In memory of Walter E. Stamm, M.D. (1945–2009), highly accomplished clinician, epidemiologist, investigator, collaborator, educator, and mentor. We thank him for his friendship, his leadership, his numerous accomplishments, and his scholarly contributions to the diagnosis, treatment, and control of urinary tract and sexually transmitted infections domestically and globally.
CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1. Lessons from the Southern Hemisphere: the First Wave of the 2009 Influenza Pandemic in Australia
 • Dominic E. Dwyer 1

2. Reemergence of Human Adenovirus 14
 • Dean D. Erdman and Larry J. Anderson 17

3. Is Acanthamoeba polyphaga Mimivirus an Emerging Causative Agent of Pneumonia?
 • Philippe Colson and Didier Raoult 33

4. The Global Impact of Hepatitis E: New Horizons for an Emerging Virus
 • Alain B. Labrique, Mark H. Kuniholm, and Kenrad E. Nelson 53

5. New Lymphocytic Choriomeningitis Virus-Like Arenavirus Infections
 • Patrick G. P. Charles, Francesco L. Ierino, Michael G. Catton, and W. Ian Lipkin 95

6. Human T-Lymphotrophic Virus 1: Clinical Aspects of a Neglected Infection among Indigenous Populations
 • L. J. Einsiedel, K. Verdonck, and E. Gotuzzo 109

7. Cytomegalovirus Infection in Transplantation
 • Raymund R. Razonable 129

8. Human Immunodeficiency Virus-Associated Malignancies
 • Nathan T. Connell and Jeremy S. Abramson 169

9. Arcobacter: an Opportunistic Human Food-Borne Pathogen?
 • Irene V. Wesley and William G. Miller 185

10. Global Spread of Multidrug-Resistant Gram-Negative Bacilli
 • David L. Paterson, Hanna E. Sidjabat, and Yohei Doi 213

11. Sepsis in Sub-Saharan Africa
 • Christopher C. Moore, Shevin T. Jacob, Patrick Banura, and W. Michael Scheld 223

12. Understanding Buruli Ulcer (Mycobacterium ulcerans Disease)
 • P. D. R. Johnson, C. Demangel, T. P. Stinear, M. E. Benbow, and J. A. Fyfe 241

13. Plasmodium knowlesi: the Fifth Human Malarial Parasite
 • Janet Cox-Singh, Balbir Singh, and Sanjeev Krishna 261

14. “Emerging” Neglected Tropical Diseases
 • Rahul Vanjani, Peter Hotez, and David J. Diemert 273

15. Infections in Long-Term Care Facilities
 • Manisha Juthani-Mehta and Vincent Quagliarello 287
Contents

16. Emerging Infectious Diseases in Mobile Populations • Natasha S. Hochberg and Carlos Franco-Paredes ..305

17. One World—One Health • William B. Karesh and Neil Vora327

Index ..367
CONTRIBUTORS

Jeremy S. Abramson • Harvard Medical School and Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114
Larry J. Anderson • Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS A34, Atlanta, Georgia 30329
Patrick Banura • Department of Community Health, Masaka Regional Referral Hospital, Masaka, Uganda
M. E. Benbow • Department of Biology, University of Dayton, Dayton, Ohio 45469
Richard Bostock • Plant Pathology Department, University of California, 1 Shields Ave., Davis, California 95616
James Burans • National Bioforensic Analysis Center, Department of Homeland Security, 7435 New Technology Way, Suite A, Frederick, Maryland 21703-9401
Kitty Cardwell • Plant and Animal Systems, National Institute of Food and Agriculture, U.S. Department of Agriculture, Waterfront Bldg., 800 9th St. SW, Washington, D.C. 20024
M. E. Benbow • Department of Biology, University of Dayton, Dayton, Ohio 45469
Richard Bostock • Plant Pathology Department, University of California, 1 Shields Ave., Davis, California 95616
James Burans • National Bioforensic Analysis Center, Department of Homeland Security, 7435 New Technology Way, Suite A, Frederick, Maryland 21703-9401
Kitty Cardwell • Plant and Animal Systems, National Institute of Food and Agriculture, U.S. Department of Agriculture, Waterfront Bldg., 800 9th St. SW, Washington, D.C. 20024
Michael G. Catton • Victorian Infectious Diseases Reference Laboratory, Locked Bag 815, Carlton South, Victoria 3053, Australia
Patrick G. P. Charles • Department of Infectious Diseases, Austin Health, P.O. Box 5555, Heidelberg, Victoria 3084, Australia
Philippe Colson • URMITE UMR CNRS 6236 IRD 198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, and Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
Nathan T. Connell • Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903
Janet Cox-Singh • Division of Cellular and Molecular Medicine, Centre for Infection, St George’s, University of London, London, SW17 0RE, United Kingdom
C. Demangel • Institut Pasteur, Unité Postulante Pathogénomique Microbienne Intégrée, Paris, France
David J. Diemert • Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I St. NW, Washington, D.C. 20037
Yohei Doi • Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
Dominic E. Dwyer • CIDM Laboratory Services, Level 3, ICPMR Building, Westmead Hospital, Westmead, New South Wales 2145, and Sydney Institute for
x Contributors

Emerging Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia

L. J. Einsiedel • Northern Territory Rural Clinical School, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia

Dean D. Erdman • Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention, MS G04, Atlanta, Georgia 30329

Jacqueline Fletcher • Department of Entomology and Plant Pathology, National Institute for Microbial Forensics and Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, Oklahoma 74078

Carlos Franco-Paredes • Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30308, and Hospital Infantil de México Federico Gómez, Mexico City, Mexico

J. A. Fyfe • Victorian Infectious Diseases Reference Laboratory and World Health Organization Collaborating Centre for Mycobacterium ulcerans, North Melbourne, Victoria 3051, Australia

E. Gotuzzo • Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru

Natasha S. Hochberg • Department of Epidemiology, Boston University School of Public Health, and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118

Peter Hotez • Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I St. NW, Washington, D.C. 20037

Francesco L. Ierino • Department of Nephrology, Austin Health, P.O. Box 5555, Heidelberg, Victoria 3084, Australia

Shevin T. Jacob • Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195

P. D. R. Johnson • Austin Health and University of Melbourne, Heidelberg, Victoria 3084, Department of Microbiology, Monash University, Victoria 3800, Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, and Victorian Infectious Diseases Reference Laboratory and World Health Organization Collaborating Centre for Mycobacterium ulcerans, North Melbourne, Victoria 3051, Australia

Manisha Juthani-Mehta • Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, P.O. Box 208022, New Haven, Connecticut 06520

William B. Karesh • Global Health Program, Wildlife Conservation Society, Bronx, New York 10460

Sanjeev Krishna • Division of Cellular and Molecular Medicine, Centre for Infection, St George’s, University of London, London, SW17 0RE, United Kingdom

Mark H. Kuniholm • Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York 10461
Contributors

Alain B. Labrique • Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21215

W. Ian Lipkin • Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 W 168th St., New York, New York 10032

Douglas Luster • Foreign Disease—Weed Science Research, Agricultural Research Service, U.S. Department of Agriculture, 1301 Ditto Ave., Fort Detrick, Maryland 21702-5023

Larry McDaniel (deceased) • U.S. Customs and Border Protection, Washington, D.C. 20229

William G. Miller • Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710

Christopher C. Moore • Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908

Kenrad E. Nelson • Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21215

David L. Paterson • University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital Campus, Brisbane, Queensland, Australia

Vincent Quagliarello • Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, P.O. Box 208022, New Haven, Connecticut 06520

Didier Raoult • URMITE UMR CNRS 6236 IRD 198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, and Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France

Raymund R. Razonable • Division of Infectious Diseases, Department of Medicine, and William J. von Liebig Transplant Center, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905

Matt Royer • Emergency and Domestic Programs, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, 4700 River Rd., Unit 26, Room 5C-03I, Riverdale, Maryland 20737-1234

W. Michael Scheld • Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908

Hanna E. Sidjabat • University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital Campus, Brisbane, Queensland, Australia

Balbir Singh • Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Malaysia

Kent Smith • 126 Claiborne Rd., Edgewater, Maryland 21037

T. P. Stinear • Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia

Rahul Vanjani • Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I St. NW, Washington, D.C. 20037
Contributors

K. Verdonck • Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru, and Institute of Tropical Medicine, Antwerp, Belgium

Neil Vora • Department of Medicine, Columbia University Medical Center, New York, New York 10032

Irene V. Wesley • Food Safety and Enteric Diseases Research Unit, National Animal Disease Center, National Center for Animal Health, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010
FOREWORD

Over the past 40 years, emerging infections have become a commonality for the biomedical community. Astute clinicians have recognized new bacterial and viral infections, defined as “emerging” or, in some cases, reappearing (as best illustrated by outbreaks of measles). With recognition of an immune deficiency syndrome in the early 1980s that was subsequently documented to be caused by human immunodeficiency virus (HIV) and resulted in AIDS, society has witnessed one emerging infection after another. From the time of the first clinical identification of AIDS to the isolation and characterization of the responsible organism, a period of approximately 3 years elapsed. Nevertheless, once the virus was isolated, antiviral drugs, such as azidothymidine (zidovudine), entered controlled clinical trials and demonstrated clinical benefit. From identification to licensed therapy, modern science has marked an era during which pathogen identification and the resultant diagnostic and therapeutic inventions have occurred in an increasingly expeditious fashion.

Since the isolation of HIV, the global medical community has witnessed the appearance of severe acute respiratory syndrome (SARS) in 2003, an outbreak of monkeypox in the midwestern United States, and persistent cases of highly pathogenic avian influenza, particularly H5N1, and more recently pandemic H1N1 or 2009 H1N1. Characteristic of all of these diseases has been the rapid identification of the causative pathogen, resulting in either public health or therapeutic interventions or both, which in turn markedly limited the transmission of these agents from person to person.

The most striking example of infection containment has been the control of highly pathogenic avian influenza H5N1 virus in Asia. The careful monitoring of poultry populations and the culling of infected birds have minimized transmission of infection both within the species and to humans. While this currently circulating strain of avian influenza virus is not easily transmitted to or between humans, the elimination of virus from susceptible poultry decreases the probability of a viral mutation that would facilitate its transmission.

Since April 2009, the world has witnessed the rapid transmission of pandemic H1N1 or 2009 H1N1 virus that has resulted in significant illness worldwide. Of striking note, 2009 H1N1 influenza has occurred in populations not normally considered susceptible to infection, namely, young adults, pregnant women, those with neurocognitive dysfunction, the morbidly obese, and immunocompromised hosts. Fortunately, the mortality and morbidity of this infection, while not precisely defined, are less than would be anticipated with a pandemic caused by influenza H5N1. To a great extent, the efforts of public health officials in the early identification of 2009 H1N1 virus and its tracking led to global recommendations for infection control, as well as, ultimately, both vaccine and drug deployment.

With all of these emerging infections, global international travel facilitates transmission of these new pathogens. Global travel traced the 2009 H1N1 pandemic as disease moved around the world. The immigration of children from Africa led to measles outbreaks in the United States. The movement of humans with SARS traced yet another outbreak of infection.
There is no doubt that new and previously undiagnosed infections will occur globally. These infections will require astute clinicians and public health officials to identify new clinical syndromes and, ultimately, develop containment procedures. The ninth volume of the *Emerging Infections* series expands on the prior editions to address newly appearing infections of the 21st century. For example, with the appearance of antimicrobial resistance, gram-negative as well as gram-positive bacterial infections pose an ever-increasing challenge. Parenthetically, the need for new antibiotics cannot be overemphasized and has become a key challenge for the Infectious Diseases Society of America. Similarly, One World—One Health becomes essential in avoiding the problems of resistance and minimizing antibiotic exposure in the food chain.

The following 18 chapters provide a diversity of knowledge that includes diseases associated with bacteria, viruses, and parasites as well as unique health care situations. The authors and editors alike should be congratulated on this excellent contribution to the science of infectious diseases.

Richard J. Whitley, M.D.
Distinguished Professor of Pediatrics, Microbiology, Medicine, and Neurosurgery
Loeb Professor of Pediatrics
The University of Alabama at Birmingham
Birmingham, Alabama
PREFACE

Despite progress in the prevention and control of infectious diseases during the past several decades, the early years of the 21st century provide continued evidence of the persistence and tenacity of infectious disease threats. The interplay of rapid globalization, demographic shifts, ecologic changes, and unprecedented movement of people and goods, while offering increased benefits in many arenas, also yields unexpected risks to health—often with attendant social and economic repercussions. The emergence and rapid global spread of severe acute respiratory syndrome (SARS), the widespread geographic diffusion of West Nile virus since its introduction into the Western Hemisphere and of chikungunya virus from East Africa to islands in the Indian Ocean to India and then to Italy, and the H1N1 influenza pandemic provide dramatic evidence of the continued ability of microbes to emerge, spread, adapt, and challenge the global community.

Since 1995, the program committees of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the Infectious Diseases Society of America (IDSA) have organized sessions on new and emerging pathogens during ICAAC and the IDSA annual meetings. These sessions are designed to address the spectrum of new and emerging bacteria, viruses, fungi, and parasites of recognized or potential scientific and public health importance, with discussions of strategies for their prevention and control. The chapters in Emerging Infections 9 are derived in part from recent sessions and focus on a range of infections that pose challenges for the clinical, laboratory, research, public health, and animal and plant health communities. Some of these are newly recognized diseases, whereas others are previously known pathogens presenting new challenges. Some are described as domestic threats, whereas others affect populations in other parts of the world. However, as has been clearly demonstrated, infectious agents know no borders: every local threat is potentially a global threat.

Our experiences in responding to the outbreaks of the recent past, many of which are of zoonotic origin, provide important lessons for the future and highlight the importance of the One Health Initiative, which emphasizes the need for closer collaboration between human, animal (livestock and wildlife), and ecosystem health sectors (see chapter 17). Most importantly, a global threat requires a coordinated, interdisciplinary global response. In today’s world, detection and control of infectious diseases call for a wide-ranging and multifaceted international approach that includes strong leadership and sustained political will; a robust network for global disease detection, monitoring, containment, and control; research focused on prediction, early detection, rapid diagnosis, and prevention; and cooperation, collaboration, and seamless communication among nations and leaders. The International Health Regulations, which were promulgated by the World Health Organization in 2005 and became effective on 15 June 2007, provide a global framework for addressing these threats.

Because weak health systems in many areas of the world pose threats to all, investments in health system strengthening, national public health institutions, response capacity, and
workforce development can yield substantial returns for the health and security of the global community. Communication and sharing of experiences and lessons learned among the many disciplines involved are critically important (for example, see chapter 18 on infectious diseases in plants). Finally, in addition to the necessity of managing the immediate and specific risks and vulnerabilities posed by infectious diseases, there is a critical need to tackle the underlying factors that contribute to disease emergence and spread; key among these are poverty, social inequities, food insecurity and malnutrition, and lack of clean water and adequate sanitation.

Future infectious disease challenges are difficult to predict but certainly include continued problems with antimicrobial-resistant infections, foodborne and waterborne diseases, influenza and other respiratory diseases, and vector-borne and zoonotic diseases as well as new threats for immunocompromised populations. Additional links between chronic diseases and infectious agents will likely be discovered, providing new opportunities for disease prevention and treatment. In addition to preparing for naturally occurring infectious disease outbreaks, we will need to continue to strengthen our ability to detect and respond to potential acts of bioterrorism. We hope that this ninth volume in the *Emerging Infections* series will serve as a valuable source of current information for those who are responsible for these and other microbial threats to global health and security.

W. Michael Scheld
M. Lindsay Grayson
James M. Hughes
ACKNOWLEDGMENTS

We thank everyone who has helped us in preparing this volume. Most importantly, we thank all of the authors for their outstanding contributions. As editors, we are particularly grateful to the members of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the Infectious Diseases Society of America (IDSA) Program Committees who have assisted us in coordinating topic and speaker selection for and/or moderating the joint symposia on emerging infections during previous ICAAC and IDSA meetings. Numerous other colleagues provided helpful discussion, advice, and criticisms. We thank Sherif Zaki at the Centers for Disease Control and Prevention for contributing the photomicrograph for the cover, as he has done for all previous volumes. We are also grateful to our assistants, Ruth Aldridge, Lisa Cook, and Ashley Sroka. We especially want to thank Ken April and his colleagues at ASM Press for their superb work in coordinating production of the book. And finally, we thank our families for their understanding and support during this undertaking.
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain hepatitis E virus infections</td>
<td>60</td>
</tr>
<tr>
<td>Plasmodium knowlesi infections</td>
<td>265</td>
</tr>
<tr>
<td>ABVD chemotherapy</td>
<td>for Hodgkin lymphoma 176</td>
</tr>
<tr>
<td>Acanthamoeba polyphaga mimivirus</td>
<td>33–51</td>
</tr>
<tr>
<td>clinical studies</td>
<td>36–41</td>
</tr>
<tr>
<td>discovery</td>
<td>33, 35</td>
</tr>
<tr>
<td>genome</td>
<td>42</td>
</tr>
<tr>
<td>infections</td>
<td></td>
</tr>
<tr>
<td>animal studies</td>
<td>44–45</td>
</tr>
<tr>
<td>clinical risk factors</td>
<td>43–44</td>
</tr>
<tr>
<td>epidemiology</td>
<td>43–44</td>
</tr>
<tr>
<td>host cell specificity</td>
<td>45–46</td>
</tr>
<tr>
<td>laboratory diagnosis</td>
<td>41–42</td>
</tr>
<tr>
<td>outcome</td>
<td>44</td>
</tr>
<tr>
<td>pneumonia</td>
<td>35–39, 44–45</td>
</tr>
<tr>
<td>morphology</td>
<td>33–34</td>
</tr>
<tr>
<td>pathogenicity</td>
<td>39</td>
</tr>
<tr>
<td>Acinetobacter baumannii, multidrug-resistant</td>
<td>217–219</td>
</tr>
<tr>
<td>Acinetobacter pneumonia</td>
<td>292</td>
</tr>
<tr>
<td>Acute respiratory distress syndrome, influenza H1N1</td>
<td>8</td>
</tr>
<tr>
<td>Acute respiratory illness, human adenoviruses</td>
<td>18–19</td>
</tr>
<tr>
<td>Adenovirus see</td>
<td>Human adenovirus(es); Human adenovirus 14</td>
</tr>
<tr>
<td>Adherence</td>
<td>198</td>
</tr>
<tr>
<td>Arcobacter</td>
<td>198</td>
</tr>
<tr>
<td>Plasmodium knowlesi</td>
<td>266</td>
</tr>
<tr>
<td>Adolescents, hepatitis E virus infections</td>
<td>69–71</td>
</tr>
<tr>
<td>Adult T-cell leukemia/lymphoma</td>
<td>117–118</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
</tr>
<tr>
<td>ascariasis</td>
<td>278–279</td>
</tr>
<tr>
<td>Buruli ulcer</td>
<td>242, 247–248</td>
</tr>
<tr>
<td>chikungunya virus infections</td>
<td>312</td>
</tr>
<tr>
<td>hepatitis E virus infections</td>
<td>64–65</td>
</tr>
<tr>
<td>leishmaniasis</td>
<td>276</td>
</tr>
<tr>
<td>schistosomiasis</td>
<td>280</td>
</tr>
<tr>
<td>sepsis</td>
<td>223–239</td>
</tr>
<tr>
<td>trachoma</td>
<td>277</td>
</tr>
<tr>
<td>trypanosomiasis</td>
<td>273–276</td>
</tr>
<tr>
<td>African trypanosomiasis</td>
<td>273–276</td>
</tr>
<tr>
<td>Agricultural Quarantine Monitoring</td>
<td>351–352</td>
</tr>
<tr>
<td>Agricultural Research Service, plant pathogen</td>
<td>340–341</td>
</tr>
<tr>
<td>Agriculture, pathogens</td>
<td>see Plant pathogens</td>
</tr>
<tr>
<td>Air travel</td>
<td>SARS transmission 311–312</td>
</tr>
<tr>
<td>Alaska, human adenovirus 14 infections</td>
<td>25</td>
</tr>
<tr>
<td>Albendazole, for Strongyloides stercoralis</td>
<td>infections 114</td>
</tr>
<tr>
<td>Alemtuzumab, cytomegalovirus infections due to</td>
<td>132</td>
</tr>
<tr>
<td>Allograft rejection, cytomegalovirus infections</td>
<td>with 133</td>
</tr>
<tr>
<td>Alveolitis, T-lymphocytic, HTLV-1</td>
<td>112–114</td>
</tr>
<tr>
<td>American Phytopathological Society, recovery</td>
<td>plan 358</td>
</tr>
<tr>
<td>American trypanosomiasis</td>
<td>277–278, 280</td>
</tr>
<tr>
<td>Amikacin, for Buruli ulcer</td>
<td>251</td>
</tr>
<tr>
<td>Amoebas, mimivirus</td>
<td>33–51</td>
</tr>
<tr>
<td>Ampicillin, for sepsis</td>
<td>232–233</td>
</tr>
<tr>
<td>Anaerobic organisms, pneumonia</td>
<td>292</td>
</tr>
<tr>
<td>Angiofollicular lymph node hyperplasia</td>
<td>(multicentric Castleman disease), in HIV infection 176</td>
</tr>
<tr>
<td>Animal(s), see also specific animals</td>
<td>infections originating in 327–333</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>transport, disease transmission during, 318–320</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>(APHIS)</td>
</tr>
<tr>
<td>plant pathogen research</td>
<td>340–341</td>
</tr>
<tr>
<td>Plant Protection and Quarantine (PPQ)</td>
<td>program, 356–357</td>
</tr>
</tbody>
</table>
Index

Animal and Plant Health Inspection Service (APHIS) (continued)
Select Agent list, 348–349
surveillance, 344, 351–352
Anorexia, Plasmodium knowlesi infections, 265
Antibiotics, see also specific antibiotics
for Buruli ulcer, 251–252
for pneumonia, 290–291
for pressure ulcers, 297
resistance to, see Resistance
for sepsis, 232–233
for urinary tract infections, 294–295
Antigenemia assay, cytomegalovirus, 138–140
Antilymphocyte globulins, cytomegalovirus infections due to, 132
Antithymocyte globulins, cytomegalovirus infections due to, 132
Arcobacter, 185–212
in animals, 190–195
in cattle, 192–195
culture, 187
diversity, 200–203
epidemiology, 196
in fish and shellfish, 191
genomic analysis, 199–200
in hogs, 194–196
horizontal gene transfer, 203–204
in humans, 188–190
laboratory animal models for, 197–198
microbiology, 185–188
molecular identification, 188
motility, 203–204
phylogeny, 199–200
in poultry, 191–193
species, 185–188
virulence attributes, 197–198
in water, 190–191
Arcobacter butzleri
culture, 187
genomic analysis, 199–203
in hogs, 194
horizontal gene transfer, 203
in humans, 188–190
microbiology, 185–188
molecular identification, 188
in poultry, 191–192
virulence attributes, 197–198
in water, 190–191
Arcobacter cryaerophilus
in fish and shellfish, 191
genomic analysis, 201
in hogs, 195
in humans, 188–189
microbiology, 185–188
molecular identification, 188
in poultry, 191
virulence attributes, 197–198
in water, 191
Arcobacter halophilus
genomic analysis, 199–203
microbiology, 186, 188
Arcobacter marinus, microbiology, 188
Arcobacter mytilli, microbiology, 185–188
Arcobacter nitrofigilis
genomic analysis, 199
microbiology, 186
Arcobacter skirrowii
genomic analysis, 201
in hogs, 195
microbiology, 185–188
molecular identification, 188
virulence attributes, 197–198
Arcobacter sulfidicus, microbiology, 186, 188
Arcobacter thereus
genomic analysis, 201
microbiology, 185–188
Arcobacter trophiarum, microbiology, 185–188
Arenavirus(es)
lymphocytic choriomeningitis virus-like, 95–107
overview, 95–96
Artemisinins, for sepsis, 235
Artesunate, for malaria, 233
Arthralgia
chikungunya virus infections, 312
cytomegalovirus infections, 135
hepatitis E virus infections, 60
Ascariasis, 278–279
Ascomycetes, 338
Asian soybean rust, 343–344, 360
Asiatic citrus canker, 345–346
Aspergillus infections
plants, 340
pneumonia, 289
Australia
Buruli ulcer in, 242–243, 249–251
HTLV-1 infections in, 109–127
influenza H1N1 pandemic of 2009, 1–16
lymphocytic choriomeningitis virus-like
Arenavirus infections in, 99–104
Plant Health Australia program, 355
Avian influenza, 330–333
Index

Back pain, HTLV-1 infections, 112
Bacteriuria, 292–296
Bangladesh, hepatitis E virus infections in, 72
Basidiomycetes, 338
Beta-lactamase
 Acinetobacter baumannii, 217–219
 Klebsiella pneumoniae, 216–217
Biocrime, plant pathogens in, 346–347, 355–356
Bioterrorism, plant pathogens in, 346–347, 355–356
Biowarfare, plant pathogens in, 346–347
Birds, *Arcobacter* in, 191–193
Blood smear, *Plasmodium knowlesi*, 265, Color Plates 9 & 10
Bloodstream infections, HTLV-1 infections with, 116
Bone lesions, adult T-cell leukemia/lymphoma, 117–118
Bone marrow suppression, cytomegalovirus infections, 136
Borlaug, Norman, 341
Borneo, *Plasmodium knowlesi* in, 262–268
Bosea pneumonia, 38
Bovine spongiform encephalitis, in mobile populations, 314–315
Brazil
 leishmaniasis in, 276, 278–279
 leptospirosis in, 278
 One World—One Health congress, 328
 schistosomiasis in, 280
Bronchiectasis, HTLV-1 infections, 113
Burkitt lymphoma, in HIV infection, 173–175
Burma, lymphatic filariasis in, 277
Buruli ulcer, 241–260
 burden, 242–243
 description, 241–242, Color Plates 6 & 7
 endemia, 247–250
 epidemiology, 242–243
 mycolactone in, 243–245
 niche-adapted lifestyle, 245–247
 in nonhuman mammals, 250–251
 risk factors, 242, 247–250
 treatment, 251–252
 virulence factors, 243–245
Camps, refugee, infectious diseases in, 316–317
Campylobacter
 in cattle, 194
 epidemiology, 196
 genomic analysis, 199–200
 in hogs, 194
 horizontal gene transfer, 203
 in humans, 188–189
 microbiology, 185–187
 molecular identification, 188
 in poultry, 192
 virulence attributes, 197–198
 in water, 190–191
Cancer, see Malignancies
 “*Candidatus Liberibacter asiaticus*,” 345
 “*Candidatus Protochlamydia amoebophila*,” 45–46
Candidiasis, mucocutaneous, 297–298
Carbapenem
 Klebsiella pneumoniae resistance to, 216–217
 for pneumonia, 291
Cardiomyopathy, Chagas’ disease, 277
Castleman disease, multicentric, in HIV infection, 176
Catheter, urinary, infections with, 293–294
Cattle, diseases originating in, 329
 Arcobacter infections, 192–195
 bovine spongiform encephalitis, 314–315
 trypanosomiasis, 273–276
Cefepime, for pneumonia, 290
Ceftriaxone, for pneumonia, 290
Cell culture
cytomegalovirus, 138
human adenovirus 14, 26
Cellulitis, 297
Central nervous system lymphoma, in HIV infection, 173–175
Cervical cancer, in HIV infection, 176–177
Chagas’ disease, 277–278, 280
Chemotherapy
 hepatitis E virus infections in, 75
 for Hodgkin lymphoma, 176
 for Kaposi sarcoma, 172
 for non-Hodgkin lymphoma, 174–175
Chickens, hepatitis E virus in, 74
Chikungunya virus, 312, 329
Children
 hepatitis E virus infections in, 69–72
 influenza H1N1 pandemic, 6–7
Chills, *Plasmodium knowlesi* infections, 265
China
 SARS in, 311–312, 329
 schistosomiasis in, 280
Chlamydia trachomatis, 277
Chlamydophila pneumoniae, 292
Chloramphenicol, for sepsis, 232–233
Chloroquine, for *Plasmodium knowlesi* infections, 266
CHOP chemotherapy, for non-Hodgkin lymphoma, 174–175
Index

Chorioretinitis, lymphocytic choriomeningitis virus infections, 98

Chytridiomycosis, 331

Cidofovir, for cytomegalovirus infections, 152

Ciprofloxacin, for pneumonia, 290

Citrus cancer, 345–346

Clarithromycin, for Buruli ulcer, 252

Climate change, infections due to, 279–281, 330–331

Clostridium difficile infections, in long-term care facility residents, 288, 299

Colitis, cytomegalovirus, 136

Commonwealth Agricultural Bureaux International database, 362

Conflict zones, infections in hepatitis E virus, 64–65

neglected tropical, 273–278

Congo, trypanosomiasis in, 273–275

Conjunctivitis, 297

Constipation, HTLV-1 infections, 112

Cooperative Agriculture Pest Surveys, 351–352

Cooperative Extension Service, plant pathogen research, 341

Corticosteroids, for sepsis, 234

Cough

influenza H1N1, 7

Plasmodium knowlesi infections, 265

Cows, see Cattle, diseases originating in

Cranberry, for urinary tract infections, 294–295

Creutzfeldt-Jakob disease, variant, in mobile populations, 314–315

Crops, pathogens affecting, see Plant pathogens

Cryptosporidium parvum infections, in long-term care facility residents, 299

Culture

cell

cytomegalovirus, 138

human adenovirus 14, 26

urine, 293

CURB65 scoring system, for pneumonia, 290

Customs and Border Protection agency, 351–352

Cutaneous leishmaniasis, 276–280

Cytomegalovirus, infections, in transplant recipients, 129–167

allograft survival and, 137

cytomegalovirus syndrome, 135–136

diagnosis, 138–140

drug-resistant, 153

epidemiology, 129–131

late-onset, 148–149

malignancies with, 137

opportunistic infections with, 137

outcome, 134–138

pathogenesis, 129

prevention, 140–150

primary, 130

reactivation, 130

risk factors, 131–134

superinfection, 130–131

survival in, 138

tissue-invasive, 136

treatment, 150–153

vs. type of organ transplant, 133

tissue load in, 134

Cytomegalovirus syndrome, in transplant recipients, 135–136

Cytotoxicity, Arcobacter, 198

Cytotoxins, Mycobacterium ulcerans, 243–244

Deforestation, infections due to, 278–279, 330

Department of Agriculture, plant pathogen research, 341

Dermatitis, infective, HTLV-1 infections with, 115–116

Diabetes, 29

Diabetes mellitus, type 2, 8

Dilantin, 125

Dipstick test, urinary tract infections, 294

“Disease triangle,” for plants, 339

DNA analysis, lymphocytic choriomeningitis virus-like arenavirus, 102–103

DNA microarray analysis, Arcobacter, 200–203

Dopamine, for sepsis, 234

Doxorubicin, for Kaposi sarcoma, 172

Drug(s)

immunosuppressive, cytomegalovirus infections due to, 132

resistance to, see Resistance

Ducks, Arcobacter in, 192–193

Dyspnea, influenza H1N1, 7

Dysuria, in urinary tract infections, 293

Economic impact, of global climate change, 331

Efflux pumps, Acinetobacter baumannii, 218

Egypt, hepatitis E virus infections in, 65, 69–70

Elderly persons

influenza H1N1, 9–10

in long-term care facilities, see Long-term care facility residents

Drums, infections in, 257

Elderly persons

influenza H1N1, 9–10

in long-term care facilities, see Long-term care facility residents

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 17 Dec 2018 21:44:31
Emergency care, for sepsis, 223–226
Emerging infections, see also specific infections
drivers of, 328–331
surveillance for, 331–333
Emerging Pandemic Threats program, 333
Encephalitis
bovine spongiform, 314–315
cytomegalovirus, 136
Enterobacteriaceae infections
pneumonia, 292
urinary tract, 294
Enterococcus infections, long-term care facility residents, 288
Environmental factors, in Buruli ulcer, 247–250
Enzyme immunoassays
hepatitis E virus, 59–60
human adenosiviruses, 20
Epidemiology
Acanthamoeba polyphaga mimivirus, 43–44
hepatitis E virus, 62–67, 69–75
human adenosiviruses, 18–20, 23–25
influenza H1N1, 1–16
Epinephrine, for sepsis, 234
EPOCH chemotherapy, for non-Hodgkin lymphoma, 174–175
Epstein-Barr virus infections, diseases with Hodgkin lymphoma, 175–176
HTLV-1 infections, 117
non-Hodgkin lymphoma, 173–174
Eradication, of plant and animal diseases, 360–361
Ertapenem, for pneumonia, 290
Erwinia amylovira, 342
Erysipelas, 297
Escherichia coli infections
HTLV-1 infections with, 116
ST131, multidrug-resistant, 213–215
urinary tract, 294
Europe
hepatitis E virus infections in, 65–67
leishmaniasis in, 279–280
European Plant Protection Organization databases, 362
Extracorporeal membrane oxygenation, for influenza H1N1, 9
Eye disorders, cytomegalovirus, 136
Fatigue, influenza H1N1, 7
Fever
chikungunya virus infections, 312
hepatitis E virus infections, 60
influenza H1N1, 7
leishmaniasis, 276
lymphocytic choriomeningitis virus infections, 98
Plasmodium knowlesi infections, 265
urinary tract infections, 283–294
Filarialiasis, lymphatic, 277, 279
Fish
Arcobacter in, 191
mycolactones in, 246–247
Flagella, Arcobacter, 203–204
Flooding, tropical diseases related to, 281
Flower diseases, 340
Fluid resuscitation, for malaria, 233–234
Folliculitis, 297
Food-borne pathogens, Arcobacter spp. as, 185–212
Forensic laboratories, for plant pathogens, 355–356
Foscarnet, for cytomegalovirus infections, 152
Francisella tularensis, aquatic biotope, 41–42
Frogs, mycolactones in, 246–247
Fungal infections
climate change and, 331
in long-term care facility residents, 297–298
plants, 338, 342
Fusarium graminearum, 340
Gambian sleeping sickness, 275
Ganciclovir, for cytomegalovirus infections, 140, 150–151
Gastrointestinal disorders
Arcobacter infections, 188–190
cytomegalovirus infections, 136
hepatitis E, 60
Kaposi sarcoma, 172
in long-term care facility residents, 298–299
Gender differences, hepatitis E virus infections, 63
Gene(s), resistance, in plants, 359–360
Gene transfer, horizontal, Arcobacter, 203–204
Genital squamous cell neoplasms, in HIV infection, 176–177
Genome restriction analysis, human adenosiviruses, 21
Gentamicin, for sepsis, 232–233
GeoSentinel, 309
Germplasm, resistant, 359–360
Germplasm centers, 341
Giardia lamblia infections, in long-term care facility residents, 299
Global Avian Influenza Network for Surveillance, 332–333
Global Buruli Ulcer Initiative, 252
Global warming, infections due to, 279–281, 330–331
Goods, animal-derived, disease transmission during transport, 318–320
Gorillas, infections in, 332
Graft-versus-host disease, cytomegalovirus infections with, 133
“Green Revolution,” 341

Haemophilus influenzae, 292
Hajj, infections during, 317–318

Headache
- chikungunya virus infections, 312
- lymphocytic choriomeningitis virus infections, 98

Plasmodium knowlesi infections, 265

Heart transplantation, cytomegalovirus infections after, 137, 144

Heat therapy, for Buruli ulcer, 251–252

Helicobacter
- genomic analysis, 199–200
- horizontal gene transfer, 203

Helminth infections, HTLV-1 infections with, 114

Hepatitis, cytomegalovirus, 136

Hepatitis A virus infections, vs. hepatitis E virus infections, 60

Hepatitis B virus infections, hepatitis E virus infections with, 73

Hepatitis C virus infections
- hepatitis E virus infections with, 73
- HTLV-1 infections with, 116–117

Hepatitis E virus, 53–93
- antibodies, 73–74
- detection, 59–60
- discovery, 54–57
- genotype 1, 54–55, 57, 63, 65
- genotype 2, 54–55, 57, 63
- genotype 3, 55–57
- genotype 4, 55–57
- immune response to, 60–62, 73–74
- infections
 - Africa, 64–65
 - asymptomatic, 65
 - autochthonous, 67–68
 - chronic, 75
 - clinical features, 60–62
 - conflict zones, 64–65
 - diagnosis, 59–60
 - Egypt, 65
- epidemiology, 62–67, 69–75
- gender differences, 63
- in immunodeficiency, 75
- imported to industrialized countries, 67–68
- incubation period, 60
- industrialized countries, 65–68
- Middle East, 64–65
- mobile populations, 316–317
- with other hepatitis viruses, 73
- in pediatric patients, 69–71
- in pregnancy, 71–72
- prevention, 75–77
- public health burden, 67–68
- risk factors, 63, 65–67
- South Asia, 63–64
- superinfections, 73
- viremia in, 60–62
- infectious dose, 61
- molecular virology, 56
- overview, 53–54
- reservoirs, 55–56, 74
- transmission, 54, 63, 67, 72
- vaccination, 76–77
- zoonotic reservoirs, 55–56, 74

Hepatosplenomegaly
- adult T-cell leukemia/lymphoma, 117–118
- leishmaniasis, 276

Herpes simplex virus infections, 298

Herpes zoster, 298

Highly active antiretroviral therapy, for HIV infection
- Hodgkin lymphoma and, 176
- Kaposi sarcoma and, 170–172
- non-Hodgkin lymphoma and, 174
- squamous cell neoplasia and, 177

HIV, see Human immunodeficiency virus

Hodgkin lymphoma, in HIV infection, 175–176

Hogs, see Pigs

Hospitalizations, influenza H1N1 pandemic of 2009, 7–8

HTLV-1, see Human T-lymphotropic virus 1

HTLV-1-associated myelopathy/tropical spastic paraparesis, 112

Human adenovirus(es)
- infections
 - clinical features, 18–20
 - diagnosis, 20–21
 - epidemiology, 18–20
 - molecular characterization, 20–21
vaccination, 19–20
variant, 27
virology, 17–18
Human adenovirus 7b, 27
Human adenovirus 11, 27
Human adenovirus 14, 17–32
infections, 23–25
laboratory diagnosis, 20–21, 25–27, Color Plate 2
reemergence, 21–23
Human Development Report of 2009, on mobile populations, 308
Human herpesvirus 5, see Cytomegalovirus
Human herpesvirus 8
in Kaposi sarcoma, 179–180
in lymphoma, 173
Human immunodeficiency virus infections
HTLV-1 infections with, 116–117
malignancies associated with, 169–183
Hodgkin lymphoma, 175–176
Kaposi sarcoma, 170–172
multicentric Castleman disease, 176
non-AIDS-defining, 177–178
non-Hodgkin lymphoma, 172–175
squamous cell neoplasia, 176–177
types of, 169–170
pneumonia with, 289
Human papillomavirus infections, in HIV infection, malignancies due to, 176–177
Human T-lymphotropic virus 1 infections, 109–127
adult T-cell leukemia/lymphoma, 117–118
bacterial infections with, 115–116
HTLV-1-associated myelopathy/tropical spastic paraparesis, 112
parasitic infections with, 114–115
prevalence, 110–111
pulmonary, 112–114
transmission, 110–111
types, 111–112
viral infections with, 116–117
Hyperbaric oxygen therapy, for Buruli ulcer, 251–252
Hypercalcemia, adult T-cell leukemia/lymphoma, 117–118
Hypergammaglobulinemia, leishmaniasis, 276
Hypotension, in sepsis, 234
Immigrants, see Mobile populations
Immune response, hepatitis E virus, 60–62, 73–74
Immunodeficiency
cytomegalovirus infections in, 131–132
hepatitis E virus infections in, 75
in HIV infection, malignancies in, 169–183
human adenovirus infections in, 19
Immunofluorescence assays, human adenoviruses, 20
Immunoglobulin(s), cytomegalovirus infections, 152
Immunosuppressive drugs, cytomegalovirus infections due to, 132
Immunosuppressive substances,
Mycobacterium ulcerans, 244–245
Impetigo, 297
Incident Command System, for plant pathogens, 356–357
India
hepatitis E virus infections in, 62–63, 69–70, 75–76
leishmaniasis in, 276
Indigenous populations
Australia, influenza H1N1, 4, 9
HTLV-1 infections, 109–127
Infective dermatitis, HTLV-1 infections with, 115–116
Influenza
animal origin, 330
avian, 330–333
pneumonia, 289
seasonal, in influenza H1N1 pandemic of 2009, 11–12
vaccination, 291
Influenza H1N1 pandemic of 2009, 1–16
in aged-care facilities, 9–10
clinical features, 3–4, 6–7
epidemic curve, Color Plate 1
first reported cases, 1–2
hospitalizations, 7–8
in indigenous population, 4, 9
intensive care use, 4, 8–9
laboratory diagnosis, 4–5, 10–11
mortality in, 5
notable issues, 3–5
pediatric patients, 6–7
public health issues, 3
seasonal influenza and, 11–12
spread, 2, 5
transmission rate, 6–7
vaccination, 5, 12–13
Insects
Mycobacterium ulcerans in, 248–250
Plasmodium knowlesi in, 262–264
Insulin, for sepsis, 234–235
Index

Integrated Consortium of Laboratory Networks system, 363
Integrated Pest Management Pest Information Platform for Extension and Education, 344
Intensive care
 Acanthamoeba polyphaga mimivirus infections, 44
 influenza H1N1 pandemic of 2009, 4, 8–9
 sepsis, 223–226
Internally displaced persons, infectious diseases in, 316–317
International Society of Travel Medicine, 309
Intestinal transplantation, cytomegalovirus infections after, 145
Invasion, Arcobacter, 198
Ivermectin, for Strongyloides stercoralis infections, 114
Japan, hepatitis E virus infections in, 66–67
Jaundice
 hepatitis E virus infections, 60–61
 historical view, 54–55
Kala-azar (visceral leishmaniasis), 276–280
Kaposi sarcoma, in HIV infection, 170–172
Kenya
 chikungunya virus infections in, 312
 sepsis in, 230–232
Kidney transplantation
 cytomegalovirus infections after, 137, 144
 lymphocytic choriomeningitis virus infection after, 98–99
 lymphocytic choriomeningitis virus-like arenavirus infections after, 99–102
Kinetoplastids, in amoebas, 46
Kissing bugs, in Chagas’ disease, 277–278, 280
Klebsiella infections
 pneumonia, 289
 urinary tract, 294
Klebsiella pneumoniae
 multidrug-resistant, 215–217
 sepsis, 230–231
Koalas, Mycobacterium ulcerans in, 250
Laboratory diagnosis
 Acanthamoeba polyphaga mimivirus, 41–42
 cytomegalovirus, 138–140
 human adenoviruses, 20–21, 25–27, Color Plate 2
 influenza H1N1, 4–5, 10–11
 sepsis, in sub-Saharan Africa, 1, 226–229
 Lackland Air Force Base, human adenovirus infections, 23–25
 Lateral flow membrane technology, for plant pathogen detection, 353
 Lck protein, Mycobacterium ulcerans, 245
 Legionella pneumonia, 292
 Legionella pneumophila
 in amoebas, 45–46
 pneumonia, 38, 289
 Legionella-like amoebal pathogens, 35
 Legislation, on plant pathogen control, 362–363
 Leishmania, in amoebas, 46
 Leishmaniasis, 276–280
 Leprosy, HTLV-1 infections with, 115
 Leptospirosis, 278, 280–281
 Leukopenia
 cytomegalovirus infections, 136
 lymphocytic choriomeningitis virus infections, 97
 Lice, in long-term care facility residents, 298
 Liver infections
 adult T-cell leukemia/lymphoma with, 117–118
 hepatitis A virus, 60
 hepatitis B virus, 73, 116–117
 hepatitis C virus, 73, 116–117
 hepatitis E virus, 53–93
 Liver transplantation, infections after
 cytomegalovirus, 144
 lymphocytic choriomeningitis virus, 98–99
 lymphocytic choriomeningitis virus-like arenavirus, 99–102
 Livestock, see Cattle; Pigs
 Long-term care facility residents, infections in, 287–305
 clinical criteria, 288
 demographics, 287–288
 gastroenteritis, 298–299
 pneumonia, 288–292
 reasons, 287–288
 risk factors, 288
 skin and soft tissue, 296–298
 urinary tract, 292–296
 Lung
 Kaposi sarcoma, 172
 transplantation
 cytomegalovirus infections after, 137, 144–145
 lymphocytic choriomeningitis virus infection after, 98–99
 Lyme disease, 330
 Lymphadenopathy, adult T-cell leukemia/lymphoma, 117–118
Lymphatic filariasis, 277, 279
Lymphocytic choriomeningitis virus, 96–99
Lymphocytic choriomeningitis virus-like
arenavirus infections, 95–107
immunostaining, Color Plate 3
outbreak in transplant recipients, 99–104
case studies, 99, 101–102
confirmatory testing, 103, Color Plate 5
etiologic investigations, 102
immunofluorescence assay, Color Plate 4
index case, 99
phylogenetic analysis, 103
ribavirin sensitivity testing, 103–104
unbiased high-throughput sequencing,
102–103
Lymphoma, in HIV infections
Burkitt, 173–174
Hodgkin, 175–176
non-Hodgkin, 172–175
plasmablastic, 173
primary central nervous system, 173–175
primary effusion, 173
Lymphopenia, in lymphocytic
choriomeningitis virus infections, 97
Lymphopenia, Macaques, Plasmodium knowlesi in, 261–264, 268
Macrophages, Acanthamoeba polyphaga mimivirus in, 45–46
Mad cow disease, in mobile populations, 279
Malaria
in deforestation, 330
in mobile populations, 315–316
Plasmodium knowlesi, 261–271
sepsis with, 229–230, 233
Malawí, sepsis in, 232–233
Malaysia, Plasmodium knowlesi in,
262–268
Malignancies
in cytomegalovirus infections, 137
in HIV infections, 169–183
Mamavirus, 33, 35
Manhattan Principles, 328
Mapping the Global Future, 331
Mass gatherings, infections in, 317–318
McGeer criteria, for urinary tract infections,
293
Meat, hepatitis E virus in, 66, 74
Megacolon, Chagas’ disease, 277
Megaesophagus, Chagas’ disease, 277
Membrane technology, for plant pathogen
detection, 353
Meningitis, lymphocytic choriomeningitis
virus infections, 98
Meningococcal infections, in mobile
populations, 318
Mental status changes, in urinary tract
infections, 293
Methicillin, Staphylococcus aureus resistant
to, 230
Mexico, leishmaniasis in, 279
Mice, lymphocytic choriomeningitis virus
in, 96
Microfluidic systems, for sepsis diagnosis,
228
Middle East
hepatitis E virus infections in, 64–65
leishmaniasis in, 276, 278
Migration
infectious diseases in, see also Mobile
populations
neglected tropical diseases and, 273–278
Military population, human adenovirus
infections in, 19–20, 23–25
Mimivirus, 33–51
Mobile populations, infectious diseases in,
305–325
chikungunya virus, 312
displacement and, 308–309
foreign-born travelers, 312–315
globalization and, 306–307
hepatitis E virus, 316–317
historical view, 307–308
internally displaced people, 316–317
mass gatherings, 317–318
monkeypox virus, 319–320
neglected, 273–278
prevention, 309–310
refugees, 316–317
SARS, 311–312
transport of animals and goods,
318–320
tuberculosis, 313–314
types of travelers and, 309–310
variant Creutzfeldt-Jakob disease, 314–315
Monkey(s), Plasmodium knowlesi in, 261–
264, 268
Monkeypox virus infections, in mobile
populations, 319–320
Monocyclic epidemics, plant pathogens, 340
Mosquitoes, in disease transmission
Mycobacterium ulcerans, 249–250
Plasmodium knowlesi, 262–264
viruses, 329–330
Mucositis, cytomegalovirus infections, 136
Multicentric Castleman disease, in HIV
infection, 176
Index

Multidrug-resistant gram-negative bacilli, 213–222
Multilocus sequence typing, Arcobacter, 200–203
Muromonab, cytomegalovirus infections due to, 132
Myalgia
cytomegalovirus infections, 135
lymphocytic choriomeningitis virus infections, 98
Plasmodium knowlesi infections, 265
Mycobacterial infections, HTLV-1 infections with, 115
Mycobacterium avium-M. intracellulare infections
HTLV-1 infections with, 115
in long-term care facility residents, 289
Mycobacterium leprae infections
HTLV-1 infections with, 115
Mycobacterium liflandii, 247
Mycobacterium marinum
genome, 245–246, Color Plate 8
mycolactones, 247
Mycobacterium pseudoshottii, 247
Mycobacterium tuberculosis infections, see Tuberculosis
Mycobacterium ulcerans
disease, see Buruli ulcer
genome, 245–247, Color Plate 8
mycolactones, Mycobacterium ulcerans, 243–245
Mycoplasma pneumoniae, 292
Myocarditis, chikungunya virus infections, 312
Naegleria, in amoebas, 46
National Center for Emerging and Zoonotic Infectious Diseases, 332
National Incident Management System, for plant pathogens, 356–357
National Institute for Food and Agriculture diagnostic services, 353–354
plant pathogen research, 340–341
surveillance, 344
National Plant Diagnostic Network, 344, 353–355
National Plant Disease Recovery System (NPDRS), 358–360
National Science Foundation, plant pathogen research, 341
Nausea
cytomegalovirus infections, 312
hepatitis E virus infections, 60
Plasmodium knowlesi infections, 265
Neglected tropical diseases, 273–285
climate change, 279–281
conflict, 273–278
deforestation, 278–279
migration, 273–278
urbanization, 278–279
Neisseria meningitidis infections
in mobile populations, 318
sepsis, 229
Nematodes, 3
Nepal, hepatitis E virus infections in, 65
Neurologic disorders
cytomegalovirus infections, 136
HTLV-1 infections, 112
lymphocytic choriomeningitis virus infections, 98
trypanosomiasis, 274
New Disease Reports (journal), 362
New Pest Advisory Group, 356–357
Newborns, hepatitis E virus infections in, 72
Nigeria, sepsis in, 224, 230
Norepinephrine, for sepsis, 234
Nosocomial infections, Acanthamoeba polyphaga mimivirus, 33–51
NPDRS (National Plant Disease Recovery System), 358–360
Nucleic acid tests
cytomegalovirus, 139
influenza H1N1 virus, 10–11
Nursing homes, see Long-term care facility residents
OKT3, cytomegalovirus infections due to, 132
Olympics, infections during, 317–318
One World—One Health, 328, 332–333
Oomycete infections, plants, 338
 Opportunistic pathogens, Arcobacter, 185–212
Oral hygiene, for pneumonia prevention, 291–292
Ornamental plants, diseases, 340
Oseltamivir, influenza H1N1 virus resistance, 11
Osteomyelitis, 297
Pain, in urinary tract infections, 293
Pakistan, hepatitis E virus infections, 63–64
Pancreas transplantation, cytomegalovirus infections after, 144
Pancytopenia, leishmaniasis, 276
Pandemics, influenza H1N1 (2009), 1–16
Parachlamydia pneumonia, 38
Index

Parainfluenza virus pneumonia, 289
Parasitemia, *Plasmodium knowlesi*, 261–271
Parasitic diseases
HTLV-1 infections with, 114–117
neglected, see Neglected tropical diseases of plants, 339
PCR
Acanthamoeba polyphaga mimivirus, 38, 40–42
Arcobacter, 188
cytomegalovirus, 139–140
hepatitis E virus, 59–60
human adenoviruses, 20, 26
lymphocytic choriomeningitis virus-like arenavirus, 103
Pediatric patients
hepatitis E virus infections in, 69–72
influenza H1N1 pandemic, 6–7
Pediculosis, in long-term care facility residents, 298
Penicillin, for sepsis, 232–233
Peru, HTLV-1 infections in, 109–127
Pesticides, for plant pathogens, 356
Pets, hepatitis E virus in, 67
Phakospora pachyrhizi Sydow infections, 343–344
Phylogenetic analysis, lymphocytic choriomeningitis virus-like arenavirus, 103
Phytoene dehydrogenase, *Mycobacterium*, 246
Phytomonas infections, 339
Phytophthora infestans infections, 338, 340
Phytophthora ramorum infections, 345
Pigs, diseases originating in, 330
Acinetobacter, 194–195
hepatitis E virus, 66, 74
Pilgrimages, infections during, 317–318
Piperacillin-tazobactam, for pneumonia, 289
Plant Disease (journal), 362
Plant Health Australia, 355
Plant pathogens, 337–366
APHS Select Agent list, 348–349
in commodities, 339–340
communication networking, 362
control, 356–358
diagnostic technologies, 352–356
disease triangle, 339
diagnosis, 342–343
eradication, 360–361
funding for management, 362–363
hosts, 339–340
information gaps, 361–362
information sharing, 363
long-term strategies, 358–360
mitigation, 356–358
monitoring, 349–352, 362
needs related to, 361–363
prioritization, 347–348
recovery from, 356–361
research infrastructure for, 340–341
spread, 341–347
surveillance, 349–352, 362
types, 338–339
Plant Protection and Quarantine (PPQ) program, 356–357
Plasmablastic lymphoma, in HIV infection, 173
Plasmodium, see Malaria
Plasmodium knowlesi, 261–271
in animals, 261–262
distribution, 261
epidemiology, 262–264
in humans, 267–268
infections, 264–267
diagnosis, 265, Color Plates 9 & 10
pathophysiology, 266–267
signs and symptoms, 265
treatment, 266
parasitology, 261–262, Color Plate 9
Plum pox virus, 345–346
Pneumocystis jirovecii infections
pneumonia, 289
sepsis, 230
Pneumonia
Acanthamoeba polyphaga mimivirus, 33–51
Acinetobacter baumannii, 218
adenovirus, 17–32
cytomegalovirus, 136
influenza H1N1, 6
in long-term care facility residents, 288–292
Pneumonitis
influenza H1N1, 8
lymphocytic interstitial, 112–114
Political conditions, mobile populations due to, 305–325
Polycyclic epidemics, plant pathogens, 340
Polyoxymyxins, for *Acinetobacter baumannii*, 217–219
Possums, *Mycobacterium ulcerans* in, 250–251
Potato late blight, 340
Poultry, *Arcobacter* in, 191–193
Pregnancy
hepatitis E virus infections in, 71–72
influenza H1N1 in, 7–8
Pressure ulcers, 297
Index

Primaquine, for Plasmodium knowlesi infections, 266
Primary central nervous system lymphoma, in HIV infection, 173–175
Primary effusion lymphoma, in HIV infection, 173
Primates, nonhuman, infections in, 332
Priority lists, for plant pathogens, 348
ProMED Plant website, 362
Protein C, activated, for sepsis, 234
Proteus, infections, urinary tract, 294
Protozoan infections, of plants, 339
Proviral load, HTLV-1, 113
Pseudomonas aeruginosa infections
 pneumonia, 292
 urinary tract, 294
Pseudomonas infections
 plant, 338
 pneumonia, 289
Puccinia graminis f. sp. tritici, 340
Pulmonary infections, HTLV-1, 112–114
Pyuria, in infections, 294
Qatar, hepatitis E virus infections in, 64
Quarantine, of plants, 351–352
Quechua Amerindians, HTLV-1 infections in, 109–127
Radiation therapy
 for Kaposi sarcoma, 172
 for non-Hodgkin lymphoma, 174
Rainbow Family gathering, infections during, 317–318
Ralstonia solanacearum infections, 340
Rapid diagnostic tests, Plasmodium knowlesi, 265
Rash, chikungunya virus infections, 312
Recovery, from plant diseases, 356–361
Refugees, infectious diseases in, 315–317
Regulations, on plant pathogen control, 362–363
Rejection, cytomegalovirus infection and, 133, 137
Resistance
 in Acinetobacter baumannii, 217–219
 in cytomegalovirus, 153
 in Escherichia coli ST131 clone, 213–215
 in influenza H1N1 virus, 11
 in Klebsiella pneumoniae, 215–217
 in Mycobacterium tuberculosis, 313–314
Respiratory infections, see also Influenza; Pneumonia; Tuberculosis
 HTLV-1, 112–114
 SARS, 311–312, 329
Respiratory syncytial virus pneumonia, 289
Retinitis, cytomegalovirus, 136
Reverse transcriptase-PCR, lymphocytic choriomeningitis virus-like arenavirus, 103
Rhode Island, lymphocytic choriomeningitis virus infection in, 98–99
Rhodesian trypanosomiasis, 274–276
Ribavirin sensitivity testing, lymphocytic choriomeningitis virus-like arenavirus, 103–104
Rickettsia bellii, in amoebas, 45–46
Rifampin, for Buruli ulcer, 251–252
Ringtail possums, Mycobacterium ulcerans in, 250–251
Rituximab, for non-Hodgkin’s lymphoma, 174
Rodents
 arenaviruses in, 95–96
 lymphocytic choriomeningitis virus in, 96
SAFE program, for trachoma control, 277
Salmonella infections
 in long-term care facility residents, 299
 sepsis, 229–233
Sand fly, Leishmania in, 276–280
Sanitation facilities, hepatitis E virus and, 62–63, 69–70, 75–76
Sarcoma, Kaposi’s, in HIV infection, 170–172
Sarcoptes scabiei infections
 HTLV-1 infections with, 115
 in long-term care facility residents, 298
SARS, see Severe acute respiratory syndrome
Scabies
 HTLV-1 infections with, 15
 in long-term care facility residents, 298
Schistosomiasis, 279, 280
Select Agent list, plant pathogens, 348–349
Sepsis, in sub-Saharan Africa, 223–239
 clinical manifestations, 231–232
 definition, 223
 emergency care, 223–226
 intensive care, 223–226
 laboratory testing, 226–229
 microbiology, 229–231
 mortality, 231–232
 risk factors, 223
 supportive therapy, 233–235
 treatment, 232–233
Serologic tests
 Acanthamoeba polyphaga mimivirus, 38–42
 cytomegalovirus, 138
 human adenovirus 14, 26
 influenza H1N1 virus, 11
Index

Severe acute respiratory syndrome, 311–312, 329
Sexual dysfunction, HTLV-1 infections, 112
Shellfish
Arcobacter in, 191
hepatitis E virus in, 66–67
Shingles, 298
Skin disorders
Buruli ulcer, 241–260
infections, 296–298
Kaposi sarcoma, 170–172
in long-term care facility residents, 296–298
Sleeping sickness, African, 273–276
Social disruptions, mobile populations in, 305–325
Sociopolitical instability, neglected tropical diseases and, 273–278
Soft tissue infections, 296–298
South America, Chagas’ disease in, 277–278
South Asia, hepatitis E virus infections, 63–64
Southeast Asia
chikungunya virus infections in, 312
Plasmodium knowlesi in, 262–264
Soybean rust, 343–344, 360
Spastic weakness, HTLV-1, 112
Sports mass gatherings, infections during, 317–318
Squamous cell neoplasia, in HIV infection, 176–177
Src proteins, Mycobacterium ulcerans, 245
Staphylococcus aureus infections
HTLV-1 infections with, 116
long-term care facility residents, 288
pneumonia, 289–290, 292
sepsis, 229–231
skin and soft tissue, 297
Streptococcal infections, skin and soft tissue, 297
Streptococcus pneumoniae infections
pneumonia, 289–292
sepsis, 229
vaccination, 291
Streptococcus pyogenes infections, HTLV-1 infections with, 116
Streptomycin, for Buruli ulcer, 251–252
Surgery, for Buruli ulcer, 251–252
Surveillance
emerging infections of animal origin, 331–333
plant pathogens, 349–352, 362
Swine, see Pigs
Systemic inflammatory response syndrome, see Sepsis
Tanzania, sepsis in, 230–231
Terrorism, plant pathogens in, 346–347
Thailand, lymphatic filariasis in, 277
Thrombocytopenia
cytomegalovirus infections, 136
Plasmodium knowlesi infections, 265
Thrush, 297–298
Tigecycline, for Acinetobacter baumannii infections, 218–219
Toxins
Arcobacter, 198
Mycobacterium ulcerans, 243–244
Toxoplasmosis, vs. primary central nervous system lymphoma, 174
Trachoma, 277
Transfusions
cytomegalovirus in, 130
hepatitis E virus in, 67
Transplant recipients
cytomegalovirus infections in, 129–167
hepatitis E virus infections in, 75
Kaposi sarcoma in, 171
lymphocytic choriomeningitis virus infections in, 98–99
lymphocytic choriomeningitis virus-like arenavirus infections in, 99–104
Transport, animals and goods, disease transmission during, 318–320
Travelers, infectious diseases in, 305–325
chikungunya virus, 312
foreign-born, 312–315
hepatitis E virus, 316–317
internally displaced people, 316–317
mass gatherings, 317–318
monkeypox virus, 319–320
Neisseria meningitidis, 318
prevention, 309–310
refugees, 316–317
SARS, 311–312
transport of animals and goods, 318–320
tuberculosis, 313–314
variant Creutzfeldt-Jakob disease, 314–315
visiting friends and relatives, 315–316
Tropical diseases, see also Malaria;
Neglected tropical diseases
Buruli ulcer, 241–260
Index

Trypanosoma, in amoebas, 46
Trypanosoma brucei, 273–275
Trypanosoma cruzi, 277–278, 280
Trypanosomiasis
African, 273–276
American, 277–278, 280
Tsetse fly, Trypanosoma in, 273–276
Tuberculosis
HTLV-1 infections with, 115
in long-term care facility residents, 289
sepsis in, 229
treatment, 292
Tumor necrosis factor inhibitors,
Mycobacterium ulcerans, 244–245
Tungiasis, 279
Turkeys, Arcobacter in, 192–193
Uganda
sepsis in, 223–239
trypanosomiasis in, 274–276
Ulcer
Buruli, 241–260
pressure, 297
Unbiased high-throughput sequencing,
lymphocytic choriomeningitis virus-like arenavirus, 102–103
United Kingdom, variant Creutzfeldt-Jakob disease in, 314–315
United States
hepatitis E virus infections in, 66–67
monkeypox virus infections in, 319–320
United States Forest Service, plant pathogen research, 340–341
Urbanization, neglected tropical diseases and, 278–279
Urinary dysfunction, in infections, 112, 293
Urinary tract infections
in long-term care facility residents, 292–296
multidrug-resistant Escherichia coli, 213–215
USDA Fresh Fruits and Vegetables Import Manual, 352
USDA Nursery Stock Manual, 352
Vaccination
hepatitis E virus, 76–77
influenza, 291
influenza H1N1, 5, 12–13
pneumococcal, 291
Valacyclovir, for cytomegalovirus infections, prophylactic and preemptive, 140–150
Valganciclovir, for cytomegalovirus infections, 140, 150–151
Vancomycin, for pneumonia, 290
Variant Creutzfeldt-Jakob disease, in mobile populations, 314–315
Ventilation, Acanthamoeba polyphaga mimivirus in, 43–44
Viral infections, plant, 338, 340
Visceral leishmaniasis, 276–280
Wallace line, as Plasmodium knowlesi boundary, 262
War zones, hepatitis E virus infections, 64–65
Warming, climate, infections due to, 279–281, 330–331
Water
Acanthamoeba polyphaga mimivirus in, 35, 38
Arcobacter in, 190–191
hepatitis E virus in, 53–54, 63–67, 75–76
Mycobacterium ulcerans in, 247–248
Weakness
cytomegalovirus infections, 135
HTLV-1, 112
Wheat stem rust, 340
Wild Bird Global Avian Influenza Network for Surveillance program, 332–333
Wildlife, infections originating in, 327–333
Wildlife Conservation Society, One World—One Health, 328, 332–333
Wilting diseases, of plants, 339
Wisconsin, lymphocytic choriomeningitis virus infection in, 98
World Animal Health Organization, 332–333
World Cup tournaments, infections during, 317–318
World TB Day campaign, 313
Worms, plant damage from, 338–339
Wuchereria bancrofti, 277
Xanthomonas, 338
Xanthomonas citri pv. citri, 345–346
Zambia, sepsis in, 223–239
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Mon, 17 Dec 2018 21:44:31