>
<td></td>
<td>KIN28</td>
<td></td>
<td>Cdk7</td>
<td>CDK7</td>
<td></td>
<td>Kinase subunits of TFIH</td>
</tr>
<tr>
<td></td>
<td>CCL1</td>
<td>—</td>
<td>CycH</td>
<td>CCNH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TFB3</td>
<td></td>
<td>Mat1</td>
<td>MNAT1 (MAT1)</td>
<td></td>
<td>TFIH subunit</td>
</tr>
<tr>
<td>NER nucleases</td>
<td>uvrc∗, cho∗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3′ and 5′ incision nuclease</td>
</tr>
<tr>
<td></td>
<td>RAD2</td>
<td>rad13</td>
<td>mus201</td>
<td>XPG (ERCC5)</td>
<td></td>
<td>3′ incision nuclease</td>
</tr>
<tr>
<td></td>
<td>RAD10</td>
<td>swi10</td>
<td>Ercc1</td>
<td>ERCC1</td>
<td></td>
<td>5′ incision nuclease subunits</td>
</tr>
<tr>
<td></td>
<td>RAD1</td>
<td>rad16</td>
<td>mei9</td>
<td>XPF (ERCC4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>E. coli</td>
<td>S. cerevisiae</td>
<td>S. pombe</td>
<td>Drosophila</td>
<td>Human</td>
<td>Activity</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td>------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Other factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rad28</td>
<td>RAD28</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CSA (CKN1, ERCC8)</td>
<td>Cockayne syndrome; needed for TC-NER</td>
</tr>
<tr>
<td>Rad26</td>
<td>RAD26</td>
<td>—</td>
<td>rhp26</td>
<td>—</td>
<td>CSA (ERCC6)</td>
<td>Cockayne syndrome; needed for TC-NER</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ddb1</td>
<td>Ddb1</td>
<td>DDB1</td>
<td>p127 subunit of DDB</td>
</tr>
<tr>
<td>Rad7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>p48 subunit of DDB, defective in XP-E</td>
</tr>
<tr>
<td>Rad16</td>
<td>—</td>
<td>—</td>
<td>rhp16</td>
<td>—</td>
<td>—</td>
<td>E3 ubiquitin ligase and damage binding</td>
</tr>
<tr>
<td>Mms19</td>
<td>Mms19</td>
<td>Mms19</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Transcription and NER</td>
</tr>
<tr>
<td>ligaA</td>
<td>CDC9</td>
<td>cdc17</td>
<td>DNA-lig1</td>
<td>LIG1</td>
<td>—</td>
<td>DNA joining</td>
</tr>
<tr>
<td>Single-stranded-DNA-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ssb1</td>
<td>RFA1</td>
<td>ssb1</td>
<td>RPA-70</td>
<td>RPA1</td>
<td>—</td>
<td>Binds ssDNA intermediates in recombination, NER, and gap-filling pathways</td>
</tr>
<tr>
<td>Ssb2</td>
<td>RFA2</td>
<td>ssb2</td>
<td>RPA-30</td>
<td>RPA2</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Ssb3</td>
<td>RFA3</td>
<td>ssb3</td>
<td>RPA-8</td>
<td>RPA3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RecA</td>
<td>RAD51</td>
<td>rhp51</td>
<td>Rad51(spn-A)</td>
<td>RAD51</td>
<td>—</td>
<td>Formation of protein filament to mediate homologous pairing</td>
</tr>
<tr>
<td>SpnD</td>
<td>RAD51L1</td>
<td>(RAD51B)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAD51C</td>
<td>(RAD51L2)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAD51L3</td>
<td>(RAD51D)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dmc1</td>
<td>DMC1</td>
<td>dmc1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>DNA ligase for meiosis</td>
</tr>
<tr>
<td>RecB, RecC, RecD</td>
<td>RAD52</td>
<td>rhp52</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Generation of ssDNA to allow formation of RecA filament</td>
</tr>
<tr>
<td>Spn-B</td>
<td>RAD52L1</td>
<td>(RAD52B)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RecF, RecO, RecR</td>
<td>RAD54</td>
<td>rhp54</td>
<td>okra</td>
<td>RAD54L</td>
<td>—</td>
<td>Accessory factor for recombination</td>
</tr>
<tr>
<td>Rad55</td>
<td>RAD55</td>
<td>rhp55</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Rad57</td>
<td>RAD57</td>
<td>rhp57</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Rad59</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Rhc18</td>
<td>RAD54</td>
<td>rhp54</td>
<td>okra</td>
<td>RAD54L</td>
<td>—</td>
<td>Accessory factor for recombination</td>
</tr>
<tr>
<td>Accessory factor for recombina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tion mediator function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recombination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RvbA, RvbB</td>
<td>MRE11</td>
<td>mre11</td>
<td>MRE11A</td>
<td>—</td>
<td>—</td>
<td>Branch migration of Holliday junctions</td>
</tr>
<tr>
<td>RvbC</td>
<td>XRS2</td>
<td>nbs</td>
<td>NBS1</td>
<td>—</td>
<td>—</td>
<td>Nuclease to cleave Holliday junctions</td>
</tr>
</tbody>
</table>

(continued)
Table 1 Nomenclature of DNA repair genesa (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) inb:</th>
<th>E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonhomologous end joining (NHEJ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>YKU70 (HDF1)</td>
<td>pku70$^+$</td>
<td>Irbp</td>
<td>Ka70 (G22P1)</td>
<td>DNA end binding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>YKU80 (HDF2)</td>
<td>pku80$^+$</td>
<td>Ku80</td>
<td>Ka80 (XRCC5)</td>
<td>DNA end binding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRKDC (DNA-PKcs, XRCC7)</td>
<td>DNA-dependent protein kinase catalytic subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIG4</td>
<td>ligase4</td>
<td>LIG4</td>
<td>XRCC4</td>
<td>Ligase accessory factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Artemis (SNM1C)</td>
<td>Nuclease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation of nucleotide pools</td>
<td></td>
<td>MutT$^+$</td>
<td>—</td>
<td>CG10898</td>
<td>MTH1 (NUDT1)</td>
<td>8-oxoGTPase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dut$^+$</td>
<td>dUTPase</td>
<td>p53R2</td>
<td>p53-inducible ribonucleotide reductase small subunit 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA polymerases (catalytic subunits)</td>
<td></td>
<td>polB$^+$ (dinA, pol II)</td>
<td>POLB</td>
<td></td>
<td></td>
<td>Damage responses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIP1</td>
<td>SPCC24B10.22$^+$</td>
<td>tam (tamas)</td>
<td>POLG</td>
<td>Pol γ: replication and BER in mitochondrial DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDC2 (POL3)</td>
<td>cdc6$^+$</td>
<td>DNA-pold</td>
<td>POLD1</td>
<td>Pol δ: NER and MMR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POL2</td>
<td>cdc20$^+$</td>
<td>DNA-pole</td>
<td>POLE1</td>
<td>Pol ε: NER and MMR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV3</td>
<td>rev3$^+$</td>
<td>mus205</td>
<td>REV3L (PSO1)</td>
<td>DNA Pol ζ catalytic subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV7</td>
<td>SPAC12D12.09</td>
<td>rev7</td>
<td>REV7 (MAD2L2)</td>
<td>DNA Pol θ subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REV1</td>
<td>SPBC1347.01c</td>
<td>Rev1</td>
<td>REV1L (REV1)</td>
<td>dCMP transferase and other roles in TLS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAD30</td>
<td>eso1$^+$</td>
<td>DNA-poln</td>
<td>POLH</td>
<td>Pol η: bypass of CPD, defective in XP-V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POLI (RAD30B)</td>
<td>Pol η: lesion bypass</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POLQ</td>
<td>DNA crosslink repair?</td>
<td></td>
</tr>
<tr>
<td>dnb$^+$ (Pol IV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POLK (DINB1)</td>
<td>Pol α: Lesion bypass</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POLL</td>
<td>Pol λ: Gap filling during nonhomologous end joining</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POLM</td>
<td>Pol μ: DNA cross-link repair?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POLN (POLAP)</td>
<td>Pol μ: DNA cross-link repair?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POL5</td>
<td>pol5$^+$</td>
<td></td>
<td></td>
<td>Sliding clamp</td>
<td></td>
</tr>
<tr>
<td>DNA polymerase accessory factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dnbN$^+$</td>
<td></td>
<td>POL30</td>
<td>pcn1$^+$</td>
<td>mus209</td>
<td>PCNA</td>
<td>Clamp loader, large subunit</td>
<td></td>
</tr>
<tr>
<td>dnbX$^+$ (γ-δ) complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing nuclease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polA$^+$ (5’ to 3’ exo)</td>
<td></td>
<td>MUS81</td>
<td>mus81$^+$</td>
<td>mus81</td>
<td>MUS81</td>
<td>Structure-specific nuclease subunits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMS4</td>
<td>eme1$^+$</td>
<td>MMS4 (CG12936)</td>
<td>EME1 (MMS4L)</td>
<td>5’ nuclease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAD27</td>
<td>rad2$^+$</td>
<td>l(3)04108</td>
<td>FEN1 (DNase IV)</td>
<td>3’ exonuclease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TREX1 (DNase III)</td>
<td>3’ exonuclease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TREX2</td>
<td>3’ exonuclease</td>
<td></td>
</tr>
<tr>
<td>recJ$^+$, Exo1$^+$</td>
<td></td>
<td>EXO1</td>
<td>eso1$^+$</td>
<td>tos (tosca)</td>
<td>EXO1 (HEX1)</td>
<td>Exonuclease for MMR and other pathways</td>
<td></td>
</tr>
</tbody>
</table>

a Table continues on the next page.
Table 1 (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in b</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>SPO11</td>
<td>Recombination endonuclease</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>meiW-68</td>
<td></td>
</tr>
<tr>
<td>S. pombe</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Drosophila</td>
<td>SPO11</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Rad6 pathway

<table>
<thead>
<tr>
<th>RAD6</th>
<th>UbcD6</th>
<th>UBE2A (RAD6A)</th>
<th>E2 ubiquitin-conjugating enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD18</td>
<td>rhp18</td>
<td>RAD18</td>
<td>RING domain E3 ubiquitin ligase</td>
</tr>
<tr>
<td>HPR5 (SRS2, RADH)</td>
<td>mre2</td>
<td>RAD18</td>
<td>RING domain E3 ubiquitin ligase</td>
</tr>
<tr>
<td>MMS2</td>
<td>UBE2V2 (MMS2)</td>
<td>DNA helicase</td>
<td></td>
</tr>
<tr>
<td>UBC13</td>
<td>UBE2N (UBC13, BTG1)</td>
<td>E2 ubiquitin-conjugating complex</td>
<td></td>
</tr>
</tbody>
</table>

Genes defective in recQ with sensitivity to DNA damaging agent

<table>
<thead>
<tr>
<th>recQ +</th>
<th>SGS1</th>
<th>Sgs1+ (hus1+, rad12+)</th>
<th>mus309</th>
<th>BLM</th>
<th>Bloom syndrome helicase</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Fanconi anemia gene</td>
</tr>
</tbody>
</table>

Other genes related to DNA repair

<table>
<thead>
<tr>
<th>PSO2 (SNM1)</th>
<th>mus322</th>
<th>DCLRE1A (PSO2, SNM1)</th>
<th>DNA cross-link repair nuclease</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Related to SNM1</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Converts some DNA breaks to ligatable ends</td>
</tr>
<tr>
<td>mus301 (spn-C)</td>
<td>HEL308</td>
<td>Similar to helicase domain of Mus308</td>
<td></td>
</tr>
</tbody>
</table>

Other conserved DNA damage response genes

—	H2A	hta1+, hta2+	His2av	H2AFX (H2AX)	Histone, phosphorylated after DNA damage
—	—	—	p53	p53 (TP53)	Transcription factor and DNA binding
MEC1	rad3+	mei-41	ATR	ATM- and PI3K-like essential kinase	
Table 1 Nomenclature of DNA repair genes\(^a\) (continued)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene(s) in E. coli</th>
<th>S. cerevisiae</th>
<th>S. pombe</th>
<th>Drosophila</th>
<th>Human</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD1 (DDC2)</td>
<td>rad26(^+)</td>
<td>mus304</td>
<td>ATRIP</td>
<td></td>
<td>ATR interacting</td>
<td></td>
</tr>
<tr>
<td>RAD17</td>
<td>rad1(^+)</td>
<td>rad1</td>
<td>RAD1</td>
<td></td>
<td>PCNA-like DNA damage sensor (9-1-1 complex)</td>
<td></td>
</tr>
<tr>
<td>DDC1</td>
<td>rad9(^+)</td>
<td>rad9</td>
<td>RAD9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC3</td>
<td>hus1(^+)</td>
<td>Hus1-like</td>
<td>HUS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAD24</td>
<td>rad17(^+)</td>
<td>Rad17</td>
<td>RAD17</td>
<td></td>
<td>RFC1-like DNA damage sensor</td>
<td></td>
</tr>
<tr>
<td>RAD9</td>
<td>crb2(^+) (rhp9(^+))</td>
<td></td>
<td></td>
<td></td>
<td>Checkpoint function</td>
<td></td>
</tr>
<tr>
<td>CHK1</td>
<td>chk1(^+) (rad27(^+))</td>
<td>grp (grapes)</td>
<td>CHEK1 (CHK1)</td>
<td></td>
<td>Effector kinase</td>
<td></td>
</tr>
<tr>
<td>RAD53</td>
<td>cds1(^+)</td>
<td>loki (loki)</td>
<td>CHK2 (CHEK2)</td>
<td></td>
<td>Effector kinase</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Entries in Table 1 are organized according to DNA repair pathway, emphasizing functional orthologs. In many cases, but not all, these are also sequence or structural homologs. Caution is recommended in this respect, and the text should be consulted for details, together with public DNA sequence databases. For example, the major DNA glycosylase for removal of 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA is encoded by \textit{fpg} in \textit{Escherichia coli} and \textit{OGG1} in human cells, but the two gene products are not related by amino acid sequence and do not fall into the same structural family. The symbol “\textendash” indicates that no ortholog is detected. Some DNA repair genes play roles in more than one pathway but are listed here only once for simplicity. HUGO-approved gene names (http://www.gene.ucl.ac.uk/nomenclature) are presented in nearly all cases, with a few of the commonly used synonyms provided in parentheses. The name used most commonly in this book is usually presented first here. See also the table “Human DNA Repair Genes” (http://www.cgal.icnet.uk/DNA_Repair_Genes.html). For \textit{Drosophila}, official gene names from http://flybase.bio.indiana.edu are used. For \textit{Schizosaccharomyces pombe}, official gene names from http://www.genedb.org/genedb/pombe/index.jsp are used. For \textit{Saccharomyces cerevisiae}, official gene names from http://www.yeastgenome.org/ are used. For \textit{E. coli}, official gene names from http://www.ncbi.nlm.nih.gov/ are used.

| Dashes indicate that no gene exists. Blank spaces indicate that the status is unknown.
Table 2 Human hereditary diseases and defective cellular responses to DNA damage

A. Human hereditary diseases with defective cellular responses to DNA damage

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeroderma pigmentosum (XP)</td>
<td>XPA–XPG; XPV</td>
<td>Nucleotide excision repair (NER); translesion DNA synthesis</td>
<td>Dermatitis, freckling, skin cancer, sometimes neurological defects</td>
</tr>
<tr>
<td>Cockayne syndrome (CS)</td>
<td>CSA, CSB</td>
<td>Transcription-coupled NER</td>
<td>Post-natal developmental defects, neurological defects</td>
</tr>
<tr>
<td>Combined XP/CS complex (XP/CS)</td>
<td>XPB, XPD, XPG</td>
<td>NER and basal transcription by RNA polymerase II</td>
<td>Features of both XP and CS</td>
</tr>
<tr>
<td>Trichothiodystrophy (TTD)</td>
<td>XPB, XPD, TTDA</td>
<td>NER and basal transcription by RNA polymerase II</td>
<td>Photosensitivity, brittle hair, post-natal developmental defects, neurological defects</td>
</tr>
<tr>
<td>Cerebro-oculo-lacio-skeletal (COFS) syndrome</td>
<td>CSB</td>
<td>Transcription-coupled NER</td>
<td>Post-natal developmental defects, neurological defects</td>
</tr>
<tr>
<td>UV-sensitive (UV⁺) syndrome</td>
<td>CSB</td>
<td>Transcription-coupled NER</td>
<td>Photosensitivity</td>
</tr>
<tr>
<td>Ataxia telangiectasia (AT)</td>
<td>ATM</td>
<td>Repair of DNA strand breaks</td>
<td>Cerebellar ataxia, defective immune function, neurological problems, predisposition to hematolymphoid cancer</td>
</tr>
<tr>
<td>Nijmegen breakage syndrome (NBS)</td>
<td>NBS1</td>
<td>Repair of DNA strand breaks</td>
<td>Developmental abnormalities, growth retardation, cancer predisposition</td>
</tr>
<tr>
<td>AT-like disorder (ATLD)</td>
<td>MRE11A</td>
<td>Repair of DNA strand breaks</td>
<td>Defective immune function, neurological problems, predisposition to hematolymphoid cancer</td>
</tr>
<tr>
<td>LIG4 syndrome</td>
<td>LIG4</td>
<td>Repair of DNA strand breaks</td>
<td>Defective immune function, neurological problems, predisposition to hematolymphoid cancer</td>
</tr>
<tr>
<td>Seckel syndrome</td>
<td>ATR</td>
<td>Chromosome stability in response to specific treatments</td>
<td>Developmental, immunological, and hematolymphoid abnormalities</td>
</tr>
<tr>
<td>Severe combined immunodeficiency (SCID)</td>
<td>RAG1, RAG2, SNM1C (Artemis)</td>
<td>V(D)J recombination</td>
<td>Severe immunodeficiency</td>
</tr>
<tr>
<td>Spinocerebellar ataxia with axonal neuropathy (SCAN1)</td>
<td>TDP1</td>
<td>Processing of topoisomerase-DNA intermediates</td>
<td>Neurodegeneration</td>
</tr>
<tr>
<td>Ataxia-ocular apraxia 1 (AOA1)</td>
<td>APTX (Aprataxin)</td>
<td>None known; possibly double-strand break repair</td>
<td>Neurodegeneration</td>
</tr>
<tr>
<td>Bloom syndrome (BS)</td>
<td>BLM</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Dwarfism, immunodeficiency, cancer predisposition</td>
</tr>
<tr>
<td>Werner syndrome (WS)</td>
<td>WRN</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Premature aging, cancer predisposition</td>
</tr>
<tr>
<td>Rothmund-Thomson syndrome (RTS)</td>
<td>RECQL4</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Skin, hair, and skeletal abnormalities, cancer</td>
</tr>
</tbody>
</table>

(continued)
Table 2. Human hereditary diseases with defective cellular responses to DNA damage (continued)

A. Human hereditary diseases and defective cellular responses to DNA damage (continued)

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPADILINO syndrome (RS)</td>
<td>RECQL4</td>
<td>Resolution of stalled replication/transcription intermediates</td>
<td>Skeletal abnormalities</td>
</tr>
<tr>
<td>46BR syndrome</td>
<td>LIG1</td>
<td>Modest chromosome instability</td>
<td>Immunodeficiency, cancer</td>
</tr>
<tr>
<td>Hereditary nonpolyposis colon cancer (HNPCC)</td>
<td>MLH1, MSH2, MSH6, PMS1, PMS2, MLH3, EX01</td>
<td>Mismatch repair</td>
<td>Colon and other cancers</td>
</tr>
<tr>
<td>Fanconi anemia (FA)</td>
<td>FANCA, FANCB, FANCC, FANCD1, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANC1, FANCJ, FANCL</td>
<td>Chromosomal stability, spontaneous and in response to cross-linking agents</td>
<td>Limb defects, anemia, cancer disposition</td>
</tr>
<tr>
<td>Hyper-IgM syndrome</td>
<td>UNG</td>
<td>Removal of uracil during class switch recombination</td>
<td>Immune deficiency</td>
</tr>
</tbody>
</table>

B. Human hereditary diseases implicated in defective cellular responses to DNA damage

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinoblastoma (RB)</td>
<td>RB1</td>
<td>Cell cycle response to DNA damage</td>
<td>Retinoblastoma and other cancers</td>
</tr>
<tr>
<td>Li-Fraumeni syndrome (LFS)</td>
<td>p53, CHEK2</td>
<td>Cell cycle response to DNA damage</td>
<td>Broad spectrum of cancer</td>
</tr>
<tr>
<td>Hereditary breast cancer</td>
<td>BRCA1, BRCA2</td>
<td>Cell cycle response to DNA damage</td>
<td>Breast and ovarian cancer</td>
</tr>
<tr>
<td>Familial adenomatous polyposis (FAP)</td>
<td>APC</td>
<td>Cell proliferation and chromosomal stability</td>
<td>Gastrointestinal cancer and thyroid cancer</td>
</tr>
<tr>
<td>MYH-associated polyposis (MAP)</td>
<td>MYH</td>
<td>None noted, despite mutations in a base excision repair gene</td>
<td>Gastrointestinal cancer</td>
</tr>
<tr>
<td>Juvenile polyposis syndrome (JPS)</td>
<td>SMAD4, BMPR1A</td>
<td>Cell-signaling and “landscaper” functions</td>
<td>Juvenile polyposis and gastrointestinal malignancy</td>
</tr>
<tr>
<td>Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome</td>
<td>PTEN</td>
<td>Cell cycle responses and apoptosis (but not in response to DNA damage)</td>
<td>Breast, thyroid, and endometrial cancer</td>
</tr>
<tr>
<td>Peutz-Jeghers syndrome (PJS)</td>
<td>STK11</td>
<td>Cell cycle responses and apoptosis</td>
<td>Hamartomas, gastrointestinal and non-gastrointestinal tumors</td>
</tr>
<tr>
<td>Basal cell nevus syndrome (BCNS)</td>
<td>PTCH2</td>
<td>Cell-signaling pathways</td>
<td>Malignant melanoma</td>
</tr>
<tr>
<td>Cutaneous malignant melanoma</td>
<td>CDKN2A, CDK4</td>
<td>Cell cycle responses and apoptosis</td>
<td>Malignant melanoma</td>
</tr>
</tbody>
</table>
Table 2 (continued)

B. Human hereditary diseases implicated in defective cellular responses to DNA damage

<table>
<thead>
<tr>
<th>Human disease</th>
<th>Gene(s)</th>
<th>Principal defective response</th>
<th>Principal clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilm’s tumor (WT)</td>
<td>WT1</td>
<td>Transcriptional regulation</td>
<td>Pediatric kidney tumors</td>
</tr>
<tr>
<td>Hereditary papillary renal cell carcinoma (HPRCC)</td>
<td>MET</td>
<td>Cell signaling</td>
<td>Papillary renal cell carcinoma</td>
</tr>
<tr>
<td>von Hippel-Lindau (VHL)</td>
<td>VHL</td>
<td>Multiple associated functions, possibly defective in cell cycle regulation</td>
<td>Renal cell and other cancers</td>
</tr>
<tr>
<td>TSC Tuberous sclerosis complex</td>
<td>TSC1, TSC2</td>
<td>Cytoskeleton maintenance</td>
<td>Multiple hamartomas, renal cell cancer</td>
</tr>
<tr>
<td>Neurofibromatoses type 1 and type 2 (NF1, NF2)</td>
<td>NF1, NF2</td>
<td>RAS protein regulation or cytoskeleton maintenance</td>
<td>Neurofibrosarcoma and other tumors</td>
</tr>
</tbody>
</table>
Index

A
A-rules, 615
Abasic residues, See AP sites
ABC transporter, 230
AbI protein, S. cerevisiae, 342
ABH genes, human, 157, 159, 161
Acetaldehyde, 38–39
Acetophenone, 34
N-Acetoxy-2-acetyl-2-aminofluorene, 318, 358, 571, 896
N-2-Acetyl-2-aminofluorene, 41–42, 245, 247, 513
Acetylation
histones, 354–355, 736, 790, 1005
p53 protein, 790
Acetyltransferase, 41
N-Acetyltransferase, polymorphisms, 1063–1064
Achondroplasia, 1027
Acrolein, 40
Activation loop, 780
Activation-induced cytidine deaminase, 14, 641, 714
Active rolling model, RecQ helicase activity, 951
AD32 (intercalating agent), 247
Ada box, 147, 149
ADA gene, human, 934
ada gene, E. coli, 140, 146–153, 183
Salmonella, 153
Ada protein, see also O6-Alkylguanine-DNA alkyltransferase
E. coli, 146–150, 234
ada regulon, 147, 149
alkylated, 146–147
conversion to transcriptional activator, 147–149
C-terminal domain, 147, 150–151
N-terminal domain, 147–148
regulatory function, 146
specificity, 149
Ada regulon, E. coli, 147, 149
adaA gene, B. subtilis, 152
adaB gene, B. subtilis, 153
Adaptation, 759, 845
cell cycle restart and, 846–847
multicellular eukaryotes, 847
S. cerevisiae, 846–847
Adaptive mutagenesis, 423–424, 552–553
Adaptive mutation, 422, 639
Adaptive response to alkylation damage, bacteria, 139–150
adaptation to cell killing, 140
adaptation to mutagenesis, 140, 146–150
AlkA protein in, 182–184
definition, 140
evolutionary significance, 153
historical review, 139–140
termination, 150
Adaptor proteins, 848
Adenine
deamination, 9–11, 14–15
imidazole ring opening, 19
Adenosyl radical, 134
S-Adenosylmethionine, 4, 16, 37, 134
Aflatoxin(s), 43–44
Aflatoxin B1, 44
mutagenicity, 76, 532
Aflatoxin B1-8,9-epoxide, 44
Aging, 854–856
array analysis of aging in mammals, 1030
DNA repair and, 7, 1028–1034
age-related decline in DNA repair, 1028–1030
reversal of aging and DNA repair, 1030
mitochondrial theory, 455–456
mouse models, 1030–1031
oxidative DNA damage and, 22–23
somatic mutation theory, 854
telomeres and, 1031–1032
translesion DNA synthesis and, 551–552
alkB gene, E. coli, 147, 149
AKT protein, 804
Aldehydes, DNA-protein cross-links, 40
alkA gene, E. coli, 140, 147, 149, 172, 181–184
AlkA protein, 181–184
adaptive response to alkylation damage, 182–184
helix-hairpin-helix motif, 183–184
structure, 183–185
Alkaline elution method, detection of nucleotide excision repair, 272–273, 275
Alkaline unwinding method, detection of nucleotide excision repair, 272–273
alkB gene, E. coli, 147, 157–160
homologs in higher organisms, 159–160
AlkB protein
E. coli, 161
reactions catalyzed, 158–159
sequence motif, 158
human, subcellular localization, 160
repair of alkylated RNA, 160
Alkyl hydroperoxidase, NADPH-dependent, 21
Alkylating agents, 35–38, 154
chemotherapeutics, 161–162
environmental, 37, 180–181
hypersensitivity in methylpurine-DNA glycosylase deficiency, 184–185
natural forms, 146, 153
repair of DNA, 36–37
reversal of alkylation damage, 139–168
SOS-independent mutagenesis, 554
structures, 36
Swain-Scott constant, 37–38
tolerance in mammalian cells, 157
UVM response, 555
Alkylation damage
adaptive response in bacteria, 139–150
adaptation to cell killing, 140
adaptation to mutagenesis, 140
AlkA protein in, 182–184
definition, 140
evolutionary significance, 153
historical review, 139–140
termination, 150
mammalian cells, 154
mtDNA, 451–452
repair, 139–168
O6-alkylguanine, 141–157
O4-alkylthymine, 141–157
1-methyladenine, 157–162
3-methylcytosine, 157–162
teleological considerations, 162
therapeutic applications and implications, 161–162
RNA, 160
Alkylation resistance
mammals, 427–429
single-celled organisms, 427
3-Alkylcytosine, 37
O2-Alkylcytosine, 37
O6-Alkylguanine, 37
mammalian cells and tissues, 154–155
premutagenic lesion, 554
repair, 141–157
catalasemediated reversal, 139–168
Anthramycin, 247

O-Alkylguanine-DNA alkyltransferase, see also Ada protein
A. arolius, 154
A. fulgidus, 154
A. nidulans, 153
Archea, 153–154
B. subtilis, 151
E. coli, 142–146
eukaryotes, 153
genes for, 153
human, 154
M. luteus, 152
mammalian, 151, 154–156
phosphorylation, 156
S. cerevisiae, 151, 153
Salmonella, 151
therapeutic applications, 161–162
O-Alkylguanine-DNA alkyltransferase I, (O-AlGT I), E. coli, 142
compared to O-AlGT II, 152
levels, 145–146
mechanism of action, 143–145
peak expression, 149
repair of methylphosphotriesters, 144–145
substrate specificity, 142–143
suicide enzyme, 145
O-Alkylguanine-DNA alkyltransferase II, (O-AlGT II), E. coli, 142, 146, 150–152
biochemical properties, 151
cmpared to O-AlGT I, 152
functions, 151–152
O-Alkylguanine-DNA alkyltransferase, mitochondrial, 452
Alkyphosphate, 37
Alkylpurine-DNA glycosylase, H. pylori, 186
3-Alkylthymine, 37
O-Alkylthymine, 37
O-Alkylthymine, 37
premutagenic lesion, 554–555
repair, 141–157
enzyme-catalyzed reversal, 139–168
Allele, 71
Allele number, 71
Alpha particles, 26, 28
Alternative excision repair, 4–5, 107, 379–388
D. radiodurans, 254, 384
definition, 228
endonuclease V, 379–383
mtDNA, 385–386, 456–457
N. crassa, 385, 387
oxidative base damage, 386–387
topoisomerase-DNA complexes, 387
Alu elements, 420–421, 991
β-Amanitin, 363
Ames test, 76–77, 513
Amethopterin, 13
9-Aminoacridine, 395
3-Aminobenzamide, 212–213
2-Aminopurine, 99, 395, 418
Anaphase-promoting complex, 754, 801
Ancient DNA, 23–24
Aneuploidy, 667, 1011
Angelica, 40–41
Animal models, see also Mouse models
Bloom syndrome, 963–964
Anthramycin, 247
Antibody genes, see also V(D)J recombination
class switch recombination, 429–430, 640, 714
hypermutation, 13–14, 429–430
Antimutator mutants, S. cerevisiae, 629
Antioxidant(s), 17
Antioxidant enzymes, 21–22
Antley-Bixler syndrome, 1027
AP endonuclease, 169–170, 192, 197–202, 213, 383
D. melanogaster, 199–200
E. coli, 198
endonuclease IV (Nfo) family, 200–202
exonuclease III (XthA), 198–200
human, 198
mitochondrial, 454–455
reaction catalyzed, 171
S. cerevisiae, 198–199, 202
single-strand break repair, 738–739
AP iyase, 169–170, 172, 178, 191–192,
base excision repair, 202
mitochondrial, 454–455
reaction catalyzed, 171
AP sites, 15–17, 38, 197, 247
β-elimination, 15–17
handling by bypass polymerases, 639
as premutagenic lesion, 530–532
repair, see also Base excision repair by exonuclease III, 198–199
Rad1–Rad10 complex, 287–288
structure, 171
toxic consequences, 213
AP-1, 156, 199
adaptation in multicellular eukaryotes, 847
apoptosis, 853
transcriptional response to DNA damage, 835
UV response in mammals, 831–832, 834
APAF-1 adaptor protein, 848–850
APOBEC (enzyme), 13–14
APOBEC gene, human, 189, 985, 1009–1012
APC gene, human, 559–560, 563–565
APC protein, human, 760, 924–928, 962–963
Apoptosis-inducing factor, 850
Apoptosis, 4, 6, 22, 753, 845
activation by DNA damage, 850–852
apoptosome and downstream effectors, 849–850, 853
apoptotic pathways, 848–850
extrinsic and intrinsic, 848–849
Cockayne syndrome, 898
DNA damage sensors, 852–853
Fanciopathy, 989
mismatch repair proteins and, 427–428
mitochondria in, 450–451
reactive oxygen species, 851
regulation, 848–853
Apoptosis-inducing factor, 850
Apoptosome, 849–850
nuclear, 853
Aparaxin, 739, 936
APRT gene
CHO cells, 81–82
mouse, 83–86
Apurinic site
see AP sites
Apyrimidinic site
see AP sites
Arylhydrocarbon hydroxylase, 43
Arginine methyltransferase, 790, 851
Aromatic amines, 41–42
Artemis gene, human, 934
Artemis protein
cell cycle regulation, 803
deficiency, 935
nonhomologous end joining, 721–722, 724, 728
V(D)J recombination, 714
Artemis protein
Atp1a1 gene, mouse, 777
ASPP protein, 851
AT, see Ataxia telangiectasia
Ataxia telangiectasia (AT), 23, 620, 726, 756, 760, 791, 852, 919–928, 1087
AT variants, 925
cancer proneness, 925–926
cell cycle, 922
cellular phenotypes, 920–923, 928
chromosomal abnormalities, 922–923
clinical features, 919–920, 928, Color Plate 5
complementation groups, 923–925
DNA repair, 923
genetic heterogeneity, 923–924
homologous recombination, 922–923
in vitro correction of cellular phenotypes, 924
lymphoreticular system disease, 919–920
mouse model, 926–928
oxidative stress response, 923
premature aging, 1029
radioresistant DNA synthesis, 760, 920–922
relationship to Bloom syndrome, 962–963
sensitivity to ionizing radiation, 920
Ataxia telangiectasia-like disorder (ATLD), 726, 796, 928, 930, 1087
Ataxia with oculomotor apraxia, 739, 936, 1087
ATLD, see Ataxia telangiectasia-like disorder
ATM gene, human, 760, 924–928, 962–963
diseases of heterozygous mutations, 926
DNA repair, 803
heterozygotes, 1061
mapping, 1050
mutations, 925–926
Atm gene, mouse, 926–928
ATM protein, 735, 762–763, 768, 781, 1016
apoptosis, 852
DNA damage sensor, 760–762
Drosophila homolog, 760
G1/M arrest, 799
interaction with 53BP1, 782
INDEX

interaction with MRN complex, 767
mammalian, 759
phosphorylation, 761–762
phosphorylation of p53 protein, 788–789
S-phase arrest, 796–797
senescent cells, 855
transcriptional response to DNA damage, 835
V(D)J recombination, 761
yeast, 759

ATP, in nucleotide excision repair, 232, 240, 248
ATP hydrolysis, RecA protein, 579
ATPase
CSB protein, 899
DNA-dependent, 250
DNA-independent, 230–231

ATR gene, 931–933
ATR protein, 428–429, 780
ATR-ATRIP complex, 764
DNA damage sensor, 762–763
DNA repair, 803
G/S arrest, 794
mammalian, 759
phosphorylation of p53 protein, 788
senescent cells, 855
yeast, 759

ATR-interacting proteins, 759
ATRIP protein, 763
ATR-ATRIP complex, 764
ATRIP-RPA interactions, 763–764
ATRX gene, human, 1025
Attenuated familial adenomatous polyposis, 1009–1010
Autoradiography, nucleotide excision repair, 267
Auxotroph, 74–75
Azaserine, 153
6-Azaauracil, 366, 465

Bacillus subtilis
nucleotide excision repair, 254–255
SOS system, 498
spore photoproduct, see Spore photoproduct
spores, 33
translesion DNA synthesis, 549–550
Bacterial persistence, 497
Bacterial toxins, 47–48
Bacteriophage, see Phage entries
BAX protein, 848, 850–853
B-cell malignancy, uracil-DNA glycosylase deficiency, 179
BCL proteins
apoptosis, 848–850
domain BH3-only, 848
BCNS gene, human, 1017
Benzo[α]pyrene, 42, 637, 1063
Benzo[α]pyrene diol epoxide, 43–44, 247, 363, 544, 571
β-Benzylguanine, 161–162
β sliding clamp, 546–547
β-Elimination, 15–17
β-Hairpin structure, UvrB protein, 242
β-Lactam antibiotics, 497
BID protein, 849
BIDS syndrome, 908–909
Big Blue Mouse, 83
1,3-Bis(2-chloroethyl)-1-nitrosourea, 143, 247
Risulfurim, 12
B-K mole syndrome, 1018
Bladder cancer, 1063–1066
Bleomycin, 46, 200, 383, 533, 963, 1068
BLM gene, human, 421, 947, 954–965
BLMash mutation, 959
gene expression, 960–961
heterozygotes, 1061
mapping and cloning, 958
mutations in Bloom syndrome, 959
Bm protein, mouse, 963–964

BIR mediators, 687
roles in different organisms, 783–784
S. cerevisiae, 847
S. pombe, 783, 798–799
senescent cells, 855
Chk2 mutant, mouse, 784
CHK2 protein, 784
Chk1 mutant, mouse, 784
Cisplatin, 36, 38–39, 118, 247–248, 284,
Cip1 protein, vertebrates, 791
Chromosome instability
Chromosomal abnormalities
Chromophore, pyrimidine dimer-DNA
Chromatin silencing, Ku proteins, 717
Chromatin assembly factor 1, 356–358
Chromatin
Cho protein, 784
Chloroacetaldehyde, 176
6-Chloroethylguanine, repair, 143
-(2-Chloroethyl)-
Crossover interference, 425
Crossover, 665
CpG islands, methylation, 154
COX11 gene, human, 1026
CSB protein, 898–900
CSA protein, 904–905
Cryptochromes, 112
CY1 gene, 76
Cyclin(s), 754, 1018
Cyclobutane pyrimidine dimers, 12,
Cyclobutane pyrimidine-DNA glycosylase;
Pyrimidine dimer-DNA photolyase
cis-syn form, 30, 115, 527–528, 615
distribution in chromatin, 48–49
DNA polymerase bypass of CPD lesions,
96, 98, 638
formation, 29–32
effect of DNA sequence context, 31–32
inhibition of DNA polymerase III, 527
lacI gene, 31
Crotonaldehyde, 40
Crouzon cutis gyrata of Beare and
Stevenson, 1027
Crouzon syndrome with anacrosis nigri-
cans, 1027
CRT1 gene, S. cerevisiae, 818–819
Crt1 protein, S. cerevisiae, 826
CRY genes, see hCRY1; hCRY2; mCRY1;
mCRY2
Cryptochromes, 112
in different kingdoms, 131
CS, see Cockayne syndrome
CSA gene, human, 279, 364, 899–900
Gα gene, mouse, 904–905
CSA protein
human, 302, 899–900
cellular location, 902
multimeric protein complex, 902–903
RNA polymerase II transcription, 368, 900
XAB2 protein interactions, 901
mammalian, 364
CSB gene, human, 276, 279, 364, 898–899
COFS syndrome, 905
UV-sensitive syndrome, 906
Gα gene, mouse, 903–904
CSB protein
human, 898–899
ATPase activity, 899
interaction with RNA polymerase II, 900
repair of oxidative base damage, 371, 903
RNA polymerase II transcription, 368, 900
transcription elongation, 369, 901
ubiquitination of RNA polymerase II,
900–901
XAB2 protein interactions, 901
mammalian, 364, 366–368
CTD kinase, 324–325
CTIP protein, 801
CTP:CM P phosphotransferase, 12
CUL4A protein, 302
Cullin 4a, 902–903
Cut phenotype, 898
Cyclin-dependent kinase, 736–737,
753–754, 992, 990
phosphorylation of p53 protein, 789
Cyclobutane pyrimidine dimers, 12, see also
Pyrimidine dimer-DNA glycosylase;
Pyrimidine dimer-DNA photolyase
cis-syn form, 30, 115, 527–528, 615
distribution in chromatin, 48–49
DNA polymerase bypass of CPD lesions,
96, 98, 638
formation, 29–32
effect of DNA sequence context, 31–32
inhibition of DNA polymerase III, 527
lacI gene, 31
CRO1 protein, Drosophila, 780
Ch12 protein, S. cerevisiae, 770
Chlorambucil, 36
Chl12 protein, S. pombe, 818–819
Chromatin assembly factor 1, 356–358
Chromatin
Cho protein, 784
Chloroacetaldehyde, 176
6-Chloroethylguanine, repair, 143
Chloroethyl nitrosourea, 152, 161
Cho protein, E. coli, 245–247
Chromosome instability
Chromosomal abnormalities
Chromophore, pyrimidine dimer-DNA
photolyase, 112, 115–116, 118–119
Chromosomal abnormalities
ataxia telangiectasia, 922–923
Fanconi anemia, 988
prevention by mismatch repair, 421
xeroderma pigmentosum, 868–869
Chromosome instability
Bloom syndrome, 955–956, 962, 1061
retinoblastoma, 1064
Cip1 protein, vertebrates, 791
Circadian rhythm, 131
Cisplatin, 36, 38–39, 118, 247–248, 284,
330, 363, 385, 451, 989
resistance, 429
c-Jun N-terminal kinase, 429
phosphorylation of p53 protein, 789
eda” gene, E. coli, 489
Claspin, 784–785
Class switch recombination, antibody
genes, 429–430, 640, 714
CLN genes, S. cerevisiae, 791
CpxP proteinase, 473, 491, 522
Clustering analysis, 825
CMM genes, human, 1018
Cockayne syndrome (CS), 23, 298, 364,
367–368, 834, 865, 895–905, 1087,
see also XP/CS complex
apoptosis, 898
cellular phenotypes, 896–897
clinical phenotypes, 895, Color Plate 2
complementation groups, 898
DNA repair, 896–897
transcriptionally active DNA, 897–898
genetics, 898–905
group A, 898
group B, 898
mouse models, 903–905, 912
oxidative base damage, repair, 903
premature aging, 1029–1030
transcription-coupled nucleotide excision
repair, 897–898, 901, 903
UV sensitivity, 896
Coding joint, (V)D recombinase, 712–714
Coffin-Lowry syndrome, 1026
COFS syndrome, see Cerebro-oculo-
facio-skeletal syndrome
Cohesins, 681, 796
Cold spot, 77
Colicin El, 489
Colon cancer, 189–190, 204, 406, 433,
predisposition syndromes, 1008–1016
Combined XP/CS, see XP/CS complex
Comet assay
double-strand break repair in S. cerevisiae,
667
nucleotide excision repair, 273
Complementarity- defining region, 640
Completion problem, cell cycle, 754, 757
Complex mutation, 99–100
Conditional dicentric chromosomes,
668–669
Conditional mutation, 74
Constant denaturant capillary electrophoresis, 83
Constitutive-stable DNA replication, 594
Contingency loci, 424
COP9 signalosome, 903–904
Copy choice DNA replication, see
Replication fork regression
Cosmic radiation, 25
Cowden syndrome, 1002, 1014–1015,
1088
COX11 gene, S. cerevisiae, 693
CpG islands, methylation, 154
CPRI gene, S. cerevisiae, 827
Crβ2 protein, S. pombe, 784, 847
CREBBP gene, human, 1026
Crisis stage, 855
Cross-link(s), 663
detection, 39
DNA-DNA, 34
interstrand, see Interstrand cross-link
repair
intrastrand, 38–39
DNA-protein, 27, 34, 39–40, 47
Cross-linking agents, 38–40
sensitivity, 696
Crossover, 665
during meiosis, 424–427
Crossover interference, 425
INDEX
1095

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Fri, 31 May 2019 05:52:18
Cyclobutane pyrimidine dimers, (continued)
local structure of DNA, 30
locating in DNA, 31–32
loss of radiolabeled dimers from DNA,
257–258
mtDNA, 452
nucleotide excision repair in eukaryotes,
photoreactivation, 109–127
photoreversal, 110
photosensitized reactions, 34–35
as premutagenic lesion, 525–529
repair, see also Base excision repair;
Nucleotide excision repair
repair by deoxyribonuclease I, 132
RNA, 133
sunlight-induced, 35
trans-syn form, 30, 115, 528, 615
UV irradiation of mammalian cells, 624
UV radiation-induced mutagenesis of
S. typhimurium, 615
xeroderma pigmentosum cells, 869
8,5'-Cyclodeoxyadenosine, 23, 27
8,5'-Cyclodeoxyguanosine, 24, 27
Clysohexylcarbodiimide, 247
Cyclophosphamide, 36
Cyclopurine DNA adducts, 23, 873–874
Cyclohexylcarbodiimide, 247
Cyclophosphamide, 36
Cyclopurine DNA adducts, 23, 873–874
CYP1A1
Cytosine glycol, 22
Cytosine deaminase, 14
Cytosine deaminase, activation-induced
deaminase, see Activation-induced
cytidine deaminase
Cytokine
Cytokine, 2-aminofluorene, 42
Cytosine, 6-yl)Deoxyguanosin-8-yl)deoxyadenosine, 12
Cytosine, 9-9, 14, 16, 432, 641
deoxyguanosine, 12
Cytosine, 9-9, 14, 16, 432, 641
deoxyguanosine, 382
Cytosine deaminase, 14
Cytosine DNA methyltransferase, 56
Cytosine glycol, 22
Cytosine hydrate, 16, 33, 191
D
Dacarbazine, 36, 161, 428
darm' gene, E. coli, 393–395, 399, 402, 427,
429, 485–486
Dark repair, 227
data' gene, B. subtilis, 152–153
Daughter strand gap repair, 485, 493, 593
evidence for gaps in new DNA, 587–589
evidence for recombinational events,
589–590
gap size, 588
in vivo system, 592–593
perspectives, 590–592
protein in, 590
RecA protein, 578, 586
recombinational repair, 586–593
DBF4 protein, CDC7-DBF4 complex, 794
dSNP (database), 1051
darm' gene, E. coli, 431–432
Dcm methylase, 432
dCMP deaminase, 12
dry gene, Drospila, 131
dCTP deaminase, 12–13
DDI gene, S. cerevisiae, 821
DDB protein
mammalian, 342, 356
nucleotide excision repair, 331
DDI gene, human, 279, 830, 880
DDB1 protein
homologs, 302–303
human, 902–903
mammalian, 302–303, 333
regulation, 301
ubiquitin ligase, 301–302, 331
DDB2 gene
human, 279, 880
mammalian, 301, 830, 837
DDB2 protein, mammalian, 301–302, 333
Ddc1 protein, S. cerevisiae, 764, 769
DDR gene, S. cerevisiae, 823–824
Deamination, 382
adenine, 9–11, 14–15
bisulfite-induced, 12
cytosine, 4, 9–14, 16, 432, 641
deoxyadenosine, 382
deoxyctydine, 382
deoxyguanosine, 382
guanine, 9–10, 14–15
5-hydroxymethylcytosine, 14
5-methylcytosine, 9–10, 14, 16, 390,
431–433
nitrouracil acid-induced, 12
Death receptors, 848, 850
Death-inducing signaling complex, 848
Debrisoquine, 1062
DEP1 gene, S. cerevisiae, 367–368
Deinococcus radiodurans
alternative excision repair, 254
nucleotide excision repair, 253–254
Deletion mutation, 73–75
detection, 78–79
from primer-template misalignment, 99
Denaturing gradient gel electrophoresis, 82
denV gene, phage T4, 193–196
Denys-Drash syndrome, 1019
Deoxyadenosine, 379
deamination, 382
3-(Deoxyadenosine-N9-y1)-
4-aminooxymethyluracil-1-oxide, 45
2'-Deoxy-6-(cytidine-2)-aminopurine, 141
Deoxyxystidine, deamination, 382
Deoxyxystidytransferase, Rev1, 631–637
Deoxyguanosine, 42
deamination, 382
N-(2'-Deoxyguanosin-8-yl)-N-acetyl-
2-aminofluorene, 42
N-(2'-Deoxyguanosin-8-yl)-2-acetyl-
2-aminofluorene, 532
3-(Deoxyadenosine-N9-y1)-
2-aminofluorene, 42
N-(2'-Deoxyguanosin-8-yl)-
2-aminofluorene, 42
N-(2'-Deoxyguanosin-8-yl)-
4-aminoquinoline-1-oxide, 45
3-(Deoxyadenosin-N9-y1)-
4-aminooxymethyluracil-1-oxide, 45
Deoxynosine 3'-endonuclease, E. coli, 380
Deoxynucleoside triphosphate, see dNTP
Deoxyribose, at AP site, 15–17, 169–171,
methyltransferase, 393–394, 1005, 1022–1025
after nucleotide excision repair, 358–359
mitochondrial, see Mitochondrial DNA structural information encoded in, 50–54
undermethylated, 393
DNA alkyltransferase, 56
eukaryotes, 153
prokaryotes, 152–153
DNA damage, 9–69
activation of apoptosis, 850–853
alterations in base chemistry, 9–24
biological relevance, 28
biological responses, 4–6
cancer, 154–156
chromatin structure and, 48–49
constant genomic insult, 4
detection by proteins, 50–57
disease states associated with defective responses to, 6–7, 979–1047
endogenous, 4, 9–25
environmental, 4, 9, 25–48
historical reflections, 3–4
inhibition of DNA synthesis, 618–620
ionizing radiation, 4, 17, 24–29
lipid peroxidation products, 16, 20–21
locating sites of, 55–57
loss of bases, 15–17
major sites, 10
mismatches created by replication errors, 24–25
oxidative damage, see Oxidative damage processing by homologous recombination proteins, 574–584
proteins protecting against, 49
regulation of cell fate, 845–862
regulatory responses, 114
senescence, 854–856
sensing, 758–771
SOS response, 463–497
spontaneous, handling by bypass polymerases, 639
strand breaks, see Strand breaks
transcriptional response, 817–844
under extreme conditions, 24
UV radiation, 4, 29–36
UV response in mammals, 831–835
DNA damage checkpoint, UmuD and UmuC in, 519–520
DNA damage tolerance, 4–6, 461
E. coli, 569–612
error-free, 642–646
error-prone, 642–646
eukaryotes, 629–649
translation DNA synthesis, 509–510
DNA damage–binding complex regulation, 303
XF groups, 301–303
DNA deoxyribophosphodiesterase, 202–204
DNA end-binding factor, 715–718
DNA endonuclease, see also specific enzymes
Rad1–Rad10 complex, 285
Rad2 protein, 291
pombe, 383–386
DNA glycosylase, 140, 169–197, see also specific enzymes
base excision repair, 213
bilunxional, 171, 190, 192, 202
E. coli, 172
helix-hairpin-helix motif, 171–174
human, 172
limiting oxidized and fragmented purine residues, 186–191
mechanism of action, 175
mismatch-specific, 176, 178
monofunctional, 171, 202
MutY and MTH, 189–190
OGG1, 190–191
reaction catalyzed, 170
release of free bases, 171
removal of methylated bases, 180–186
removal of oxidized and fragmented pyrimidine residues, 191–192
S. cerevisiae, 172
DNA gyrase, 596
nucleotide excision repair, 253
DNA helicase
archaeal, 288
defects in human hereditary diseases, 947–978
DNA replication, 952–953
Rad3 protein, 296–297
RecQ family, 947–978, see also RecQ helicase
replicative, 571
Srs2 protein of yeast, 645
TFIIH, 328–329
DNA helicase II, E. coli, 250, 394
mismatch repair, 401–403
nucleotide excision repair, 250–251
oligonucleotide excision, 250–251
orthologs, 253–254
DNA ligase, 204, 454
ATP-dependent, 205
base excision repair, 170, 202–210
catalytic domain, 205–207
DNA-binding domain, 205–207
E. coli, 204–205
helix-hairpin-helix domain, 206
human, 208–210
mammalian, 207–208
mechanism of action, 204–210
mismatch repair, 403
mutations, 209–210
nucleotide excision repair, 253, 318, 339, 343
oligonucleotide-binding fold, 205–206
phage T7, 205–206
rejoining of strand breaks in DNA, 163
structure, 204–210
T. filiformis, 205–206
DNA photolyase, 56, 194, 195
DNA mismatch correction, 157
Deoxyribophosphophodiesterase, 202–204
DNA polymerase
B family, 629
B. stearothermophilus, 89, 92, 94
deoxyribophosphophodiesterase, 202–204
error-prone
lesion bypass, 95–98
structure, 96–97
geometric selection of nucleotides, 87–90
incorporation of incorrect bases, 24–25
incorporation of uracil, 12
mammalian, 204
mechanism of action
importance of base-pairing geometry vs. hydrogen bonds, 92–93
induced-fit, 89–90
selection against ribonucleotides, 93
two-metal-ion, 90–92, 98
nomenclature of polymerase genes, 1084
open and closed conformations, 92
phage T4, 555
dynamic processivity, 550
phage T7, 89–90, 92–94
proofreading, 25, 87–88, 93–94, 98
sequence-specific pausing, 99
spillage, 980–982
SOS-induced, 543–544
structure, 86–98
Sulfolobus
Dbh polymerase, 96–97
polymersome, 96–98, 532
Taq, 89, 92–94
tool belt model, 550
X family, 637
Y family, 632, 636–637
DNA polymerase I, E. coli, 89–91, 182, 244, 292, 431
functions, 536
gap filling in base excision repair, 202
Klenow fragment, see Klenow fragment
nucleotide excision repair, 229–243, 250–253
structure, 87–88
DNA polymerase II, E. coli, 252, 479, 552, 601
functions, 536
inducible replisome/repliation restart, 604
protein–protein interactions that control, 543–551
translesion DNA synthesis, 543
DNA polymerase III, E. coli, 252, 551, 596
encounters with damaged DNA, 571
inhibition by cyclobutane pyrimidine dimers, 527
interaction with UmuD, 548–549
mismatch repair, 397, 402–403
mutations leading to SOS response, 486
single-stranded, see Single-stranded-DNA-binding proteins
UvrA, 230–231
dnaC gene, E. coli, 484, 604
DnaC protein, E. coli, 595–597
DNA-deoxyribophosphodiesterase, 169–170
DNA-dependent protein kinase
apoptosis, 852
cell cycle regulation, 803
DNA damage sensor, 719–720
interaction with DNA, 719–720
mouse scid mutant, 718–719
multicellular eukaryotes, 847
nonhomologous end joining, 718–721, 724
phenotype of mice defective in, 720–721
phosphorylation of p53 protein, 788
vertebrates, 847

DnaE" gene, E. coli, 486
DnaF" gene, E. coli, 486
DnaG protein, E. coli, 595–596
DnaI gene, E. coli, 239
DnaK protein, E. coli, 239
DnaN gene, E. coli, 486, 496
DnaQ" gene, E. coli, 396, 485
DnaT gene, E. coli, 486
DnaT protein, E. coli, 595–596
DnaZ" gene, E. coli, 397
DNMT1 protein, 1005
DNMT3B gene, human, 1022–1023
Ddy, 230–231
Double-strand break(s), 29
dNTP, damaged, misincorporation, 555
Double-strand break repair, 4–5, 28, 509,
UvrA, 230–231
multicellular eukaryotes, 847
site-specific, 668–669
S. cerevisiae radiation-induced, 27–28
processing by RecBCD nuclease/helicase, 483
Endonuclease V
fidelity, 118
endoonucleolytic activity, 484

E7 protein, human papillomavirus, 793
Early-onset ataxia with ocular motor apraxia, 936
EcoRI, induction of SOS response, 486
Effector caspase, 848
Effector kinase, 759
Electron microscopy, repair synthesis
patches, 319–320
Electron transport chain, 449–450
Electrophilic reactants, DNA damage,
DNA polymerase ζ and, 631
mice defective in DNA ligation, 723
Electrophilic reactants, DNA damage,
activation, 595–596
Embryonic development, 7
Embryonic viability
Bim mutant mice, 963–964
DNA polymerase ζ and, 631
mice defective in DNA ligation, 723

Endonuclease III (Nth), 196
Endonuclease VIII (Nei), 279, 285, 881, 1051
Enediynes, 46
Endonuclease VIII-like DNA glycosylase 1, 172
Endonuclease VIII-like DNA glycosylase 2, 172
Endonuclease VIII-like DNA glycosylase 3, 172
Endonuclease VIII-like proteins, mammalian, 192
Endonuclease VIII-like proteins, mammalian, 192
Environment, 826
Epidermolysis bullosa, 1072
Epigenetics, 276–278
Episomal shuttle vector, 81
Epistasis, 276–278
3.4-Epoxycyclopenta[c]pyrene, 532
2,3-Epoxycyclopenta[c]pyrene, 21
ERCC genes, human, 275–276
ERCC1 gene
human, 279, 285, 881, 1051
mammalian, 285–288, 837
ERCC1 protein
interstrand cross-link repair, 695
mammalian, 285–288, 332
binding and positioning DNA substrate, 290–291
ERCC1-XPF enzyme, 286–287, 318, 326–327, 333–334, 336, 360
helix-hairpin-helix domain, 290
protein domain structure, 288–291
reconstitution of nucleotide excision repair, 322
sequence similarity to XPF proteins, 289
ERCC2 gene, see XPD gene
ERCC3 gene, see XPD gene
ERCC5 gene, see XPG gene
ERCC6 gene, see CSB gene
Ergosterol desaturase, 693
ERK motif, 289
ERK1 gene, mammalian, 832
Error-prone DNA repair, 510
Escherichia coli, see also specific genes
DNA damage tolerance, 569–612
homologous recombination, 569–612
interstrand cross-link repair, 691–692
match repair, 390–402
methyl-directed, 392–402
very-short-patch repair, 431–432
nucleotide excision repair, 228–253, 343
SOS response and, 491–492

(6-4) photoproduct-DNA photolyase, 228–253, 343

INDEX 1099

D suppressor, 771
"EcoRI, induction of SOS response, 486
Effector caspase, 848
Effector kinase, 759
Electron microscopy, repair synthesis
patches, 319–320
Electron transport chain, 449–450
Electrophilic reactants, DNA damage,
DNA polymerase ζ and, 631
mice defective in DNA ligation, 723

DnaD gene, E. coli, 397
DnaN protein, 1005
DNMT1 gene, human, 1022–1023
dNTP, damaged, misincorporation, 555
Dose fractionation, radiotherapy, 856
Double D-loop formation assay, single-nucleotide polymorphisms, 1054–1056
Double Holliday junction intermediate, 425
Double-junction dissolution, 965
Double-strand break(s), 29
checkpoint response, 759–760, 766–767
eukaryotes, 663–710
experimental systems, 668–670
conditional dicentric chromosomes, 668–669
HO endonuclease, 668–669
S-Scel-induced targeted, 669–670
appearance at replication fork, 570
processing by RecBCD nuclease/helicase, 483
radiation-induced, 27–28
S. cerevisiae, 665–669
transcriptional response, 826–827
site-specific, 668–669
Double-strand break repair, 4–5, 28, 509,
see also Homologous recombination;
Nonhomologous end joining
cell cycle stage-dependent, 736–737
eukaryotes, 663–665, 711–750
histone modification, 735–736
MRN complex, 724–735
nonhomologous end joining, 664,
711–724
polymorphisms in repair genes, 1066
recombinational repair, 584–585
regulation of pathway choice, 726–727
S. cerevisiae, 665–667
V(D)J recombination and, 714
INDEX

1102

6-Hydroxy-5,6-dihydrothymine, 27
8-Hydroxyguanine, 23–24, 45; see also 8-OxoG
5-Hydroxyhydrantoin, 22, 24, 26
Hydroxy radical, 17–23, 26–28
Hydroxyamine, 82
5-Hydroxyl-dCTP, 555
5-Hydroxyl-DTTP, 555
5-Hydroxymethylcytosine, deamination, 14
5-Hydroxy-5-methylhydantoin, 22 removal, 191
5-Hydroxymethyluracil, 14, 22, 24, 27 removal, 177
4-Hydroxynonenal, 20–21, 40
4-Hydroxy-2-oxoglutarate aldolase, 496
5-Hydroxythymine, 27
6-Hydroxythymine radical, 19
5-Hydroxyuracil, removal, 175, 387
Hydroxyurea, 269, 685, 756, 766, 770, 779–780, 782, 796, 954
Hyper-immunoglobulin M syndrome, 14, 1088
Hypermutation, see Somatic hypermutation
Hyperrecombination, 383, 389–390
S. cerevisiae, 690
Hypochondroplasia, 1027
Hypomorphic mutations, MRN components, 726
Hypoxanthine, in DNA, 10–11, 14–15
Hypoxanthine-glycosylase, Bloom syndrome, 957

I
IκB kinase, 834
IκB-α, ataxia telangiectasia, 924
IAP proteins, apoptosis, 848, 853
IBIDS syndrome, 908–909
ICE gene, human, 1022
Ichthyosis-cheek-eyebrow syndrome, 910
Ichthyosis-follicularis-atricaria-photophobia syndrome, 910
I-compounds, 23
ifα+ gene, E. coli, 489
IKK protein, 836
IL2RG gene, human, 934
IL7R gene, human, 934
Immune system alterations
DNA ligase I mutations, 210
uracil-DNA glycosylase deficiency, 179
Immunodeficiency-centromeric instability-facial anomalies syndrome, 1021–1023
Impc protein, E. coli, 488
Inchworm-type model, translocation of DNA helicase, 950–951
Indirect photoreversal, 110
Indirect readout, DNA sequence, 53–54
Induced mutagenesis, 72
Induced stable DNA replication, 493, 594–595
Inducible replicosome reactivation/repllication restart, 573, 603–605
Initiation factor, eIF2α, 804
Initiator caspase, 848
InlA gene, mouse, 904
Inositol hexakisphosphate, 724, 760
Insertion mutation, 73
Insertion-deletion loops, 389, 397

J
Jackson-Weiss syndrome, 1027
JAK3 gene, human, 934
JNK gene, mammalian, 832, 835
JUN gene
human, 901
mammalian, 831–835
Juvenile polyposis coli, familial, 1002, 1013–1014, 1088

K
KARP-1 gene, mammalian, 836
KARP-1 protein, mammalian, 719
katE+ gene, E. coli, 481
katE+ gene, E. coli, 481
Keratin-6b-ihdythiasis-deafness syndrome, 910
KIN17 gene, mammalian, 834
KIN28 gene, S. cerevisiae, 279
Kin28 protein, S. cerevisiae, 324–325
Kinetochores, 1004–1005
Klenow fragment, 87–88, 92, 94
KNTC2/HEC1 protein, 1005
Ku proteins, 715–718, 737
checkpoint response, 768
chromatin silencing, 717
DNA-dependent protein kinase, 718–721
homologs in yeast, 716–718, 846
in vitro properties, 715–716
interaction with MRN complex, 729–730
Ku-defective mice, 720–721
M. tuberculosis, 716
mammalian, 836
nonhomologous end joining, 715–718, 724
rediscovery as repair proteins, 715–718
telomere structure and, 717–718
vertebrates, 847
L
L1 repeat elements, 1023
lacI system, E. coli, 77–78
determination of mutational spectra, 523–524
lacZ-to-lacI fusions, 79–80
mutational spectrum, 77–78
Lactacycin, 340
lacZ+ gene, E. coli, 76
lacZ-to-lacI fusions, 79–80
Lamins, 1033
Landscape genes, 1004
Laryngeal cancer, 1064
LedI protein, S. cerevisiae, 763, 783, 846
Lesion bypass DNA polymerase, 95–98, see also DNA repair, error-prone
Lethal mutation, 74
Leukemia
ataxia telangiectasia, 926
Fanconi anemia, 987–988
LexA box, see SOS box
lexA+ gene, E. coli, 230, 252, 463–469, 478–481, 486–487, 490–491, 511
lexA mutants, 467–469
lexA(Del) mutations, 468–470, 479, 514, 516, 535
lexA(Ind) mutations, 468, 471–472, 474,
478, 510–511, 553
lexA(Ts) mutations, 468–469, 471 repression by LexA protein, 471–472
LexA protein, E. coli, 233, 463–497
autocleavage, 465, 473–474, 476
binding to SOS boxes, 472–473
C-terminal domain, 473
fragment degradation by ClpXP protease, 473
homology to UmuD and MucA, 514
negative control element, 468
N-terminal domain, 472–473
proteolytic cleavage, 473–476
RecA-mediated cleavage, 472–478, 489, 517–518
repression of recA+ and lexA+ genes, 471–472
structurally related proteins, 475–476

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Fri, 31 May 2019 05:52:18
LexA-binding sites, 479
Lif proteins, S. cerevisiae, 722, 729, 737
Li-Fraumeni syndrome, 780, 786, 1002, 1006–1007, 1088
p53 protein, 1006–1007, 1059–1060
LIG1 gene
human, 279, 1051
mammalian, 207
LIG3 gene, mammalian, 207–208
LIG4 gene
human, 930–931
mammalian, 207
Lig4 protein, S. cerevisiae, 722
LIG4 syndrome, 1087
ligA gene, E. coli, 205
Light repair, 227
Limb girdle muscular dystrophy, 1033
Liquid holding recovery, 249
Lipid peroxidation products, 176
Linear energy transfer, 26
Liver cancer, 161–162
Louis-Bar syndrome, see Ataxia telangiectasia
Lymphoreticular system, disease in ataxia telangiectasia
Liver cancer, 161, 1062–1066
Lymphoma, 640
ataxia telangiectasia, 926
mice defective in DNA ligation, 723
Lymphoreticular system, disease in ataxia telangiectasia, 919–920
Lynch syndrome II, see Hereditary non-polyposis colon cancer
M
M phase
regulation, 801–802
S. cerevisiae, 801
MAD2 protein, human, 631
MAGI gene, S. cerevisiae, 172, 821, 824–826
Maintenance methylase, 358
Meldaldehyde, 20
Mammalian cells
mutagenesis, 79–85
identification of DNA fragment carrying mutations, 82–83
intact animals, 83–85
sequencing of mutated genes with PCR, 81–82
shuttle vectors, 79–81
transcriptional response to DNA damage, 828–837
UV radiation-induced mutagenesis, 617–629
chromosomal genes, 625–627
cyclobutane pyrimidine dimers, 624
hot spots, 624
HPRT gene, 625–626
inducibility of mutagenic process, 621–622
mutant fixation in S phase, 617–618
nucleotide excision repair, 624–625
(6-4) photoproducts, 624
replication in treated cells, 618–620
specificity of induced lesions, 622–629
targeted mutations, 622–623
transition mutations, 623–624
translesion synthesis, 620–621
untargeted mutations, 622
Mandibuloacral dysplasia, 1033
MassARRAY system, 85, 1054
Mandibuloacral dysplasia, 1033
Mating-type switching, yeast, 280, 426
MCR1 gene, mouse, 131
MCM2–7 complex, mammalian, 952
MDC1 protein
mammalian, 782–783
phosphorylation of p53 protein, 789
mammalian, 178–179
yeast, 178
MCM2–7 complex, mammalian, 952
mCRV1 gene, mouse, 131
mCRV2 gene, mouse, 131
Mec3 protein,
S. cerevisiae, 125, 756, 762, 826
Mec1 protein
S. pombe, 783
Mec3 gene, S. cerevisiae, 125, 756
Mec3 protein, S. cerevisiae, 764
MECP2 gene, 1025–1026
Menadione, 201, 826
Melphalan, 36
Melanoma, 638, 904, 1064–1066, 1088
Melanoma, familial, 1002, 1018
Melphalan, 36
Menadione, 201, 826
Mer phenotype, 154–156
Mer phenotype, 155–156
Mer3 protein, S. cerevisiae, 426
Mercurioethanethiol, 36
MET proto-oncogene, 1020
Metabolism, genotoxic chemicals, 72, 1062–1071
Metal salts, Fenton reaction, 18
Metal-binding site, Ada protein, 147
5,10-Methenyltetrahydrofolyl polyglutamate, pyrimidine dimer-DNA photolyase, 112, 115–116, 118–119
Methotrexate, 13
Methyl chloride, 37, 146, 153
Methyl iodide, 146
Methyl methanesulfonate (MMS), 36–37, 139, 180, 199–200, 203, 278, 645, 770, 791, 819
MMS-treated S. cerevisiae, 794–796
Methyl radical, 37
Methyl melamine, 428–429, see O6-Methylguanine-DNA methyltransferase
Methyltransferase, 147
5,10-Methenyltetrahydrofolyl polyglutamate, pyrimidine dimer-DNA photolyase, 112, 115–116, 118–119
Methotrexate, 13
Methyl chloride, 37, 146, 153
Methyl iodide, 146
Methyl methanesulfonate (MMS), 36–37, 139, 180, 199–200, 203, 278, 645, 770, 791, 819
MMS-treated S. cerevisiae, 794–796
Methyl radical, 37
Methyl violo, 201, 693
1-Methyladenine, 16
repair, 157–162
by enzyme-catalyzed reversal, 139–168
in RNA, 160
3-Methyladenine, 16, 37, 141, 427
removal, 178, 180–186
7-Methyladenine, 181
Methyladenine-DNA glycosylase, 172, 821
E. coli, 173
AlkA, 181–184
TagA, 181, 184
3-Methyladenine-DNA glycosylase I, 172
3-Methyladenine-DNA glycosylase II, 172
Methylating agents, 4, 37
Methylation
 CpG islands, 155
DNA, 393–394, 1005, 1022–1025
after nucleotide excision repair, 358–359
GATC sites, 393–394
RNA, 160
Methylation tolerance, 157
Methyl-binding domain glycosylase, 4, 172
5-Methylcytosine, 141–142
3-Methylcytosine, 16
repair, 157–162
by enzyme-catalyzed reversal, 139–168
in RNA, 160
5-Methylcytosine deamination, 9–10, 14, 16, 390, 431–433
formation in repair, 358
O6-Methylguanine-DNA methyltransferase, 181
5-Methylcytosine-binding domain glycosylase 4, 433
5-Methylcytosine hydrate, 33
1-Methyldeoxyguanosine, 158
Methyl-directed mismatch repair, E. coli, 390, 432
biochemical pathway, 396–402
excision and resynthesis of DNA, 397
excision reaction, 399–401
gene products in, 394–395
in vitro assay, 396–397, 399
in vivo analysis, 392–402
initial steps, 399
linear substrates, 400
model for bidirectional repair, 401–402
proteins, 403
purification of proteins, 398
repair of heteroduplex DNA, 392–393
specificity in vivo, 395–396
strand discrimination, 393–394, 398
3-Methylguanine, removal, 181, 184
7-Methylguanine, 16, 37, 141, 427
removal, 178, 180–186
O6-Methylguanine, 16, 427–428
mtDNA, 452
premalignant lesion, 554
repair, 141–157, 181
O6-Methylguanine-DNA methyltransferase, 428–429, see also O6-Methylguanine-DNA methyltransferase
Ada protein
Bloom syndrome, 957
therapeutic applications, 161
Methylhydrazines, 146
4-(Methylaminosulfonyl)-1-butanone, 161
4-(Methylaminosulfonyl)-1-(3-pyridyl)-1-butanone, 1063
N-Methyl-N-nitrosourea, 35–37, 139, 146, 154, 157, 358, 451
3-Methylthymine, 158
Methyltartronylurea, 24, 26

Methylpurine-DNA glycosylase
O6-Mgmt gene, mouse, 157
MGM101 gene, 110
Mfd
Methylurea, 37

Mismatch repair, 4–5, 25, 57, 107, 157, Minichromosome maintenance 2–7, 794
MIG-DNA glycosylase, 189
Microarray analysis
Microsatellite DNA, SOS-induced cells, 494
Microcystin-LR, 342

Microarray analysis
aging in mammals, 1030
E. coli responses to mitomycin C, 481
MMS-treated yeast, 824–826
single-nucleotide polymorphisms, 1052–1054
SOS genes of E. coli, 479–481
transcriptional responses to DNA damage, 818

Microcystin-LR, 342
Microsatellite DNA, SOS-induced cells, 494
Microsatellite instability, 389–390, 406
Bloom syndrome, 962
hereditary nonpolyposis colon cancer, 980–981, 1050
MIG-DNA glycosylase, 189
Minichromosome maintenance 2–7, 794
Mismatch repair, 4–5, 25, 57, 107, 157, 389–447
adaptive mutagenesis and, 423–424
alkylation resistance
mammals, 427–429
single-celled organisms, 427
antirecombination effects
heteroduplex destruction model, 419
heteroduplex rejection model, 419
eukaryotes, 420–421
during meiosis, 424–427
prokaryotes, 417–419
S. cerevisiae, 419–420
apoptosis, 850
Bloom syndrome, 962
cadmium toxicity and, 430–431
checkpoint pathway, 768
class switch recombination, 429–430
correction of G-T mismatches, 433
dna damage recognition, 427–429
E. coli, 390–402, 431–432
early biological evidence, 390
eukaryotes, 402–409
bidirectional excision capability, 407
5’ → 3′ vs. 3′ → 5′ excision, 408–409
exonuclease involvement, 408
in vitro analysis, 406–409
MutS and MutL homologs, 403–406
PCNA, 407–409, 415
strand specificity, 407
in evolution, 422–423
fungi, 402–406
futile cycles, 428
gene conversion and, 424–427
genomic stability and, 421–422
hereditary nonpolyposis colon cancer, 406, 980–986, 1060–1061
heterozygosity in mismatch repair genes, 1060–1061
long-patch, 391
mechanism
signaling downstream events, 413–416
strand discrimination, 413
unresolved issues, 413–414
meiosis and, 424–427
crossovers, 427–429
methyl-directed, see Methyl-directed mismatch repair
MutY-dependent, 433
N. meningitidis, 424
nomenclature of repair genes, 1082
origin of mismatched base pairs, 389–390
oxidative damage, 429
in pathogenic bacteria, 424
recombination and, 416–422
in highly homologous sequences, 416–417
in substantially divergent sequences, 417–422
S. cerevisiae, 402–406, 424
S. pneumoniae, 390–392
somatic hypermutation, 429–430
specialized systems, 431–433
in speciation, 422
structure-function relationships of repair proteins, 409–413
targeting repair to one strand, 392
very-short-patch repair, 431–432
Mismatch repair detection, finding single-nucleotide polymorphisms, 1054–1055
Mismatch-specific DNA glycosylase, 176, 178
Missense mutation, 73
Mitochondria, p53 in mitochondrial matrix, 851–852
Mitochondrial DNA (mtDNA), 19
damage in, 451–452
defects in human diseases, 450
human, 449
maternal inheritance, 449
mitochondrial genome, 449–450
mutagenesis, 449–451
oxidative damage, 22–23, 451–454, 456
replication, 450
Mitochondrial DNA repair, 451–459
age-related, 455–456
alternative excision repair, 385–386, 456–457
base excision repair, 451–455
short-patch, 455
Down syndrome, 1034
monitoring, 453
recombination repair, 457
removal of oxidative damage, 453–454
reversal of base damage, 452
Mitochondrial proteins, 449
Mitogen-activated protein kinase pathway G2/M arrest, 799
ionizing-radiation response in mammals, 835
phosphorylation of p53 protein, 789
UV response in mammals, 832–834
response in E. coli, 481
Mitosis, 1004
Mitosis, human cells, 802
Mitotic catastrophe, 845
Mitotic death, 845
Mitotic recombination, 419, 690
MRN mutants, 731
Radi- Rad10 complex, 286–287
Mitotic spindle, 757
Mitotic spindle checkpoint, 802, 1005
Mlh gene, mouse, 987
Mlh proteins, S. cerevisiae, 403–404, 425
MLH genes
mammalian, 426–427, 430
S. cerevisiae, 405, 417, 419, 982
MLH1 gene, human, 982–985, 1021, 1060
MLH1 protein, human, 768, 962
MLH3 gene, human, 982–983
MMS2 gene, S. cerevisiae, 822
Mms2 protein, S. cerevisiae, 645
MMS19 gene, S. cerevisiae, 278–279, 299
MNAT1 gene, human, 279
MNAT1 protein
human, 299
mammalian, 324–325
mol genes, E. coli, 383
Molecular chaperones, 491
Molecular matchmakers in DNA metabolism, 239
UvrA protein, 238–239
Molybdopterin guanine dinucleotide, 383
Monoallelic mutational analysis, 1011–1012
Mosaic mutant clones, S. cerevisiae, 616–617
Mouse models
aging, 1030–1031
ataxia telangiectasia, 926–928
Bloom syndrome, 963–964
Cockayne syndrome, 903–905, 912
Fanconi anemia, 993–994
hereditary nonpolyposis colon cancer, 985–986
tumors in homozygous mutant mice, 985–986
retinoblastoma, 1005–1006
scid mouse, 718–719, 721, 935
xeroderma pigmentosum, 882–887

MPG gene
human, 172
mammalian, 184
Mpg gene, mouse, 184–185
Mrc1 protein, S. cerevisiae, 783
MRE11 protein, mammalian, 726–727
Mre11 protein, S. cerevisiae, 725
MRE11A gene, human, 930

INDEX
Mus304 protein, 803
Mus81 protein, 803
Muta Mouse, 83
Mutagen, 72
Mutagenesis, 5–6, 72
adaptive, 423–424, 552–553
analysis, 75–87
bypass of arrested replication, 461
chemical, 72
dislocation, 99
eukaryotes, 629–639
induced, 72
mammalian cells, 79–85
identification of DNA fragment carrying mutations, 82–83
intact animals, 83–85
sequencing of mutated genes with PCR, 81–82
shuttle vectors, 79–81
from misincorporation of damaged nucleotides, 555
mtDNA, 449–451
replication fidelity, 86–98
site-specific adducts, 85–86
SOS-dependent, see SOS-dependent mutagenesis
spontaneous, 72, 98–100
Xpc mouse, 886
UV radiation, 72
two-hit kinetics, 468
Weigle, see Weigle mutagenesis
Mutation, see also specific types of clusters of discrete mutations, 99–100
definition, 71–75
detection and analysis
Ames test, 76–77
E. coli lacI system, 77–78
ey early systems, 75–76
frameshift or deletion mutations, 78–79
mammalian cells, 79–85
phase T4, 75
reversion systems, 75–76
Mutation avoidance, 389–390
Hex-dependent mismatch repair, 392
Mutation rate
for genomic, 72
tmtDNA, 450
Mutational hot spot, see Hot spot
Mutational spectra, 85
determination
direct DNA sequencing, 524
lacI system, 523–524
factors influencing, 524–525
influence of transcription-coupled excision repair, 525–526
lacI mutations, 77–78
SUP4-o system, 613–615
mutH+ gene, E. coli, 394–399, 417
MutH protein, E. coli, 402–403, 411–412, 416, 418
endonuclease activity, 398–399
purification, 398
structure, 411–412
mutL+ gene
E. coli, 394–397, 417–418, 427, 429, 432, 982
cloning, 398
Salmonella, 398
MutL protein, 413–416
E. coli, 402–403, 412–413, 418, 432
purification, 398
homologs in eukaryotes, 403–406, 768
structure, 412–413
mutS- gene
E. coli, 394–397, 417–418, 423, 427, 429, 432, 481, 982
cloning, 398
homologs, 398
Salmonella, 398
MutS protein, 413–416
E. coli, 397, 402–403, 409–411, 417–419, 432
purification, 398
homologs in eukaryotes, 403–406
mammalian homologs, 768
structure, 409–411
T. aquaticus, 409–411
mutT+ gene, E. coli, 189
MutT-DNA glycosylase
helix-hairpin-helix motif, 189
homologs, 189
nucleotide pool sanitization, 189
mutY + gene, E. coli, 172, 187, 433
MutY homolog-DNA glycosylase, 172
mitochondrial, 454
MutY protein, E. coli, 55, 57
MutY-dependent mismatch repair, 433
MutY-DNA glycosylase, 172
E. coli, 187–189
helix-hairpin-helix motif, 189
Mycoplasma tuberculosis, SOS system, 498
MYH gene, human, 172, 189–190, 433, 1012–1014
MYH-associated polyposis, 1012–1013, 1088
MYH-DNA glycosylase, 191
mitochondrial, 454
predisposition to colon cancer, 189–190
N
NAD, interactions with p53 protein, 790
NADH cytochrome P-450 reductase, 990
Nalidixic acid, 250, 339
SOS induction, 483
Nasopharyngeal cancer, 1064
NAT genes, human, 1062–1064, 1067
NBS, see Nijmegen breakage syndrome
NBS protein, see MRN complex
NBS1 gene, human, 929
NBS1 protein, mammalian, 726–727
N-degron strategy, 278
Necrosis, 845
nedD gene, E. coli, 481
NEDDylation, p53 protein, 788
NET genes, E. coli, 172, 192
NEIL genes
human, 172
mammalian, 192
NEIL proteins, 186, 192, see also endonuclease VIII-like DNA glycosylases
Neocarzinostatin, 46, 533
Neurofibromatosis
type 1, 1003, 1020–1021, 1089
type 2, 1003, 1020–1021, 1089
Neurofibromin, 1021
INDEX
Transcription syndromes, 909–910
allele-specific and gene dosage effects, 912–913
skin cancer, 913
Transcriptional regulation, 753
Ada protein, 146–150
SOS response, 464–465
Transcriptional response to oxidative stress, 817–844
analysis of individual genes, 817–818
S. cerevisiae mammals
ionizing radiation, 835–837
transcription factors, 835–836
pathway inducibility, 817
Transformation, allele-specific and gene dosage effects, 823, 826
S. cerevisiae mammals
cell cycle checkpoints and, 823, 826
analysis of individual genes, 817–818
SOS response, 464–465
Ada protein, 146–150
skin cancer, 913
UV radiation response, 623–624
screens of genome arrays, 818–828
vertebrates, 828–837
B. subtilis vertebrates, 828–837
posttranscriptional modifications, 828–837
proteins that participate in, 828–837
mutant strains, 828–837
mutants, 828–837
gene expression, genome context dependence, 828–837
Nur77, 828–837
mammalian cells, 828–837
DNA synthesis, 828–837
DNA polymerases, 828–837
p53 as transcription factor, 828–830
nucleotide excision repair, 829–830
UV irradiation of mammalian cells, 829–830
nucleotide excision repair, 829–830
photolysis, 820
RAD6 protein, 820
ribonucleotide reductase, 818–819
telomere erosion, 826–827
transcripts in MMS-treated yeast, 824–826
screens of genome arrays, 818
UV radiation response, see UV response, mammalian
vertebrates, 828–837
nucleotide excision repair, 829–830
p53 as transcription factor, 828–830, 835
transcription factor E2F, 830–831
transcriptional profiling, 828–829
Transcriptional response to oxidative stress, 826
Transcription-coupled nucleotide excision repair, 4–5, 107, 105, 105, 117, 322, 359–365, 525
B. subtilis, 362
biological importance, 368–369
Cockayne syndrome, 897–898, 901, 903
D. disodium, 363
E. coli, 362
evolution, 343
genome context dependence, 371
mammalian cells, 360–362
mediated by RNA polymerase II, 370
mutation spectra and, 525–526
proteins that participate in, 363–364
RNA polymerase I-transcribed genes, 371
S. cerevisiae, 362–363
with stalled RNA polymerase II, 365–368
transcription-blocking lesions, 363
yeast rad26 mutants, 370
Transformation, S. pneumoniae, 391–392
high-efficiency, 391
low-efficiency, 391
Transformation assay, pyrimidine dimer-DNA photolyase, 113
Transgenic mice analysis of mutagenesis, 83
Tumour suppressor gene, 627
Tumorigenesis, MBD4-deficient mice, 179
Turcot syndrome, 1009
Twin-supercoil-domain model, 353
TWIST gene, human, 1026–1027
Ty element, 824
Tyrosine kinase, p53 regulator, 790
Tyrosine phosphorylation, 784
Tyrosyl-DNA phosphodiesterase 1, 387, 936
UmuD protein, continued
post-translational regulation, 514–523, 551
SOS control, 513
SOS-dependent mutagenesis, 511–514
structurally related proteins, 475–476
structure of UmuD, and UmuD’, 520–521
translation regulation, 517–518
UmUD’, 515, 517–518
UmUD’ inhibition of homologous recombination, 518

S. nannochl, 517

induction for SOS mutagenesis, 518
replisome restart, 603
SOS control, 513
UmudC protein, E. coli, 535–539
polymerase, 540–542
UNG gene, human, 172, 175
ung, E. coli, 12, 172–173, 175
UNG1 gene, S. cerevisiae, 172

 Unscheduled DNA synthesis, see Repair synthesis

Untargeted mutagenesis, 72
UV irradiation of mammalian cells, 622
UV irradiation of S. cerevisiae, 616
Upstream activating sequence, 820
Upstream repressing sequence, 820–821
Uracil, in DNA, 9–14, 385
UvrA protein
from deamination of cytosine, 9–14, 432
folate metabolism and, 13
incorporation during replication, 12–13
removal, 17, see also Uracil-DNA glycosylase
by uracil-DNA glycosylases, 173–180
when mismatched with guanine, 176
Uracil, removal, 191
Uracil-DNA glycosylase, 12–13, 17, 56–57,
A. aelius, 178
Archaea, 174, 177–178
deficiency, 178–179
E. coli, 55, 173–175, 178, 180
family 1, 175–177
family 2, 176–177
family 3, 177
family 4, 177
family 5, 177–178
helix-hairpin-helix motif, 178
herpes simplex virus, 175
human, 175
M. jannacchi, 178
mammalian, 55, 174–175, 178
B-cell lymphomas and altered immune system, 179
MBD4 proteins, 178–179
mechanism of action, 180
mismatch-specific, 433
mitochondrial, 454
phytolic distribution, 174
protein interaction, 179–180
removal of uracil from DNA, 173–180
S. cerevisiae, 174
S. pombe, 174
sonic hypermutation, 641
structure, binding pocket, 180
thermophiles, 174, 178
Urea residue, 24, 26, 28, 190
removal, 191–192
β-Ureidopropionic acid, removal, 192
UV radiation, see also SOS-dependent mutagenesis
cyclobutane pyrimidine dimers, see Cyclobutane pyrimidine dimers
damage to mDNA, 451
DNA containing halogenated pyrimidines, 35
DNA cross-links, 34
DNA damage, 4, 29–36
distribution in chromatin, 48–49
solar wavelengths, 35
genes with increased transcript levels, 482
lesions involving purines, 33
mutagenesis, 72
mutational spectra, 523–524
(6-4) photoproduct, see (6-4) photoproduct
photosensitization of DNA, 34–35
sorption–plus–UV-A reaction, 40–41
pyrimidine hydrate, 33
radiation spectrum, 29
DNA repair, 227–228
reversal of base damage, 109–138
sensing UV radiation damage, 768–769
spore photoproduct, see Spore photoproduct
stimulation of recombination, 690
T-even phages, 193
thymine glycol, 33
UVM response, 355
xeroderma pigmentosum cells, 869
UV radiation-induced mutagenesis
mammalian cells, 617–629
chromosomal genes, 625–627
cyclobutane pyrimidine dimers, 624
DNA polymerase ζ, 631
hot spots, 624
HPRT gene, 625–626
inducibility of mutagenic process, 621–622
mutant fixation in S phase, 617–618
nucleotide excision repair and, 624–625
(6–4) photoproducts, 624
replication in treated cells, 618–620
specificity of induced lesions, 622–629
targeted mutations, 622–623
transformation mutations, 623–624
translesion synthesis, 620–621
untargeted mutations, 622
rodent cells, 626–627
S. cerevisiae, 613–617
photoproducts at defined sites, 615
SUP4-o system, 613–615
timing and regulation, 616–617
untargeted mutagenesis, 616
two-hit kinetics, 468
UV response, mammalian, 831–835
AP-1 and, 831–833, 834
cytosolic vs. DNA damage signals, 834–835
immediate-early response genes, 831
intermediate-response genes, 831
NK-xb, 834–835
signals originating in cell membrane, 832–834
slow response genes, 831
UVDE endonuclease
N. crassa, 386
S. pombe, 383–386
substrate specificity, 385
UVDE-like endonuclease, mitochondrial, 454
uvrB gene, S. pombe, 384–386
Uve1 protein, S. pombe, 456–457, 820
UVM response, E. coli, 555
UV-mimetic, 896
uvrA gene
B. subtilis, 493, 586–587, 591
D. radiodurans, 254
E. coli, 229–230, 479, 486–487, 490–492, 601
UvrA protein
B. subtilis, localization within cells, 255
E. coli, 230–233, 343
aminoc acid sequence, 230–231
ATP binding, 232
ATPase activity, 230–231
binding of dimer to DNA, 232–233
binding to various types of base damage, 233
dimerization, 232
DNA helicase activity of (UvrA)2UvrB, 241, 243
DNA-binding protein, 230–232
helix-turn-helix motif, 230–232
interaction with UvrB, 238
loading UvrB on damaged DNA, 240
molecular matchmaker, 238–239
nucleotide excision repair, 228–243
orthologs, 253–254
translocation of (UvrA)2UvrB complex, 241
(UvrA)2UvrB complex, 239–243
zinc finger motif, 230–232
UvrABC DNA damage-specific endonuclease, see UvrABC endonuclease
UvrABC endonuclease, 228, 484
cross-link recognition, 248
E. coli, 229–253
substrates, 247
interstrand cross-link repair, 691–692
uvrB gene, E. coli, 229, 233–234, 484,
486–487, 490, 492
promoters, 233–234
UvrB protein
B. caldotenax, 235
crystal structure, 235–237
E. coli, 231, 234, 343
aminoc acid sequence, 235
β-hairpin structure, 242
binding to DNA, 248
conformation change in DNA, 240
cryptic ATPase activity, 241, 243
damage-specific binding, 243
delivery to sites of DNA damage, 240
DNA helicase activity of (UvrA)2UvrB, 241, 243
homology to UvrC, 234
interaction with UvrA, 238
monomer or dimer, 234–235
nucleotide excision repair, 228–253
orthologs, 253–254
protoplast cleavage site, 234

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Fri, 31 May 2019 05:52:18
structure, 234
translocation of (UvrA)2UvrB complex, 241
(UvrA)2 UvrB complex, 239–243
UvrBC complex, 244
UvrB-damaged DNA prevention complex, 239–240, 243
UvrB-DNA prevention complex, 239–240, 243, 248
T. thermophilus, 234–235
uvrC gene, vertebrates, 791–792
UvrC protein, E. coli, 231, 234, 238, 245–247, 343, 381
affinity for UvrB-DNA complex, 238
DNA incisions, 245
forms, 247
homology to UvrB, 234
nucleotide excision repair, 228–253
orthologs, 253–254
UvrBC complex, 244
uvrD gene, vertebrates, 791–792
UvrD protein, E. coli, see DNA helicase II, E. coli
uvrY gene, E. coli, 491
UV-sensitive syndrome, 905–906, 1087
V
V(DJ) recombination, 639–640, 718, 720, 724, 930, 935
antibody genes, 712–714
ataxia telangiectasia, 926, 928
ATM protein, 761
double-strand break repair and, 714
RAG-mediated cleavage and joint formation, 712–714
Vertebrates, nucleotide excision repair, 829–830
Very-short-patch mismatch repair, 14, 57
E. coli, 431–432
Vhl gene, human, 1020
Vinyl chloride, 176
Viral probe
V(D)J recombination, 639–640, 718, 720, 724, 930, 935
antibody genes, 712–714
ataxia telangiectasia, 926, 928
ATM protein, 761
double-strand break repair and, 714
RAG-mediated cleavage and joint formation, 712–714
Vertebrates, nucleotide excision repair, 829–830
Very-short-patch mismatch repair, 14, 57
E. coli, 431–432
VHL gene, human, 1020
Vinyl chloride, 176
Viral probe
mutational spectra of UV-induced lesions, 622
reactivation, 621–622
Virus, UV-irradiated, nucleotide excision repair by host cells, 273–274
von Hippel-Lindau disease, 1003, 1020, 1089
von Recklinghausen disease, see Neurofibromatosis, type 1
VP16, 921
Vsr endonuclease, 431–433
vr1 gene, E. coli, 431–432
W
WAF1 gene, vertebrates, 791–792
WAGR syndrome, 1019
Watson, James, 3
Weigle mutagenesis, 466, 468, 510–511, 514–515, 621
Weigle reactivation, 466, 468, 510–511, 621
Werner syndrome, 23, 929, 965–968, 1087
cancer predisposition, 971
cellular phenotype, 966, 971
clinical features, 965–966, 970, Color Plate 8
genetics, 966
heterozygotes, 1061
premature aging, 1029, 1033
Wilms' tumor, 1003, 1018–1020, 1089
Wortmannin, 763
WRN gene, human, 961, 965–968
heterozygotes, 1061
identification, 966–967
WRN protein, 929
DNA helicase and exonuclease activities, 967
expression, 968
function, 968
protein interactions, 967–968
WTI gene, human, 1019–1020
X
X rays, 26
XAB2 gene, human, 901
Xanthine, 10, 15
Xeroderma pigmentosum variant protein, 621, 696, 875, 1061
unexplained features, 881
source of mutations, 869–870
repair of oxidative damage, 872–873
repair of cyclodeoxynucleosides, 873–874
repair of oxidative damage, 872–873
skin cancer, 627, 866–868, 882, 913, 1017
source of mutations, 869–870
therapy, 882
unexplained features, 881
variant form, 621, 696, 875, 1061
DNA polymerase η, 632–634
Xeroderma pigmentosum variant protein, 539
XP, see Xeroderma pigmentosum
XP/CS complex, 865, 876, 878, 906, 1087
allele-specific and gene dosage effects, 912–913
cancer proneness, 913
clinical features, Color Plate 3
molecular defects, 910–912
transcription syndrome, 909–910
XPA gene
human, 275, 279, 875–876, 881
mammalian, 281
Xpa gene, mouse, 883–884
XPA protein, mammalian, 281, 317, 326, 331–333, 336, 343, 360, 367
binding to DNA, 281–282
fluorescently tagged, 335
reconstitution of nucleotide excision repair, 322
XPG gene
human, 275–276, 279, 875–877, 881, 906–907, 911, 1034
trichothiodystrophy, 907, 909
mammalian, 298–299
XBP protein, mammalian, 317, 324–326, 336
phosphorylation, 343
XPC gene
human, 275, 279, 875, 877–878, 881, 1051
polymorphisms, 1069–1071
mammalian, 293–294, 837
vertebrates, 830
Xpc gene, mouse, 884–886
spontaneous mutagenesis, 886
XPC protein
human, 294
mammalian, 292–296, 326, 333, 343, 363, 368–369
fluorescently tagged, 335
proteosomal degradation, 342
reconstitution of nucleotide excision repair, 322
XPC-RAD23B complex, 176, 295, 317, 328, 331–335, 356, 363
XPD gene
human, 275–277, 279, 875, 878–879, 906–907, 910–912, 1034, 1051
COFS syndrome, 905
polymorphisms, 1064–1069, 1071
trichothiodystrophy, 907, 909
mammalian, 296–298
Xpf gene, mouse, 886
XPD protein
human, 913
mammalian, 298, 317, 324, 326, 329
XPE gene, human, 275, 301, 875, 880
Xpc gene, mouse, 886
XPJ gene, mammalian, 275, 279, 285–288, 875, 880–881
Xpf gene, mouse, 887
XPF protein, mammalian, 332
ERCC1-XPF enzyme, 286–287, 318, 326–327, 333–334, 356, 360
interstrand cross-link repair, 695
N terminal, 288
nuclease domain, 335
reconstitution of nucleotide excision repair, 322
sequence similarity to ERCC1 protein, 289
XPF protein, mammalian, (continued)
structural organization of XPF nuclease family, 289–290
XPF-like nucleases, 289–290
XPG gene
human, 275–276, 279, 875, 881, 906–907, 910–912
polymorphisms, 1066
mammalian, 292–293
isolation, 291–292
mutations, 292
Xpg gene, mouse, 887, 912
XPG protein
human, 912
reconstitution of nucleotide excision repair, 322
structure-specific nuclease, 282
XPV gene, human, 275, 633–634, 875
XRCC1 gene
human, 738, 1034
polymorphisms, 1064, 1067–1069
mammalian, 837
XRCC1 protein
base excision repair, 207–208, 211–214
single-strand break repair, 738–739
sister chromatid exchange formation, 961
vertebrates
activities, 678–679
targeted deletions, 678
XRCC2 protein, vertebrates, 677–679
XRCC3 gene, human, 1066, 1069
XRCC3 protein, vertebrates, 677–679
activities, 678–679
targeted deletions, 678
XRCC4 protein
nonhomologous end joining, 722–723
XRCC4 protein-ligase IV complex, 722–723
XRCC7 gene, mammalian, 719
XRCC9 gene, human, 991
Xrs2 protein, see also MRN complex
S. cerevisiae, 725, 729
xthA gene, E. coli, 198–200, 453, 532
Y
yaf+ genes, E. coli, 538
ydlM+ gene, E. coli, 487
ydlQ+ gene, E. coli, 245–247, 492
Yeast, see Saccharomyces cerevisiae;
Schizosaccharomyces pombe
yeeF+ gene, E. coli, 481
Yin yang 1 protein, 788
Yku proteins, S. cerevisiae, 716–718
ysdAB+ gene, E. coli, 496
Z
Zinc finger domain
Ada protein, 147
UvrA protein, 230–232
Zinc hook, MRN complex, 734–735
Zip proteins, S. cerevisiae, 426